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Conserved Quantities

Let a conserved quantity have amount F per unit volume. Examples are as follows:

For conservation of mass, we take F = ⇢ , where ⇢ is mass density.

For conservation of linear momentum, F = ⇢u, where u is the velocity vector (relative to
some Newtonian reference frame).

For conservation of angular momentum, F = ⇢x ⇥ u, where x is the position vector
(relative to a fixed point in that frame).

For conservation of energy (first law of thermodynamics), F = ⇢ (e+ 1
2 |u|

2) where e is the
internal energy per unit mass and 1

2 |u|
2 is the kinetic energy per unit mass.

There is also the non-conservation law of entropy (second law of thermodynamics) for which
the same framework here will be used, replacing an “ = ” with a “ � ”, and in which F = ⇢s
where s is entropy per unit mass.

We assume that at the continuum scales of interest here, the mass density ⇢ as well as the the
momentum per unit volume ⇢u can be interpreted as well-defined averages of microscopic
masses and momenta. That is, they are averages over minute spatial regions and time
intervals, which can nevertheless be chosen large enough that there are negligible statistical
fluctuations about those averages at a given x,t in di↵erent macroscopic realizations of the
same deformation or flow process. Accordingly, u must then be interpreted as the mass

averaged velocity. When studying the motion of a surface S in the continuum which is
said to move with the material, we will interpret that as moving with the local velocity u.
Correspondingly, then, in writing the law of conservation of, e.g., linear momentum for a
region of material momentarily occupying volume V , the surface flux rate of momentum T
(where T is the stress vector along the bounding surface S of V ), is understood to include
contributions not just from forces acting on S but also from transfers of momentum across
S associated with microscopic scale motions relative to the mass-averaged motion u.

We consider a single-component continuum. More complicated expressions than given here
would be required to describe multi-component continua in which one component moves
macroscopically relative to the other(s), like for fluids entraining solid particles or droplets
of other fluids, or for deformable porous solids with fluid infiltration, etc.
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Representation of Accumulation Rates in Conservation Laws; Reynolds Trans-
port Theorem

Figure 1: An arbitrarily selected volume V of space, with bounding surface S.

We use Eulerian coordinates (fixed in space) so, focusing attention on an arbitrarily selected
volume V of space, with bounding surface S. Conservation laws have the form:

Rate of accumulation of quantity F within the matter which, at time t, occupies region V

= Rate of generation of that quantity within V and and along its surface S

Because of the Eulerian coordinates, to properly judge the rate of accumulation of F , we
must account for the change within V as well as for the fact that some of the matter within
V at time t will, at an infinitesimally later time t + �t, have exited V across S at locations
where n · u > 0 (here n is the outer unit normal to S), and that other matter will have
entered V through S at places where n · u < 0. (Had we used Lagrangian coordinates (i.e.,
fixed along material points), the terms crossing S would not appear and, rather, we’d say
that the boundary of V moves with velocity u.) Hence, with the Eulerian description,

Accumulation of quantity in V within time �t

=

Z

V

[F (x, t+ �t)� F (x, t)]dV +

Z

S

F (x, t)(n · u�t) dS

to first order in �t. Dividing by �t and letting �t ! 0, this shows that

Rate of accumulation of quantity in V =

Z

V

@F

@t
dV +

Z

S

n · uFdS =

Z

V

✓
@F

@t
+r·(uF )

◆
dV

where the Divergence Theorem has been used in the last step. So we simply choose F = ⇢,
or ⇢u, or ⇢x⇥u, or ⇢ (e+ 1

2 |u|
2) to get the left side of the conservation law for the respective
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cases of mass, linear momentum, angular momentum, and energy. (The result of the above
calculation, e.g., when rewritten as

d

dt

Z

V (t)

F dV =

Z

V

✓
@F

@t
+r·(uF )

◆
dV ,

is sometimes referred to as the Reynolds transport theorem.)

