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Notes on elastodynamics, Green's function, and response

to transformation strain and crack or fault sources

James R. Rice,  February 1998  (with latest revisions/corrections October 2004)

Prepared for Harvard courses Earth and Planetary Sciences 263 (Earthquake source processes)

and  Engineering Sciences 241 (Advanced elasticity)  

(I)  A Derivation of the Elastodynamic Green's Function

(Unbounded Isotropic and Homogeneous Medium)

Elastodynamic (Navier) equations:

The Navier equations of motion for a homogeneous and isotropic linear elastic solid are

( + µ) ( u) + µ
2u + f = 2u / t2 , or

( + µ)
x

u

x
+ µ

2

x x
u + f =

2u / t2  .

Green's function G (x,t)  is the response to a concentrated impulsive force.  That is, G (x,t)

is the solution for u (x,t)  when the body force density f = Dirac(t ) Dirac(x) .  The

solution to the Navier equations is first developed here for f = F (t) Dirac(x) , which represents

a time-dependent concentrated force F(t)  at x = 00 .

Observations:

The following observations reduce the determination of the response of a solid to a

concentrated force to finding spherically symmetric solutions to a pair of scalar wave equations.

(i) Orthogonal operators (on an arbitrary vector field v = v(x,t) ) may be defined by:

Mpv = ( v) , Msv = 2v ( v) = v  .
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They have the following properties:

Mp(Msv) = Ms(Mpv) = 00

  Mp(Mpv) = Mp( 2v)

  Ms(Msv) = Ms( 2v)

(ii) Navier equations can be re-written as

c p
2Mpu + cs

2Msu + f = 2u / t2       ( c p
2
= + 2µ , cs

2
= µ ),

and if we write

u(x, t) = MpAp(x,t) +MsAs(x, t) ,

then those equations become

Mp(cp
2 2Ap 2Ap / t2 ) + Ms(cs

2 2As 2As / t 2) + f = 00  .

(iii)  Poisson's equation 2
= q(x)  has the general solution

 =
1

4

q(  x )
x  x all space

 d  V .

Observe, when q(x) = Dirac (x) , = 1 / 4 r  (where r = x ), and so 2( 1/ 4 r) = Dirac (x) .

(iv)  Body force of interest to us is a point force and can be written as

f = F(t) Dirac(x) =
2 F(t)
4 r

 

 
 

 

 
 = (Mp

+ Ms )
F(t)
4 r

 

 
 

 

 
 

Thus, Navier equations will be satisfied if:

cp
2 2Ap 2Ap / t2 = F(t )/ 4 r ,  cs

2 2As 2As / t2 = F(t) / 4 r .
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Solution for Ap  and As , and hence for arbitrary concentrated force F(t):

Define a vector function P(t)  in terms of the given F(t)  by

˙ ̇ P ( t) = F(t) , with P(0 ) = ˙ P (0 ) = 00 .

Then, to solve the two wave equations in (iv) above, we want to solve

c2 2A 2A / t2 = ˙ ̇ P (t) / 4 r  .

Look for spherically symmetric solutions, in form A = A(r,t) , and observe that r 2A =

2

r2
(rA)

for spherical symmetry.

c2
2

r2 (rA)
2

t2
(rA) = ˙ ̇ P (t)/ 4 ,

which has the general solution

rA = P(t) / 4 +Q1(t r / c) +Q2(t + r / c)

where Q1 and Q2  are arbitrary functions.  The first term is a particular solution; the last two give

the general homogeneous solution.  We set  Q2 = 00   (no incoming waves).  In order to avoid a

singularity in A  as r 0 , we must set  Q1(t) = P(t)/ 4 .

