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Abstract.1

The mass loss from the West Antarctic Ice Sheet is dominated by numer-2

ous rapidly flowing ice streams, which are separated from stagnant ice in the3

adjacent ridges by zones of concentrated deformation known as shear mar-4

gins. Because the discharge from a single ice stream depends sensitively on5

the ice stream width, determining the physical processes that control shear6

margin location is crucial to a full understanding of ice stream dynamics. Pre-7

vious work has shown that the transition from a deforming to an undeform-8

ing bed within a shear margin concentrates large stresses on the undeform-9

ing bed beneath the ridge [Jacobson and Raymond , 1998; Schoof , 2004; Suckale10

et al., 2014]. In this paper we investigate how the presence of a drainage chan-11

nel collocated with the transition from a deforming to an undeforming bed12

perturbs the stress field within the shear margin. We show that the chan-13

nel limits the maximum shear stress on the undeforming bed and alters the14

yield strength of the till by changing the normal stress on the ice-till inter-15

face. By comparing the maximum stress with the till strength, we show that16

the transition from a deforming to an undeforming bed can occur across a17

channel whenever the water flux in the channel exceeds a critical value. This18

critical flux is sensitive to the rheology and loading of the shear margin, but19

we conclude that there are some scenarios where the transition from a de-20

forming to an undeforming bed can be collocated with a drainage channel,21

though this configuration is probably not typical.22
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1. Introduction

Surface velocity observations of the West Antarctic Ice Sheet show that ice flow is highly23

non-uniform, with regions of ∼ 20−80 km width known as ice streams flowing much faster24

than the surrounding ice sheet. Despite accounting for a fraction of the surface area of25

the ice sheet, rapidly flowing ice streams dominate the discharge of ice from the continent26

[Bamber et al., 2000]. Thus, determining the physical processes that govern ice stream27

dynamics is of the utmost importance to understanding how West Antarctica will respond28

to a changing climate.29

Typically ice streams have an ice thickness of one kilometer, a width of a few tens of30

kilometers, and a length of a few hundred kilometers. The surface velocity in the center31

of an ice stream is a few hundreds of meters per year, which is significantly larger than32

the surface velocity of a few meters per year in the surrounding ice sheet. Rapid flow is33

possible despite the low gravitational stress driving deformation (∼ 10 kPa) because of34

the presence of a saturated subglacial till layer beneath the ice stream [Blankenship et al.,35

1986, 1987]. The pore pressure in the till layer is close to the ice overburden, leading to36

a low effective stress. For the Coulomb-plastic rheology typically observed in laboratory37

experiments on subglacial till [Kamb, 1991; Iverson et al., 1998; Tulaczyk et al., 2000],38

a low effective stress produces a low yield strength. Thus, the subglacial till provides39

limited resistance to flow and a substantial fraction of the ice stream surface velocity is40

accommodated by till deformation [Alley et al., 1986].41

A zone of concentrated deformation known as a shear margin separates the rapidly42

flowing ice stream from the stagnant ice in the adjacent ridge. Shear margins are typ-43
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ically a few kilometers wide and marked by extensive surface crevassing [Bindschadler44

and Vornberger , 1990; Echelmeyer et al., 1994; Scambos et al., 1994]. Because the till45

provides limited resistance to motion, shear margins balance a substantial fraction of the46

gravitational driving stress [Echelmeyer et al., 1994; Jackson and Kamb, 1997; Harrison47

et al., 1998; Joughin et al., 2002]. The shear margin location also sets the width of the ice48

stream, and thus plays an important role in determining the ice stream discharge [van der49

Veen and Whillans , 1996; Raymond , 1996; Raymond et al., 2001]. Despite the important50

role shear margins play in ice stream dynamics, the physical processes that select their51

location are still uncertain. In contrast with mountain glaciers, topography alone does52

not appear to explain current shear margin locations of Siple Coast ice streams [Shabtaie53

and Bentley , 1987, 1988; Raymond et al., 2001], and thus shear margin location in this54

case must depend on the mechanical properties of ice and till.55

Within a shear margin, there must be a transition from a deforming bed beneath an ice56

stream, where the stress on the bed reaches the yield strength of the subglacial till and57

plastic deformation occurs, to an undeforming bed beneath the ridge, where the stress is58

always less than the yield strength of the till. Henceforth we refer to the point where this59

transition occurs as the locking point. For ice streams where the shear margins support60

a substantial fraction of the gravitational driving stress the mechanical transition at the61

locking point concentrates stress on the undeforming bed, so for a shear margin to exist62

there must be a mechanism that raises the yield strength of the undeforming bed far above63

the yield strength inferred beneath the majority of the ice stream. One strengthening64

mechanism that is commonly appealed to is freezing of the subglacial till, as studied by65