Representation of Generation Rates in Conservation Laws

The form taken by the generation rate will, if non-zero, be of the form

Generation rate =

Z

V

H dV +

Z

S

h
n

dS

Thus, in integral form, each conservation law will read
Z

V

✓
@F

@t
+r·(uF )

◆
dV =

Z

V

H dV +

Z

S

h
n

dS .

The physical dimensions of H and h
n

, as monomials in mass (M), length (L) and time (T),
must evidently satisfy dim[H] = dim[F ]/T and dim[h

n

] = dim[F ]L/T. Also, H and h
n

must
have the same tensorial rank as does F .

Tensors Associated with Surface Fluxes

An important conclusion may now be drawn, from the conservation law itself, about the
allowable form of any surface generation term h

n

: Divide both sides of the last equation by
the total surface area S of the region, and then let S ! 0 and V ! 0 in such a way that the
greatest linear dimension of V also ! 0 (i.e., V and S shrink onto a point). In that limit the
volume intergrals scale with V and do not contribute in the statement of the conservation
law because V/S ! 0. Thus

1

S

Z

S

h
n

dS ! 0 as S ! 0 .

Now, in this limit, as V and S are shrunk onto a point, the quantity h
n

can only vary with
the orientation n of the surface element at that point. The Cauchy tetrahedron argument
then requires that for general n (= n1, n2, n3), the value h

n

on a surface element of that
orientation has the form

h
n

= n1h
(1) + n2h

(2) + n3h
(3) ⌘ n

k

h(k)

Here h(1), h(2) and h(3) are the values of h
n

for surface elements with normals n pointing,
respectively, in the positive 1, 2, and 3 directions. This result su�ces for us to conclude that
the quantity h defined by

h = e1h
(1) + e2h

(2) + e3h
(3) ⌘ e

k

h(k) (with h
n

= n · h)
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is a dyad (hence has components following tensor transformation laws) having a tensorial
rank which is higher by unity than the rank of F , H, and h

n

.

[For example, in the case of conservation of linear momentum, F , H, and h
n

are of rank
1, i.e., are vectors, so that h (the stress tensor) is of rank 2. In the case of conservation of
energy, F , H, and h

n

are of rank 0, i.e., they are scalars, so that h (one term of which is the
heat flux vector) is of rank 1.]

Figure 2: Cauchy tetrahedron.

Local Form of a Conservation Law

Thus in the above integral form of a conservation law, the term
R
S

h
n

dS may now be rewritten
as

R
S

n · h dS =
R
V

r· h dV by the divergence theorem. Therefore, if the conservation law
applies for any choice of V and if the terms within it are assumed to be locally continuous,
then the local (pde) form of the conservation law is [with notation (...)

, t

⌘ @(...)/@t]

F
, t

+r·(uF ) = r· h+H

The conservation laws now follow.

Mass:

In the case of mass, F = ⇢ and there will be no generation rate, H = h
n

= 0. Thus

⇢
, t

+r · (⇢u) = 0
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This may be rearranged to

⇢
, t

+ u ·r⇢+ ⇢r · u = 0 or
D⇢

Dt
+ ⇢r · u = 0

where D(...)/Dt ⌘ (...)
, t

+ u ·r(...) is the short notation for a rate of change following a
material particle moving with velocity u.

Linear Momentum:

Linear momentum, for which F = ⇢u, is generated by force, which may be divided, ac-
cording to the Cauchy stress hypothesis, into a force ⇢g per unit volume within V and by
a force per unit area acting along S. The sum of that force per unit area on S plus the
contribution already noted from momentum flux per unit area associated with microscopic
motions relative to the mass-averaged velocity u defines the surface stress vector T. Thus
H = ⇢g (here g is body force per unit mass) and h

n

= T.

Accordingly, the conservation law requires the existence of a second rank tensor, the stress
tensor � (= �

ij

e
i

e
j

), satisfying

T = n · � (T
j

= n
i

�
ij

)

Evidently, �
ij

e
j

is the stress vector T associated with a surface element having the unit
outward normal n = e

i

at the point of interest.

