Homework Problems / Class Notes Mechanics of finite deformation (list of references at end)

Distributed Thursday 8 February.

Problems 1 to 5 due by Thursday 15 February. Problems 6 to 10 due by Tuesday 27 February.

1. The *Polar Decomposition Theorem* for **F** (defined by $d\mathbf{x} = \mathbf{F} \cdot d\mathbf{X}$, or $\mathbf{F} = \partial \mathbf{x}/\partial \mathbf{X}$) is that $\mathbf{F} = \mathbf{V} \cdot \mathbf{R} = \mathbf{R} \cdot \mathbf{U}$, where **R** is a proper orthogonal transformation (rotation), with $\mathbf{R}^T \cdot \mathbf{R} = \mathbf{I}$ and $\det(\mathbf{R}) = 1$, and where **U** and **V** are pure deformations, i.e., $\mathbf{U} = \mathbf{U}^T$, $\mathbf{V} = \mathbf{V}^T$, and $\det(\mathbf{U}) = \det(\mathbf{V}) > 0$. The diagram below should clarify.

Develop analytical proofs for the following but, where possible, try to interpret answers geometrically in terms of the diagram:

- (a) Assuming that $|\mathbf{F} \cdot \mathbf{a}| > 0$ for any vector $\mathbf{a} \neq \mathbf{0}$ (why is that reasonable?), show that $\mathbf{F}^T \cdot \mathbf{F}$ and $\mathbf{F} \cdot \mathbf{F}^T$ are symmetric and positive definite.
- (b) Show that $\mathbf{U}^2 = \mathbf{F}^T \cdot \mathbf{F}$ and $\mathbf{V}^2 = \mathbf{F} \cdot \mathbf{F}^T$. *Note:* Sometimes $\mathbf{F}^T \cdot \mathbf{F}$ is called the *right Cauchy-Green tensor* \mathbf{C} , and $\mathbf{F} \cdot \mathbf{F}^T$ is called the left Cauchy-Green tensor \mathbf{B} .
- (c) Show that the eigenvalues of U^2 and V^2 are identical and are positive; denote these λ_1^2 , λ_2^2 , λ_3^2 , with positive roots λ_1 , λ_2 , λ_3 . Explain why λ_1 , λ_2 , λ_3 are stretch ratios.

