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Abstract. Glaciological observations of under-flooding suggest that fluid-induced hy-
draulic fracture of an ice sheet from its bed sometimes occurs quickly, possibly driven
by turbulently flowing water in a broad sheet flow. Taking the approximation of a fully
turbulent flow into an elastic ice medium with small fracture toughness, we derive an
approximate expression for the crack-tip speed, opening displacement and pressure pro-
file. We accomplish this by first showing that a Manning-Strickler channel model for re-
sistance to turbulent flow leads to a mathematical structure somewhat similar to that
for resistance to laminar flow of a power-law viscous fluid. We then adapt the plane-strain
asymptotic crack solution of Desroches et al. [1994] and the power-law self-similar so-
lution of Adachi and Detournay [2002] for that case to calculate the desired quantities.
The speed of crack growth is shown to scale as the overpressure (in excess of ice over-
burden) to the power 7/6, inversely as ice elastic modulus to the power 2/3, and as the
ratio of crack length to wall roughness scale to the power 1/6. We tentatively apply our
model by choosing parameter values thought appropriate for a basal crack driven by the
rapid drainage of a surface meltwater lake near the margin of the Greenland Ice Sheet
[Das et al., 2008]. Making various approximations perhaps relevant to this setting, we
estimate fluid inflow rate to the basal fracture and vertical and horizontal surface dis-
placements, and find order-of-magnitude agreement with observations by Das et al. [2008]
associated with lake drainage. Finally, we discuss how these preliminary estimates could
be improved.

1. Introduction

Hydraulic fracture has, since the 1940’s, been a subject
of great interest in the context of inducing production from
oil and gas wells (see e.g. Mendelsohn [1984] for a re-
view). More recently, the topic has been explored in depth
theoretically [Lister , 1990; Desroches et al., 1994; Dyskin
et al., 2000; Adachi and Detournay , 2002; Savitski and De-
tournay , 2002; Detournay , 2004; Garagash and Detournay ,
2005; Roper and Lister , 2007], in the context of magma-
driven cracking [Rubin, 1995], and in the context of water-
aided vertical crevassing in glaciers [Weertman, 1971a, 1973;
Smith, 1976; van der Veen, 1998; Kenneally , 2003; Alley
et al., 2005; van der Veen, 2007; Krawczynski et al., 2009].
These works have successfully applied the results of lin-
ear elastic fracture mechanics (LEFM) with different as-
sumptions of fluid-related boundary conditions on the crack
face. The boundary conditions used have ranged from the
simple quasi-static loading case common in the glaciologi-
cal literature [Weertman, 1973; Smith, 1976; van der Veen,
1998, 2007; Krawczynski et al., 2009] to the more complex
but realistic case for which the pressure distribution within
the crack is determined along with the crack separation as a
coupled fluid-flow/elasticity problem [Desroches et al., 1994;
Adachi and Detournay , 2002].

As interest regarding the very short timescale behavior of
glaciers intensifies [Bindschadler et al., 2003; Ekstrom et al.,
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2006; Das et al., 2008; Wiens et al., 2008], it will become
of paramount importance to understand the fracture pro-
cess in glaciers since it influences fundamental aspects of
glacial dynamics, including flow speeds, calving behavior,
and stability of the ice sheet (e.g. Zwally et al. [2002]; Ken-
neally [2003]; Joughin et al. [2008]; Tsai et al. [2008]). The
current literature on the processes leading to crevasse ex-
tension to depth is fairly small (see previous paragraph) but
there is agreement that the presence of liquid water greatly
enhances the ability for crevasses to quickly grow, become
macroscopic and affect large-scale features of ice sheets. Re-
cent observations by Das et al. [2008] of drainage of a large
supraglacial meltwater lake into, and presumably to the bed
of, the Greenland Ice Sheet within a timespan of a few hours
shows that water flow rates into crevasses can be very fast.
A crude estimate of the Reynolds number, ℜ, for this flow
can be made by assuming the full volume of initial lake wa-
ter (V0 ≈ 4.4 · 107 m3) drains into a basal crack system
of lateral dimension (in the y direction of Figure 1) close
to the lake dimension (Lc ≈ 3 km) over the T ≈ 2-hour
timescale of observed rapid drainage, leading to an aver-
age velocity of V0/(Lch0T ), where h0 is the opening of the
crack. With water density of ρ ≈ 103 kg/m3 and viscosity of
η ≈ 2·10−3 Pa s, this crude estimate yields a Reynolds num-
ber of ℜ = ρV0/(LcTη) ≈ 106, which is well within the fully
turbulent regime. These observations therefore motivate the
present work, in which we consider the turbulent flow of
draining surface water as causing the opening of a basal
crack within a linear-elastic ice medium. This corresponds
to under-flooding as a rapid sheet flow, e.g., as considered
by Roberts [2005] and Flowers et al. [2004], as opposed to a
wholly channelized flow [Rothlisberger , 1972; Clarke, 1996].
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Although these approximations of fully turbulent sheet flow
in a fracture within a purely elastic medium are clearly
short-timescale end-member cases of a more general sce-
nario, they are reasonable and allow for considerable sim-
plification of the mathematical analysis.

In Section 2, we present solutions for the crack-tip speeds,
pressure profiles and displacement profiles from an approxi-
mate interpretation of a steady-state crack growth analysis
and from an exact self-similar analysis. In Section 3, we
then tentatively apply these results to glacial crack prop-
agation, compare our results to the recent observations of
Das et al. [2008], and find order-of-magnitude agreement be-
tween model and observation. Although we do not explicitly
consider the case of jökulhlaup (subglacial outburst flood)
initiation, our model applies to the initial growth stages of
these events to the extent that jökulhlaup initiation can be
thought of as the crack-like growth of a subglacial lake under
excess water pressure (see e.g. Roberts [2005]). The model
may also have some relevance to satellite-inferred fluid in-
terchanges between sub-glacial lakes documented by Fricker
et al. [2007].

2. Model Setup: Turbulent Hydraulic
Fracture

In this section, we consider a crack within an elastic
medium driven open by the turbulent flow of water through
the crack. To model this, we adapt various power-law
viscous-flow crack solutions [Desroches et al., 1994; Adachi
and Detournay , 2002] for use with a Manning-Strickler
channel model [Manning , 1891; Strickler , 1923, 1981] for
wall shear resistance to turbulent flow (see e.g. Rouse
[1955]). The geometry first considered here is that of a
plane strain horizontal crack of length 2L within an im-
permeable linearly-elastic medium, located at a depth H
beneath the surface. The crack opening profile is given by
h(x) for −L < x < L (see Figure 1).

2.1. Manning Turbulent Friction

For flow through a channel of height h, the average shear
stress on the channel walls τ is given by

2τ ≡ f

4
ρU2 = −h∂p

∂x
, (1)

for 0 < x < L, where h is the local channel height, ∂p/∂x is
the pressure gradient (see Figure 1), f is the commonly-used
“Darcy-Weisbach” friction factor, ρ is the fluid density, U is
the fluid velocity averaged across h, and the sign in Equa-
tion (1) is reversed when x < 0. In order to use this rela-
tionship between the velocity and pressure gradient in the
crack solution, we must estimate f . Here, we assume that
the flow is fully turbulent so that f is given by the Gauckler-
Manning-Strickler approximation [Manning , 1891; Strickler ,
1923, 1981]

f = 0.113

„

k

Rh

«1/3

= f0

„

k

h

«1/3

= 0.143

„

k

h

«1/3

, (2)

where Rh = h/2 is the hydraulic radius and k is the Niku-
radse channel wall roughness height [Rubin and Atkinson,
2001]. When the two walls have different roughness, it is
appropriate to interpret k1/3 as the average of k1/3 for the
upper and lower walls. This expression, Equation (2), is
known to be approximately valid when the Reynolds number
ℜ is sufficiently large, ℜ & 105 (see e.g. Rubin and Atkinson
[2001]; Gioia and Chakraborty [2006]; White [2008]). This
inequality is verified in Section 3 for the case of interest.
This scaling is also equivalent to the commonly used Man-
ning approximation

UManning =
1

n
R

2/3

h S1/2. (3)

Here, n is the Manning roughness parameter,

S = − 1

ρg

∂p

∂x

“

=
2τ

ρgh

”

(4)

is the negative hydraulic head gradient (positive in the di-
rection of flow) (e.g. Rouse [1955]), and g is gravitational
acceleration. In Equations (1) and (4), we have assumed
that ρDU/Dt is of small magnitude compared to ∂p/∂x, as
will be checked subsequently, and that the gravity forcing
due to slope of the flow channel is likewise negligible com-
pared to the pressure gradient (otherwise, the slope is added
to the definition of S). The value of f0 used in Equation (2)
is equivalent to setting

n = (0.0380 s m−1/2) · k1/6 (5)

(e.g. n = 0.018 s m−1/3 when k = 1 cm). Our results turn
out to be very weakly dependent on the size of k.

Substituting Equation (2) into Equation (1) gives

− ∂p

∂x
=
f0
4
ρU2 k

1/3

h4/3
= 0.0357ρU2 k

1/3

h4/3
. (6)

The turbulent Manning-Strickler scaling therefore pro-
vides one relationship between the local pressure gradi-
ent ∂p(x, t)/∂x, fluid velocity U(x, t), and channel opening
h(x, t).

2.2. Basic Equations Governing Turbulent Hydraulic

Fracture

The problem of a fracture driven through an imperme-
able linear elastic body by injection of a power-law viscous
fluid has been studied by a number of authors. Key re-
sults include an analytical near-tip solution in plane strain
[Desroches et al., 1994], a (numerical) self-similar solution
for a plane strain fracture of finite length [Adachi and De-

tournay , 2002], and a solution for a penny-shaped fracture
[Savitski and Detournay , 2002]. Here, we use an approach
analogous to these power-law solutions but modified to make
use of the turbulent scaling of Section 2.1. In so doing,
we find it convenient to consider the related problem of a
plane strain crack in an imagined homogeneous medium (as
shown in Figure 2) with elastic properties that are those of
ice. For this model crack, we assume there to be three fun-
damental considerations that relate the crack opening dis-
placement profile w(x, t), the crack pressure profile p(x, t),
and the crack fluid velocity profile U(x, t). (The relation of
w, the crack opening in an imagined homogeneous ice ma-
terial, to h, the channel width at the glacier interface with
its bed, is discussed below; we will choose h proportional to
w with a coefficient of proportionality ξ that is rationalized
in Appendix A.) Elasticity theory provides one equation,
the turbulent scaling of Equation (6) provides another, and
fluid mass conservation provides the third equation. As in
Desroches et al. [1994] and Adachi and Detournay [2002],
we solve the case for negligible fracture energy. As will be
shown in Section 3, with estimates of ice fracture tough-
ness from Ashby [1989] (see also Schulson and Duval [2009],
p.208), Fischer et al. [1995], and Rist et al. [1999] showing
KIc ≈ 0.1−0.2 MPa m1/2, and guidelines like those of Savit-

ski and Detournay [2002] and Bunger and Detournay [2008],
this approximation is reasonable for the glacial application
considered.