Jacobson and Raymond [1998], Schoof [2012], and Haseloff [2015]. Alternatively, Perol et66

D R A F T May 12, 2016, 4:11pm D R A F T



PLATT, PEROL, SUCKALE, RICE: LOCATION OF A SHEAR MARGIN AT A CHANNEL X - 5

al. [2015] proposed that melt generated by concentrated deformation in the shear margins67

feeds a subglacial drainage channel at the base of the shear margin. This drainage channel68

allows more efficient drainage than the distributed hydrologic system that operates under69

the remainder of the ice stream, and decreases the pore pressure in a zone of kilometer-70

scale width within the shear margin. For a Coulomb-plastic rheology, reducing the pore71

pressure raises the yield strength of the till, allowing a stable margin configuration to form72

if the locking point is not collocated with the channel. Here we define a stable margin73

configuration to be one for which the shear stress resolved on the bed is less than the74

yield strength of the till wherever the bed is undeforming. We use the term stable to75

describe such a configuration because if the stress exceeds the strength anywhere on the76

undeforming bed then that portion of the bed will yield and the ice stream will widen.77

In this paper we investigate under what conditions the locking point can be collocated78

with a drainage channel. This analysis complements Perol et al. [2015], which investi-79

gated how a drainage channel not collocated with the locking point can select the margin80

location. The crucial consideration in this manuscript is how the presence of a channel81

alters the stress field around the locking point, while Perol et al. [2015] primarily focused82

on how the channel raises the yield strength of the till over a broad zone within the shear83

margin. To begin we show that a sharp transition (i.e. no drainage channel) generally84

leads to a singular stress profile on the undeforming bed, an obviously unphysical scenario85

because the yield strength of the undeforming bed is finite. Next we show that the pres-86

ence of a channel at the locking point limits the maximum shear stress on the undeforming87

bed and alters the yield strength of the till by changing the normal stress on the ice-till88

interface. Comparing the maximum stress on the undeforming bed with the till strength89
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we investigate when the locking point can be collocated with a channel. Our results lead90

to a critical water flux in the channel that must be exceeded for the transition from a91

deforming to an undeforming bed to occur across a channel. For a Glen’s law rheology this92

critical flux is unrealistically large if the average lateral shear stress in the shear margin93

exceeds ∼ 35 − 50 kPa. However, for the dislocation creep rheology of Durham et al.94

[1997], which is governed by a stress exponent of four, that dominates near the transition95

from a deforming to an undeforming bed if grain sizes are greater than a few millimeters96

(for smaller grain sizes deformation falls into the grain boundary sliding regime explored97

in Goldsby and Kohlstedt [2001]) the critical flux is substantially lower, and the locking98

point can be collocated with the channel if the average lateral shear stress in the shear99

margin is less than ∼ 85−115 kPa. Using data for a range of shear margins from Joughin100

et al. [2002], Perol and Rice [2015] estimated that τlat ≈ 100−135 kPa. Thus, we conclude101

that there are some scenarios where the locking point can be collocated with a drainage102

channel, though this configuration is probably not typical.103

Though this manuscript revolves around a subglacial drainage channel, one of the key104

elements in many subglacial hydrology models, our focus is not on modeling how large105

scale variations in subglacial hydrology influence ice stream dynamics. Instead, we focus106

on how the presence of a drainage channel alters the stress field at the base of a shear107

margin on length scales of a few tens of meters. These length scales are small enough that108

spatial variations in pore pressure are negligible if we assume typical permeabilities for109

subglacial till. Our results show that the transition from a deforming to an undeforming110

bed within a shear margin can occur across a channel if the water flux in the channel111

exceeds a critical value, providing a natural path to incorporating our work into larger112