- (d) Letting \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 be the unit eigenvectors of \mathbf{U}^2 (= \mathbf{C}) and \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be the unit eigenvectors of \mathbf{V}^2 (= \mathbf{B}), show that $\mathbf{U} = \sum_{i=1}^3 \lambda_i \, \mathbf{u}_i \, \mathbf{u}_i \, \mathbf{u}_i \, \mathbf{u}_i \, \mathbf{u}_i \, \mathbf{v}_i \, \mathbf{v}_i \, \mathbf{v}_i \, \mathbf{v}_i \, \mathbf{v}_i$. Note that \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 correspond to the orientations of the principal fibers in the reference configuration and \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 to their orientations in the deformed configuration.
 - (e) Show that $\mathbf{F} = \sum_{i=1}^{3} \lambda_i \mathbf{v}_i \mathbf{u}_i$, that $\mathbf{R} = \sum_{i=1}^{3} \mathbf{v}_i \mathbf{u}_i$, and that $\mathbf{U} = \mathbf{R}^T \cdot \mathbf{V} \cdot \mathbf{R}$.
- **2.** Consider the finitely strained state of simple shear, $x_1 = X_1 + \gamma X_2$, $x_2 = X_2$, $x_3 = X_3$. Try to construct *concise* and *instructive* (and easily readable!) derivations of the answers to (a), (b) and (c) which follow.
- (a) Find the greatest and least values of the principal stretches λ_1 , λ_2 , λ_3 and of the principal values of \mathbf{E}^M . [Ans.: $\lambda_{\max,\min} = \sqrt{1+\gamma^2/4} \pm \gamma/2$, $E_{\max,\min}^M = \pm (\gamma/2)\sqrt{1+\gamma^2/4} + \gamma^2/4$]
- (b) Assuming henceforth that $\gamma > 0$, find the orientation of the unit vector \boldsymbol{N} which was aligned, in the undeformed configuration, with the fiber which was to undergo the greatest stretch. [Ans.: $N_2 \, / \, N_1 \, = \, \sqrt{1 + \gamma^2/4} \, + \gamma \, / 2 \,$]
- (c) Explain why the orientation of the unit vctor ${\bf n}$ which aligns, in the deformed configuration, with the fiber of greatest stretch is given by $n_2/n_1=N_2/(N_1+\gamma\,N_2)$, where (N_1,N_2) is ${\bf N}$ above, and thus solve for n_2/n_1 . [Ans.: $n_2/n_1=1/(\sqrt{1+\gamma^2/4}+\gamma/2)$, which is the inverse of N_2/N_1 given in the last part.] Note: Since n_2/n_1 here is the inverse of N_2/N_1 in (b) , then if ${\bf N}$ makes an angle $45^\circ+\phi$ with the 1 direction, ${\bf n}$ makes an angle of $45^\circ-\phi$ with that direction; ϕ is a small angle when γ is small.
- (d) Consider the strain $\gamma = 3/2$. Show from part (a) above that $\lambda_{max} = 2$, $\lambda_{min} = 1/2$, and from the results of parts (b) and (c), solve for the unit eigenvectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 and \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 . [Partial answer: If $\lambda_1 = \lambda_{max}$, then $\mathbf{u}_1 = (\mathbf{e}_1 + 2\mathbf{e}_2)/\sqrt{5}$, $\mathbf{v}_1 = (2\mathbf{e}_1 + \mathbf{e}_2)/\sqrt{5}$.]
- (e) For $\gamma = 3/2$, solve for, and compare with one another, the cartesian components of the following: the infinitesimal strain tensor ε (which is, of course, irrelvant at such large deformation gradients), the Green strain (or change-of-metric strain) \mathbf{E}^M based on $\mathbf{g}(\lambda) = (\lambda^2 1)/2$, and the Biot strain \mathbf{E}^B based on $\mathbf{g}(\lambda) = \lambda 1$. The latter two are members of the family of material strain tensors defined by $\mathbf{E} = \sum_{i=1}^{3} \mathbf{g}(\lambda_i) \mathbf{u}_i \mathbf{u}_i$ with $\mathbf{g}(1) = 0$ and $\mathbf{g}'(1) = 1$. Check your results for \mathbf{E}^M via that mode of expression with what you can calculate from $\mathbf{E}^M = (\mathbf{F}^T \cdot \mathbf{F} \mathbf{I})/2$.
 - 3. Consider an isotropic elastic material, for which we may make (among various equivalent

forms) the representation of stress-strain relations $\mathbf{\sigma} = h_0 \mathbf{I} + h_1 \mathbf{B} + h_2 \mathbf{B}^2$ for Cauchy stress $\mathbf{\sigma}$, where $\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^T$ is the *left Cauchy-Green tensor* and where h_0 , h_1 , h_2 are functions of the invariants I_1 , I_2 , I_3 of \mathbf{B} .