For a crack (of length 2L) in an infinite, homogeneous
elastic medium, it is well known that a singular integral
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equation [Muskhelishvili , 1953] relates w(x, t) and p(x, t).
In the following, we assume that there exists a local hy-
drostatic ice overburden pressure given by σ0 so that the
pressure causing crack opening is given by the excess pres-
sure ∆p(x, t) ≡ p(x, t)− σ0. The integral equation can then
be represented as

∆p(x, t) =
E′

4π

Z L

−L

∂w(s, t)

∂s

ds

x− s
, (7)

where E′ = E/(1 − ν2), E is Young’s modulus, and ν is
Poisson’s ratio. For the crack of interest at a bedrock bed,
the material on the upper side of the crack (ice) is signifi-
cantly more compliant than the material on the lower side
(rock) and therefore is responsible for most of the crack
opening. For this bimaterial case, then, we make the ap-
proximation that the actual physical opening displacement
h(x, t) is a fraction of the imagined opening w(x, t) in the
homogeneous medium of the more compliant material (ice),
so that h(x, t) = ξw(x, t) where ξ < 1 (e.g. compare Fig-
ure 1 and Figure 2). Thus, in all calculations done here,
the physical crack opening h is interpreted to be exactly
ξw where w is the opening calculated for the same crack
face pressure distribution in a homogeneous ice medium by
Equation (7). In Appendix A we provide justification of
this approximation based on elastic analyses of cracks along
bimaterial interfaces, and suggest that

ξ ≈ 1 +E′
ice/E

′
bed

2
≈ 0.55 (8)

is an appropriate factor for ice in contact with (or separating
from) granitic bedrock. In using Equation (6), then

−∂∆p

∂x
=

f0
4ξ4/3

ρU2 k
1/3

w4/3
= 0.0793ρU2 k

1/3

w4/3
. (9)

Finally, if we assume an incompressible fluid (i.e. constant
ρ) then the mass conservation equation (setting h = ξw and
canceling the ξ) can be written as

∂(wU)

∂x
+
∂w

∂t
= 0. (10)

Note that for steady-state cracking with uniform crack-tip
velocity Utip, such that w(x, t) = w(x−Utipt), Equation (10)
simplifies to U(x, t) = Utip [Desroches et al., 1994], i.e. the
thickness-averaged fluid velocity is everywhere equal to the
crack-tip velocity. This result will also apply asymptotically,
near the tip, for non-steady configurations and time-variable
Utip. (Throughout this analysis, we assume the crack to be
completely filled with fluid, with no ‘fluid lag’, a reasonable
assumption given the relatively large confining stresses of
interest [Garagash and Detournay , 2005].)

2.3. Adaptation of the Power-Law Viscous Fluid

Crack Solution to the Turbulent Case, Simple

Approximate Model

In this section, we follow Desroches et al. [1994] and be-
gin with a steady-state solution for a semi-infinite crack,
U(x, t) = Utip and so drop the explicit x and t dependence
on U . Since there is no explicit time dependence in the other
two governing equations, we also drop the explicit t depen-
dence of w(x, t) and ∆p(x, t) for that semi-infinite case, in-
stead writing w(x) and ∆p(x). In Section 2.5, we will revert
to Equation (10).

At this point, we observe that Equation (9) has the same
form as the power-law viscous flow lubrication equation
[Bird et al., 1987], which can be written as

−d∆p
dx

=
c0

w1+n
, (11)

where w is the crack opening width, n is the power-law in-
dex relating shear stress τ with shear rate γ̇ (τ ∝ γ̇n), and
c0 is a factor that includes a dependence on the now uniform
U (which is proportional to U2 for our turbulent case and
to Un for the Desroches et al. [1994] power-law case). Thus,
by simply using the n = 1/3 case, we can utilize the same
Muskhelishvili [1953] procedure as in Desroches et al. [1994],
which yields a solution of the same form for both w(x) and
∆p(x), and obtain (for the crack tip at x = L)

w(x) =
14A

3E′
R6/7 tan

π

7
, (12)

and

∆p(x) = P − AR−1/7, (13)

where R ≡ L − x is the distance along the crack behind
the crack tip, P is a constant which is undetermined in this
analysis, and the constant A is directly relatable to Utip = L̇
through substitution into Equation (9) (with U = Utip).
Solving for A gives

A = E′

"

(7/4)3(3/14)4 · f3
0

tan4(π/7) · ξ4
„

ρU2
tip

E′

«3

· k
#1/7

= 0.489E′

„

ρU2
tip

E′

«3/7

k1/7. (14)

Note that A here corresponds to A′ cos(π/7) where A′ is in-
troduced in Appendix B. Stresses within the elastic medium
σxx, σyx and σyy can similarly be expressed in polar coor-
dinates (r, θ) around the crack tip, for example, with

σyy = −P + r−1/7AFyy(θ). (15)

Full expressions for all stresses are given in Appendix B.
This solution, which is obtained by seeking an appropri-
ate analytic function representation of the Muskhelishvili
[1953] potentials or, equivalently, by assuming a Williams
[1952] power-law stress field near the crack tip, is an exact
steady-state solution of the governing equations of elastic-
ity and fluid flow for a semi-infinite crack, and it represents
the leading-order near crack-tip singularity part of the full
solution in other cases. However, it meets no appropriate
boundary conditions away from the crack tip or at the glacier
surface.

We can, nevertheless, follow Desroches et al. [1994] and
use that solution as a basis of an approximate analysis for
a finite crack of length 2L (see Figure 1). That involves
assuming that Equation (13), with R = L− |x|, holds over
all of 0 ≤ |x| ≤ L, and then by choosing P so that the
stress intensity factor due to ∆p(x) is zero (otherwise, the
asymptotically correct form of the crack opening profile as
in Equation (12) would be violated). To accomplish that,
we set

Z L

0

∆p(x)dx√
L2 − x2

= 0, (16)

which gives P = 1.36934AL−1/7 . Writing this approxima-
tion in terms of the inlet excess pressure ∆pin ≡ ∆p(0)
(instead of as a function of Utip) then yields

∆p(x) = ∆pin + 2.7075∆pin

"

1 −
„

L

L− x

«1/7
#

. (17)

This approximation is consistent with the neglect of fracture
energy (see Figure 2), but ignores the presence of the free
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surface at the top of the glacier (i.e. it assumes L≪ H). Al-
though not completely appropriate, we will use the solution
for the entire range of L, including when L > H .

With Equation (17) describing the pressure along the
crack face, then Equation (12) gives

w(x) =
2.7075

δ
L

∆pin

E′

„

L− x

L

«6/7

= 6.0843L
∆pin

E′

„

L− x

L

«6/7

, (18)

for 0 < x < L, where

δ ≡ 3

14 tan(π/7)
= 0.4450. (19)

Finally, inserting Equations (17) and (18) into Equation (9)
and rearranging gives an expression for Utip in terms of
known (or potentially measurable) quantities

Utip =
2ξ2/32.70757/6

(7f0)1/2δ2/3

r

∆pin

ρ

„

∆pin

E′

«2/3 „

L

k

«1/6

= 7.36

r

∆pin

ρ

„

∆pin

E′

«2/3 „

L

k

«1/6

. (20)

It is of interest to note that if we had used the homogeneous-
medium version of Equation (9) (h = w), the numerical co-
efficient would change from 7.36 to 11.0 and the remainder
of Equation (20) would remain unchanged. (One can also
note that the crack-tip asymptotic solution is applicable in
the near-tip region of a penny-shaped crack (e.g. Savitski
and Detournay [2002]) so that Equation (20) may apply ap-
proximately in this case as well.)

2.4. Scaling Analysis

The result of Equation (20) can perhaps be more easily
understood through a simple scaling analysis. In this scal-
ing analysis, we let L = L0L̂, w(x) = w0ŵ, ∆p(x) = ∆p0p̂,
and U = U0Û , where hatted variables are non-dimensional
and variables with a subscript zero are characteristic scales
for the respective original variables. Inserting these expres-
sions into Equation (7) gives w0/L0 = ∆p0/E

′. Similarly,

Equation (9) gives ∆p0/L0 = ρU2
0 k

1/3/w
4/3

0 . Solving for the
velocity scale U0 then yields

U0 =

r

∆p0

ρ

„

∆p0

E′

«2/3 „

L0

k

«1/6

. (21)

If no physics other than that of Equations (7), (9) and (10)
enters the problem, then the only reasonable pressure scale
is the excess inlet pressure, i.e. ∆p0 = ∆pin, and if L≪ H
then the instantaneous crack half-length L must be the rel-
evant scale for L0. That is, given a pressure scale ∆pin

and a single length scale L, the scaling of Equation (20)
is completely determined by dimensional analysis, and only
the numerical factor is dependent on the choices made in
Section 2.3. One may note, however, that if the crack has
an additional length scale (e.g. if H ∼ L) then both Equa-
tion (20) and Equation (21) can have an added dependence
on a function of L/H .

2.5. Self-Similar Analysis

Finally, following an approach similar to those of Spence
and Sharp [1985] and Adachi and Detournay [2002], we nu-
merically find an exact self-similar solution, also for the case
in which L ≪ H . After scaling the equations as in Sec-
tion 2.4, we look for a non-dimensionalized self-similar solu-
tion of the form

L(t) = L0t̂
α/α, (22a)

w(x, t) = w0t̂
βŵ(x̂)/β, (22b)

∆p(x, t) = ∆p0p̂(x̂), (22c)

U(x, t) = φU0 t̂
γÛ(x̂). (22d)

It should be observed that here L0 can be chosen arbi-
trarily (in that it will be seen to cancel from all final
expressions). Once L0 is chosen and the correspondence
∆p0 = ∆pin is made, then w0 and U0 are determined by
these choices, but U(x, t) has an extra condition to satisfy,
U(L(t), t) = dL(t)/dt, which is met by proper choice of φ.
Here, t̂ ≡ φU0t/L0 is a non-dimensional time, x̂ ≡ x/L(t)
is a non-dimensional position, and α, β, γ and φ are nu-
merical constants. In this self-similar solution, it is assumed
that ∆pin ≡ ∆p(0, t) is constant so that Equation (22c)
does not have any explicit time dependence. Substituting
these expressions into Equations (7), (9) and (10), we find
that the time dependence can only be satisfied with α = 6/5,
β = 6/5, γ = 1/5 (but φ is still to be determined). We there-
fore find that in this self-similar solution L(t) and w(x, t)
grow slightly faster than linearly with time. We are also left
with 3 non-dimensional ordinary differential/integral equa-
tions for the self-similar displacement profile ŵ(x̂), pressure
profile p̂(x̂) and velocity profile Û(x̂). These 3 expressions
are

p̂(x̂) =
1

4π

Z

1

−1

dŵ(ŝ)

dŝ

dŝ

x̂− ŝ
, (23)

−ŵ10/3 dp̂

dx̂
=

(6/5)1/3f0
4ξ4/3

φ2(Ûŵ)2, (24)

and
d(Ûŵ)

dx̂
=
d(x̂ŵ)

dx̂
− 2ŵ. (25)

Similarly translating boundary conditions gives ŵ(1) = 0,
p̂(0) = 1, and Û(1) = 1. Integrating Equation (25) from x̂
to 1 and substituting into Equation (24) yields

−ŵ10/3 dp̂

dx̂
=

(6/5)1/3f0
4ξ4/3

φ2

„

x̂ŵ + 2

Z 1

x̂

ŵ(ŝ)dŝ

«2

. (26)

It now only remains to numerically solve Equations (23)
and (26) subject to ŵ(1) = 0 and p̂(0) = 1. To accomplish
this, we follow an approach like that of Adachi and Detour-
nay [2002] and take the ŵ and p̂ profiles to be given as series,
the first term of which solves the crack-tip asymptotic (e.g.
consistent with Equations (12-13)) and the rest of the terms
which do not contribute a stress intensity factor. That is,
we take

ŵ = D

»

1

δ

„

1 − x̂2

2

«6/7

+ A1w1(x̂)

+A2w2(x̂) +A3w3(x̂) + . . .

