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Elasticity of Fluid-Infiltrated Porous Solids (Poroelasticity) 
 

James R. Rice, Harvard University, November 1998 (revised list of references,  
August 2001 and April 2004, minor corrections/rewording October 2007 and April 2013)  

 
For Earth and Planetary Sciences 202, Mechanics in Earth and environmental sciences, 
and Engineering Sciences 262, Advanced hydrology and environmental geomechanics. 

 
Comments entered in the format [[..instructions..]] are suggested exercises. 

 
 Introduction:  This handout formulates the equations describing coupled processes of 
elastic deformation and pore fluid diffusion in fluid-infiltrated elastic solids.  We first 
consider poroelastic constitutive response -- i.e., the dependence of strain and fluid 
content on stress and pore pressure -- and the Darcy law for pore fluid transport.  The 
governing field equations are then formulated, using considerations of stress equilibrium 
and mass conservation.  We consider the general case when neither the solid nor the fluid 
phase is incompressible.  (Both phases were considered separately incompressible for the 
elementary theory of one-dimensional consolidation developed in the lectures.) 
 
 A short list of references is given at the end. A recent introduction to the field is 
provided by Guéguen et al. [2004] and that article, as well as Rice and Cleary [1976], 
Coussy [1995], Terzaghi et al. [1996], and Wang [2000], can help you track back into the 
earlier literature.  The subject was created by Karl Terzaghi in 1923 for describing the 
one-dimensional consolidation of clay soils.  Its modern development and three-
dimensional generalization is due principally to Maurice Anthony Biot, in a series of 
works starting in the early 1940s [Biot, 1941]; those included consideration of effects of 
dynamic loading and stress waves [Biot, 1956], and of nonlinear elasticity [Biot, 1973].   
 
 The presentation here is restricted to linear elastic solids undergoing quasistatic 
deformations, and is based on the treatment in Rice and Cleary [1976].  That replaced the 
new elastic constants introduced by Biot by more familiar constants (Poisson ratio, bulk 
modulus) evaluated in both the drained and undrained states.  It also showed how the 
formulation could be developed without writing separate equations of motion for the two 
constituents, as is done in an alternative approach to the subject that is sometimes 
described as mixture theory [Bowen, 1982; Coussy, 1995].      
 
 Notations:  Like for most discussions in elasticity theory, it is convenient to use a 
concise notation in which spatial coordinates x,y,z  are replaced by x1,x2,x3 , 
respectively. Displacements (e.g., of the solid phase) are denoted u1,u2,u3 , the notation 
σij  is used for stresses and εij  for strains.  In terms of a common elementary notation for 

stress and strain, the correspondence is 
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σ11 = σ x ,  σ22 = σ y,  σ33 = σz ;  σ12 = τxy ,  σ23 = τ yz,  σ 31 = τ zx ; 

ε11 = εx ,  ε22 = εy ,  ε33 = εz ; ε12 =
γ xy
2

,  ε23 =
γ yz
2

,  ε31 =
γ zx
2

. 

 
 Stress:  Stress can be defined with reference to an infinitesimal cube with faces 
pointing in the coordinate directions: σij  is the force in the xj direction, per unit area, 

acting on a face of the cube whose normal points in the xi direction.  Normal stresses like 
σ11  (= σ x ) will therefore be positive if corresponding to tension; that is opposite to the 

convention used in most of rock and soil mechanics, and in most the other problems of 
this course that mention stress.  For balance of torque acting on all such infinitesimal 
elements of material, it is necessary that shear stresses be equal on adjoining faces, which 
is concisely expressed by requiring that σij = σ ji  for all i and j.  Also, for force 

equilibrium, it is necessary that [[please derive]] 
 

∂σ ij
∂xii=1

3
∑ + f j = 0    for all  j, 

 
where f j  is the body force per unit volume. (Often that is written ∂σ ij / ∂xi + f j = 0 , 

following the summation convention for repeated indices.) The f j  is typically just the 

weight force, so that f j = −γ∂zelev / ∂x j  (where γ = ρg  and zelev  is vertical elevation 

above some datum, so that ∂zelev / ∂x j  are the components of a vertical unit vector). 