  Solution is

Ap =
P(t r / cp) P(t)

4 r
,     As =

P(t r / cs) P(t)

4 r
 ,

so that the solution for u = MpAp + MsAs  is
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u (x,t) =
2 P ( t)

4 r

 

 
 

 

 
    vanishes for  r > 0

                            +

2

x x

P ( t r / cp)

4 r

 

 
 

 

 
 +

2
2

x x

 

 

 
 

 

 

 
 

P (t r / cs )

4 r

 

 
 

 

 
 ,

where  r = x   and  ˙ ̇ P (t) = F (t) .

By carrying out the differentiations indicated, one may show further that

u (x,t) =
4 c p

2r
F (t r / cp ) +

4 cs
2r

F (t r / cs ) +
3

4 r3   F (t )d
r / cp

r / cs

where here the unit vector = x / r  .

Green's function:

u = G (x ,t)   when  F (t) = Dirac(t) ,

describing an impulsive point force in direction .  The corresponding  P (t) = R(t) , where

R(t) = unit ramp function =
t  for  t > 0

0  for  t < 0

 
 
 

  ,    and ˙ ̇ R (t) = Dirac(t) .

  G (x, t) =
2 R(t)

4 r

 

 
 

 

 
 +

2

x x

R(t r / cp)

4 r

 

 
 

 

 
 +

2
2

x x

 

 

 
 

 

 

 
 

R(t r / cs)

4 r

 

 
 

 

 
 .

Static limit of solution:

Let the force F(t)  considered above be F(t) = F , a constant, for t > tF  and observe that

because ˙ ̇ P ( t) = F(t) , P(t) = C1 + C2t + Ft
2 / 2  for t > tF  (the constants C1,C2  will make no

contribution to G (x,t) so do not matter). Thus

P(t r / c) P(t) = C2r / c Frt / c + Fr2 / 2c2     whenever  t r / c > tF .
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Since P(t r / c) P(t )  is divided by r before taking the spatial derivatives above, only the last

term in P(t r / c) P(t )  contributes to the expression for displacements.  Thus the static field

(which is established just behind the s wave front which emanates from the point of force

application at the moment F(t)  becomes constant at F), is

u (x) =

2

x x

F r

8 cp
2

 

 

 
 

 

 

 
 

+
2

2

x x

 

 

 
 

 

 

 
 

F r

8 cs
2

 

 
 

 

 
 

or, when we recognize the expressions for wave speeds in terms of moduli, and differentiate,

u (x) =
x x / r2

+ 2µ
+

+ x x / r2

µ

 

 

 
 

 

 

 
 

F

8 r
=
( + 3µ)F + ( + µ)x x F / r2

8 rµ( + 2µ)
 .

(II)  Moment Tensor Sources, Transformation Strain Approach  

Transformation strain:

Rapid processes of fault slippage, crack opening, dislocation motion, phase changes or

local heating generate waves.  Such sources of elastic displacement fields can generally be

represented, kinematically, by distributions of transformation strain T (x,t) ;  for cracks, faults

and dislocations, these are singular distributions (see below).  The transformation strain describes

an alteration of the stress free configuration of a solid.  The usual relation between stress and
strain, for a solid with elastic moduli C , is = C .  If the stress-free configuration

of an elementary volume of the solid at  x  is altered to a new shape, described by T (x,t) , the

stress-strain relation is then altered to

= C ( T ) (1)

[which is = ( T ) + 2µ( T )  for an isotropic material].

This assumes no alteration of the elastic moduli due to the transformation strain.  Here the strain
 is defined in the usual way, by = (1/ 2)( u / x + u / x )  where u (x, t)  is the

displacement field.  Thus, if we cut an element of the source region free from its surroundings,

and remove stress from it, it would take on the strain =
T .
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The common model of a crack or fault as a surface of displacement discontinuity is

achieved as a limit of a distribution of T (x,t)  over a narrow zone.  One lets the transformation

zone thickness go to zero, with appropriate components of T (x,t)  then going to infinity, such

that there is a net displacement across the rupture; this limit is best taken a little later in the
theoretical development, after reaching the stage of the integral involving function H  below.