–

(27)

and

p̂ = D

»

F (x̂) +A1(c1 − |x̂|)

+A2(c2 − x̂2) +A3(c3 − |x̂|3) + . . .

–

. (28)

Here, ck are constants chosen to remove any contribution
to the stress intensity factor (i.e. consistent with negligible
fracture resistance) from each of the ck−|x̂|k terms and thus
satisfy

Z 1

0

(ck − |x̂|k)dx̂√
1 − x̂2

= 0 or ck =
2

π

Z π/2

0

sink ϕdϕ, (29)
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where the substitution x̂ = sinϕ was made. F (x̂) and the
wk are chosen so that each term of the ŵ and p̂ expressions
pairwise satisfy Equation (23), i.e.,

F (x̂) =
1

4π

Z 1

−1

1

δ

d

dŝ

„

1 − ŝ2

2

«6/7
dŝ

x̂− ŝ

= − 3

7 · 26/7πδ

Z π/2

−π/2

sinϕ cos5/7 ϕdϕ

x̂− sinϕ
(30)

and

ck − |x̂|k =
1

4π

Z

1

−1

dwk(ŝ)

dŝ

dŝ

x̂− ŝ
, (31)

where Equation (31) can be inverted to solve for wk using the
Muskhelishvili [1953] approach. This results in non-singular
dwk/dx̂ at |x̂| = 1, consistent with choosing wk(±1) = 0,
provided that the ck are chosen according to Equation (29).
The result, as simplified by an expression from Adachi and
Detournay [2002], is

wk(sinϕ)

=
4

π

Z π/2

0

(ck − sink θ) ln
˛

˛

˛

cosϕ+ cos θ

cosϕ− cos θ

˛

˛

˛
cos θdθ. (32)

F (x̂) and the wk(x̂) are plotted in Figures 3 and 4, respec-
tively. Values of wk(0) and averages of wk(x̂) over the crack
are tabulated in Table 1.
D and the Ak are then constants to be determined so that

the remaining Equation (26) is satisfied. Note that δ is in-
serted in Equation (27) so that F (x̂)·[(1−x̂2)/2]1/7 → −1 as
x̂ → ±1. Equation (26) can be satisfied by choosing φ and
the Ak coefficients appropriately, and the boundary condi-
tion p̂(0) = 1 can be satisfied by choosing D appropriately.
To determine φ, we substitute Equations (27-28) into Equa-
tion (26) and take the limit as x̂→ 1. The resulting limit is
independent of the Ak and gives

(6/5)1/6φ =
2ξ2/3D7/6

(7f0)1/2 · δ2/3
. (33)

Note that (6/5)1/6φ is the numerical coefficient in Equa-
tion (22d) analogous to the 7.36 coefficient of Equation (20),
and unsurprisingly has the same functional dependence on
f0, ξ, and δ. To determine the Ak, we minimize the normal-
ized squared error between the left-hand-side (LHS) and
right-hand-size (RHS) of Equation (26). That is, we mini-
mize

ǫm ≡

P

i

ˆ

RHS(x̂i) − LHS(x̂i)
˜2

ˆ
P

i

LHS(x̂i)
˜2

(34)

over equally spaced points x̂i between 0 and 1. We find
that using only 5 terms in the series (including up to the
A4 term) gives an adequate minimization of ǫm, as shown
in Figure 5a. (See also Figure 5b for the analogous com-
parison for the steady-state solution.) As in Spence and
Sharp [1985], the resulting values of Ak are relatively insen-
sitive to the exact choice of misfit functional ǫm. The values
obtained for D, Ak and ck are given in Table 2, and the re-
sulting profiles for ŵ and p̂ are shown in Figure 6 compared
to the profiles for the approximate solution of Section 2.3.
The Û profile is shown in Figure 7. This value of D results
in

(6/5)1/6φ = 5.14, (35)

a 30% reduction from the 7.36 coefficient of Equation (20).
One can explicitly find L(t) by solving Equation (22a) in

terms of all the now known quantities to obtain

L(t) =
5φ6/5U

6/5

0

6L
1/5

0

t6/5

=
5

6
φ6/5

„

∆pin

ρ

«3/5 „

∆pin

E′

«4/5
t6/5

k1/5
, (36)

so that

Utip ≡ dL

dt
= U(L(t), t) = (6/5)1/6φU0

„

L(t)

L0

«1/6

= (6/5)1/6φ

r

∆pin

ρ

„

∆pin

E′

«2/3 „

L(t)

k

«1/6

, (37)

and

w(x, t) = L(t)
∆pin

E′
ŵ(x̂)

=
1.991

δ
L(t)

∆pin

E′

"

„

L(t)2 − x2

2L(t)2

«6/7

+ δA1w1(x̂)

+δA2w2(x̂) + δA3w3(x̂) + · · ·
#

. (38)

For later reference, ŵ(0) = 2.816 and the average value of ŵ
is 1.859 so that the maximum actual crack opening is given
by h(0) = 1.549L(t)∆pin/E

′ and the average value of h is
given by

havg = 1.022L(t)∆pin/E
′. (39)

3. Understanding Glacial Crack
Propagation

To apply the results of the previous section to crack prop-
agation at the bed of a glacier, we must estimate the param-
eters that enter Equation (20) or (37). Here, to make direct
contact with the observations of Das et al. [2008] of GPS
displacements associated with the drainage of a Greenland
meltwater lake, we take the margin of the Greenland Ice
Sheet as the region of interest. Estimates of the Young’s
modulus of glacial ice varies substantially, with a range of
0.9 − 10 GPa [Vaughan, 1995]. We choose, as represen-
tative, laboratory values of Young’s modulus at −5◦C of
E = 6.2 GPa [Jellinek and Brill , 1956] and Poisson’s ra-
tio ν = 0.3 [Vaughan, 1995], giving E′ = 6.8 GPa. Fluid
density is taken as ρ = 1000 kg/m3 and ice density is
taken as ρice = 910 kg/m3. The study area of Das et al.
[2008] had 980 m-thick ice (H = 0.98 km), so the pres-
sure at the base of the ice sheet in excess of the ice pres-
sure due to a column of standing water there would be
∆pstatic = (ρ − ρice)gHw ≈ 0.87 MPa, where the height
of water, Hw, is taken as equal to the ice thickness, H ,
and g ≈ 9.81 m/s2. The actual excess pressure at the in-
let is reduced from this value due to frictional losses from
the surface to the bed, but as a high-end first approxima-
tion we take ∆pin = ∆pstatic = 0.87 MPa. The channel
roughness k is the least constrained of all parameters but
is likely a healthy but small fraction of the channel opening
(with range perhaps being 0.005 m < k < 0.2 m). Luckily
the dependence of Utip on k is quite weak (power law with
an exponent of one sixth) so we take a reasonable estimate
of k ≈ 1 cm, which is consistent with a Manning rough-
ness of n ≈ 0.018 s m−1/3 (a lower value than is used by
many authors for subglacial channels [Roberts, 2005; Hooke,
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2005]). Taking L = H ≈ 1.0 km and substituting these val-
ues into Equation (37) then yields a (maximum) estimate
of Utip = 2.6 m/s and average opening havg = 13 cm. The
dependence on L is also weak so that with L = 0.2 km, we
would have Utip = 2.0 m/s, although havg scales in propor-
tion to L so that havg = 2.6 cm.

As discussed earlier, our analysis assumes high Reynolds
number, ignores any channelized or sloping bed topogra-
phy, neglects fracture energy and assumes a lubrication ap-
proximation with neglect of the acceleration term of the full
Navier-Stokes equation. We verify that these approxima-
tions are reasonable for the Greenland basal crack situation
considered here. Taking U & 2 m/s, h & 0.1 m (which apply
for crack lengths of interest L & 1 km), ρ ≈ 103 kg/m3, and
viscosity of µ ≈ 1.8 · 10−3 Pa s, then ℜ & 105, which puts
it in the fully turbulent regime. The hydraulic head gradi-
ent is given by S ≈ ∆pin/(ρgL) ≈ 0.1 so that bed slopes
≪ 5◦ can be safely ignored. Taking ice fracture tough-
ness of KIc ≈ 0.16 MPa m1/2 [Rist et al., 1999], which
is slightly on the high side of estimates by Ashby [1989]
and Fischer et al. [1995], and surely higher than for the
ice-rock interface, we can compare the total energy lost in
the pressure gradient (per unit surface area of the crack),
eloss ≡ Eloss/Area ≈ ∆pinh & 0.9 · 105 J/m2, with the
fracture energy K2

Ic/E ≈ 4.1 J/m2. Since the pressure gra-
dient energy loss is much greater than the fracture energy
(except at the very earliest stages of crack growth, when
h . 10−5 m or equivalently L . 0.1 m), it is reasonable
to neglect the fracture energy. This inequality is analogous
to the one suggested by Savitski and Detournay [2002] and
Bunger and Detournay [2008] for Newtonian viscous flows;
unlike in their analysis, which is for constant inflow rate, our
constant ∆pin solution has negligible fracture energy dur-
ing the later stages of crack growth (and is only toughness
dominated at the very earliest stages). Another appropri-
ate view is to consider the ratio KIc/(∆pin

√
πL), where the

denominator is a nominal KI that would result from uni-
form pressurization. This ratio is ≈ 0.1 when L = 1 m,
and is . 0.01 for L > 100 m. Finally, ρU2 . 104 Pa as
compared with ∆pin ≈ 8 · 105 Pa so that the acceleration
term of the Navier-Stokes equation ρ(∂U/∂t+U∂U/∂x), of
order ρU2/L, can be neglected compared with the pressure
gradient term (∂p/∂x), of order ∆pin/L.

