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Engineering Sciences 241  Advanced Elasticity, Spring 2001             J. R. Rice

Homework Problems / Class Notes   Mechanics of finite deformation (list of references at end)

Distributed Thursday 8 February.

Problems 1 to 5 due by Thursday 15 February.
Problems 6 to 10 due by Tuesday 27 February.

1.  The Polar Decomposition Theorem for F (defined by dx = F.dX, or F = ∂x/∂X) is  that  F =
V.R = R.U,  where R is a proper orthogonal transformation (rotation), with RT.R = I and det(R) =
1, and where U and V are pure deformations, i.e.,  U = UT, V = VT, and det(U) = det(V) > 0.  The
diagram below should clarify.
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Develop analytical proofs for the following but, where possible, try to interpret answers
geometrically in terms of the diagram:

(a)  Assuming that F⋅ a > 0 for any vector a ≠ 0 (why is that reasonable?), show that FT.F and

F.FT are symmetric and positive definite.

(b)  Show that U2 = FT.F and V2 = F.FT .  Note:  Sometimes FT.F is called the right Cauchy-
Green tensor C, and F.FT is called the left Cauchy-Green tensor B.

(c)  Show that the eigenvalues of U2 and V2 are identical and are positive; denote these λ1
2, λ2

2,

λ3
2, with positive roots λ1, λ2, λ3.  Explain why λ1, λ2, λ3 are stretch ratios.
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(d)  Letting u1, u2, u3 be the unit eigenvectors of  U2 (= C) and v1, v2, v3 be the unit

eigenvectors of V2 (= B), show that U = λi ui ui∑
i = 1

3
 and V = λi v i v i∑

i = 1

3
 .  Note that u1, u2,

u3 correspond to the orientations of the principal fibers in the reference configuration and v1, v2, v3

to their orientations in the deformed configuration.

(e) Show that F = λi v i ui∑
i = 1

3
 , that R = v i ui∑

i = 1

3
 , and that U = RT.V.R .

2.  Consider the finitely strained state of simple shear, x1 = X1 + γ X2 ,  x2 = X2 ,  x3 = X3 .
Try to construct concise and instructive (and easily readable!) derivations of the answers to (a), (b)
and (c) which follow.

(a)  Find the greatest and least values of the principal stretches  λ1, λ2, λ3  and of the principal

values of  EM .  [Ans.:  λ γ γmax,min / /= + ±1 4 22 ,  EM
max,min ( / ) / /= ± + +γ γ γ2 1 4 42 2  ]

(b)  Assuming henceforth that  γ > 0 , find the orientation of the unit vector  N  which was
aligned, in the undeformed configuration, with the fiber which was to undergo the greatest stretch.
[Ans.:  N2 / N1  =    1+γ2/4 + γ /2  ]

(c)  Explain why the orientation of the unit vctor  n  which aligns, in the deformed configuration,
with the fiber of greatest stretch is given by  n2 / n1  =  N2 / (N1 + γ N2) , where  (N1, N2)  is  N
above, and thus solve for  n2 / n1 .  [Ans.:  n2 / n1  =  1 / (   1+γ2/4 + γ /2 ), which is the inverse
of  N2 / N1  given in the last part.]  Note:  Since  n2 / n1  here is the inverse of  N2 / N1  in (b) , then
if  N  makes an angle  45° + φ  with the  1  direction,  n  makes an angle of  45° – φ with that
direction;  φ  is a small angle when  γ  is small.

(d)  Consider the strain γ  = 3/2.  Show from part (a) above that λmax = 2 , λmin /= 1 2, and

from the results of parts (b) and (c), solve for the unit eigenvectors u1, u2, u3 and v1, v2, v3.
[Partial answer:  If λ1 = λmax, then u e e1 1 22 5= +( ) / , v e e1 1 22 5= +( ) / .]

(e)  For γ  = 3/2, solve for, and compare with one another, the cartesian components of the

following:  the infinitesimal strain tensor εε (which is, of course, irrelvant at such large deformation

gradients), the Green strain (or change-of-metric strain) EM  based on g(λ) = (λ2–1)/2, and the

Biot strain EB  based on g(λ) = λ–1.  The latter two are members of the family of material strain

tensors defined by E = g(λi ) ui ui∑
i = 1

3
  with g(1) = 0 and g'(1) = 1.  Check your results for EM

via that mode of expression with what you can calculate from E F F IM T= ⋅ −( ) / 2 .

3.  Consider an isotropic elastic material, for which we may make (among various equivalent
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forms) the representation of stress-strain relations σσ == h h h0 1 2
2I B B+ +  for Cauchy stress σσσσ,

where  B = F.FT is the left Cauchy-Green tensor and where h0, h1, h2 are functions of the invariants
I1, I2, I3 of B.