In that limit, we write

T
= (1 / 2)(n u + n u ) Dirac (S) (2)

Here S denotes the fault surface;  u  =  u+ – u–  on  S ;  +  and  –  denote sides of  S ;  n  is the

unit normal to  S , pointing from  –  towards  + ; and  Dirac(S)  is the surface Dirac function,

having the property that, if volume  V  contains a portion  S  of the surface S, then

 f (x)
V Dirac (S) dV =  f (x)

S
 dS .

This provides an alternative approach to one based on applying the elastodynamic reciprocal

theorem to a solid with a cut, for representation of the field generated by a crack or fault; that

latter approach is discussed in Aki and Richards, Chp. 3.

Two problems:

To understand how to calculate the response to T (x,t) , consider two problems:

Problem 1, response to given body and surface forces:  A solid is subjected to some
distribution of body force f  = f (x,t) in the region V that it occupies, and to some distribution of

surface tractions (or "surface force") T  = T (x,t) on the boundary S of V, but is subjected to zero

transformation strains, T (x,t)=0 .  This is the is the classical problem of elastodynamics.

Problem 2, response to given distribution of transformation strain:  The same solid
discussed above is now subjected to zero body and surface forces,  f (x,t)=0 and T (x,t)=0, but is

subjected to some arbitrary non-zero distribution of transformation strain T (x,t) .
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For both problems the governing set of equations are:

(I)  The equations of motion of a continuum:

x
+ f =

2u

t2
 in the region V, with boundary conditions n = T  on the surface S.

(II)  The strain - displacement gradient relations: =
1

2
(
u

x
+

u

x
) .

(III)  The (elastic) stress-strain relations of eq. (1): = C ( T ) .  [Note that since

C   is chosen symmetric in its last two indices, use of (II) shows C = C u / x .]

Let us now formulate both problems in terms of displacements as variables:

Formulation, problem 1, response to given body and surface forces:

(II) and (III) above with T =0  lead to = C u / x  for the stresses.  Inserting

that into (I) we obtain the following statement of the problem of determining the displacement

field:

x
(C

u

x
) + f =

2u

t2
   in  V ,  subject to  n C

u

x
= T   on  S. (3)

where we regard f  = f (x,t) and T  = T (x,t) as given functions.

Note that since the governing equations are linear in the  u (x,t) , their solution for the u

must involve some linear summation over all space and prior time of the effects of the given   f

and T  .  The Green's function  G (x,x ,t)  may then be defined (consistently with the

understanding in part (I) above) as the weighting coefficient in such a linear response, so that we

can write the solution to the above set of equations as

     u (x,t) =
t

 G (x,  x ,t  t ) f (  x ,  t ) 
V

d  V d  t +
t

 G (x,  x ,t  t )T (  x ,  t ) 
S

d  S d  t (4)
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The coefficient of G (x,  x ,t  t ) is an infinitesimal impulse, f (  x ,  t )d  V d  t  or T (  x ,  t )d  S d  t ,

applied at position  x   and time  t  .  We may thus say that G (x,x ,t) is the displacement

response in the  direction at place x and time t due to a unit impulse applied in the  direction at

place x  and time  0.

Formulation, problem 2, response to given distribution of transformation strain:

(II) and (III) now lead to = C (
u

x
T )  for the stresses, and we insert that into

(I) with f =0 and T =0 to get the following equations governing the displacement field:

x
[C (

u

x
T )] =

2u

t2
  in  V,   with  n C (

u

x
T ) = 0   on  S. (5a)

Introducing the notation

  m (x ,t) = C (x) T (x, t)  ,

where  m   is called the moment (volume) density tensor, we therefore see that problem 2 can be

restated as

x
(C

u

x
)

m

x
=

2u

t2
  in  V,   with  n C

u

x
= n m   on  S. (5b)