3.1. Approximations for Comparison with

Observations

To compare against observations, it is useful to calcu-
late the total volume of water in the crack, the net flow rate
into the basal crack and the expected surface displacements.
Since the results of Section 2 are for a 2D plane-strain frac-
ture in a body without a free surface, whereas the geometry
of the observations of Das et al. [2008] clearly has three-
dimensional structure and a free surface close to the crack,
it is not obvious how the previous results can be utilized.
Overcoming all of these difficulties is beyond the scope of
this paper, but in this section we make some approxima-
tions that allow for a crude estimate of the desired quan-
tities. In Section 3.2, we discuss possible improvements to
these approximations. However, even with these improved
approximations, there are difficulties that cannot yet be ac-
counted for, and the results of this paper beyond Section 2
should only be taken as rough preliminary estimates.

We first discuss how to calculate volumes, flow rates, and
surface displacements within our turbulent self-similar solu-
tion, which strictly applies only in the range L ≪ H . In
order to allow these results to be generalized from 2D plane
strain to a 3D geometry, and later to arbitrary L/H in Sec-
tion 3.2), we find it useful to compare our self-similar solu-
tion to the (static) solution for a crack opened by a uniform

pressure, taken to be ∆pin, over the entire crack face. For
this uniform pressure plane strain crack of (instantaneous)
length 2L in a homogeneous medium, the crack opening pro-
file is given by

wU (x) =
4∆pinL

E′

p

1 − x̂2, (40)

where, as before, x̂ ≡ x/L (see e.g. Tada et al. [2000]). Ap-
proximately accounting for the bimaterial case, as before,
the average opening is then given (as a function of L) by

h̄U = ξw̄U =
ξ

2L

Z L

−L

wU (x)dx =
ξπ∆pinL

E′
. (41)

Now, we show that both the volume and flow rate can
be expressed in terms of h̄U and L(t) (which is known from
the self-similar solution, Equation (36)). Comparing the
self-similar openings of Equations (38) and (39) with the
uniform pressure openings of Equation (40) and (41), we
observe that we can write

h(x) =
h̄U

π
ŵ(x̂), (42)

and
havg = C1h̄U (43)

where C1 is given by C1 = 1.859/π = 0.592. We can then
express the 2D crack volume V2D (i.e., area of crack opening
in the x− z plane) as

V2D(t) = 2havg(t) · L(t) = 2C1h̄U (t)L(t), (44)

where h̄U is given as a function of L in Equation (41). Sim-
ilarly, the 2D flow rate Q2D is given by

Q2D =
dV2D

dt
= 2C1

d(h̄UL)

dL
· dL
dt

= 2C1

d(h̄UL)

dL
·Utip. (45)

Without modification, the h̄U of Equation (41) substi-
tuted into Equation (45) gives d(h̄UL)/dL = 2h̄U and thus
Q2D = 4h̄UUtip. Furthermore, the self-similar solution for
Utip (Equation (37)) can be rewritten in terms of h̄U by
substituting ∆pin/E

′ = h̄U/(ξπL) such that

Utip = C2

r

∆pin

ρ

„

h̄U

L

«2/3 „

L

k

«1/6

, (46)

with

C2 =
(6/5)1/6φ

(ξπ)2/3
=

2D7/6

(7f0)1/2(πδ)2/3
≈ 3.571. (47)

Thus, for a given L, we can calculate h̄U through Equa-
tion (41), and then calculate V2D through Equation (44)
and Q2D through Equation (45).

Before calculating surface displacements, we note that the
vertical crack (moulin) system connecting the surface to the
basal crack likely contributes to both the volume of water
stored as well as surface displacements. To estimate these
quantities for the vertical connecting crack, we approximate
this additional crack as being a plane stress center crack of
length 2a in a homogeneous body, opened by a uniform pres-
sure equal to the depth-averaged pressure in excess of hy-
drostatic ice pressure (see Figure 8). This approximation is
only valid if stresses in the solid (ice) are close to hydrostatic
and is not accurate if the region has high extensional or com-
pressional horizontal stresses. Furthermore, this plane stress
crack will only be opened significantly if basal shear stresses
are low, suggesting that a < L (where we anticipate the 3D
geometry of the basal crack as being close to circular, as
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will be suggested below). Finally, the depth-averaged treat-
ment of the vertical crack is clearly a crude approximation
to the true situation in which excess pressure and opening
varies with depth, but may be a reasonable first approxima-
tion. With these caveats, this elliptically shaped connecting
crack then has volume given by

Vc = πau0Hw =
2π∆pavga

2Hw

E
(48)

where 2u0 is the crack center opening, and ∆pavg ≈ ∆pin/2
is taken as the depth-averaged pressure in excess of the local
hydrostatic pressure. Contribution to flow rate is calculated,
as above, to be

Qc =
dVc

dt
=
dVc

da
· da
dt

=
4π∆pavgaHw

E
· da
dt
. (49)

We now calculate model vertical and horizontal surface
displacements based on the basal plane strain self-similar
crack solution and the approximate plane stress connecting
crack. First, the vertical surface displacements (uplift) due
to both cracks are easily calculated using the reciprocal the-
orem and the Boussinesq-Flamant line-source solution (see
e.g. Timoshenko and Goodier [1987]). The result, e.g. as
in the Appendix of Walsh and Rice [1979], is that the ver-
tical surface uplift hs in a homogeneous half-space due to
a vertical opening displacement w∗ = w∗(x) of a horizontal
surface is

hs(x0, z0) =

Z

surf

σ∗

zz(x− x0, z − z0)w
∗(x)dx, (50)

where σ∗
zz is given by

σ∗

zz =
2

π
· (z − z0)

3

[(x− x0)2 + (z − z0)2]2
, (51)

and (x0,z0) is the uplift location. Applying this to the basal
crack, and utilizing the bimaterial approximation for the
opening displacement of the crack, w∗ = h(x) ≈ w(x)/2,
but ignoring bimaterial effects on Equation (51), then

hs(x0) ≈
Z L

−L

1

π
· H3w(x)

[(x− x0)2 +H2]2
dx, (52)

where variables are as before. Putting this into non-
dimensional form and substituting Equation (42) for ξw(x),
we obtain

hs(x0) ≈
H3h̄U

ξπ2L3

Z

1

−1

ŵ(x̂)dx̂

[(x̂− x̂0)2 + Ĥ2]2
, (53)

where Ĥ ≡ H/L(t), x̂0 = x0/L(t), ŵ(x̂) is the scaled self-
similar opening given in Equation (27), and other variables
are as before. Thus, given a surface location x0 (relative to
the crack inlet at x = 0 and in the plane of crack growth)
and crack length L(t), Equation (53) gives hs in terms of
our self-similar solution.

We can similarly account for the vertical displacement
due to the horizontal opening of the vertical crack, and as
shown below find that this contribution is negligible. Again
as in Walsh and Rice [1979], the contribution due to the
vertical crack’s horizontal displacement u∗ is

hV
s =

Z

surf

σ∗

xxu
∗dz, (54)

where σ∗
xx is given for a homogeneous halfspace by

σ∗

xx =
2

π
· (x− x0)

2(z − z0)

[(x− x0)2 + (z − z0)2]2
. (55)

Applying this to the vertical crack then

hV
s (x0) ≈

Z H

0

2x2
0zu

∗(z)dz

π(x2
0 + z2)2

. (56)

Noting that for the observations of Das et al. [2008], x0/H ≈
1.7 then this contribution to hs is bounded by

hV
s (x0) ≤

Z 1

0

2 · 1.72 · ẑdẑ
π(1.72 + ẑ2)2

·max[u∗] = 0.08 max[u∗]. (57)

Since max[u∗] is expected to be of similar (or smaller) mag-
nitude to w∗, the contribution hV

s is thus expected to be
an order of magnitude less than that due to the basal crack
opening, and we therefore neglect this contribution.

For horizontal surface displacements, we similarly expect
an order of magnitude smaller contribution from vertical
opening of the basal crack compared to horizontal opening of
the (vertical) connecting crack, and hence ignore this former
contribution. The horizontal displacement at a distance x0

perpendicular to the center of the plane stress center crack
(see Figure 8) can be obtained by integrating the results of
Tada et al. [2000] as follows. Tada et al. [2000] provides the
displacement at x0 due to a pair of point forces of amplitude
P1 to be

uP1(x0) =
4P1

πE

»

tanh−1

s

a2 − b2

a2 + x2
0

+
1 + ν

2
· x2

0

b2 + x2
0

s

a2 − b2

a2 + x2
0

–

, (58)

where b is the distance from the center of the crack of the
pair of forces. Integrating this expression over the crack
face (0 ≤ b ≤ a) gives the corresponding expression, due to
a constant pressure ∆pavg along the crack, of

us(x0) =
2∆pavga

E

»

p

1 + (x0/a)2 − (x0/a)

+
1 + ν

2
(x0/a)

“

1 − x0/a
p

1 + (x0/a)2

”

–

, (59)

which we take as an approximation to the horizontal surface
displacement.

Since the previous expressions are for an unrealistic 2D
plane strain geometry (for example, true volume is not eas-
ily defined for the basal crack), it is useful to generalize this
to a 3D geometry. We do this in the following, somewhat
ad-hoc manner. First, we note that the 3D crack opening
can be expected to be close to circular since a shorter crack
length in a particular direction would be more unstable to
growth under the same loading conditions. Thus, for this 3D
extension, we first consider a (circular) penny-shaped crack
of radius L in a homogeneous medium, loaded with uniform
pressure ∆pin and clamped on the edges. For this uniform
loading case, Sneddon [1946] gives

w3D
U (r) =

8∆pinL

πE′

p

1 − r̂2, (60)

where r̂ ≡ r/L and r is distance from the center of the crack.
Approximately accounting for the bimaterial case, as before,
the average opening is then

h̄3D
U = ξw̄3D

U =
ξ

πL2

Z L

0

2πrw3D
U (r)dr =

16ξ∆pinL

3πE′
. (61)
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Comparing the penny-shaped openings of Equation (60)
and Equation (61) with the 2D plane-strain openings of
Equation (40) with Equation (41), we observe that the two
constant pressure loading cases have opening displacements
with identical functional forms and have average openings
that differ by a factor of 16/(3π2) ≈ 0.540. Thus, a plau-
sible ad-hoc procedure that approximately accounts for the
3D penny-shaped geometry in the turbulent flow case is to
utilize the same plane strain displacement profile ŵ(x̂) on
the penny-shaped crack ŵ(r̂) = ŵ(x̂) as well as utilize the
same scaling factors C1 and C2, but replace all instances of
h̄U by h̄3D

U (i.e. in Equations (42), (43), (46), and (53)). In
this way, we can now calculate a true basal crack volume,

Vb = C1πL
2h̄3D

U , (62)

a corresponding flow rate,

Qb =
dVb

dt
=
dVb

dL
Utip, (63)

and appropriately scale the vertical displacement (Equa-
tion (53)) to account for the added stiffness of the 3D ge-
ometry. (We note that for this circular crack geometry, the
2D solution of Equation (53) is an upper bound to the true
uplift and is only a good approximation when x0 . L.) The
horizontal displacement of Equation (59) is unaffected by
this procedure. We note that future work is necessary to
check the validity of this scaling procedure since, for ex-
ample, the constants C1 and C2 for a penny-shaped crack
could easily be different than those chosen based on the 2D
plane-strain solution. We also note that (3D) volumes can
be estimated for the plane strain solution by replacing the
h̄3D

U of Equation (62) with h̄U .