- (a) Show that an equivalent representation is $\mathbf{\sigma} = m_0 \, \mathbf{I} + m_1 \, \mathbf{B} + m_2 \, \mathbf{B}^{-1}$, and derive expressions for the functions m_0 , m_1 , m_2 in terms of h_0 , h_1 , h_2 and I_1 , I_2 , I_3 . [Hint: \mathbf{B}^{-1} is an isotropic function of \mathbf{B} , so we can write $\mathbf{B}^{-1} = n_0 \, \mathbf{I} + n_1 \, \mathbf{B} + n_2 \, \mathbf{B}^2$, which is equivalent to $\mathbf{I} = n_0 \, \mathbf{B} + n_1 \, \mathbf{B}^2 + n_2 \, \mathbf{B}^3$. To determine the scalars n_0 , n_1 , n_2 involved here, note that \mathbf{B} must satisfy its own characteristic value equation, so that $\mathbf{0} = -\mathbf{B}^3 + I_1 \, \mathbf{B}^2 I_2 \, \mathbf{B} + I_3 \, \mathbf{I}$.]
- (b) Show that the *second Piola-Kirchhoff* stress **S** (i.e., the stress which is work-conjugate to the Green strain; look ahead to problem 6) for this same elastic material is $\mathbf{S} = \sqrt{\mathbf{I}_3}$ ($\mathbf{m}_0 \, \mathbf{C}^{-1} + \mathbf{m}_1 \, \mathbf{I} + \mathbf{m}_2 \, \mathbf{C}^{-2}$) where $\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F} = \mathbf{I} + 2 \, \mathbf{E}^{\text{Green}}$ is called the *right Cauchy-Green tensor* and where \mathbf{m}_0 , \mathbf{m}_1 , \mathbf{m}_2 are the same functions of \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 as above; note that \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 are also the invariants of \mathbf{C} . *Note:* By considerations like in part (a), this means that \mathbf{S} has the form $\mathbf{S} = g_0 \mathbf{I} + g_1 \mathbf{C} + g_2 \mathbf{C}^2$ where g_0 , g_1 , g_2 are functions of the invariants \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 of \mathbf{C} which are the same as the invariants \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 of \mathbf{B} .
 - **4.** Consider again the simple shear of problem 2 for an isotropic elastic material.
- (a) Using $\mathbf{\sigma} = m_0 \mathbf{I} + m_1 \mathbf{B} + m_2 \mathbf{B}^{-1}$ as above, explain why m_0 , m_1 , m_2 are functions of γ^2 (i.e., are *even* functions of γ) and write the cartesian components σ_{11} , σ_{12} , σ_{22} , σ_{33} of $\mathbf{\sigma}$ in terms of γ and the functions m_0 , m_1 , m_2 . (Note that when we retain terms beyond the linear in γ , the imposition of simple shear strain requires not only shear stress, but also normal stresses which are even in γ ; the presence of these normal stresses is known as the *Poynting effect*.)
- (b) Show that the results of part (a) imply that $\sigma_{11} \sigma_{22} = \gamma \sigma_{12}$ must hold for any elastic material in simple shear, and develop a direct derivation of that result from consideration of principal directions in simple shear.
- 5. Write the Cauchy stress as $\mathbf{\sigma} = \sigma_{ij} \, \mathbf{e}_i \, \mathbf{e}_j = \overline{\sigma_{ij}} \, \overline{\mathbf{e}}_i \, \overline{\mathbf{e}}_j$ (summation on repeated indices) where the orthogonal unit base vectors $\overline{\mathbf{e}}_i$ (i = 1,2,3) happen to coincide with the fixed cartesian background base vectors \mathbf{e}_i at the moment considered, but rotate relative to them with spin $\mathbf{\Omega}$. Here $\Omega_{ij} = \operatorname{antisym}(\mathbf{v}_{i,j}) = (1/2)$ ($\mathbf{v}_{i,j} \mathbf{v}_{j,i}$) and $d\overline{\mathbf{e}}_j / dt = \mathbf{\Omega} \cdot \overline{\mathbf{e}}_j = \mathbf{\Omega} \cdot \mathbf{e}_j = \Omega_{ki} \mathbf{e}_k$ at the moment considered. The *corotational (Jaumann) stress rate* $\dot{\mathbf{\sigma}}^*$ is then *defined* by $\dot{\mathbf{\sigma}}^* = \dot{\overline{\sigma}}_{ij} \, \overline{\mathbf{e}}_i \, \overline{\mathbf{e}}_j$. Show

that

$$\dot{\sigma}^* = \dot{\sigma} + \sigma \cdot \mathbf{\Omega} - \mathbf{\Omega} \cdot \mathbf{\sigma} \quad \text{(i.e., } \dot{\sigma}_{ij}^* = \dot{\sigma}_{ij} + \sigma_{ik} \Omega_{kj} - \Omega_{ik} \sigma_{kj} \text{)}.$$

6. Various stress measures may be inter-related by the expression for work (per unit volume of reference state) associated with a change δ **F** in the deformation gradient. That is,

$$\mathbf{t}: \delta \mathbf{F} = \mathbf{\tau}: (\delta \mathbf{F} \cdot \mathbf{F}^{-1}) = \mathbf{S}: \delta \mathbf{E}$$
, where:

- \mathbf{t} = nominal stress (\mathbf{t}^{T} = first Piola-Kirchhoff stress),
- $\tau = \sigma \det(\mathbf{F}) = \text{Kirchhoff stress}$, where $\sigma = \text{Cauchy (or "true") stress}$, and
- $\mathbf{S} = \mathbf{S}^{T} = \text{stress conjugate to strain } \mathbf{E} = \sum_{i=1}^{3} g(\lambda_{i}) \mathbf{u}_{i} \mathbf{u}_{i} \text{ with } g(1) = 0 \text{ and } g'(1) = 1.$