This statement of problem 2 can be re-written (to emphasize the analogy to problem 1) as:

x
(C

u

x
) + f eff =

2u

t2
  in  V,   with  n C

u

x
= Teff  on  S. (5c)

where the effective body and surface force terms thus introduced are

f eff = m / x   and  Teff = n m  . (6)
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Comparing problem 2 as formulated in eq. (5c) and (6) with problem 1 as formulated in

eq. (3), we see that both have an identical mathematical statement (but with f eff  and Teff of

problem 2 replacing f  and T  of problem 1).  Hence problem 2 must have an identical form of

solution which can be can be written out directly from eq. (4), in terms of the Green's function,

as

   
u (x,t) =

t
 G (x,  x ,t  t )

m (  x ,  t )

 x 
 

V
d  V d  t 

                 +
t

 G (x,  x ,t  t )n (  x )m (  x ,  t ) 
S

d  S d  t  .

 (7)

Use of the divergence theorem to transform the surface integral to a volume integral, then shows

that the solution to problem 2 is

u (x,t) =
t

 
G (x,  x ,t  t )

 x 
m (  x ,  t ) 

V
d  V d  t  (8)

Since m  is symmetric in  and  (that is because C  is symmetric in its first two

indices, which follows from  =  ), it is preferable to rewrite this solution as

u (x,t) =
1

2

t
 H (x,  x ,t  t )m (  x ,  t ) 

V
d  V d  t (9)

where the moment response function is

               H (x,  x ,t  t )=
G (x,  x ,t  t )

 x 
+

G (x,  x ,t  t )

 x 
(10)

H (x,  x ,t  t )  can be interpreted as the displacement u  at x in response to the application at

x   of a pair of impulsive force dipoles with zero net moment.  One such dipole is arrayed along

the  direction with its impulses in the  direction, the other arrayed along the  direction with
its impulses in the  direction.  H (x,  x ,t  t )  is called the double couple response when

 and  differ, and the linear vector dipole response when they agree.
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Surface source region S:

Suppose that the source is a crack or fault so that the transformation strain is a singular

distribution over some internal surface S, like in equation (2).  (This S is not to be confused with

alternative use of the same symbol to denote the external surface of the body considered.)  Then

the volume moment density is

m (x ,t) = ˆ m (x, t) Dirac(S)  , where  ˆ m (x ,t) = C (x)n (x) u (x, t) (11)

is the moment surface density tensor.  The only change in expression above for u is that we
replace m (  x ,  t )d  V  in equation (9) with ˆ m (  x ,  t ) d  S , and integrate over the surface S

rather than over volume V, making analogous changes in subsequent formulae.

Fourier transform version:

It is convenient for some purposes to have the Fourier transform of the displacement,

which is given as

˜ u (x, ) =
1

2
 ˜ H (x,  x , ) ˜ m (  x , ) 

V
d  V  . (12a)

Observe also that the transform of the moment rate ˙ m (x ,t)  is

˙ ˜ m (x , ) = i ˜ m (x, ) ,

and that if we define ˜ E (x ,  x , ) = ˜ H (x,  x , )/ i , then

E (x,  x ,t) =  H (x,  x ,   t )
0

t
 d   t 

is the function analogous to the moment response H (x,  x ,t) , but based on a step-function

rather than impulsive time history.  That is, E (x ,  x ,t)  can be calculated like in equation (10),

but replacing G (x,  x ,t)  with the function which gives the displacement u (x,t)  in response to

the body force density f (x ,t) = Ustep( t) Dirac (x  x )  where Ustep( t)  is the unit step

function; recall that G (x,  x ,t)  corresponds to f (x ,t) = Dirac(t) Dirac (x  x ) .
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Thus an equivalent form for the displacement field is

˜ u (x, ) =
1

2
 ˜ E (x,  x , ) ˙ ˜ m (  x , ) 

V
d  V  , (12b)

which corresponds in the time domain to the equivalent version of equation (9) as

                u (x,t) =
1

2

t
 E (x,  x ,t  t ) ˙ m (  x ,  t ) 