 
 Strain:  Strains can be defined most simply in the case of extremely small 
deformations, in which case the coordinates x1,x2,x3  of material points are virtually the 
same before and after deformation.  Extensional strains like ε11  (= εx ) are simple 
changes in length per unit length for an infinitesimal line element aligned with the x1  
direction.  Shears strains like ε12  are defined so that 2ε12  (= γ xy ) is the reduction from 

π/2 of the angle between a pair of infinitesimal line elements pointing, respectively, in the 
x1  and x2  directions.  The strains can be defined equivalently, for very small 
deformations as we consider here, in terms of derivatives of the displacement 
components of form 
 

εij =
1

2

∂ui
∂x j

+
∂uj
∂xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    for all  i,j . 

 
Note that this makes εij = ε ji .  [[Convince yourself that this expression for strain is 

consistent with characterization of strain in terms of "changes in length per unit 
length" and  "reduction from π /2 of the angle" as above.]]  
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 Ordinary elastic stress-strain relations:  For circumstances of ordinary elasticity for 
which there are no pore pressure effects, the stress-strain relations (for an isotropic linear 
material) are 
  

εij =
1 +ν
E

σ ij −
ν
E
δ ij (σ11 +σ22 + σ33)   

 
where δij  is the Kronecker delta, defined so that δij = 1 if i = j, and δij = 0  otherwise.  

These embody the accepted understanding of Young's tensile modulus E and Poisson 
ratio ν [[ [please show that]], and also the result [[show that too]] that the elastic shear 
modulus, or rigidity, G is given by  
 

G =
E

2(1+ ν)
.   

 
 The bulk modulus K is defined by writing  
 

ΔV
V

=
(σ11 +σ22 + σ33)

3K
  

 
where ΔV / V ≡ ε11 +ε22 + ε33  is the fractional change in volume [[explain why]].  One 

may readily show [[please do]] that the above stress-strain relations lead to 
 

K =
E

3(1− 2ν)
=
2(1 +ν)G
3(1 − 2ν )

. 

   
 Finally, re-express the stress-strain relations above as 
 

εij =
1

2G
σij +

1

9K
−
1

6G
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ δij (σ11 + σ22 +σ 33) , 

 
and obtain their inverse  
 

σij = 2Gεij + K −
2G

3
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ δij (ε11 + ε22 + ε33) . 

 
[[Carry out the details of these last two steps.]] 
 
 New elastic parameters when pore pressure is present:  When pore pressure p is 
present, and we regard the material as isotropic and linear elastic, the only possible 
generalization of this last expression is 
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σij = 2Gεij + K −
2G

3
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ δij (ε11 + ε22 + ε33) − αδ ij p . 

 
Here α  is a new elastic constant for a porous material, with the property that if pore 
pressure is increased by Δp , and all the normal stresses are decreased (that is, increased 
in compression) by αΔp , then there is no change in strain. 
   
 Now the bulk modulus K should be understood as the bulk modulus under drained 
conditions.  Drained conditions correspond to deformation at fixed p, with the fluid being 
allowed to flow in or out of the deforming element however is required to keep p 
constant.   
 
 The opposite limit is undrained deformation, in which the fluid is constrained from 
flowing in or out during deformation (and, in general, changes of p are induced).  We 
shall soon want to introduce a bulk modulus defined for undrained conditions, and this 
will be denoted by Ku .  The pair of new parameters, α  and Ku , completely characterize 

elastic response with fluid infiltration. 
 
 We may observe that for a linear isotropic solid as considered here, shearing under 
undrained conditions cannot induce a pressure change in the pore fluid [[why is that?]], 
and thus G is the proper shear modulus for both drained and undrained conditions. 
 
 The equation above for stress in terms of strain and pore pressure may be inverted to 
solve for strain, leading to [[carry out the steps]] 
 

εij =
1

2G
σij +

1

9K
−
1

6G
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ δij (σ11 + σ22 +σ 33) +

α
3K

δij p . 