Thus, with F = ⇢u, H = ⇢g and h
n

= n · �, the local form is

(⇢u)
, t

+r · (⇢uu) = r · � + ⇢ g

and simplifying with use of conservation of mass, this becomes

⇢ (u
, t

+ u ·ru) = r · � + ⇢ g or ⇢
Du

Dt
= r · � + ⇢ g

Angular Momentum:

In this case, F = ⇢ x⇥u, H = ⇢ x⇥ g, and h
n

= x⇥T = x⇥ (n · �) so that the associated
2nd rank tensor h, associated with the vector h

n

by h
n

= n · h, is h = �� ⇥ x. The local
expression is then

(⇢ x⇥ u)
, t

+r·(u(⇢ x⇥ u)) = r· (�� ⇥ x) + ⇢ x⇥ g

That can be greatly simplified by use of conservation of mass and of linear momentum so
that there results an expression which is given most simply in component form as

�
ij

e
i

⇥ e
j

= 0 (implying that �
ij

= �
ji

)
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That is, � is symmetric; � = �T .

Energy:

Now F = ⇢ (e+ 1
2 |u|

2), and the energy generation terms are H = ⇢ g · u+ r in the volume,
where r is the rate of radiant energy supply per unit volume, and h

n

= T · u � q
n

on the
surface, where q

n

is the rate of heat outflow per unit area across S. As before, h
n

can be
represented as n·h where in this case, for which h

n

is a scalar, h will be a vector. In particular,
h = � · u� q where the heat flow vector q, the existence of which is a consequence of the
conservation law, satisfies q

n

= n · q on S.

The resulting local form is

[⇢ (e+
1

2
|u|2)]

, t

+r·[⇢u (e+
1

2
|u|2)] = r · (� · u) + ⇢ g · u�r · q+ r

and simplifying with the use of conservation of mass and linear and angular momentum, the
energy equation is

⇢ (e
, t

+ u ·re) = � : D�r · q+ r or ⇢
De

Dt
= � : D�r · q+ r

where

D = sym(ru) ⌘ 1

2
[ (ru) + (ru)T ]

is the rate of deformation tensor.

It may be observed that � : D (= �
ij

D
ij

) is the rate of stress working per unit volume, and
therfore that w, the rate of stress working per unit mass, is given by

w ⌘ � : D

⇢

In terms of w, the last form of the energy equation reads De/Dt = w + (r�r · q)/⇢, which
is the form expected from elementary considerations when it is recognized that (r�r · q)/⇢
is the rate of heat absorption per unit mass.

For example, in the case that the stress state is just a pure hydrostatic pressure p, i.e. when
�
ij

= �p �
ij

, like for inviscid fluid models, it is seen that � : D ⌘ �
ij

D
ij

= �p D
jj

=
�p r · u = p (D⇢/Dt)/⇢, where the last form given above for conservation of mass has
been used. Thus w = p (D⇢/Dt)/⇢2 = �p D(1/⇢)/Dt, which is the expected result in this
case.

[Aside on elasticity (not required for ES 220): In the case of elastic materials, energy
e and other thermodynamic functions of state would depend on strain E from a reference
configuration as well as on another state variable such as temperature or entropy s per unit
mass. Several appropriate definitions of E can be made. For example, letting ⇢

o

and X
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denote ⇢ and x in the reference configuration, one commonly adopted definition of E is as
the Green strain E, which is based on the change in metric tensor under deformation. It
is defined by requiring that dx · dx = dX · dX + 2 dX · E · dX for arbitrary choices of dX.
Here dx denotes the material line element which was described by dX when in the reference
configuration. Thinking of x as a function of X and t, and writing dx

i

= (@x
i

/@X
k

)dX
k

this
then defines the components of E as

E
kl

=
1

2

✓
@x

i

@X
k

@x
i

@X
l

� �
kl

◆
=

1

2

✓
@⇠

k

@X
l

+
@⇠

l

@X
k

+
@⇠

i

@X
k

@⇠
i

@X
k

◆

where ⇠ = x �X is the displacement of the considered material particle from its reference
position. A work-conjugate symmetric stress tensor S, called the second Piola-Kirchho↵

stress, may then be defined with the property

w =
� : D

⇢
=

S : DE/Dt

⇢
o

which implies that S = det[F] F�1 · � · FT�1

Here F (not to be confused with use of F above as a general symbol for density of a con-
served quantity) is defined by dx = F·dX, so that it has components F

ij

= @x
i

/@X
j

, FT

is its transpose (F T

ij

= F
ji

), F�1 is its inverse (dX = F�1·dx), and det[F] (= ⇢
o

/⇢) is its
determinant.]