V
d  V d  t  (12c)

Low-frequency response and point source approximation:

Let a be a typical dimension of the source region, such that tw=a/c, where c = wave

speed, is a typical time for waves to traverse the source.  If the elastic properties and geometry of
the body are relatively uniform through the source region, such that the response E (x ,  x ,t)  at

a distant receiver site x is essentially independent of the location of  x  in the source region
(ignoring travel time differences of the order of tw), then the source can be considered as if it was

a point source.  This neglect of accuracy of order tw in the time dependence can be characterized,

in the frequency domain, as being valid at low frequencies , such that tw << 1 .  We may then

write the response as given in equations (9b,c) as

˜ u (x, )
1

2
˜ E (x,  x , ) ˙ ˜ M ( )  ,  or  u (x,t)

1

2

t
E (x,  x ,t  t ) ˙ M (  t )d  t ,

where  x  is any location in the source region, and where

M ( t) =  m (  x ,t) 
V

d  V 

is the total moment of the source.  In general, if r is distance from source to receiver, and if there

is enough uniformity in the source region for the independence of the exact source locations  x ,

then the point source model is valid when

r >> a   and   c / >> a  ,

where the latter expresses the condition tw << 1 .
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The time scale ts of the source process is the time over which the ˙  T (  x ,t) , and hence

˙ m (  x ,t) , are non-zero.  Suppose  ts is short compared to the precision with which we want to

know the time history.  Such is the case when we consider low frequencies such that ts << 1 .

In that frequency range,

˙ ˜ m (  x , ) =  e i t ˙ m (  x ,t)
-

+
 dt m (  x ,ts)     ( ts << 1)

where m (  x ,ts )  is the final moment density at the termination of the source process.  Hence

(9b,c) become, in that low-frequency range,

˜ u (x, )
1

2
 ˜ E (x,  x , )m (  x ,ts) 

V
d  V ,  or  u (x,t)

1

2
 E (x,  x ,t)m (  x ,ts) 

V
d  V .

In general, for dynamic rupture processes, one expects tw to be less than ts.  Thus frequencies

which are low enough to justify the approximation just made will also be low enough for validity

of the point source model, at least if we also meet the condition of enough uniformity in the

source region for the independence of the exact locations  x .  In that case we may write

˜ u (x, )
1

2
˜ E (x,  x , )M (ts)  ,  or  u (x,t)

1

2
E (x,  x ,t)M (ts)  .

At such level of approximation, the expressions show no effects of the actual time dependence of

the source process, but only the time dependence embedded in E (x ,  x ,t) , possibly reflecting

multiple wave reflections, scattering and dispersion on the route from source to receiver.

(III)  Moment Tensor Response, Isotropic and Homogeneous Solid

The displacement in response to a distribution of transformation strain T (x,t) , with

property that the stress-strain relations of the medium are altered to

= ( T ) + 2µ( T ) ,

 is given in terms of the moment tensor source density

m (x, t) = T (x, t) + 2µ T (x,t)
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by the expressions above, i.e., equation (9) with the Green's function of part (I) for the

unbounded isotropic and homogeneous medium used in equation (10).  Because, in the present
case, we consider an unbounded homogeneous solid, G (x,  x ,t)  = G (x  x ,t) .  Thus
H (x,  x ,t) = H (x  x ,t) , which means that G (x  x ,t)/  x = G (x  x ,t) / x .

Thus the moment response is

H (x,t) =
x

G (x, t)
x

G (x, t) .

Using the expression above for the Green's function G ,

1

2
H (x, t) = (Lp + Ls )

R(t)

4 r

 

 
 

 

 
 Lp

R(t r / cp)

4 r

 

 
 

 

 
 Ls

R(t r / cs)

4 r

 

 
 

 

 
 

where

Lp =

3

x x x
 ,    Ls =

1

2
(

x
+

x
) 2 Lp   .