 
 Changes of porosity and fluid mass content:  To complete the description of elastic 
response under fluid infiltration, we also need to specify how the storage of fluid within 
material elements changes due to stressing and pressurization.   
 
 To this end, let us define the "porosity", n, and fluid mass content, m, as 
 

n =
Vf
V

 ,     m =
M f

V
 

 
Here Vf  is the volume of fluid, and Mf  is the mass of fluid, contained in a lump of 

porous material which would occupy volume V in an unstressed and unpressurized 
reference state.  The word "porosity" is in quotes because the usual meaning of porosity 
is Vf /Vcur  where Vcur  is the volume in the current state of the lump which occupied 

volume V  in the reference state.  We assume full saturation of all connected pore space, 
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so that Vf  is also the volume of void space.  It is evident that m = ρ fn , where ρ f  is fluid 

density, and thus, letting Δ  denote the small changes in quantities due to the elastic 
deformation,  
 

Δm = nΔρ f + ρ f Δn = nρ f
p

K f
+ ρ f Δn   

 
where Δρ f = ρ f p / Kf  has been used and K f  is the bulk modulus of the fluid phase.  

Our goal now is to find the dependence of Δm  on the strains ε  and p. 
 
 Now observe that an infinitesimal increment of work, per unit volume of reference 
state, to deform an element and alter the amount of fluid within it, is 
 

i=1

3
∑ σij dεij

j=1

3
∑ + pdn  

 
(in generalizing to finite strain, the terms in σ ijdεij  must be defined consistently with the 

product being a stress work per unit volume of reference state). This work increment 
must be a perfect, or exact, differential if a strain energy function is to exist -- as the laws 
of thermodynamics require, for elastic response.  An equivalent statement [[explain 
why]] is that  
 

i=1

3
∑ σij dεij

j=1

3
∑ − Δndp  

 
must be an exact differential.  A consequence of that exactness is that, if we represent the 
description of stress and deformation in the form σij = σij (ε, p)  and Δn = Δn(ε, p) , then 

[[explain why, and explain origin of last term to follow]] 
 

∂Δn(ε, p)
∂εij

= −
∂σ ij (ε, p)

∂p
= αδ ij  

 
Thus, if we integrate with respect to strain at fixed p, we find that [[do the steps]] 
 

Δn = α(ε11 + ε22 + ε33) +  linear term in p 

 
It is most concise to combine that linear term with one already contained in the equation 

above for Δm , and to write the net coefficient of p as ρ fα
2 / (Ku − K)  so that    
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Δm = ρ fα ε11 + ε22 + ε33 +
α

Ku − K
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 
 It is at this point that the symbol denoted Ku  first enters our equations.  One may 

show that it does indeed correspond to the bulk modulus under undrained conditions, as 
already announced in the previous section.  This is done by observing that Δm  = 0 for 
undrained deformation, so that then αp = −(Ku − K)(ε11 + ε22 + ε33) .  If we substitute 

that into the stress-strain relation at the start of the previous section [[please do so]], we 
find that it reduces to 
 

σij = 2Gεij + Ku −
2G

3
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ δij (ε11 + ε22 + ε33)  

 
for undrained conditions, which proves [[explain why]] that Ku  is the bulk modulus 

under those conditions. 
 
 We are generally interested in Δm , and not specifically in Δn , but the expression for 
the latter can be obtained by using the equation for Δm  towards the beginning of this 
section to obtain [[verify]] 
 

Δn =
Δm
ρ f

−
np

K f
= α (ε11 + ε22 + ε33) +

α2

Ku − K
−

n

K f

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ p  . 

 
 Expressions in terms of bulk modulus of the solid phase:  There is a simple but 
often applicable situation in which both the new constants, α  and Ku , just introduced 

can be determined in terms of the bulk moduli of the fluid and solid constituents. 
 