Entropy:

Entropy is not a conserved quantity and, rather, can only be constrained to be non-decreasing
in time (second law of thermodynamics). In this case the general integral and local forms of
a conservation law above are replaced by the inequalities

Z

V

✓
@F

@t
+r·(uF )

◆
dV �

Z

V

H dV +

Z

S

h
n

dS (with h
n

= n·h)

and F
, t

+r·(uF ) � r· h+H

In these expressions we take F = ⇢s, H = r/T , and h = �q/T to form what is called the
Clausius-Duhem inequality, of which the local form is

(⇢s)
, t

+r·(⇢us) � �r· (q
T
) +

r

T

and which becomes, after simplification with conservation of mass,

⇢ (s
, t

+ u ·rs) � �r· (q
T
) +

r

T
or ⇢

Ds

Dt
� q ·rT

T 2
� r · q

T
+

r

T

The last expression can be combined with the energy equation to rewrite the Clausius-Duhem
inequality as

De

Dt
+

q ·rT

⇢T
 � : D

⇢
+ T

Ds

Dt
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Thermodynamic Constraints on Constitutive Laws, Simple Viscous Fluids

For simple viscous fluids, which we think of as compressible in general, we assume that the
stress tensor � is a function of ⇢, T and the instantaneous rate of deformation tensor D (but
not of its history, like would be the case for complex fluids).

When D = 0, � must reduce to its equilibrium value �eq where �eq

ij

= �p(⇢, T )�
ij

Here
p(⇢, T ) is the equilibrium pressure given by the thermal equation of state.

Then when D 6= 0, we write

�
ij

= ⌧
ij

+ �eq

ij

⌘ ⌧
ij

� p(⇢, T )�
ij

where p(⇢, T ) continues to be given by the thermal equation of state and the tensor ⌧ may
be called the viscous part of the stress tensor �.

Other thermodynamic properties such as e and s relate to ⇢, T and p just like at equilibium,
i.e., in a manner constraind by continuing validity of the perfect di↵erential form

�p d(1/⇢) + T ds = de ,

that is, of

�p
D(1/⇢)

Dt
+ T

Ds

Dt
=

De

Dt
.

We now observe that because D
kk

= (D(1/⇢)/Dt) /(1/⇢),

�p
D(1/⇢)

Dt
= �pD

kk

⇢
⌘ �eq : D

⇢
⌘ (� � ⌧ ) : D

⇢

and the equation before this last one then becomes an expression for De/Dt in the form

De

Dt
= T

Ds

Dt
+

(� � ⌧ ) : D

⇢

Substituting this last expression into the thermodynamic inequality given just before the
start of this section, and concelling like terms on each side, we get (after multiplying through
by �⇢)

⌧ : D� q · (rT )/T � 0 .

This must hold for all possible D and rT , and for all ⇢ and T .

Now, by our assumptions about the viscous stress, ⌧ is a function only of ⇢, T and D, but
not of rT . Thus, the inequality still gives a valid general constraint at points in space-time
for which rT = 0, and such points could in principle be encountered for any values of ⇢, T
and D. Hence we must require that

⌧ : D � 0
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for all ⇢, T and D. In a related manner, when D = 0 it is clear that the inequality

�q ·rT � 0

It must hold for all D, assuming that q is a function only of ⇢, T and rT , but not D.