3.2. Possible Improvements on the Approximations

As previously mentioned, the results presented are
strictly only applicable when L ≪ H and when the loss of
pressure due to flow from the surface to the base is a small
fraction of the pressure in excess of the hydrostatic value.
Here, we first find that both of these approximations are of
concern. Following these two estimates, we discuss possible
approaches to addressing the two problems.

First, we can make an estimate of how large L becomes
by equating the volume of water taken up by the basal crack
plus vertical crack (Vb +Vc) with the initial volume of water
in the surface lake (V0). The initial lake volume was ob-
served to be V0 = 4.4 · 107 m3 [Das et al., 2008], and we
calculate the sum of the crack volumes to be

Vb(L) + Vc(a) = π
∆pin

E
L3

„

16ξC1(1 − ν2)

3π
+
a2Hw

L3

«

.(64)

Choosing a = L as a plausible upper bound on Vc (as dis-
cussed in the next paragraph, which results in a lower bound
on L) predicts that L & 5.25 km is reached and thus suggests
that the approximation L≪ H should be revisited.

Second, we estimate the pressure loss from turbulent flow
en route to the bed by applying the turbulent Manning-
Strickler scaling of Equation (6) with each term estimated
for flow through the vertical crack. As in our earlier
plane stress calculation for this vertical crack, we assume
a depth-averaged value of excess pressure ∆pin/2 open-
ing the crack, giving a cross-sectionally averaged opening
of 2uavg ≡ πus(0)/2 ≈ π∆pina/2E. We expect that a
lies in the range 0.1 . a/L < 1 since significant opening
will only occur over the region with minimal basal shear
stress to counteract the excess pressure (i.e. a < L) but
for a ≪ L the excess pressure should encourage a to grow
(i.e. a & 0.1L). Taking L ≈ 3 km and a/L ≈ 0.8 as plausi-
bly representative, then 2uavg ≈ 0.48 m. The average fluid
velocity through this vertical crack Uvert can be estimated

by equating the volumetric flow rate in the vertical crack
πaus(0)Uvert = 4auavgUvert to the volumetric flow rate into
the basal crack dVb/dt ≡ dVb/dL · Utip (where Vb is given
by Equation (62)). Using the procedures of Section 3.1, we
estimate dVb/dt using h̄3D

U , which gives Utip ≈ 1.4 m/s and
therefore dVb/dt ≈ 8.5 · 103 m3/s. Using these values, then
Uvert ≈ 3.7 m/s and the loss of pressure in excess of hydro-
static through the connecting conduit would be

∆ploss =
0.0357ρU2

vertk
1/3H

(2uavg)4/3
≈ 0.58 MPa, (65)

which is a large fraction (67%) of the maximum excess pres-
sure of 0.87 MPa, and is a higher fraction when L is smaller.
Any sinuosity in the path from the surface to the base, or a
smaller value of a/L, would also increase this pressure head
loss. Thus, both the L≪ H approximation and the approx-
imation of no loss of excess pressure at the basal inlet are of
concern.

In this first attempt to predict observed measurements,
we take two parallel approaches to addressing the problem
of not satisfying L ≪ H . In the first, we simply apply
our previous model results in all regimes of L/H , despite
L growing significantly larger than H . This is done in the
hope that the weak dependence of Equation (37) on L lends
some credibility to using the L ≪ H solution beyond its
known range of usability. In a second approach, we attempt
to approximately account for the range beyond L ≪ H by
matching our solution with a plate theory (beam theory)
scaling applicable in the limit L ≫ H . For this latter ap-
proach, we again find it convenient to compare with the con-
stant loading case, this time of uniform pressure ∆pin over
a penny-shaped plate of radius L clamped on the edges. For
this case, Timoshenko and Woinowsky-Krieger [1959] gives

hP
U (r) =

3∆pinL
4

16E′H3
(1 − r̂2)2, (66)

where, as before, r̂ = r/L. The average opening is then

h̄P
U =

1

16
· ∆pinL

E′
· L

3

H3
. (67)

Comparing Equation (67) for h̄P
U , which applies when L ≫

H , with Equation (61) for h̄3D
U , which applies when L≪ H ,

we suggest a summed version of h̄U (the average opening
under uniform pressure) defined by

h̄S
U ≡ h̄3D

U + h̄P
U =

16ξ∆pinL

3πE′

»

1 +
3π

256ξ
· L

3

H3

–

. (68)

This summed approximation asymptotically satisfies both
solutions in the appropriate limits and defines a smooth
transition between them. The validity of this ‘linear sum’
transition is unknown and unfortunately untestable within
the scope of the current work, but we hope to address the
validity of this approximation in future work. If the transi-
tion is strongly non-linear, with transition occurring at much
larger L/H than in Equation (68), the first approach to ad-
dressing this problem would be more appropriate. However,
with this definition of h̄S

U , we can invoke a similar proce-
dure as was suggested in Section 3.1 and simply replace h̄U

with h̄S
U in all expressions (Equations (42), (43), (46), (53),

and (62)), and otherwise use the same self-similar solution.
We note that the form of the displacement profile is not ex-
pected to stay the same but, as we have no other plausible
solution to rely on, we use the same displacement profile
and assume that the primary effect of including plate the-
ory is the scaling accounted for by h̄S

U . It can also be noted
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that the eventual strong dependence of h̄S
U on L (to the 4th

power) implies large vertical displacements for moderately
large values of L in this model relative to the crack mod-
els (for the same pressure distribution). See Figure 9 for a
comparison of vertical displacements calculated for the 3 dif-
ferent choices h̄U , h̄3D

U and h̄S
U (with numerical values chosen

as in Section 3).
To account for pressure loss in the connecting conduit,

we no longer set ∆pin = ∆pstatic but instead let ∆pin ≡
χ∆pstatic, where 0 ≤ χ ≤ 1. We then solve for the unknowns
χ and Uvert (average fluid velocity in the vertical crack) by
equating the excess pressures at the juncture between the
vertical crack and the basal crack inlet, and similarly equat-
ing the volumetric flow rates there. We use the same turbu-
lent scaling as was used in Equation (65), noting again that
this depth-averaged, lumped-parameter treatment of flow in
the vertical crack is a crude approximation to the true situ-
ation. With this caveat, the first equality is satisfied by

(1 − χ)∆pstatic =
0.0357ρU2

vertk
1/3H

(πaχ∆pstatic/2E)4/3
, (69)

where χ∆pstatic has replaced ∆pin. The second (flow rate)
equality is satisfied (as also discussed prior to Equation (65))
by setting

4auavgUvert =
πa2∆pstaticUvert · χ

E

=
dVb

dt
=
dVb

dL
Utip, (70)

where Utip is given by Equation (46) and dVb/dL is calcu-
lated as

dVb

dL
= C1π

d(L2h̄U )

dL
. (71)

The h̄U in Equations (46), (53) and (71) is taken to be
one of the 3 choices h̄U , h̄3D

U or h̄S
U , with results for these

3 choices henceforth labeled ‘Model I’ (using h̄U ), ‘Model
II’ (using h̄3D

U ) and ‘Model III’ (using h̄S
U ), as described in

detail in the following 3 paragraphs.
‘Model I’: Model I uses average opening h̄U of Equa-

tion (41) of the plane strain solution for crack length 2L,
and adopts the same average over a lateral distance in the
y direction that scales with L such that the basal crack vol-
ume is given by Equation (62) with h̄U substituted for h̄3D

U .
This model neglects that L/H may be of order 1 or larger.

‘Model II’: Model II reinterprets the plane strain crack
opening solution for a penny-shaped crack of radius L with
average opening h̄3D

U of Equation (61), and basal crack vol-
ume given by Equation (62). This model also neglects that
L/H may be of order 1 or larger.

‘Model III’: Model III is the same as ‘Model II’ except
that it uses an approximate implementation of elastic plate
bending theory to account for L/H of order 1 or larger. Av-
erage opening is estimated by h̄S

U of Equation (68), and basal
crack volume is given by Equation (62) with h̄S

U substituted
for h̄3D

U .
Note that since all 3 models combine a 2D approximation

for surface displacements (Equation (53)) with a 3D approx-
imation for volumes (Equation (62)), all are hybrid models
that should not be expected to precisely agree with any re-
alistic situation. Proceeding nonetheless and using ‘Model
II’ (with h̄3D

U ) in Equation (46), for example, gives

Utip = C2

r

∆pstatic

ρ

„

16ξ∆pstatic

3πE′

«2/3 „

L

k

«1/6

χ7/6 (72)

(where the exponent of 7/6 on χ comes from 1/2 + 2/3).
Similarly, using ‘Model II’ in Equation (71) gives

dVb

dL
=

16C1ξ∆pstatic

3E′

d(χL3)

dL

=
16C1ξ∆pstatic

E′
· χL2(1 +

L

3χ

dχ

dL
), (73)

where it will be shown that the dχ/dL term can be safely
ignored compared with the other term (this is also true for
‘Model I’, but not for ‘Model III’). Using these expressions
in Equation (70), and solving for Uvert gives

Uvert = 4.83

r

∆pstatic

ρ

„

∆pstatic

E

«2/3 „

L

k

«1/6 „

L

a

«2

·χ7/6

(74)
Substituting Uvert into Equation (69), and ignoring the
dχ/dL term, allows us to solve algebraically for χ in terms
of known quantities (and given L and a). Using values from
Section 3, then

χ =
(a/L)16/3 · (L/H)

0.456 + (a/L)16/3 · (L/H)
. (75)

Explicitly calculating dχ/dL with this solution, we find that
(L/3χ)dχ/dL ≤ 1/3 regardless of L, and thus small com-
pared to 1, which validates ignoring that contribution in
Equation (73). If we had used ‘Model I’ (with h̄U ) instead
of ‘Model II’, Equation (75) would have a numerical factor
of 3.55 instead of 0.456, while not changing the rest of the
expression. If we instead use ‘Model III’ (with h̄S

U ) instead
of ‘Model II’ to calculate χ, then we can no longer ignore the
dχ/dL term and instead must numerically solve the differ-
ential equation to find χ(L). The χ for these three cases are
plotted in Figure 10abc for a few different plausible choices
of a/L. For ‘Model III’ (including approximate plate bend-
ing), the strong dependence of Utip on L implies the fast
asymptote of χ → 0 as L grows. This asymptote of χ → 0
results in the rapid decrease in ∆pin → 0 and thus rapid
closing of the vertical crack which, in turn, is what stabi-
lizes the growth rate of the basal crack. One should note
that, in this model, the rapid closing of the vertical crack
is complete since it involves a mathematical crack that can
close completely under zero excess pressure ∆pin, whereas a
realistic rough crack would not have complete closure to flow
even with ∆pin = 0. The behavior of ‘Model III’ therefore
may be unrealistic.