(When **E** is the strain based on change of metric, or the *Green strain*, $\mathbf{E}^{\mathbf{M}} = (1/2) (\mathbf{F}^{\mathbf{T}} \cdot \mathbf{F} - \mathbf{I})$, generated by $\mathbf{g}(\lambda) = (\lambda^2 - 1)/2$, the associated **S** is called the *second Piola-Kirchhoff stress*, denoted $\mathbf{S}^{\mathbf{PK2}}$ below.) The rate of deformation tensor **D**, defined by $\mathbf{D}_{ij} = \mathrm{sym}(\mathbf{v}_{i,j})$, so that $(\nabla \mathbf{v})^{\mathrm{T}} = \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} = \mathbf{D} + \mathbf{\Omega}$, is used in what follows.

(a) Show that when the current state and reference state happen to be momentarily coincident,

$$\dot{\mathbf{t}} = \dot{\boldsymbol{\tau}}^* - \boldsymbol{\sigma} \cdot \mathbf{D} - \mathbf{D} \cdot \boldsymbol{\sigma} + \boldsymbol{\sigma} \cdot (\nabla \mathbf{v}) \text{ and that } \dot{\mathbf{S}}^{PK2} = \dot{\boldsymbol{\tau}}^* - \boldsymbol{\sigma} \cdot \mathbf{D} - \mathbf{D} \cdot \boldsymbol{\sigma}, \text{ where } \dot{\boldsymbol{\tau}}^* = \dot{\boldsymbol{\sigma}}^* + \boldsymbol{\sigma} \operatorname{tr}(\mathbf{D}).$$

- (b) Show that any **E** has the series representation $\mathbf{E} = \mathbf{E}^{\mathbf{M}} + (\mathbf{m} 1) \mathbf{E}^{\mathbf{M}} \cdot \mathbf{E}^{\mathbf{M}} + ...$ in terms of Green strain, where $\mathbf{m} = [\mathbf{g}''(1) + 1]/2$, and thus show that the rate of the **S** conjugate to that **E** is $\dot{\mathbf{S}} = \dot{\boldsymbol{\tau}}^* m(\boldsymbol{\sigma} \cdot \mathbf{D} + \mathbf{D} \cdot \boldsymbol{\sigma})$, again when the current and reference states are momentarily coincident. (Observe also that since the logarithmic strain, generated by $\mathbf{g}(\lambda) = \ln \lambda$, has $\mathbf{m} = 0$, the stress conjugate to logarithmic strain satisfies $\dot{\mathbf{S}} = \dot{\boldsymbol{\tau}}^*$ momentarily.)
- (c) Suppose that a particular rate-independent solid satisfies the constitutive relation $\dot{\mathbf{\tau}}^* = \mathbf{L}^o$: \mathbf{D} where \mathbf{L}^o_{ijkl} is the set of incremental moduli, necessarily symmetric under interchange of ij and chosen to be symmetric under interchange of kl. Explain why the moduli \mathbf{L}^o_{ijkl} must also be symmetric under interchange of the pair ij with kl when the material is hyper elastic, so that a strain energy exists.
- (d) The constitutive relation for this same material as in (c) may be rewritten in terms of any conjugate stress and strain measures, in the form $\dot{\mathbf{S}} = \mathbf{L} : \dot{\mathbf{E}}$. Show that in the simple situation when the current and reference configurations momentarily coincide,

$$\label{eq:Lijkl} \mathcal{L}_{ijkl} \, = \mathcal{L}_{ijkl}^{\mathrm{o}} \, - \frac{\mathrm{m}}{2} \left(\delta_{ik} \, \sigma_{jl} \, + \delta_{il} \, \sigma_{jk} \, + \sigma_{ik} \, \delta_{jl} \, + \sigma_{il} \, \delta_{jk} \right) \, .$$

(Note that symmetry under the interchange of the pair ij with kl thus applies for all, or for no, choices of conjugate strain and stress measures.)