D R A F T May 12, 2016, 4:11pm D R A F T



PLATT, PEROL, SUCKALE, RICE: LOCATION OF A SHEAR MARGIN AT A CHANNEL X - 7

scale models of subglacial hydrology. Our work complements several recent papers that113

focus on how large scale variations in subglacial hydrology influence ice sheet dynamics114

on a range of time and length scales. Most closely related to our work, Perol et al. [2015]115

showed that the presence of drainage channel can select the location of the locking point116

by raising the yield strength of the till over a broad zone within the shear margin. On a117

larger scale, Kyrke-Smith et al. [2014] and Kyrke-Smith et al. [2015] investigated how the118

coupling between ice flow and subglacial hydrology controls the formation and spacing of119

ice streams. Finally, on a much shorter timescale, Schoof [2010] showed how variations in120

surface melt influence ice velocity by driving rapid changes in the efficiency of subglacial121

drainage.122

2. Model derivation

Here we develop a model for ice deformation near the locking point. We define the123

coordinate vector x = (x, y, z) so that x is parallel to the direction of ice stream flow, y124

is parallel to the bed and perpendicular to the ice stream margin, and z is the vertical125

height above the bed (see Figure 1). The transition from a deforming to an undeforming126

bed occurs across a semi-circular drainage channel centered on y = z = 0, with the ice127

stream located in y < 0 and the ridge located in y > 0. We define the velocity vector128

u = (u, v, w) such that u is the velocity in the x-direction, v the velocity in the y-direction,129

and w the velocity in the z-direction.130

As is common when modeling flow in ice stream margins [Jacobson and Raymond ,131

1998; Schoof , 2004, 2012; Suckale et al., 2014; Perol et al., 2015], we assume that all flow132

is in the downstream direction, making u the only non-zero component in the velocity133

vector, and that u is independent of x. These assumptions are justified by surface velocity134
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observations of ice streams showing that the downstream velocity is much greater than135

the lateral and vertical velocities v and w and that variations in u in the downstream136

direction are much smaller than variations in the lateral and vertical directions. The137

single non-zero component of the velocity vector u(y, z) leads to just two non-zero shear138

strain rates,139

ε̇xy =
1

2

∂u

∂y
, ε̇xz =

1

2

∂u

∂z
. (1)

These lead to two non-zero shear stresses τxy and τxz, and the equations for mechanical140

equilibrium simplify to141

∂τxy
∂y

+
∂τxz
∂z

= 0, (2)

describing a stress/deformation state called “anti-plane”. In the next section we show142

that the transition from a deforming to an undeforming bed concentrates large stresses143

at the locking point, with typical shear stresses of a few hundred kPa. Since these shear144

stresses are much greater than the gravitational driving stress for the ice stream, which is145

typically ∼ 10 kPa, we can neglect the driving stress when solving for the stress field at146

the locking point using equation (2). However, as shown in Section 3, the gravitational147

driving stress still enters into our model by providing the far-field loading on the locking148

point, which is parameterized using a path-independent integral.149

To close the model we need a rheological law linking strain rate and shear stress. Though150

ice can deform through a variety of mechanisms linked to physical phenomena such as dis-151

location motion and diffusion [Schulson and Duval , 2009], we assume a single deformation152

mechanism with a power law dependence,153

εij = Aτn−1E τij, (3)
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where τE = [τ 2xy + τ 2xz]
1/2 is the effective shear stress and εE = [ε2xy + ε2xz]

1/2 is the effective154

strain rate. Since the channel is expected to lie within the temperate ice zone [Suckale155

et al., 2014; Perol and Rice, 2015], we assume for the local analysis of stressing near the156

channel that temperature, and hence A and n, are spatially uniform. In addition we157

neglect any dependence of A and n on melt fraction in the temperate ice, which may be158

a poor assumption for a channel with a well-developed englacial drainage system.159

Equation (3) can model different deformation mechanisms by assuming different values160

of A and n. The majority of calculations in this paper assume a Glen’s law rheology161

with n = 3 and A = 2.4 × 10−24 Pa−3 s−1, which are the values recommended in Cuffey162

and Paterson [2010] for T = 0 ◦C. However, Goldsby and Kohlstedt [2001] showed that163

Glen’s original data plots on the boundary between two deformation mechanisms with164

stress exponents of 1.8 and 4, which may explain why Glen best fit his data with n = 3165

(see Figure 60.3 of Goldsby [2006].) Thus, we also model the dislocation creep rheology166

of Durham et al. [1997] using n = 4 and A = 2.2× 10−30 Pa−4 s−1, which may dominate167

at the large shear stresses attained in the shear margin depending on exact values of168

temperature and grain size [Goldsby , 2006]. Finally, we produce some results using a169

Newtonian rheology with n = 1 and A = 2.4× 10−14 Pa−1 s−1, where this value of A the170

effective viscosity predicted by Glen’s law evaluated at 100 kPa (a typical shear stress in171

a shear margin).172

3. Deformation around a sharp transition

As noted in Suckale et al. [2014], the deformation near the locking point is equivalent173

to an anti-plane shear crack in a creeping solid. Recognizing this correspondence, we use174
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methods from fracture mechanics to solve for the stress and velocity fields around a sharp175

transition from a deforming to an undeforming bed at y = 0.176

Following Rice [1967] and Rice [1968b], Appendix A develops a solution for the stress177

field and velocity field around a sharp transition from a deforming to an undeforming bed.178