 Suppose that all pore space is fluid infiltrated, and that all the solid phase consists of 
material elements which respond isotropically to pure pressure stress states, with the 
same bulk modulus Ks .  Suppose we simultaneously apply a pore pressure p = po  and 
macroscopic stresses amounting to compression by po  on all faces (σ11 = σ 22 = σ33= –
po ).  That results in a local stress state of − poδ ij  at each point of the solid phase.  So 

each point of the solid phase undergoes the strain − poδ ij / 3Ks , which means that all 

linear dimensions of the material, including those characterizing void size, reduce by the 
(very small) fractional amount po / 3Ks , causing the macroscopic strains, and change in 
porosity, ε11 = ε22 = ε33 = − po / 3Ks   and Δn / n = −po / Ks . 

 
 The stress-strain-pressure relation at the beginning of the second previous section 
must be consistent with the special state just discussed, and by substituting in it we obtain 
[[please verify]] 
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− poδij = 2G
− poδij
3Ks

⎛
⎝⎜

⎞
⎠⎟
+ K −

2G

3
⎛
⎝⎜

⎞
⎠⎟
δij −

po
Ks

⎛
⎝⎜

⎞
⎠⎟
−αδij po  . 

 
Thus one gets [[show]] 
 

α = 1−
K

Ks
  . 

 
Note that 0 ≤ α ≤ 1 and that α  will be near its upper limit for soil-like materials, since 
then  K << Ks .  The equation for Δn  at the end of the previous section must also be 

consistent.  It reduces to [[please verify]]   
 

n −
po
Ks

⎛
⎝⎜

⎞
⎠⎟
= α −

po
Ks

⎛
⎝⎜

⎞
⎠⎟
+

α2

Ku − K
−

n

K f

⎛

⎝
⎜

⎞

⎠
⎟ po  , 

 
from which we obtain [[show]] 
 

Ku = K +
α2KsKf

nKs + (α − n)Kf
 . 

 
 Darcy flow and conservation of fluid mass:  If  q1,q2,q3   are the components of 

discharge velocity of the fluid relative to the solid, then Darcy's law (expressed in terms 
of the permeability measure k), is 
 

qi = −
k

μ f

∂p
∂xi

+ γ f
∂zelev
∂xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
where μ f  is viscosity of the pore fluid and γ f  is its weight density.  Conservation of 

fluid mass then requires [[derive]] that 
 

∂(ρ f qi )
∂xii=1

3
∑ +

∂(Δm)
∂t

= 0 . 

 
 Equations describing perturbations:  Let us now re-define p and σij  to describe 

perturbations away from some static initial state pinit and σ ij
init  that equilibrates 

gravitational loading, i.e., that satisfies  
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∂σ ij
init

∂xii=1

3
∑ − γ

∂zelev
∂xj

= 0     and    
∂pinit

∂xi
+ γ f

∂zelev
∂xi

= 0  . 

 
Let deformation and strain be measured from that initial state.  Further, assume that all 
material parameters are spatially uniform.   
 

 We begin with the equilibrium equation 
∂σ ij
∂xii=1

3
∑ = 0 , and substitute into it from the 

stress-strain-pressure relation, σij = 2Gεij + K −
2G

3
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ δij (ε11 + ε22 + ε33) − αδ ij p , after 

expressing strains in terms of displacements by εij =
1

2

∂ui
∂x j

+
∂uj
∂xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .  The result [[please 

verify]] is the set of three partial differential equations for u1,u2,u3  and p:  

 

K +
G

3
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ∂
∂x j

∂ui
∂xii=1

3
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + G∇2uj − α

∂p
∂x j

= 0        (for j = 1,2,3). 

 

 Next we use the fluid mass expression Δm = ρ fα ε11 + ε22 + ε33 +
α

Ku − K
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , again 

substituting from εij =
1

2

∂ui
∂x j

+
∂uj
∂xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , and use Darcy's law qi = −

k

μ f

∂p
∂xi

 to substitute 

into the mass conservation equation ρ f
∂qi
∂xii=1

3
∑ +

∂(Δm)
∂t

= 0 .  That gives [[please verify]] 

the needed fourth partial differential equation for u1,u2,u3  and p:   

 

−
k

μ f
∇2 p + α

∂
∂t

∂ui
∂xii=1

3
∑ +

α
Ku − K

p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 . 

