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Engineering Sciences 247:  Fracture Mechanics                            J. R. Rice, 1991 

 

Homework Problems 

 

 1) Assuming that the stress field near a crack tip in a linear elastic solid is singular in the 

form σij = rλ Σij(θ), it was shown in the lectures that λ = – 1/2 and that, for Mode I (tensile) 

loading of an isotropic solid, the form of the singular near-tip stress state is 

                                         
 

( σrr + σθθ )

2
  =  

( σ11 + σ22 )

2
  =  KI

2 π r
  cos (θ/2)

  , 

                    
 

( σθθ − σrr  )

2
 + i  σrθ  =  e 2 i  θ   

( σ22 − σ11  )

2
 + i  σ12   =  i  KI e i  θ / 2

2 2 π r
  sin (θ)

  . 

Also,  σ33 = ν ( σ11 + σ22 ) for plane strain and general 3D cracks, and σ33 = 0 for the 2D plane 

stress model.  Here KI is undetermined by the near-tip analysis and is called the Mode I stress 

intensity factor. 

 Show that the corresponding displacement field is 

                           
ur + i  uθ  =  e −  i  θ ( u1 + i  u2 )  =   KI

2 μ
   r 

2 π
   ( κ − cos θ  )  e − i  θ / 2

 

where κ = 3 − 4ν for plane strain or for the general 3D crack, and where κ = ( 3 − ν ) / ( 1 + ν ) for the 

2D plane stress model. 

 

 2) Derive the form of the singular near-tip stress field for Mode II (in-plane shear) 

conditions in an isotropic linear elastic solid, beginning with the terms 

                                           U  =  r λ  + 2  [ C sin λ θ + D sin ( λ + 2 ) θ  ] 
in the Airy stress function which correspond to an anti-symmetric dependence on θ.  The 

undetermined constant should be re-defined so that (after you show λ = – 1/2) the shear stress on 

θ = 0 is written as ( σ12 )θ = 0  =  KII / 2 π r   .  Check your results by verifying that your 

expressions for the σαβ coincide with those given in one of books or articles in the course 

bibliography, and state which source you used for this. 

 

 3) A circular crack lies on the region x1
2 + x3

2 ≤ a 2
 of the plane x2 = 0 in an unbounded 



2 
 
 
 

isotropic elastic solid.  When the solid is subjected to the remote stress field 

σ12
∞  = σ21

∞  = τ,  σ22
∞  = σ,  with all other σij

∞ = 0, and when the crack surfaces are traction-free, the 

displacement discontinuity between the upper (+) and lower (–) crack surfaces is 

u1
+ − u1

−  =  
8 ( 1 − ν ) τ

π ( 2 − ν ) μ
  a 2 − x1

2 − x3
2

,    
u2

+ − u2
−  =  

4 ( 1 − ν ) σ
π μ

  a 2 − x1
2 − x3

2

, 

u3
+ − u3

−  =  0.  Show that the stress intensity factors at the point along the crack front where  x3 /  

x1 = tan φ  (see figure) are  KΙ = 2 σ a / π  ,  KΙΙ = [ 4 τ / ( 2 − ν ) ] a / π   cos φ ,  

KΙΙΙ = − [ 4 τ ( 1 − ν ) / ( 2 − ν ) ] a / π   sin φ . 

 

           

x 3

x 1

φ
a

for problems 3 and 4 for problem 5

σ

2 b

2 a

 

 4) A 3D elastic solid is under loadings that may be characterized by a generalized force Q; 

the work-conjugate displacement to Q is q.  When a crack in introduced on a surface S, lying on 

x2 = 0 in the solid, there is a displacement Δq and the change ΔUel in elastic strain energy is 

given by 

                                            

ΔUel   =   Q Δq  −  1
2

 σ2j
before (uj

+ – uj
−)after dS

S  

when the solid is modeled as linear, where σ2j
before

 is the stress acting on S before crack 

introduction and (uj
+ – uj

−)after
 is the displacement discontinuity there afterwards.  The energy 

change could also be calculated by growing the crack incrementally from zero size up to its final 

size S.  Let Γc.f.. denote the crack front at some stage during this growth process, let s denote arc-

length along Γc.f., and let G(s) be the energy release rate at position s (G will be proportional to 

Q2).  Then during an infinitesimal growth increment during which the crack locally advances by 
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δa(s) normal to itself, the increment δUel of elastic strain energy is 

                                                  

δUel   =   Q δq  −  G(s) δa(s)  ds
Γc.f.  

where δq is the increment of displacement.  We can recall that for an isotropic solid, G = 

{ (1−ν)[ KI
2 + KII

2 ] + KIII
2 }/2μ. 