Linear viscous resistance and heat conduction relations: We here make the con-
ventional additional assumptions that ⌧ is linear in D, and that q is linear in rT , in ways
that recognize the isotropy of fluid properties. The most general* laws of that type are

⌧ 0 = 2µD0 and tr(⌧ )/3 =  tr(D) (Newtonian viscosity)

[where ⌧ 0 ⌘ ⌧ � tr(⌧ )I/3 and tr(⌧ ) ⌘ ⌧
kk

; similarly D0 ⌘ D � tr(D)I/3 and tr(D) ⌘ D
kk

;
here “tr” stands for “trace”, or sum of diagonal elements] and

q = �KrT (Fourier law for heat conduction) ,

The factors in those equations are the shear viscosity µ, the bulk viscosity , and the thermal

conductivity K. In general, all are functions of ⇢ and T .

The “primed” quantities ⌧ 0, D0, and �0 are called the deviatoric parts of ⌧ , D and �,
respectively, and we note that tr(⌧ 0) = 0, tr(D0) = 0 and tr(�0) = 0. Also, the relation
� = ⌧ � pI shows that the stress tensor satisfies

�0 ⌘ ⌧ 0 = 2µD0 and tr(�)/3 ⌘ tr(⌧ )/3� p =  tr(D)� p .

That may be rewritten as an equivalent single expression for � (rather than separately for
its deviatoric part and its trace) as

� = ⌧ � pI = 2µD+ (� 2µ/3)tr(D)I� pI ,

and the expressions may be inverted to represent D as

D =
1

2µ
⌧ �

✓
1

6µ
� 1

9

◆
tr(⌧ )I =

1

2µ
� �

✓
1

6µ
� 1

9

◆
tr(�)I+

1

3
pI .

In these equations, we recall that p is the function p = p(⇢, T ) characterizing the thermal
equation of state, and is not to be equated to �tr(�)/3 (unless  = 0 and/or tr(D) = 0).
For example, if an “isotropic” stress state �11 = �22 = �33 = �C (the notation C is used
to denote a compressive stress), with o↵-diagonal �

ij

= 0, is applied to a fluid element, the
corresponding deformation rates will satisfy D11 = D22 = D33, and o↵-diagonal D

ij

= 0,
where 3D11 = p(⇢, T ) � C. Recognizing that 3D11 = �(1/⇢)D⇢/Dt in this circumstance,
it is seen that ⇢ would evolve according to the first order di↵erential equation D⇢/Dt =
⇢ [C � p(⇢, T )]. To characterize the solution to that di↵erential equation, we would have to
say something about the thermal conditions on the fluid element. In the simplest case, when
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we assume T is held fixed by appropriate heat extraction from the element, it is easy to
see that for fixed C, ⇢ will evolve monotonically, at a finite rate, towards the value which
makes p(⇢, T ) = C, provided that  > 0 (see next sub-section) and that the isothermal
compressibility is positive (assured by @p(⇢, T )/@⇢ > 0).

[* At the start of this sub-section expressions were given for ⌧ 0, tr(⌧ ) and q (or, equivalently,
for ⌧ and q) which were claimed to provide the most general possible linear relations toD and
rT for an isotropic material. It is easy to understand that the result stated for q satisfies
that claim, but the relation given between ⌧ and D may merit more discussion. Such is
provided here, making use of the symmetry of ⌧ (which holds because of symmetry of � and
I). That symmetry means that at any given x and t, there exist three mutually orthogonal
principal directions so that ⌧ is diagonal relative to those axes. Let those directions be
chosen as the 1, 2 and 3 directions, so that the ⌧

ij

vanish if i 6= j. Now we make use of
linearity and isotropy. By linearity the instantaneous respose D to ⌧ is the sum of the
separate responses to ⌧11, ⌧22 and ⌧33. By isotropy the response to ⌧11 alone must be of the
form

D11 = A ⌧11, D22 = D33 = �B ⌧11, D
ij

= 0 for i 6= j

where A and B are scalar fluid properties. The response to ⌧22 alone, and to ⌧33 alone, may be
written similarly, changing 1,2,3 to 2,3,1, and to 3,1,2, respectively, keeping the same factors
A and B. Thus, summing these separate linear responses, we conclude that, e.g.,