(a)  Show that an equivalent representation is σσσσ    =    m0 I + m1 B + m2 B  –1, and derive

expressions for the functions m0, m1, m2 in terms of h0, h1, h2 and I1, I2, I3 .  [Hint: B−1 is an

isotropic function of  B, so we can write        B –1=n0 I + n1 B + n2 B2 , which is equivalent to

      I=n0 B + n1 B2 + n2 B3 .  To determine the scalars n0, n1, n2 involved here, note that  B must

satisfy its own characteristic value equation, so that        0= – B3 + I1 B2 – I2 B + I3 I  .]

(b)  Show that the second Piola-Kirchhoff stress S (i.e., the stress which is work-conjugate to the
Green strain; look ahead to problem 6) for this same elastic material is

      S == I3 ( m0 C –1 + m1 I + m2 C−2 )  where C = FT.F = I + 2 EGreen  is called the right Cauchy-

Green tensor and where m0, m1, m2 are the same functions of I1, I2, I3 as above; note that I1, I2, I3

are also the invariants of C.  Note:  By considerations like in part (a), this means that S has the form

S I C C= + +g g g0 1 2
2 where g g g0 1 2, ,   are functions of the invariants I1, I2, I3 of C -- which are

the same as the invariants I1, I2, I3 of B.

4.  Consider again the simple shear of problem 2 for an isotropic elastic material.

(a)  Using σσσσ    =    m0 I + m1 B + m2 B  –1 as above, explain why m0, m1, m2 are functions of γ2

(i.e., are even functions of γ) and write the cartesian components σ11, σ12, σ22, σ33 of σσσσ in terms of
γ and the functions m0, m1, m2.  (Note that when we retain terms beyond the linear in γ, the

imposition of simple shear strain requires not only shear stress, but also normal stresses which are
even in γ; the presence of these normal stresses is known as the Poynting effect.)

(b)  Show that the results of part (a) imply that σ11 – σ22 = γ σ12 must hold for any elastic

material in simple shear, and develop a direct derivation of that result from consideration of
principal directions in simple shear.

5.  Write the Cauchy stress as σσσσ    =    σij e i e j  = σij ei ej  (summation on repeated indices) where

the orthogonal unit base vectors ei  (i = 1,2,3) happen to coincide with the fixed cartesian
background base vectors ei  at the moment considered, but rotate relative to them with spin ΩΩΩΩ.  Here
Ωij  = antisym(vi,j) = (1/2) ( vi,j – vj,i ) and d dtj j j ki ke e e e/ = ⋅ = ⋅ =ΩΩ ΩΩ Ω  at the moment

considered.  The corotational (Jaumann) stress rate σσσσ* is then defined by  σσσσ*    = σij  ei ej .  Show
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that

                   σσσσ*    = σσσσ + σσσσ⋅ ΩΩΩΩ    –    ΩΩΩΩ⋅ σσσσ    (i.e., σij 
*  = σij  + σik Ωkj  – Ωik σkj  ).

6.  Various stress measures may be inter-related by the expression for work (per unit volume of
reference state) associated with a change δ     F in the deformation gradient.  That is,

                                           t: F F F S: Eδ δ δ= ⋅ =−ττ:( )1  , where:

•  t = nominal stress (tT = first Piola-Kirchhoff stress),
•  ττττ    = σσσσ det(F) = Kirchhoff stress, where σσσσ = Cauchy (or "true") stress, and

•  S = ST = stress conjugate to strain E = g(λi ) ui ui∑
i = 1

3
  with g(1) = 0 and g'(1) = 1.

(When E is the strain based on change of metric, or the Green strain, EM = (1/2) (FT.F – I),
generated by g(λ) = (λ2–1)/2, the associated S is called the second Piola-Kirchhoff stress, denoted

SPK2 below.)  The rate of deformation tensor D, defined by Dij = sym(vi,j), so that

(∇v)T = F⋅ F –1 = D + ΩΩΩΩ, is used in what follows.

(a)  Show that when the current state and reference state happen to be momentarily coincident,

  t = ττττ*    –    σσσσ⋅ D –    D⋅ σσσσ    +    σσσσ⋅ (∇v)  and that  SPK2 = ττττ*    –    σσσσ⋅ D –    D⋅ σσσσ,    where    ττττ* = σσσσ* + σσσσ    tr(D).

(b)  Show that any E has the series representation  E = EM + (m–1) EM⋅ EM +... in terms of
Green strain, where m = [g''(1) + 1]/2, and thus show that the rate of the S conjugate to that E is
˙ ˙ * ( )S D D= − ⋅ + ⋅ττ σσ σσm , again when the current and reference states are momentarily coincident.
(Observe also that since the logarithmic strain, generated by g(λ) = lnλ, has m = 0, the stress

conjugate to logarithmic strain satisfies S = ττττ* momentarily.)

(c)  Suppose that a particular rate-independent solid satisfies the constitutive relation ττττ*    = Lo:D
where Lijkl

o  is the set of incremental moduli, necessarily symmetric under interchange of ij and

chosen to be symmetric under interchange of kl.  Explain why the moduli Lijkl
o  must also be

symmetric under interchange of the pair ij with kl when the material is hyper elastic, so that a strain
energy exists.