Finally, in the late stages of crack growth, when the sur-
face lake is gone but there remains excess water pressure
driving the basal crack open (with height of liquid water
Hw now below the surface height of the glacier H), we as-
sume that the crack system continues to grow while conserv-
ing the total water volume in the basal crack plus vertical
crack. We now find it convenient to separate the contribu-
tions to pressure loss into a hydrostatic component due to
Hw < H such that ∆phy ≡ χw∆pstatic in hydrostatic equi-
librium, and a fractional dynamic component on top of this
such that ∆pin ≡ χ∆phy ≡ χ · χw∆pstatic. Hw and χw can
easily be related by expressing hydrostatic balance in terms
of Hw, which yields

Hw

H
=
ρice

ρ
+
ρ− ρice

ρ
χw. (76)

As expected, when χw → 1, Hw → H and when χw → 0,
Hw → 0.91H . Since the geometric changes in Hw/H are
small compared to the effects of χw on ∆pin, we continue
to approximate Hw ≈ H when it enters equations geometri-
cally. With this approximation, we then find that χ is still
determined by Equation (75). Maintaining Vb + Vc = V0 in
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‘Model II’ (i.e., using Equation (64) implemented with h̄3D
U )

then determines χ0 ≡ χχw to be

χ0 =
EV0

π∆pstaticL3
· L/H

0.503L/H + (a/L)2
. (77)

Thus, ∆pin/∆pstatic ≡ χ0 is again determined algebraically
as a function of L (and a/L) during the late stages of basal
crack growth.

3.3. Comparison of Model Results with Greenland

Observations

We now compare our model results for crack growth, sur-
face displacements, and corresponding surface-lake water-
level time series with the recent observations of rapid
surface-lake drainage in Greenland by Das et al. [2008]. All
displacements plotted are for the observation site at the sur-
face and roughly 1.7 km removed from the center of the
connecting conduit (x0 = 1.7 km) (see Figure 1).

The surface displacements used are those calculated by
the line-source solution of Equation (53) for the vertical up-
lift (as a function of L) and by the plane stress approxi-
mation of Equation (59) for horizontal displacement (as a
function of a). In Equation (53), we use either h̄U , h̄3D

U

or h̄S
U as discussed in Section 3.2, giving us solutions for

‘Model I’, ‘Model II’, and ‘Model III’ respectively. In Fig-
ures 11 and 12, we plot vertical and horizontal displacements
at x0 = 1.7 km as a function of L (including the effect of
χ) for various choices of a/L. As discussed in Section 3.1,
displacements for L . 1.7 km are overestimated (but are
nearly negligible anyway). The strong (negative power) de-
pendence of χ on L for ‘Model III’ implies very small basal
excess pressures (∆pin = χ∆pstatic) and hence small hori-
zontal displacements (as shown in Figure 12) for large values
of L, and therefore cannot achieve the meter-scale displace-
ments observed [Das et al., 2008]. The very low values of
χ attained also imply very low fluid velocities in the basal
crack, which eventually leave the turbulent regime that this
work is based upon. Thus, ‘Model III’ (which includes plate
corrections) may not be realistic and this should be kept in
mind when interpreting the results for this case. ‘Model III’
may also be unrealistic due to the complete vertical crack
closure discussed in Section 3.2.

The observed horizontal displacements (with a maxi-
mum of about 0.8 m) are approximately 25% smaller than
the observed vertical displacements (with a maximum of
about 1.1 m) [Das et al., 2008], and this general behav-
ior is achieved for a range of plausible a/L in both ‘Model
I’ (h̄U ) and ‘Model II’ (h̄3D

U ) (e.g. compare the displace-
ments of Figure 11 with those of Figure 12). In ‘Model I’,
0.8 . a/L . 1.0 approximately satisfy this condition. In
‘Model II’, 0.5 . a/L . 0.7 approximately satisfy this con-
dition. For ‘Model III’, no range of a/L yields comparable
behavior, but higher values (a/L & 0.8) agree better. For
the results shown below, we choose a/L = 1.0 for ‘Model I’,
a/L = 0.6 for ‘Model II’, and a/L = 1.0 for ‘Model III’. We
note that we may expect a/L to remain roughly constant
throughout crack growth since the size of the basal crack is
the limiting factor on the growth of the vertical connecting
conduit.

In our models, given the basal crack length L at a
given time, we can calculate the basal crack growth rate
dL/dt ≡ Utip from Equation (46), the basal crack input
pressure ∆pin = χ∆pstatic from Equations (75) and (77),
the crack volumes from Equation (64), and the surface dis-
placements from Equations (53) and (59). Using the instan-
taneous dL/dt = Utip to step forward in time (i.e. assum-
ing quasi-static crack growth), we can therefore integrate in
time to obtain L(t) given only knowledge about the initial

lake volume and an initial small crack length L0. If we also
assume a lake geometry, we can additionally calculate the
drop in water level in the surface lake (and vertical crack) by
equating lake water volume loss to the water volume stored
in the crack system (Equation (64)). Thus, for model input,
we take the initial lake volume of V0 = 4.4 · 107 m3, initial
lake area of A0 = 5.6 · 106 m2 [Das et al., 2008], and assume
the lake to have a paraboloid shape. We do not model the
very end of the drainage event, when we expect water in
the basal crack to drain into the subglacial hydraulic sys-
tem and eventually result in zero net displacement. The
decrease of χ0 → 0 at these late times also implies much
lower fluid velocities, which eventually no longer satisfy the
fully turbulent (ℜ & 105) approximation used throughout
this work.

The model results for Models I, II and III are shown in
Figures 13 and 14 as a function of time. Figure 13a shows
the crack length L(t), the total volume in the basal crack
plus vertical crack Vb(L(t))+Vc(a(t)), and the water level in
the lake WL(t). As discussed earlier, the volume is capped
at V0, after which crack growth changes from using the χ of
Equation (75) to that of Equation (77) and is responsible for
the inflection points in L and WL as V0 is reached. When
the lake is empty, WL refers to the remaining water level in
the vertical crack (Hw − H). Note that the quantities are
plotted in different units so as to fit on the same graph. In
Figure 13b is a comparison of the modeled WL of Figure 13a
with the observed WL of Das et al. [2008]. Since the model
starting time is arbitrary, we have adjusted the observation
times so that the water level begins to drop around t = 0. As
shown, ‘Model I’ (with h̄U ) has a similar curvature to the
observed WL but is about 40% too fast, ‘Model II’ (with
h̄3D

U ) is about 20% too fast, and ‘Model III’ (with h̄S
U ) ini-

tially follows ‘Model II’ but then becomes worse as the plate
terms have larger contributions (L & H) (and does not finish
draining the lake in the 8-hr timespan plotted, an unrealis-
tic behavior due to the rapid cutoff of the vertical conduit
as discussed previously). Figure 14a shows the vertical and
horizontal displacements of the same models. The cusps oc-
cur when the volume Vb + Vc reaches V0. In Figure 14b, we
compare the modeled displacements with the observed dis-
placements of Das et al. [2008]. As shown, ‘Model I’ again
has a timescale about 40% too fast and predicts amplitudes
about a factor of 2 too small, ‘Model II’ again is about 20%
too fast and predicts amplitudes slightly worse than ‘Model
I’, and ‘Model III’ does not predict timescales or amplitudes
well. We reiterate that ‘Model III’ may not capture the tran-
sition from L≪ H to L≫ H in a realistic way, and further
work must be done to test the validity of the approximation.

Displacements in the along-flow direction are not modeled
explicitly, but our model predicts complete loss of basal re-
sistance over the basal crack area while the basal crack is in
existence and is thus consistent with the observed increase
in steady flow towards the Greenland coast during the tran-
sient basal crack lifetime. If we take L ≈ 10 km as the
maximum basal crack length, which is achieved long after
the peak displacements occur (see Figures 13 and 14), and
take the initial average basal shear stress to be τb0 ≈ 105 Pa
[Bamber et al., 2001] then the loss of basal shear force would
be approximately 3 · 1013 N. This loss of basal shear force
could plausibly account for the observed factor of 3 increase
in background flow velocities for the day following the ob-
served drainage [Das et al., 2008], though additional mod-
eling would need to be done to verify this claim. Although
also not explicitly modeled, we expect seismicity when strain
rates are high and therefore over the full timescale of basal
crack growth, not just the timescale of initial lake drainage,
which is consistent with the observed seismicity [Das et al.,
2008].

3.4. Complications in Comparison with Greenland

Observations
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In the preceding sections, a very simplified approach was
taken in which we considered the approximate elastic re-
sponse of ice coupled to the turbulent flow of water through a
connecting and basal crack. In this analysis, a large number
of complicating factors were ignored and here we comment
on some of the perhaps more important of these issues.

As discussed above, although we use them outside the
known range of applicability, the self-similar results strictly
apply only when L≪ H . Our attempt at modifying the so-
lution to approximately account for plate theory corrections
when L & H did not successfully predict observations better
than the models without a plate term added. However, since
the true mechanics is more complex than the approximate
corrections suggested, it would be useful to account for this
more properly and hence obtain a solution that is accurate in
all regimes of L/H . As an example of an improvement that
would result is that the stresses from such a solution should
yield larger horizontal surface displacements [Higashida and
Kamada, 1982] (as needed to fit observations). It may be
possible to construct such a solution using the bimaterial
crack approach of Erdogan et al. [1973], Higashida and Ka-
mada [1982] and Hutchinson and Suo [1992] or the matched
asymptotic approach of Bunger and Detournay [2005]. We
leave this important problem for future work.

Perhaps the next most significant simplification is that
of an elastic ice medium. It is well known that glacier
ice displays viscous properties (e.g. Paterson [2002]; Hooke
[2005]) and should be modeled as a viscoelastic material on
timescales close to the Maxwell time (ratio of effective vis-
cosity to elastic stiffness) for glacier ice, which is plausibly
in the hour to few hours range (e.g. Tsai et al. [2008]). The
fact that the full timescale of interest (a few hours) may
be longer than the Maxwell time suggests that the analysis
described here is not completely realistic, and may explain
why our predicted displacements are smaller than observed
(as there would be added viscous strains on top of the elas-
tic strains calculated). This shortcoming of the model is a
serious one that we hope to deal with in future work. Never-
theless, the fact that the Maxwell time is not vastly shorter
than the process timescale and that there is rough agreement
between model and observation suggests that there is merit
to the fully elastic approximation. The elastic approxima-
tion should, in any event, be valid near the moving rupture
front where the time scale of substantial stress changes is
much shorter.