 Suppose now that the crack size is small compared to overall body dimensions and that it is 

circular in shape, like in problem 3.  Also, assume that the loading is by remote shear stress 

τ ( = σ21
∞  ).  Then, on the basis of Eshelby's analysis of the ellipsoidal inclusion of one solid in 

another, in particular, of the fact that such an inclusion sustains a spatially homogeneous strain, 

we may assert that the displacement discontinuity on the crack has the form  

u1
+ − u1

−  =  λ τ  a 2 − x1
2 − x3

2   ,    u2
+ − u2

−  =  u3
+ − u3

−  =  0 , when the crack radius is a, where 

λ is a constant that is independent of τ and a.  The value of λ has been given in problem 3, but 

the idea here is to pretend that we do not know it.  Using the ideas stated in the paragraph above, 

and recalling that the relations between KI, KII, KIII and the near-tip components of the crack 

surface displacement discontinuity should enable you to express the K's in terms of λ, solve for 

λ.  Make sure that you reproduce the result given in problem 3. 

 5) Given that  KΙ =  σ 2 b  tan ( π a / 2 b )   for a thin sheet, of thickness h, under tension σ, 

that contains an infinite periodic row of collinear cracks, show that each crack opens by a 

volume equal to Δ(Volume)  =  ( 16 σ b2 h / π E )  ln [ 1 / cos ( π a  / 2 b ) ] , where h = sheet 

thickness. 

 

 6) A crack is extended along the center line of a plate specimen, of thickness h, which may 

be assumed to deform in plane stress.  The crack is driven by wedging forces Q.  Using simple 

beam concepts, estimate the crack mouth opening displacement q and the stress intensity factor 

KI at the tip.  [Ans.:  q ≈   8 { ( Q / h c ) / E } L3 / c2  ;  ΚΙ ≈ 2 (Q / h c ) L  3 / c   ] 
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c

c

Q

Q

q

L

  
for problem 6

 

 

 7) An elastic layer which has thickness h and elastic properties μ1, ν1 is bonded at a high 

temperature to a massive elastic quarter-space which has properties μ2, ν2.  Because of thermal  

                      

μ
1

σ o

ha

ν 1

μ 2 ν 2

  

for problem 7

 

expansion mismatch, upon cooldown the layer is under a residual biaxial tensile stress of 

magnitude σo.  This stress is uniform within the layer, at least at locations that are not too close 

to the corner.  Suppose that the layer starts to debond in a 2D plane strain mode so that a crack of 

length a, where a is several time larger than h, develops along the interface.  Show that the 

energy release rate is G = ( 1 – ν1 ) σo2 h / 4 μ1 .  (If you get a different answer: Have you 

thought carefully about what is the final stress state in the debonded part of the layer?) 

 

 8) Find the stress intensity factor KI for the case of a crack with a uniform pressure loading 

s over a width b very near the crack tip; b is assumed here to be very much smaller than crack 

size or overall body dimensions.  Also, solve for the opening displacement δ = uy
+ – uy

–
 as a 
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function of  

s

b
                 

for problem 8

 

distance r from the crack tip, giving separate results for 0 < r < b and for b < r.  Use this as an 

opportunity to apply weight function concepts.  To check of your work, KI = 2 s 2 b / π   and  δ 

= 4 ( 1 − ν ) s b / π μ  at  r = b , wheras  δ ≈ [ 4 ( 1 − ν ) KI / μ ] r / 2 π   for r << b. 

 

 9) Consider the plane strain problem of a crack of length L in an unbounded elastic body, 

where the crack surfaces are subjected to a general distribution of opening pressure p(x).  