(d)  The constitutive relation for this same material as in (c) may be rewritten in terms of any
conjugate stress and strain measures, in the form S = L:E.  Show that in the simple situation when
the current and reference configurations momentarily coincide,
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                                 Lijkl  = Lijkl 
o  – 

m
2

 (δik σjl   + δil σjk  + σik δjl  + σil δjk ) .

(Note that symmetry under the interchange of the pair ij with kl thus applies for all, or for no,
choices of conjugate strain and stress measures.)

7.  Consider a hyperelastic material with strain energy density W = W(F) per unit volume of
reference configuration.  Since t:δF (= tij  δFji   ) = δW, it follows that the nominal stress is given

by  tij = ∂W(F)/∂Fji = ∂W(∂u/∂X)/∂(∂uj/∂Xi).

(a)  Explain why invariance of the strain energy to a superposed rigid rotation of material
elements allows us to write W = W(E), where E is any member of the family of material strain
tensors discussed above, and show that when E is chosen as EM, and W is chosen to depend

symmetrically on the components of EM, that  t = [∂W(EM)/∂EM]⋅ FT.  [Observe that this equation

automatically satisfies F⋅ t = (F⋅ t)T ( i.e., that σσσσ = σσσσT, since F⋅ t = det(F) σσσσ ) which is the only

consequence of the angular momentum principle not derivable on the basis of the linear momentum
principle.]

(b)  When a material is isotropic, it will suffice to assume that W depends only on the invariants
of E, which is the same as assuming that it depends only on the invariants of C (the right Cauchy-
Green tensor).  These are defined by  det(C–µI) = – µ3 + I1µ2 – I2µ + I3  (where µ denotes λ2)

and are given as I1 = tr(C), I2 = {[tr(C)]2 – C:C}/2, I3 = det(C).  Verify with W = W( I1, I2, I3)
that the form of stress strain relations given in part (a) leads to an expression for σσσσ that is consistent

with what is stated in problem 3.

8.  A hyperelastic solid is homogeneous in its reference configuration.  Let So denote a closed
surface in that configuration, with unit outer normal N.

(a)  Assuming that the solid is free of body force and that So encloses no singularities, show that
any deformation field u = u(X) sustained by the solid satisfies the Eshelby conservation integrals

                [ Ni W(∂u/∂X) –  Nj  
∂W(∂u/∂X)

∂(∂uk /∂X j )
 ∂uk /∂X i  ] dSo   =   0

So

9.  The incremental form of the principle of virtual work, appropriate to the quasistatic rate of
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deformation problem, is

             tij δ(∂uj /∂Xi ) dVo

Vo
   =    fi 

o
δui  dVo

Vo
  +   Ti 

o
δui  dSo

So
.

(a)  Letting the reference configuration in which this is written be momentarily coincident with
the current state, so that Vo coincides with V and So with S, show that the left side of this equation
has the possible rearrangements

 [ τ*ij δDji  – 1
2

 σij δ(2Dik Dkj  – vk,i vk,j ) ] dV
V

    and     [ Sij δDji  + 1
2

 σij δ(vk,i vk,j ) ] dV
V

where S = SPK2 in the latter form, and where Dij = sym(vi,j).

(b)  Suppose that the constitutive relation is given in the form τ*ij   =  Lijkl 
ο Dkl .  Discuss the

formulation of a finite element procedure for the rate problem, assuming that {∆} denotes nodal

displacements and that the velocity field in the current configuration is interpolated by

{v} = [B(x)]{∆}.  In getting equations [K]{∆} = {F}, you should identify three types of

contribution to the tangent stiffness [K], one involving Lo that is formulated just as in conventional
"small strain" theory, another involving the current stress σσσσ, and yet another stemming from the fact

that, often, the nominal stress loading rate To is not fully specified on the surface but depends on
the deformation itself (consider a pressure loading).

10.  A (hyper)elastic solid is under a stress distribution σσσσ in its reference configuration, and we

consider a field of small displacements u from that configuration, induced by additional nominal
loadings To over a part ST of its surface, the rest of the surface being fixed against further
displacement (i.e.,the loadings To are additional to the N ⋅ σσ necessary to create the initial stress
state σσσσ).  Let L be the modulus tensor, in terms of SPK2, in the linearized relation S = σσσσ + L:E.

(a)  Show that the displacement field within the body makes stationary the potential energy

                Π = 
1

2
 [ Lijkl ui,j uk,l  + σij (uk,i uk,j ) ] dVo 

Vo
  –  Ti 

oui  dSo

ST
o

where here the energy is approximated to quadratic order only.

(b)  In the case of a critically loaded Euler column, the variational problem δΠ = 0 evidently has a
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solution when To = 0.  Discuss the buckling problem from that standpoint and, using
approximations appropriate for a thin column, calculate the buckling stress.  (See the Prager book if
you get stuck on this.)
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