- 7. Consider a hyperelastic material with strain energy density $W = W(\mathbf{F})$ per unit volume of reference configuration. Since $\mathbf{t} : \delta \mathbf{F} (= \mathbf{t}_{ij} \ \delta \mathbf{F}_{ji} \) = \delta \mathbf{W}$, it follows that the nominal stress is given by $\mathbf{t}_{ij} = \partial \mathbf{W}(\mathbf{F})/\partial \mathbf{F}_{ji} = \partial \mathbf{W}(\partial \mathbf{u}/\partial \mathbf{X})/\partial (\partial \mathbf{u}_j/\partial \mathbf{X}_i)$.
- (a) Explain why invariance of the strain energy to a superposed rigid rotation of material elements allows us to write W = W(E), where E is any member of the family of material strain tensors discussed above, and show that when E is chosen as E^M , and W is chosen to depend symmetrically on the components of E^M , that $\mathbf{t} = [\partial W(E^M)/\partial E^M]^T \mathbf{F}^T$. [Observe that this equation automatically satisfies $\mathbf{F}^T \mathbf{t} = (\mathbf{F}^T \mathbf{t})^T \mathbf{t}$ (i.e., that $\mathbf{\sigma} = \mathbf{\sigma}^T$, since $\mathbf{F}^T \mathbf{t} = \det(\mathbf{F}) \mathbf{\sigma}$) which is the only consequence of the angular momentum principle not derivable on the basis of the linear momentum principle.]
- (b) When a material is isotropic, it will suffice to assume that W depends only on the invariants of $\bf E$, which is the same as assuming that it depends only on the invariants of $\bf C$ (the right Cauchy-Green tensor). These are defined by $\det({\bf C}-\mu{\bf I})=-\mu^3+I_1\mu^2-I_2\mu+I_3$ (where μ denotes λ^2) and are given as $I_1={\rm tr}({\bf C}), I_2=\{[{\rm tr}({\bf C})]^2-{\bf C}:{\bf C}\}/2, I_3=\det({\bf C})$. Verify with $W=W(I_1,I_2,I_3)$ that the form of stress strain relations given in part (a) leads to an expression for σ that is consistent with what is stated in problem 3.
- **8.** A hyperelastic solid is homogeneous in its reference configuration. Let S^o denote a closed surface in that configuration, with unit outer normal **N**.
- (a) Assuming that the solid is free of body force and that S^o encloses no singularities, show that any deformation field $\mathbf{u} = \mathbf{u}(\mathbf{X})$ sustained by the solid satisfies the Eshelby conservation integrals

$$\int_{\mathbf{S}^{\mathbf{o}}} \left[N_{i} \mathbf{W} (\partial \mathbf{u} / \partial \mathbf{X}) - N_{j} \frac{\partial \mathbf{W} (\partial \mathbf{u} / \partial \mathbf{X})}{\partial (\partial \mathbf{u}_{k} / \partial \mathbf{X}_{j})} \partial \mathbf{u}_{k} / \partial \mathbf{X}_{i} \right] d\mathbf{S}^{\mathbf{o}} = 0$$

9. The incremental form of the principle of virtual work, appropriate to the quasistatic rate of

deformation problem, is

$$\int_{\mathbf{V}^{\mathbf{o}}} \dot{\mathbf{t}}_{ij} \, \delta(\partial \dot{\mathbf{u}}_j / \partial \mathbf{X}_i) \; \mathrm{d} \mathbf{V}^{\mathbf{o}} \; = \; \int_{\mathbf{V}^{\mathbf{o}}} \dot{\mathbf{f}}_i^{\mathbf{o}} \delta \dot{\mathbf{u}}_i \; \mathrm{d} \mathbf{V}^{\mathbf{o}} \; + \int_{\mathbf{S}^{\mathbf{o}}} \dot{\mathbf{T}}_i^{\mathbf{o}} \delta \dot{\mathbf{u}}_i \; \mathrm{d} \mathbf{S}^{\mathbf{o}}.$$

(a) Letting the reference configuration in which this is written be momentarily coincident with the current state, so that Vo coincides with V and So with S, show that the left side of this equation has the possible rearrangements

$$\int_{V} [\dot{\tau}^*_{ij} \, \delta D_{ji} \, - \frac{1}{2} \, \sigma_{ij} \, \delta (2D_{ik} \, D_{kj} \, - v_{k,i} \, v_{k,j})] \, dV \quad \text{and} \quad \int_{V} [\dot{S}_{ij} \, \delta D_{ji} \, + \frac{1}{2} \, \sigma_{ij} \, \delta (v_{k,i} \, v_{k,j})] \, dV$$

where $S = S^{PK2}$ in the latter form, and where $D_{ij} = \text{sym}(v_{i,j})$.