Recalling that the crack surface opening is of the form  δ = λ σ x ( L – x )   for some 

appropriate λ when the crack without surface loadings is subjected to remote tension σ, find the 

crack surface weight function kIy( x; L ) and show that KI at the right end ( x = L ) and the 

opening displacement are: 

                  
L

y

x

p(x)

p(x)

for problem 9 

          

KΙ = 
2

π L
 p( x ) 

 x 

L − x
 dx

0

L

  ;         

δ( x ) = p( x′ ) M( x,  x′; L ) dx′
0

L

   

where     
Μ  =  

2 ( 1 − ν )

π μ
  ln  

L ( x + x′ ) – 2 x x′ + 2 x x′ ( L − x ) ( L − x′ )

L  x − x′    .  Explain why  
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this same solution applies for in-plane shear loadings involving general distributions p( x ) of 

shear tractions on the crack faces, and also for anti-plane shear loadings when the factor ( 1 − ν ) 

is replaced by unity.  For in-plane and anti-plane cases 

 

KI is replaced by KII and KIII, respectively, and the δ corresponds to slip in the respective x and 

z directions.  
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Engineering Sciences 247:  Fracture Mechanics                            J. R. Rice, 1991 

 

Homework Problems  (Continued) 

 

 10) This problem and the next are exercises in uses of the representation of 2D linear elastic 

fields in terms of analytic functions.  In the isotropic case, with z = x1 + i x2, this representation 

is 

                                         

( σ11 + σ22 ) / 2  =  ϕ′( z ) + ϕ′( z )
( σ22 − σ11 ) / 2 + i σ21  =  z ϕ″( z ) + ψ′( z )

2 μ ( u1 + i u2 )  =  κ ϕ( z ) − z ϕ′( z ) − ψ( z ) 

                                                         

σ23 + i σ13   =  ω′( z )
2 i μ u3  =  ω( z ) − ω( z ) 

Here κ = 3 − 4 ν for plane strain and κ = (3 − ν) / (1 + ν) for plane stress.  Also, the replacement of 

ψ( z) by Ω( z) − z ϕ′( z ) is often convenient for crack problems. 

 Consider a crack of length 2a lying along x2 = 0, –a < x1 < +a in an infinite 2D solid.  The 

solid is subjected to zero remotely applied stresses and no tractions are applied to the crack faces; 

i.e., all σij = 0 at infinity and σ2j = 0 on the crack faces, i,j = 1,2,3.  However, the solid is loaded 

by a dislocation process:  We assume that a cut is made, starting at some location on the crack 

surface and extending to infinity.  One side of the cut is displaced relative to the other by a 

uniform relative displacement vector b (the Burgers vector) and then, after filling in any gaps or 

removing any overlaps, the sides of the cut are welded back together.  Thus, if C is some contour 

surrounding the crack, and if s denotes arc length along C, measured positive anti-clockwise, the 

displacement field must satisfy the condition  ∫   C ( ∂ui / ∂s ) ds  =  bi .  Some notes:  The 

stress field thus 

induced in the solid is independent of the cut location (explain why!).  Also, if the above integral 

condition on displacement is satisfied for any one contour C surrounding the crack, it is 

necessarily satisfied for any other contour (hence you can take C far from the crack to evaluate 

the integral). 

 Show that the boundary conditions on stress require that  Ω′( z ) − ϕ′( z )  and  ω′( z ) − ω′( z )  

be continuous across the crack and vanish at infinity, so that one must have  Ω′( z ) = ϕ′( z )  and 
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ω′( z ) = ω′( z )  for all z, and further that  

              ϕ′( x1 )+ + ϕ′( x1 )−   =  0   and   ω′( x1 )+ + ω′( x1 )−   =  0 ,    –a < x1 < +a .  