D11 = A ⌧11 � B ⌧22 � B ⌧33 = (A+B) ⌧11 � B (⌧11 + ⌧22 + ⌧33)

with similar expressions for D22 and D33, and with the o↵-diagonal D
ij

= 0. Thus, in this
special, local principal axes coordinate system,

D
ij

= (A+B) ⌧
ij

� B �
ij

⌧
kk

holds for all i, j, i.e., for all deformation and stress components. However, D
ij

, ⌧
ij

and �
ij

are
second rank tensors, whereas ⌧

kk

is invariant under coordinate transformation. Thus if we
choose any other orthogonal coordinate directions which are rotated from the principal axes,
the same relation between components of D and ⌧ must hold in that new system. Renaming
A and B in terms of µ and , that justifies the form asserted for relations between D and ⌧
towards the start of this sub-section.]

Requirement of non-negative viscosities and conductivity: It is easy to show that
the viscous dissipation rate ⌧ : D satisfies

⌧ : D = ⌧ 0 : D0 + tr(⌧ ) tr(D)/3 = 2µ (D0 : D0) +  [tr(D)]2 .

Thus the thermodynamic inequality ⌧ : D� q · (rT )/T � 0 becomes

2µ (D0 : D0) +  [tr(D)]2 +K |rT |2/T � 0 .
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That can be satisfied for all possible D [meaning all possible D0 and tr(D)] and rT as may
arise in flow processes only if all of µ,  and K are non-negative.

Energy Equation

We now recall the energy conservation equation ⇢De/Dt = � : D � r · q + r as well
as the above transformation of the thermodynamic identity �p d(1/⇢) + T ds = de into
⇢De/Dt = ⇢TDs/Dt + (� � ⌧ ) : D. Eliminating De/Dt from the expressions, and using
q = �KrT , allows the energy equation to be rewritten as

r · (K rT ) + ⌧ : D+ r = ⇢ T
Ds

Dt

In this expression, we recall that s is related to p, ⇢ and T (themselves related by p = p(⇢, T ))
just as for equilibrium states. Thus we may write s = s(T, ⇢) or s = s(T, p), according to
preference, and write

Ds

Dt
=

@s(T, ⇢)

@T

DT

Dt
+

@s(T, ⇢)

@⇢

D⇢

Dt
or

Ds

Dt
=

@s(T, p)

@T

DT

Dt
+

@s(T, p)

@p

Dp

Dt
,

Two of the above partial derivatives of s are given in terms of specific heats per unit mass,
c
v

or c
p

, at constant ⇢ or p, respectively, as @s(T, ⇢)/@T = c
v

/T and @s(T, p)/@T = c
p

/T .
Maxwell reciprocal relations associated with recognition that �p d(1/⇢)� s dT and dp/⇢�
s dT are perfect di↵erentials enable the other partial derivatives to be computed from the
thermal equation of state.

The result may be written as

r · (K rT ) + ⌧ : D+ r = ⇢c
v

DT

Dt
� �̂

p

⇢

D⇢

Dt
,

or as r · (K rT ) + ⌧ : D+ r = ⇢c
p

DT

Dt
� ↵̂

Dp

Dt
,

where �̂ =
T

p

@p(⇢, T )

@T
and ↵̂ = �T

⇢

@⇢(p, T )

@T
.

It may be noted that ↵̂ > 0 when the thermal expansion under fixed pressure is positive, and
then �̂ > 0 too, so long as p > 0 and the isothermal compressibility of the fluid is postive
(as we would always assume on grounds of thermodynamic stability). Also, for an ideal gas,
�̂ = ↵̂ = 1.

Simplified energy equation: In simplified analyses of some flow and heat transfer prob-
lems, distinctions between c

v

and c
p

are ignored (with notation c used instead), and the
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D⇢/Dt and Dp/Dt terms are ignored (they are often small compared to other terms), so
that the energy equation is written approximately as

r · (K rT ) + ⌧ : D+ r = ⇢c
DT

Dt
.
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