Note that the first term of H  will make no contribution outside the source;

(Lp + Ls)(R / 4 r)  = 0 there because 2(1/ r) = 0  for r>0.

To evaluate the expression for u (x,t) it is simplest to solve first for 2u (x,t)/ t2, in the

representation of eq. (9), observing that

2

t2
1

2
H

 

 
 

 

 
 =   same expression as for 

1

2
H  above, but with  R(t) ˙ ̇ R ( t) = Dirac (t)  .

Note now that when performing the convolution on  t   of 
2

t2
1

2
H (x,  x ,t  t )

 

 
 

 

 
  with

m (  x ,  t ), there will arise integrals 
t

Dirac (t  t r / c)m (  x ,  t )d  t = m (  x ,t r / c) ,

where  r = x  x .  Thus



14

2

t2
u (x, t) = Lp m (  x ,t r / c p)

4 r
source
volume

d  V Ls m (  x ,t r / cs)

4 r
source
volume

d  V  .

This gives the solution for u (x,t) using initial conditions u = u / t = 0  before onset

of the source process. To formally write the expression for u (x,t), let W (x,t) be defined by

2

t2
W (x,t) =m (x,t) , with W (x,0) =

t
W (x,0) = 0  .

Such W (x,t) is given by W (x ,t) = 0
t (t   t )m (x,   t )d   t .  In terms of it,

u (x,t) = Lp W (  x ,t r / c p)

4 r
source
volume

d  V Ls W (  x ,t r / cs)

4 r
source
volume

dV  .

Evidently, the displacement field can be written in the form

u (x,t) = u p(x, t) + us (x, t)  ,

and in terms of these notations the last expression would, e.g., be written

up or s(x,t) = Lp or s W (  x ,t r / c p or s)

4 r
source
volume

d  V  ,

with the Fourier transform version being

˜ u p or s(x, ) = Lp or s exp( i r / c p or s) ˜ m (  x , )

4 2rsource
volume

d  V  .



15

Rupture on a surface S:

In this case the transformation strain is given by equation (2),

T (x,t) = (1/ 2)[n (x) u (x,t) + n (x) u (x,t)] Dirac (S)

where n is the unit normal to S, pointing from the – to + side, and u = u+ u  is the
displacement discontinuity on S.  Thus the surface moment density tensor ˆ m (x ,t)  is given by

ˆ m (x ,t) = n (x) u (x,t) + µ[n (x) u (x,t) + n (x) u (x,t)] .

Since in such cases we replace m (  x ,  t )d  V  in equation (9) with ˆ m (  x ,  t ) d  S , the

displacement field is given by

up or s(x,t) = Lp or s  
ˆ W (  x ,t r / c p or s)

4 r
d  S 

S
 ,

where

2

t2
ˆ W (x,t) = ˆ m (x, t)  with ˆ W (x,0) =

t
ˆ W (x,0) = 0 ,

and the Fourier transform version is

˜ u p or s(x, ) = Lp or s  
exp( i r / c p or s) ˆ ˜ m (  x , )

4 2r
d  S 

S
.

(IV)  High-Frequency Response and Far-Field Approximation

Assume  r >> a  (a = source dimension), and  r >> c/ .  Then for such range of (high)

frequencies

xµ

e i r /c

r

 

 
  

 

 
  =

i

c µ
e i r /c

r

 

 
  

 

 
  1

ic

r

 

 
 

 

 
 

i

c µ
e i r /c

r
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where =
r

x
=

x  x 
r

x
ro

 for a coordinate origin in the source region and observation point at

distance ro  from the origin.  Hence, each time we take a derivative with respect to some xµ ,

which we do successively three times in operating with the Lp or s above, that is equivalent in the

high frequency limit to multiplying by i µ / c p or s .  Thus the Fourier transform expression

above becomes

˜ u p or s(x, ) R p or s  
exp( i r / c p or s)

4 rc p or s
3

˙ ˜ m (  x , ) 
source
volume

d  V  ,

(using ˙ ˜ m (  x , ) = i ˜ m (  x , ) ) where the radiation patterns Rp  and Rs , descended from

the two differential operators, are

Rp = ,   and  Rs =
1

2
( + ) .