Then, observe that  F( z)  =  ( z2 - a2 )–1/2  is a function which is analytic everywhere except 

along the crack, and which satisfies F+ + F– = 0 on the crack (at least when we choose the branch 

cut of ( z2 - a2 )–1/2 to coincide with the crack, e.g., by restricting the phase angle of factors z– a 

and z+ a to the range −π < phase angle < +π).  Thus, show that the solution is 

ϕ′( z )  =  [ μ ( b2  - i b1  ) / π ( κ + 1 ) ] ( z2 - a2 )–1/2 ,    ω′( z )  =  ( μ b3  / 2 π ) ( z2 - a2 )–1/2
 

and solve for the stress intensity factors KI, KII, KIII at the crack tip at x1 = a. 

 

 11) Consider again the infinite 2D solid with a crack of length 2a.  Now we assume that there 

is a single-valued displacement field outside the crack (i.e., no Burgers vector) and that, rather, 

the loading is by applying tractions to the crack faces.  Thus we require that all σij = 0 at infinity 

but that the stresses σ2j on the upper crack face, at x2 = 0+, satisfy σ2j = – pj
+( x1 )  and on the 

lower crack face, at x2 = 0–, satisfy σ2j = – 
pj

–( x1 )
.  The pj are given bounded functions of x1 

and are not necessarily equal to one another, and so the possibility is allowed of a net force being 

exerted on the crack faces. 

 Show that the following must hold along the crack, –a < x1 < +a: 

                                        

ϕ′( x1 )+ + Ω′( x1 )−   =   – [ p2
+( x1 ) – i p1

+( x1 ) ] ,

ϕ′( x1 )−  + Ω′( x1 )+  =   – [ p2
–( x1 ) – i p1

–( x1 ) ] ,

ω′( x1 )+ + ω′( x1 )−   =  − 2 p3
+( x1 ) ,

ω′( x1 )−  + ω′( x1 )+  =  − 2 p3
–( x1 ) .  

Now, find the equations satisfied by the functions  ϕ′( z ) − Ω′( z ),   ϕ′( z ) + Ω′( z ),   

ω′( z ) − ω′( z ),   and  ω′( z ) + ω′( z )  along the crack, and thus show that 

                       

ϕ′( z ) − Ω′( z )  =  − 1
2 π i

  
[p2

+(t) – p2
–(t)] – i [p1

+(t) – p1
–(t)]

t – z
  dt

–a

+a

 ,
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ϕ′( z ) + Ω′( z )  =  − ( z2 – a2 )–1/2 
2 π 

  
{[p2

+(t) + p2
–(t)] – i [p1

+(t) + p1
–(t)]} a2 – t2

t – z
  dt

–a

+a

 

               

 −  
( κ − 1 ) ( F1 + i F2 ) ( z2 – a2 )–1/2 

2 π ( κ + 1 )
          (where   Fj  =  [pj

+(t) – pj
–(t)]  dt  ) ;

–a

+a

 

       

ω′( z )  =  − ( z2 – a2 )–1/2 
2 π 

  
[p3

+(t) + p3
–(t)] a2 – t2

t – z
  dt

–a

+a

  –  1
2 π i

  
[p3

+(t) – p3
–(t)]

t – z
  dt

–a

+a

  . 

Also, find the stress intensity factors at the crack tip at x1 = a. 

 

 12) Consider the 2D problem of a crack on the interface between joined dissimilar elastic 

solids.  Solid "1" occupies x2 > 0 and solid "2" occupies x2 < 0; the crack coincides with the 

region x1 < 0 on x2 = 0.  It was shown in the lectures that the complex stress functions near the 

crack tip have the form: 

                             

ϕ1′( z )  =  K z  −  1/2 −  i ε e −  π  ε / [ 2 2 π  cosh( π ε ) ]
Ω1′( z )  =  K z  −  1/2 + i ε e + π  ε / [ 2 2 π  cosh( π ε ) ]
ϕ2′( z )  =  K z  −  1/2 −  i ε e + π  ε / [ 2 2 π  cosh( π ε ) ]
Ω2′( z )  =  K z  −  1/2 + i ε e −  π  ε / [ 2 2 π  cosh( π ε ) ] 

where  ε  =  ( 1 / 2 π )  ln [ (κ1/μ1+1/μ2) / (κ2/μ2+1/μ1) ]  and K is the complex generalization of KI 