In addition to not accounting for viscous effects, the only
fractures accounted for are those of the vertical connecting
crack and the basal crack. In reality, numerous small frac-
tures might be expected to open and close as the ice deforms,
both due to brittle straining (e.g. Schulson [2001]) and due
to small-scale hydrofracturing (during crack growth). For
example, the positive excess pressures over most of the basal
crack favor small scale hydrofracturing upwards into the
ice, whereas the strongly negative pressure near the crack
tips should encourage the opening of nearby horizontal frac-
tures. The small upwards hydrofractures would be more
likely where the largest extensional stresses are. Both small-
scale hydrofracturing and brittle straining would contribute
to effectively large-scale viscous deformation and would have
associated seismicity. This would be consistent with the ob-
served seismicity [Das et al., 2008] and therefore would be
useful to have explicitly accounted for in future work. More-
over, this work assumes all of the lake water drains into the
two large cracks, without leaking off into any conduits or
other hydraulic network. As commented on previously, this
is not expected to be a good approximation at the end of
drainage. It also may not be a good approximation if there
exist large conduits surrounding the crack system prior to
the rapid drainage, or if there are layers of weak englacial
ice which water could infiltrate.

We also do not account for entrainment of any significant
amounts of till (or ice) fragments in the basal flow channel,

which may have an effect on the form of the fluid resistance,
Equation (1) (see e.g. Roberts [2005]). Using the Shields
criterion (see e.g. Buffington [1999]) to estimate the size of
the largest entrained grain fragments D∗, then

D∗ =
τ

τ∗c (ρs − ρ)g
, (78)

where τ∗c is the dimensionless critical Shields stress and ρs

is the grain density. For fully turbulent flow, τ∗c is approx-
imately given by τ∗c ≈ 0.045 [Lamb et al., 2004]. Using the
self-similar solution with ∆pin = χ(ρ−ρice)gH , we can then
estimate τ using Equations (1) and (2), and find

D∗ =
f0ρU

2

8τ∗c (ρs − ρ)g
·

„

k

h

«1/3

≈ 9.07 · χ
2(ρ− ρice)

2gH2

(ρs − ρ)E′
· Û(x̂)2

„

ŵ(0)

ŵ(x̂)

«1/3

, (79)

where ŵ(x̂) and Û(x̂) are shown in Figures 6b (ŵ corre-
sponds to ŵself-sim there) and 7. Thus, with χ = 1, other
variables as before, and ρs/ρ ≈ 2.7, then even at x = 0
where D∗ is smallest, any grains smaller than D∗ ≈ 10 cm
would be entrained, leading to a larger τ than used through-
out this paper. This underestimate of τ (and therefore of
f) may also help to explain the disagreement between our
model results and the Das et al. [2008] observations. It may
also be of interest to note that D∗ scales with H2 and is
independent of L at the basal crack inlet (x = 0), implying
great erosional power of draining surface waters from thick
glaciers (e.g., a 2 km glacier would entrain all grains smaller
than ≈ 40 cm) regardless of basal crack length.

In our analysis, we also determine pressures and displace-
ments based on 2D plane strain and plane stress approxi-
mations, but then modify these solutions for use in a 3D
penny-shaped crack. However, future work should be done
to verify the validity of this modification procedure. The
basal crack is also assumed to be perfectly horizontal, ne-
glecting any bed slope relative to the pressure head gradient.
If bed slopes are significant, we would expect the crack to
favor propagation in the down-slope direction.

Another important simplification is that we assume no
melting or freezing of the ice and liquid water flowing
through the cracks. The heating rate (per unit area) due
to the turbulent flow τU can be estimated as f0ρU

3 ≈
102 J m−2 s−1, which would only melt warm ice by ≈
1 mm/hr (since the latent heat of water is 3 · 105 J/kg).
Thus, no melting or freezing is a reasonable approximation
as long as the thermal diffusion timescale is longer than the
process time of a few hours. This diffusion timescale is given
by τd = l2/κ where l is the conductive length scale and κ is
thermal diffusivity. With κ ≈ 10−6 m2/s [Hooke, 2005] then
for l & 10 cm, τd & 2 hrs. While it is not clear what range
of conductive length scales exist through the crack system,
it may be a reasonable guess that l > 10 cm, in which case
melting and freezing is not important over the timescale of
interest. We additionally ignore any instabilities in melt-
ing and freezing that might lead to fingering features at the
crack front (e.g. as in Walder [1982] or Tsai and Wettlaufer
[2007]). Such short wavelength features are not expected of
3D crack growth without any melting [Rice, 1985].

4. Discussion

The results of this work fall naturally into two main parts.
In the first part (Section 2), we present a general model
for fully turbulent hydraulic fracture, and present solutions
under the assumption of either steady-state or self-similar
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crack growth. To our knowledge, this is the first analysis of
hydraulic fracture in which the fluid flow is assumed to be
fully turbulent (ℜ & 105) and the solution obtained is con-
sistent with this turbulent flow. (Lister and Kerr [1991] dis-
cuss a model for weakly turbulent flow, using a smooth-pipe
Blasius approximation applicable to 4 ·103 . ℜ . 105.) Our
self-similar solution for crack growth (e.g. Equations (36)-
(38)) therefore scales with physical parameters in a dis-
tinctly different manner as compared with self-similar so-
lutions with Newtonian viscous flow [Spence and Sharp,
1985] or power-law fluid flow [Adachi and Detournay , 2002].
Since all three of these cases assume a linear elastic medium
around the crack, the scalings for crack opening with pres-
sure and crack length are the same, e.g. with Equation (38)
depending linearly on crack length (L) multiplied by the ra-
tio of pressure (∆pin) to elastic modulus (E′). However,
due to differences in the flow regime assumed, the scalings
for crack tip velocity (Utip) are very different. For exam-
ple, Spence and Sharp [1985] show that, in the Newtonian
viscous case, a self-similar solution in which ∆pin is con-
stant can be achieved for an exponential increase in flow
rate (Q2D ∝ ect) but not for a situation in which flow rate
has a power-law dependence (Q2D ∝ tc), whereas our turbu-
lent solution has prescribed constant inlet pressure ∆pin and
has Q2D ∝ t7/5. This prediction of flow rate, or equivalently
of crack growth rate, cannot be made from quasi-static solu-
tions like those of Weertman [1973] or van der Veen [2007]
in which flow rate is treated as a given rather than as a
quantity to be solved for in a self-consistent manner. It may
also be noted that the turbulent hydraulic fracture results
of Section 2 may be useful regardless of the validity or merit
of the following sections in which we attempt to apply the
model a lake drainage event in Greenland.

The second main part of this work (Section 3) focuses on
applying the turbulent hydraulic fracture model of Section 2
to model the rapid drainage of a meltwater lake in Green-
land, as recently observed by Das et al. [2008]. In utilizing
the idealized model of Section 2, a number of approximations
are necessarily taken and the limitations of these approxi-
mations have been discussed in Section 3.4. This model of
meltwater lake drainage makes quantitative predictions of
the dynamic growth of the basal crack as well as approxi-
mate surface displacements and water drainage rate associ-
ated with this growth. In comparison, Krawczynski et al.
[2009] also model the turbulent flow of water through a ver-
tical crack but use the observed drainage rate to constrain
the vertical crack geometry and do not consider the effects of
basal crack growth. Moreover, Krawczynski et al. [2009] do
not attempt to model the growth of the crack system, but in-
stead focus on determining the volume of water necessary for
the crack to grow to the base of the ice sheet. The modeling
of van der Veen [2007] also does not attempt to determine
the growth rate of either the vertical or basal crack under the
realistic conditions of approximately constant excess pres-
sure ∆pin. The work of Weertman [1971b] also considers
a case of turbulent flow driving crack opening but does not
use a crack opening and pressure distribution that are con-
sistent with the fluid flow equations, and therefore does not
arrive at a realistic prediction of crack growth [Stevenson,
1982]. To our knowledge, Weertman [1971b], van der Veen
[2007], Krawczynski et al. [2009] and the present work en-
compass all of the work done so far in attempting to model
rapid meltwater lake drainage events. As such, although
our model results are preliminary and have much room for
improvement, they are the only ones capable of quantita-
tive predictions of crack growth rates, drainage rates, and
surface displacements associated with the drainage.

5. Conclusions

We have presented a general model in which turbulent
flow of water drives open a fracture within a purely elas-
tic medium. We find that given certain assumptions about
physical parameters, we can calculate the crack-tip speed

as well as the pressure and displacement profiles along the
crack. We present a steady-state solution and a self-similar
solution (both with L≪ H). We then apply the self-similar
results to the case of a surface lake draining to the base of
the Greenland Ice Sheet. Despite needing to use the mod-
els beyond their known range of validity (e.g., for L & H),
we nonetheless find that our models can be constructed to
have order of magnitude agreement with the observations
of Das et al. [2008]. Our preliminary prediction is of basal
crack growth eventually up to a radius of 5-10 km, with lake
water-level predictions matching observations to within 20-
40%, but with predicted surface displacements a factor of
2-3 smaller than observed. The inclusion of additional com-
plexity, such as viscous creep and a more realistic treatment
of the whole range of L/H , may help yield model results in
better agreement between the observations, and we suggest
possible directions for future work.