By noting further that r ro  x , when  x << ro , which is the case here, this can also be

written as

˜ u p or s(x, ) R p or s exp( i ro / c p or s)

4 roc p or s
3  exp(i  x / c p or s) ˙ ˜ m (  x , )  

source
volume

d  V .

The last two expressions for ˜ u p or s(x, )  invert to the time domain as

up or s(x,t) R p or s  
˙ m (  x ,t r / c p or s)

4 rc p or s
3  

source
volume

d  V 

R p or s 1

4 roc p or s
3   ˙ m (  x ,t ro / c p or s +  x / c p or s) 

source
volume

d  V  ,

where now it is understood that the slower (low frequency) parts of the radiated field may not be

well represented (for example, these expressions predict no long-term static displacement field).
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The equations do show that the high-frequency part of the radiated signal is a direct linear map,

corrected for travel-time differences, of the rate of transformation strain in the source region.

For the case of rupture with displacement discontinuities u = u+ u = u (x, t)  on a

surface S, the above integrals over the source region become

     (1 / 4 r c p or s
3 ) ˙ m (  x ,t r / c p or s) 

source volume

d  V 

=  
S

(1/ 4 r c p or s
3 ){ n (  x ) ˙ u (  x ,t r / cp or s)

 + µ[n (  x ) ˙ u (  x ,t r / c p or s) + n (  x ) ˙ u (  x ,t r / c p or s)]}d  S 

=  
S

(1/ 4 rc p or s
3 ){(c p

2 2cs
2) n (  x ) ˙ u (  x ,t r / c p or s)

   + cs
2[n (  x ) ˙ u (  x ,t r / cp or s) + n (  x ) ˙ u (  x ,t r / c p or s)]}d  S  .

Far-field radiation due to slip on a planar fault:

The fault plane S is in the plane x2=0; slip is entirely in the 1 direction; u = ( u1,0,0),

n = (0,1,0); u1= u1(x1,x3,t); ˆ m 12(x,t) = ˆ m 21(x,t) = µ u1(x1,x3,t) = cs
2 u1(x1, x3,t) .  Then the

far-field p and s wave displacements are

up or s (x ,t )
R 12
p or scs

2

2 rocp or s
3 ( ,t ro / cp or s ;cp or s )

where

( ,t;c) =  
S

˙ u 1(x1,x3,t +
1x1 + 3x3

c
)dx1dx3  ,    or

˜  ( , ;c) =  
S

exp(i 1x1 + 3x3

c
) ˙ ˜ u 1(x1, x3, )dx1dx3
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Far-field radiation due to tensile opening on a planar crack:

The crack plane S is in the plane x2=0; relative displacement of the crack walls is entirely

in the opening mode, and hence in the 2 direction; u = (0, u2,0), n = (0,1,0); u2= u2(x1,x3,t);

ˆ m 11(x,t) = ˆ m 33(x, t) = u2(x1, x3,t) = (c p
2 2cs

2) u2(x1,x3,t) , and

ˆ m 22(x,t) = ( + 2µ) u2(x1, x3,t) = cp
2 u2(x1,x3,t) .  In this case

up or s (x ,t )
Rp or s(cp

2 2cs
2 ) + 2R 22

p or scs
2

4 rocp or s
3 ( ,t ro / cp or s ;cp or s)  ,

where we note that Rp =  and Rs = 0 , and where now

( ,t;c) =  
S

˙ u 2(x1, x3,t +
1x1 + 3x3

c
)dx1dx3  ,    or

˜  ( , ;c) =  
S

exp(i 1x1 + 3x3

c
) ˙ ˜ u 2(x1,x3, )dx1dx3  .
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