+ i KII ; e.g., K  =  ( σ22
∞

 + i σ21
∞

 ) ( 1 + 2 i ε ) L −  i ε π L / 2   for the tunnel crack of length L in 

a remotely uniform stress field.  Show that the stress along the bond line, at distance r ahead of 

the crack tip, and the displacement discontinuity at distance r behind the tip, have the respective 

asymptotic forms:                           σ22 + i σ21  =  Κ r i ε / 2 π r  ,   

                  ( u2
+ − u2

− ) + i ( u1
+ − u1

− )  =  ( c1 + c2 ) Κ r i ε r / 2 π  / [ 2 ( 1 + 2 i ε ) cosh( π ε ) ] , 

where cj = (κj+1)/μj, j=1,2.  Also, derive  G  =  ( c1 + c2 ) K K / [ 16 cosh2( π ε ) ]  for the 

energy release rate.  Letting tan θ  =  σ21
∞

 / σ22
∞

, for the tunnel crack case, and assuming L = 4 

mm, find the ranges of θ for which the contact zone at the tip is (a) smaller than an atomic 

spacing (about 3.10 –10 m), and (b) smaller than 10 microns, for the case of Ti bonded to Al2O3 
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(ε ≈ 0.04). 

 

 13) Consider the Dugdale/Bilby-Cottrell-Swinden elastic-plastic model for a crack of length 

2a in an infinite 2D body subjected to remote Mode II shear loading τ∞.  In this model, all 

nonelastic deformation near the tip is represented by sliding zones of length R, prolonging the 

crack, within which the local value of σ12 is constant at τy, where τy is the yield stress in shear.  

Show that the plastic zone size R and the sliding displacement discontinuity δtip at the crack tip 

are given by: 

                    
R  =  a   sec π τ∞

2 τy
  –1  ,   δtip  =  

4 ( 1 − ν ) τy a
π μ

  ln  sec π τ∞
2 τy

 
  . 

(Either complex variable or weight function methods could provide a good approach for analysis 

of this problem.)  Verify that in the limit τ∞ << τy, R and δtip depend on τ∞ and a only as τ∞ and 

a enter the combination KII  ≡  τ∞ π a . 

                             
2 a R

 

 

 14) Consider a penny-shaped crack of radius a in an infinite 3D solid subjected to remote 

tension σ∞ acting perpendicular to the plane of the crack.  By remembering Eshelby's 

observation on homogeneous strain within an inclusion, we may infer in this case that, for a 

purely elastic crack, the opening displacement at distance ρ from the crack center has the form 

u2
+ – u2

–  =  B σ∞ a2 – ρ2
  for some appropriate constant B.  You should know how to solve for 

B (look back to problem 4), although that is not essential for completing the rest of the problem.   

 Develop a generalization of weight function theory which applies for circular cracks subjected 

to axi-symmetric loading.  Thus, solve for the crack face weight function k( ρ, a), defined such 

that k( ρ, a) P is the KI induced at the crack tip by a concentrated ring loading of intensity P, per 

unit length, acting at radius ρ on the upper crack face, and by a similar ring loading –P acting at 

radius ρ on the lower crack surface.  [Answer is:  k( ρ, a) = 2 ρ / π a ( a2 – ρ2 )   .] 

 Use the result to analyze a Dugdale/BCS model of the penny-shaped tensile crack (see 
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previous figure for notation), showing that  

R  =  a   1

1 – ( σ∞ / σy )2
  −  1 

 , and verify that 

this R can  

likewise be expressed solely in terms of KI  ≡  2 σ∞ a / π  when σ∞ << σy  (σy = tensile yield 

stress). 

 

 15) The two beam arms are loaded by moments M per unit thickness.  Treat this as a problem 

in plane stress and use the J integral to evaluate G, thus showing, in the case when the material is 

isotropic and linear elastic, that KI  ≡  2  3   Μ h −  3/2
 . 

           

M

M

2 h

 

 

 16) An infinite slab of material of thickness 2h contains a fault on its centerplane (i. e., on the 

plane y = 0) and is loaded by forcing shear displacements in the ± x directions along the top and 

bottom surfaces of the slab.  The boundary conditions at those surfaces are: 

 at y = + h,  ux  = + uo ,  uy = uz = 0      and     at y = − h,  ux  = − uo ,  uy = uz = 0 . 