 

 By doing the operation 
∂
∂x j

 on each of the first three pde's, and then summing, we 

notice that K +
4G

3
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ∇2

∂ui
∂xii=1

3
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − α∇2 p = 0 .  It is possible to do a linear combination 

of this equation and the fourth pde above [[please work out the details]] to get 
 

c∇2
∂ui
∂xii=1

3
∑ +

α
Ku − K

p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

∂
∂t

∂ui
∂xii=1

3
∑ +

α
Ku − K

p
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  
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which is a convenient alternative to that fourth equation.  In this equation the diffusivity 
term c is [[derive]] 
 

c =
k(Ku − K)(K + 4G / 3)

μ f α
2(Ku + 4G / 3)

=
ˆ K (Ku − K)(K + 4G / 3)

γ fα
2(Ku + 4G / 3)

. 

 
[The second version of the result is written in terms of hydraulic conductivity ˆ K  
(notation ˆ K  used here to avoid confusion with K for bulk modulus), where 
ˆ K = γ f k / μ f .  Compare to c = ˆ K / (γ f mv ) , as derived in the lectures for one-

dimensional consolidation in the case of incompressible constituents; "incompressible" 
means K / K f  and K / Ks  << 1, in which case Ku >> K  and G, so that the above 

expression for c reduces to c = ˆ K / (γ f mv )  [[show that; as part of doing so, you will 

have do show that K + 4G / 3  is indeed the modulus corresponding to 1/mv  in the case 
of one-dimensional straining]].]  
 
 Note that the collection of terms on which the differential operators act, in this last 
pde, is the same on both sides, so the pde is a pure diffusion equation.  In fact, the 
collection of terms is directly proportional to the alteration Δm  of fluid mass content.  So 
it is the alteration in fluid mass content, and not generally the pore pressure, which 
satisfies the diffusion equation in this rigorously developed, coupled theory of 

deformation and diffusion.  That is  c∇2(Δm) =
∂(Δm)
∂t

 in all cases, but this reduces to an 

identical pure diffusion equation for p, namely c∇2 p =
∂p
∂t

, only in special cases (one 

such case is one-dimensional consolidation under a constant applied stress). 
 
 Some additional relations:  The above formulation introduces the shear modulus G, 
the drained bulk modulus K , and two new parameters α  and Ku , of which the latter is 

the undrained bulk modulus, to describe the elastic response of fluid infiltrated materials.  
Other parameters are sometimes used too. 
 
 For example, a measurable material property is the pressure which is induced when 
stresses are applied under undrained conditions.  This response must have the form 
 

p = −B
σ11 + σ22 +σ33

3
  

 
in a linear isotropic elastic material, and the new coefficient which enters is called the 
Skempton coefficient.  Note that 0 ≤ B ≤ 1, with the upper limit being approached for soil-
like materials in which we can consider the fluid and solid constituents to be separately 
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incompressible (in comparison to the compressibility of the material under drained 
conditions).  From the above set of equations, B is given by [[please derive]] 
 

B =
Ku − K
αKu

 

 
 Also, it is sometimes convenient to treat G and the Poisson ratio ν  as the two primary 

elastic properties, using the relation K =
2(1 +ν )G
3(1 − 2ν)

 to replace the drained bulk modulus 

K  with them.  In that case a convenient alternative to using the undrained bulk modulus 
Ku  is to use the Poisson ratio νu  in undrained deformation.  An expression for it is 

[[please derive]] 
 

νu =
ν +αB(1 − 2ν) / 3
1 −αB(1 − 2ν ) / 3

 

 

and, of course, it is related to Ku  by Ku =
2(1+ νu )G
3(1− 2νu)

.  Note that ν ≤ νu ≤1 / 2 .  The 

upper limit is approached for soil-like materials. 
 
 The Wang [2000] book is recommended to see myriad applications of the linear 
theory presented here. 
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