- (b) Suppose that the constitutive relation is given in the form $\tau^*_{ij} = L^o_{ijkl} D_{kl}$. Discuss the formulation of a finite element procedure for the rate problem, assuming that $\{\Delta\}$ denotes nodal displacements and that the velocity field in the current configuration is interpolated by $\{v\} = [B(x)]\{\Delta\}$. In getting equations $[K]\{\Delta\} = \{F\}$, you should identify three types of contribution to the tangent stiffness [K], one involving \mathbf{L}^o that is formulated just as in conventional "small strain" theory, another involving the current stress $\boldsymbol{\sigma}$, and yet another stemming from the fact that, often, the nominal stress loading rate \mathbf{T}^o is not fully specified on the surface but depends on the deformation itself (consider a pressure loading).
- 10. A (hyper)elastic solid is under a stress distribution σ in its reference configuration, and we consider a field of small displacements \mathbf{u} from that configuration, induced by additional nominal loadings \mathbf{T}^o over a part \mathbf{S}_T of its surface, the rest of the surface being fixed against further displacement (i.e.,the loadings \mathbf{T}^o are additional to the $\mathbf{N} \cdot \boldsymbol{\sigma}$ necessary to create the initial stress state $\boldsymbol{\sigma}$). Let \mathbf{L} be the modulus tensor, in terms of \mathbf{S}^{PK2} , in the linearized relation $\mathbf{S} = \boldsymbol{\sigma} + \mathbf{L}$:E.
 - (a) Show that the displacement field within the body makes stationary the potential energy

$$\Pi = \frac{1}{2} \int_{V^{o}} \left[L_{ijkl} u_{i,j} u_{k,l} + \sigma_{ij} (u_{k,i} u_{k,j}) \right] dV^{o} - \int_{S^{o}_{T}} T^{o}_{i} u_{i} dS^{o}$$

where here the energy is approximated to quadratic order only.

(b) In the case of a critically loaded Euler column, the variational problem $\delta\Pi = 0$ evidently has a

solution when $T^0 = 0$. Discuss the buckling problem from that standpoint and, using approximations appropriate for a thin column, calculate the buckling stress. (See the Prager book if you get stuck on this.)

References:

- Z. P. Bazant, A correlative study of formulations of incremental deformation and stability of continuous bodies, *Journal of Applied Mechanics*, vol. 38, pp. 919-928, 1971.
- Z. P. Bazant and L. Cedolin, *Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories*, Oxford, 1991 (see Chp. 11).
- P. Chadwick, Continuum Mechanics, Wiley, 1976.
- M. E. Gurtin, An Introduction to Continuum Mechanics, Academic, 1981.
- R. Hill, Some basic principles in the mechanics of solids without a natural time, *Journal of the Mechanics and Physics of Solids*, vol. 7, pp. 209-225, 1959.
- R. Hill, On constitutive inequalities for simple materials, I and II, *Journal of the Mechanics and Physics of Solids*, vol. 16, pp. 229-242, 1968.
- J. W. Hutchinson, Plastic buckling, in *Advances in Applied Mechanics*, vol. 14, Academic Press, pp. 67-144, 1974 (see Sect. III).
- J. Lubliner, *Plasticity theory*, Macmillan, 1990 (see Chp. 8).
- L. E. Malvern, *Introduction to the Mechanics of a Continuous Medium*, Prentice-Hall, 1969 (see especially Sect. 4.5, 4.6, 5.3, 6.7 and 6.8).
- R. M. McMeeking and J. R. Rice, Finite-element formulations for problems of large elastic-plastic deformations, *International Journal of Solids and Structures*, vol. 11, pp. 601-616, 1975.
- W. Prager, *Introduction to Mechanics of Continua*, Ginn and Co., 1961; reissue, Dover, 1973 (see Chp. IX and X).
- C. Truesdell and W. Noll, The nonlinear field theories of mechanics, in *Handbuch der Physik* 3(3), Springer-Verlag, 1965.