The fault surface satisfies the "slip-weakening" law illustrated in the figure on the next page; no 

slip occurs until τ (≡ σyx on the fault) reaches the "peak" strength τp, and then sliding occurs 

following the relation  τ = τr + ( τp − τr ) exp ( − δ / L ) , where  δ = ( ux
+ − ux

− )y = 0  is the slip 

and L = constant, so that the strength reduces towards the "residual" value τr at large slip.  

Assume that failure occurs by the quasistatic crack-like propagation of a slip event from the far 

left to the far right of the slab, in the view shown.   
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not yet slippedslipping portion
   of fault

u      = – ux o

u      = + ux o

x

y

 

 (a)  First, assume that during this process the fault zone at the far left slips sufficiently that the 

strength level of the fault there is effectively reduced to τr , i.e., that δ >> L at x = − ∞, and hence 

that σyx = τr  at x = − ∞.  Then, using the J integral and treating this as a problem in plane strain, 

with linear and isotropic elastic response of the slab material outside the fault zone, show that the 

critical value of uo at which the slip propagation occurs is given by 

                                                    

uo

h
   =   

τr

μ
  +  

τp − τr  L

μ h  

where μ is the shear modulus. 

τr

τp

τ   (shear strength
  of fault surface)

δ   (slip displacement, ux
+ – ux

–, on fault) 

τ = τr + (τp − τr ) exp( − δ / L  ) 

 

 (b)  Now analyze the problem without the simplifying assumption that δ >> L at x = −∞ and 
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show that the slip δ at x = −∞ is given by 

                                 

δ / L
1 − ( 1 + δ / L ) e −  δ / L

   =   2  
τp − τr  / L

μ / h
 

and express uo / h for propagation in terms of that δ / L ratio. 

 (c)  The above results were obtained by assuming a crack-propagation-like mode of failure.  

However, if those results require a stress σyx at x = + ∞ which becomes equal to τp, then that 

assumed mode of failure must be incorrect.  Instead, the fault would, presumably, fail 

simultaneously everywhere, in a dynamically unstable fashion, when σyx at x = + ∞ reaches τp.  

Show that the crack-propagation-like mode of failure is possible only when the "brittleness 

number"  B   ≡   τp − τr  / L   /  μ / h   satisfies  B > 0.5.   

 What is the smallest h allowing a crack-propagation-like failure mode for granite if μ = 300 

kbar, τp − τr = 1 kbar, and L = 0.5 mm? 

 

 17) The solution for a concentrated line force P (per unit thickness) acting on an elastic half-

space, i.e., the plane strain problem, is (figure at left on next page) 

                                 
σrr  =  − 2 P cos θ

π r
 ,     σθθ  =  σrθ  =  0 ,    σzz  =  ν σrr .

 

Using the M integral, and noting this solution, derive the KI induced by line forces +P and –P 

acting along the centers of the upper and lower walls of a tunnel crack of length 2a.  [Ans.: KI  = 

P/ π a  .] 

           

r

θ

P

P

P
aa

 

 

 18) Show that the integral on a closed contour C (in 2D deformation fields) 
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L  =  L3  =  e3ij [ ni xj W + nk σki uj – nk σkm um,i xj ] ds
C

  =  0

 

for isotropic solids with properties that are unaffected by rotation about the x3 axis.  Show this 

directly by transforming to an integral over the area enclosed by C, but verify also by the 

Noether procedure that L = 0 arises from a suitable invariant transformation. 