Appendix A: Validity of the Bimaterial
Approximation

In Section 2.2, we approximate the bimaterial crack as
having an opening given by ξ times the opening for a crack
in a homogeneous sample of the more compliant material.
Here, we verify the validity of this approximation for an ice-
rock interface. Following the analysis of Rice and Sih [1965]
(see also England [1965] and Erdogan [1965]), we consider a
crack of length 2L along the bimaterial interface within an
infinite medium with upper medium characterized by shear
modulus G1 and Poisson’s ratio ν1 and lower medium char-
acterized by G2 and ν2. For our ice-rock case, we take ice
elastic parameters as in Section 3 (E1 = 6.2 GPa, ν1 = 0.3 so
that G1 = 2.4 GPa) and rock elastic parameters from near-
surface granite seismic velocities of Lay and Wallace [1995]
(and ρ2 = 2750 kg/m3) which give G2 = 23 GPa ≈ 9.6G1

and ν2 = 0.3 ≈ ν1. With these choices, the bimaterial ‘mis-
match’ constant

ǫ ≡ 1

2π
log

»„

η1
G1

+
1

G2

«

/

„

η2
G2

+
1

G1

«–

, (A1)

with η ≡ 3 − 4ν, has a value of ǫ = 0.075124. Given an
arbitrary crack pressure loading P (x) along −L < x < L,
the complex displacements uk + ivk (uk in the horizontal
direction and vk in the vertical direction, throughout this
appendix) on either side of the crack (k = 1 or 2) are given
by Equations (14) and (15) of Rice and Sih [1965] (evalu-
ated along z = z̄ where z = z1 + iz2 is a complex variable,
with z1 horizontal and z2 vertical coordinates) to be

2G1(u1 + iv1)

= η1

z
Z

g(s)F (s)ds− e2πǫ

z̄
Z

g(s̄)F (s̄)ds̄ (A2)

on the upper side and

2G2(u2 + iv2)

= e2πǫη2

z
Z

g(s)F (s)ds−
z̄

Z

g(s̄)F (s̄)ds̄ (A3)

on the lower side. As also given in Rice and Sih [1965],

F (z) = (z2 − L2)−1/2

„

z + L

z − L

«iǫ

, (A4)
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with branch cut along the crack such that zF (z) → 1 as
|z| → ∞, and

g(s) =

L
Z

−L

g(s, b)db, (A5)

where

g(s, b) =
P (b)

2π

e−πǫ

s− b
(L2 − b2)1/2

„

L− b

L+ b

«iǫ

. (A6)

Along the crack face −L < s < L, F (s) simplifies to

F (s±) = −1 · ±ie±πǫ(L2 − s2)−1/2

·[cos(ǫ log L+ s

L− s
) + i sin(ǫ log

L+ s

L− s
)], (A7)

where + is used for s above the crack, − is used for s below
the crack.

Substituting Equations (A5) and (A7) into Equa-
tions (A2) and (A3) gives expressions for the complex dis-
placements along the crack face. Expanding each of these
expressions as a power series in the parameter ǫ and ap-
proximating the expressions to first order in ǫ (ignoring all
higher-order terms, which is appropriate except extremely
close to the ends, because of the logarithmic divergence), we
find that we can express the complex displacements along
the crack face as

u1 + iv1 =
1

E′
1

(ǫI1 + iI2) +O(ǫ2) (A8)

and

u2 + iv2 = − 1

E′
2

(ǫI1 + iI2) +O(ǫ2). (A9)

I1 and I2 are (complicated) expressions that involve only
real integrals, and the full crack opening displacement in a
homogeneous medium characterized by G1 and ν1 is given
by

2(u1 + iv1) = 0 +
1

E′
1

iI2. (A10)

We then observe that to order ǫ, the displacement v1 is un-
changed from its value in the homogeneous case and that
the displacement on the lower side, v2 is given by

v2 ≈ −E
′
1

E′
2

v1 ≈ − v1
9.6

. (A11)

Thus, the full opening in the bimaterial case v1 − v2 is ap-
proximately ξ of the full opening in the homogeneous case
where ξ is given by

ξ ≈ 1 +E′
1/E

′
2

2
≈ 0.55. (A12)

We therefore use the approximation h = 0.55w.

Appendix B: Stresses in the Bulk

Here, we describe the stresses in the elastic medium asso-
ciated with the crack-tip solution of Desroches et al. [1994]
that are used to obtain Equations (12) and (13). Following
Desroches et al. [1994], we write the Muskhelishvili [1953]
potential as

φ(z) =
A′

2α
zα, (B1)

where z = z1 + iz2 is again a complex variable, and α is a
constant (different than the α used in the main text). We

follow Desroches et al. [1994] and take the other Muskhel-

ishvili [1953] potential as ψ(z) = φ(z) − zφ′(z) in order to

maintain zero shear along the crack axis y = 0. We can then

calculate the stresses in polar coordinates to be given by

σθθ + σrr

2
=
σxx + σyy

2
= A′rα−1 cos[(α− 1)θ] (B2)

and

σθθ − σrr

2
+ iσrθ = e2iθ

“σyy − σxx

2
+ iσyx

”

= (1 − α)A′rα−1 sin(θ)[− sin(αθ) + i cos(αθ)]. (B3)

Solving for the stresses gives

σrr(r, θ) = A′rα−1

·
»

3 − α

2
cos[(1 − α)θ] − 1 − α

2
cos[(1 + α)θ

–

, (B4)

σrθ(r, θ) = A′rα−1

·
»

1 − α

2
sin[(1 − α)θ] − 1 − α

2
sin[(1 + α)θ

–

, (B5)

and

σθθ(r, θ) = A′rα−1

·
»

1 + α

2
cos[(1 − α)θ] +

1 − α

2
cos[(1 + α)θ

–

. (B6)

These expressions give the stress components of the

Desroches et al. [1994] solution except for a possible added

uniform pressure, σθθ = −P and σrr = −P , and an ad-

ditional added crack-parallel stress σxx = constant (which

will not enter our analysis). Equation (13) is then obtained

by demanding that p(x) and the crack opening gap satisfy

the fluid equations (Equations (7), (9) and (10)) in the case

of steady state growth, leading to α = 2/(2 + n) = 6/7 and

evaluating Equation (B6) along the crack opening to yield

∆p(x) − P = −σθθ(R,π)

= −A′R−1/7 cos
“π

7

”

= −AR−1/7, (B7)

where A = A′ cos(π/7) corresponds to the quantity intro-

duced in Equation (12).
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Table 1. Values of wk(0) and average value of wk(x̂) up to
k = 4. Average values are numerically calculated but agree
with stated exact result to within numerical error.

w1 w2 w3 w4

Value at x̂ = 0 4/π 4/3 4/π 6/5
Average value 2/3 π/4 4/5 π/4

Table 2. Self-similar parameters D, Ak and ck

D A1 A2 A3 A4 c1 c2 c3 c4
1.991 0.450 -0.431 0.151 -0.014 2

π
1

2

4

3π
3

8
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Figure 1. Schematic of the model. A vertical conduit
(crack) of height H connects a surficial lake with a basal
crack, which is driven open by turbulent flow of water
through the crack system. In the model solutions, a 2D
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Figure 2. Schematic for stress calculation. The actual
crack opening, h, between ice and bedrock is assumed to
be ξw, where w is the modeled full width for an identi-
cally loaded crack in a homogeneous ice body and ξ is
given by Equation (8). The excess pressure at x = 0 is
assumed to be given by ∆pin and the fracture toughness
KIc is assumed negligible.
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Figure 5. (a) Plotted are the LHS (solid blue) and
RHS (dashed cyan) of Equation (26) and the difference
RHS−LHS (dotted red) for the self-similar solution. (b)
For comparison with panel (a), plotted are the analogous
LHS and RHS of a scaled version of Equation (9) multi-

plied by w10/3 on both sides, using w as calculated to be
consistent with the steady-state ∆p in Equation (7). As
expected, the steady-state solution is consistent asymp-
totically as x̂ → 1 but, unlike the self-similar solution,
has significant differences away from x̂ = 1.
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Figure 6. Comparison of steady-state and self-similar
solutions. (a) Plotted are the p̂ (scaled pressure) for the
self-similar solution (p̂self-sim) and the steady-state solu-
tion (p̂steady). The actual pressure is given by p(x) =
∆pinp̂(x̂). (b) Plotted are the ŵ (scaled model opening)
for the self-similar solution (ŵself-sim), the ŵ of Equa-
tion (18) for the steady-state solution (ŵsteady), and the
ŵ consistent with the steady-state p̂steady distribution in
Equation (7) (ŵp-steady). The actual opening is given by
h(x) = ξw(x) = ξL(t)∆pin/E

′ · ŵ(x̂).
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Figure 7. Plotted is the Û (scaled fluid veloc-

ity) for the self-similar solution. Û(0) ≈ 1.321, and

Û(1) = 1 as required by the condition U(L) = Utip.

For comparison, the steady-state solution has Û(x̂) ≡
1. The actual fluid velocity is given by U(x) =

(6/5)1/6φU0(L(t)/L0)
1/6Û(x̂).
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Figure 8. Schematic of surface displacements at a dis-
tance x0 from the center of the connecting conduit. As
discussed in the text, the vertical displacement is cal-
culated using Equation (53), and the horizontal displace-
ment is approximated with Equation (59) as being due to
an average pressure ∆pavg along the connecting conduit
face.
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to be 1 so that ∆pin ≈ 0.87 MPa.
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Figure 10. χ as a function of L (in km) for a range of
plausible a/L. (a) For ‘Model I’ (with h̄U ). As shown,
χ → 0 as L/H → 0 and χ → 1 as L/H → ∞. (b) For
‘Model II’ (with h̄3D

U ). Again, χ → 0 as L/H → 0 and
χ → 1 as L/H → ∞. (c) For ‘Model III’ (with h̄S

U ).
These curves of case (c) asymptote to the corresponding
curves shown in (b) when L/H → 0. In all panels, solid
blue is for a/L = 1.0, dotted green is for a/L = 0.8,
dash-dotted red is for a/L = 0.7, short-dashed cyan is
for a/L = 0.6 and long-dashed purple is for a/L = 0.5.
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Figure 11. Vertical displacements at x0 = 1.7 km as a
function of L for a range of a/L. All line styles and colors
are as in Figure 10. (a) For ‘Model I’ (with h̄U ). (b) For
‘Model II’ (with h̄3D

U ). (c) For ‘Model III’ (with h̄S
U ).
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Figure 12. Horizontal displacements at x0 = 1.7 km
as a function of L for a range of a/L. All line styles
and colors are as in Figure 10. (a) For ‘Model I’ (with
h̄U ). (b) For ‘Model II’ (with h̄3D

U ). (c) For ‘Model III’
(with h̄S

U ). It should be noted that none of the horizon-
tal displacements in the h̄S

U model exceed 0.2 m whereas
the observations do, suggesting that this model cannot
accurately match observations.
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Figure 13. (a) Modeled basal crack length L(t), total
crack system volume Vb+Vc and water level WL for Mod-
els I, II and III. The dashed lines denote the ‘Model I’ re-
sults, the solid lines denote the ‘Model II’ results, and the
dashed-dotted lines denote the ‘Model III’ results. The
colors, as labeled, are for L(t) (blue), Vb + Vc (red), and
WL (cyan, below the zero line). (b) Modeled WL com-
pared against the observed WL. The red dashed line is
the ‘Model I’ prediction, the blue solid line is the ‘Model
II’ prediction, the green dashed-dotted line is the ‘Model
III’ prediction, and the thick cyan dotted line is the ob-
served WL. The observation times have been shifted so
that the water level begins to drop around t = 0.
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Figure 14. (a) Modeled vertical displacements hs and
horizontal displacements us for Models I, II and III. The
dashed lines denote the ‘Model I’ results, the solid lines
denote the ‘Model II’ results, and the dashed-dotted lines
denote the ‘Model III’ results. The colors, as labeled,
refer to vertical (green) and horizontal (blue) displace-
ments. (b) Modeled hs and us compared against the ob-
served quantities (thick dotted curves). Here, the curves
are offset (by 0.5 m) for clarity. The colors are the same
as in panel (a).