 

 19) A screw dislocation line of Burgers vector b lies parallel to the tip of what can be 

regarded as a half-plane crack in an infinite body.  The dislocation line is at position x1 + i x2 = 

zo = ρ e i φ relative to the crack, where coordinates are measured from the crack tip and the crack 

lies on x2 = 0, x1 < 0.  Verify that ω′( z )  =  μ b / 2 π ( z − zo ) gives the stress field of the 

dislocation in the absence of the crack, and then derive the solution 

        
ω′( z )  =   1

2
 1 + ( zo / z )1/2  

μ b

2 π ( z − zo )
  −  1

2
 1 – ( zo / z )1/2  

μ b

2 π ( z − zo )  

describing the stress field created by the dislocation in the presence of the crack.  Thus show that 

                           KIII  =  – μ b cos( φ / 2 ) / 2 π ρ    and   fr  =  – μ b2 / ( 4 π ρ ) 

are the intensity factor and radial component of the configurational "force" on the dislocation. 

 

 20) A thin sheet of viscoelastic material contains a tensile-loaded crack.  The crack is 

assumed to be very long compared to a nonlinear "craze" zone which develops at its tip, so that 

you can assume "small scale yielding".  The crazing process is to be modeled approximately 

using a plane stress Duddale/BCS fracture model with constant yield strength σy.  The crazing 

material is assumed to fail, dropping its strength to zero, when the crack tip opening 

displacement reaches a critical value (say, δcrit).  We let K* be the critical stress intensity factor 

for the immediate onset of crack growth under step loading, and recall that it is related to δcrit by  

δcrit = J*/σy = (K*)2/Eσy. 

 For simplicity, the viscoelastic material is to be described by the elementary Maxwell model, 

such that the strain ε in response to a uniaxial tensile stress (σ) history is given by  

dε
dt

   =   1
E

 dσ
dt

  +  σ
E tr  where tr is a material relaxation time. 

 (a) Show that the waiting time for onset of crack growth in response to a step loading to 
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intensity factor K (< K*) is t = tr [(K*/K)2 – 1] .   

 (b) Show that for steady state growth at K < K*, the crack speed V is 

                                                       
V   =   π K4

24 tr σy
2 [ (K*)2 – K2 ]  
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ES 247   Fracture Mechanics     Final Exam       20 May 1991     J. R. Rice  
 

(Completed exams must be returned to 207-A Pierce Hall by 10:00 AM on Tuesday 21 May.) 
 

(Homework must reach 207-A Pierce Hall by 5:00 PM on Tuesday 21 May to be counted.) 
 

Note:  You are not to discuss the questions on this exam with classmates or others.  You may use 
books and/or notes but, for each such use, you should give a clear reference explaining the 
source for what you use.  Your work must be presented clearly and concisely.  Print your name.  
Number each problem and letter each subsection. 

 
 1.  (15 pts. total)  Stress σ acts on a plate containing a stack of thin slots (many more than 
shown in the figure).  The overall height of the stack is H.  Each slot has length L and they are 
spaced by distance S.   

                   

L

S

H

σ

 
 (a)  (10 pts.)  Assuming that H >> L and that L >> S, and treating the thin slots as if they 
were cracks, derive an expression for KI that will be valid at locations not too near the ends of 

the stack.  Be explicit about any assumptions that you make. 
 (b)  (5 pts.)  Suppose that the slots are not cracks but, rather, have rounded tips with radius of 
curvature ρtip.  Estimate the maximum stress at their tips. 

 
 2.  (15 pts.)  A solid is loaded by a field of conservative body force fα (per unit volume), 

having potential φ = φ(u) such that fα = – ∂φ(u)/∂uα.  We assume that φ(u) has no explicit 

dependence on x.  (E.g., for a gravity field with the x2 axis vertical, φ(u) = ρgu2.)  Derive the 

analog of the path-independent crack tip integral J for 2D solids loaded by such body force 
fields. 
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3.  (10 pts.)  Consider a long mode II shear crack in plane strain with a slip-weakening zone 
along the prolongation of the crack at its tip.  For δ > 0 the relation between stress and 

displacement in the slip-weakening zone is   τ ( = σ21 )  =  το exp( − δ / c )  ;   δ  =  u1
+ − u1

−
 .  

Here το and c are constants.  Suppose that the length R of the slip weakening zone is very much 

smaller than crack length and other overall dimensions of the cracked body (so that the "small 
scale yielding" concept is applicable), that the crack surfaces are traction-free, that the body is 
isotropic, and that it is loaded such that, for the classical singular crack model, there would be a 
stress intensity factor KII at the tip.  Write out the relation between the crack sliding 

displacement, δtip, at the tip and KII. 

 

2 1

R
τ 

δ

 
 
 4.  (25 pts. total)  A 2D isotropic solid in plane strain is loaded with two sets of forces, whose 
amplitudes are characterized by the parameters Q1 and Q2, respectively.  Assume that either of 

these force sets, acting in isolation, produces only mode I conditions at the tip of a crack of 
length L within the body.  Regarding Q1 and Q2 as generalized forces, we can let q1 and q2 be 
the corresponding generalized displacements, defined such that  Q1 dq1 + Q2 dq2  is an 

increment of work (per unit thickness) of the applied forces.  Assuming that the solid is linear we 
may obviously write 

                         
KI  =  k1(L) Q1 + k2(L) Q2

q1  =  C11(L) Q1 + C12(L) Q2  ,    q2  =  C21(L) Q1 + C22(L) Q2     
 (a)  (10 pts.)  Derive an expression for dC11(L)/dL in terms of k1(L) and discuss 

experimental and computational applications of this result. 
 (b)  (5 pts.)  Derive an expression for dC21(L)/dL in terms of k1(L) and k2(L). 

 (c)  (10 pts.)  Recalling that the opening gap between the surfaces of a tunnel crack of length 

L under uniform pressure po on its surfaces is [ 2 (1−ν) po / μ ]  x1 ( L – x1 )    (the crack lies on 
0 < x1 < L), use the result of part (b) to obtain the expression for KI at the crack tip at x1 = L due 

to a pair of line forces of magnitude F (per unit thickness) which wedge the crack walls open at 
x1 = b. 
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 5.  (15 pts. total)  A crack grows dynamically along the x1 axis in an isotropic solid under 

anti-plane shear loading.  The crack speed V(t) is non-uniform.   
 (a)  (5 pts.)  Starting from basic physical principles, and explaining all assumptions, write out 
the form of a differential equation satisfied by u3(x, y, t) which suffices to let one deduce the 
form of the singular field at the tip;  here y = x2 and x = x1 –  V(t) dt , such that x = 0 at the 

moving crack tip.   
 (b)  (5 pts.)  Show that the singularity of the stress field is of r – 1 / 2 type. 

 (c)  (5 pts.)  Defining  KIII  =  limit[ (2πr)1/2 (σ23)θ= 0 ]  as  r → 0, express  δ3  ≡  u3
+ − u3

−
  

very near the crack tip as a function of r, KIII and V. 

 
 6.  (20 pts. total)  Recall that the representation of 2D elastic fields in terms of analytic 
functions is 

                                

( σ11 + σ22 ) / 2  =  ϕ′( z ) + ϕ′( z )
( σ22 − σ11 ) / 2 + i σ21  =  z ϕ″( z ) + ψ′( z )

2 μ ( u1 + i u2 )  =  κ ϕ( z ) − z ϕ′( z ) − ψ( z ) 
where κ = 3 − 4 ν for plane strain and κ = (3 − ν) / (1 + ν) for plane stress.  Also, the replacement of 

ψ( z) by Ω( z) − z ϕ′( z ) is often convenient.   

                             
b
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 (a)  (5 pts.)  Show that  ϕ′( z )  =  Ω′( z )  =  [ μ b / π ( κ + 1 ) ( z  - h ) ]   solves the problem of 
a dislocation of Burgers vector b at the position shown when there is no crack present. 

 (b)  (10 pts.)  Solve for ϕ′( z ) for the problem shown of a dislocation next to a tunnel crack, 

when there is a net dislocation within the crack such that δ2  ≡  u2
+ − u2

−
  =  b  at  x1 = a, whereas 

δ2 = 0 at  x1 = –a.  (We can think of this as the problem of beginning with a crack in a 
dislocation-free and stress-free solid, then cutting the solid along the x1 axis between x1 = a and 
x1 = h, inserting a layer of material of thickness b in the cut, and welding the walls of the layer to 

the solid on each side.) 
 (c)  (5 pts.)  Solve for KI at the crack tip at x1 = a. 