Note that the solution for the stress around a sharp transition was previously developed179

in Suckale et al. [2014] and used to benchmark numerical solutions for velocity and heat180

production in a shear margin, but the physical significance of the singular stress field and181

the implications for the mechanical structure of a shear margin were not emphasized. The182

shear stress component τxz on the undeforming bed (z = 0 and y > 0) is given by183

τsharp =

(
nJtip

(n+ 1)Aπy

)1/(n+1)

. (4)

The far-field loading is linked to the stress at the locking point using the path-independent184

integral from Suckale et al. [2014], leading to185

Jtip =
4HAτn+1

lat

n+ 1
, τlat =

(
ρicegS −

τbase
H

)W
2
. (5)

Here H is the ice thickness, W is the ice stream width, ρice is the ice density, g is gravity,186

S > 0 is the slope in the downstream direction, and τbase is the basal resistance provided187

by the deforming bed. A simple force balance for the ice stream shows that τlat is the188

average lateral drag supported by the shear margin. The path-independent integral in189

Suckale et al. [2014] is an extension of the J-type integrals first introduced for cracks190

in elastic solids by Rice [1968a], Cherepanov [1968] and Bilby and Eshelby [1968], later191

generalized to the nonlinear creep rheologies we consider (e.g. Goldman and Hutchinson192

[1975], Landes and Begley [1976], Kubo et al. [1979], Ben Amar and Rice [2002]), and193

previously applied to glaciers by McMeeking and Johnson [1986]. Inserting equation (5)194
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into equation (4) we find195

τsharp = τlat

(
4Hn

(n+ 1)2πy

)1/(n+1)

. (6)

The lateral stress supported by the shear margin is transmitted to the undeforming bed196

beneath the ridge such that the stress on the undeforming bed is directly proportional to197

the lateral drag supported by the shear margin. Note that equation (5) is only valid when198

the J-integral is evaluated using a constant basal resistance beneath the ice stream, though199

the solution can be easily extended to account for a spatially variable basal resistance.200

Equation (6) has three distinctive features. First, the shear stress on the undeforming201

bed is singular with infinite shear stresses on the undeforming bed expected at the locking202

point. Second, the power of the singularity depends on the stress exponent n, with203

larger values of n corresponding to less severe singularities. Finally, larger values of τlat204

concentrate larger stresses on the undeforming bed. A singular stress field is obviously205

unphysical due to the finite yield strength of the bed. Schoof [2004] and Perol et al.206

[2015] avoided this problem by using a spatially variable shear strength profile at the bed207

to find non-singular solutions where the stress concentration vanishes. This is equivalent208

to solving for the transition from a deforming to an undeforming bed that satisfies Jtip = 0,209

which produces a continuous stress at the locking point. The solutions of Schoof [2004]210

and Perol et al. [2015] are analogous to the cohesive zone models commonly used in211

fracture mechanics to eliminate crack tip singularities by appealing to a zone of enhanced212

resistance near the crack tip [Barenblatt , 1959; Dugdale, 1960; Bilby et al., 1963]. We take213

a different approach where Jtip is finite but the maximum stress on the bed is limited by214

the presence of a channel at the locking point. Our approach is analogous to crack blunting215

in fracture mechanics, which relies on the maximum stress at the crack tip decreasing as216
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the radius of curvature of the crack (or now notch) tip increases. Note that our crack217

blunting mechanism for a finite value of Jtip is only valid if the locking point coincides218

with a channel (if not the shear stress on the bed is singular for non-zero values of Jtip).219

However, even if the locking point is not collocated with a channel, the presence of a220

drainage channel can still select the location of the locking point by raising the yield221

strength of the till over a broad zone within the shear margin, as shown in Perol et al.222

[2015] who model the hydrology of transport and pore fluid suction development along223

the interface.224

To begin we show that all the information about the far-field loading is transmitted225

to the locking point through Jtip alone. To do this we compare the analytic prediction226

valid near the locking point (see Appendix A) with results from numerical simulations227

generated using the finite element package COMSOL for the whole ice stream model that228

couples temperature and deformation from Perol et al. [2015]. Since the analytic solution229

has a fixed functional form with a single free parameter Jtip we should be able to match the230

numerical solutions over a range of r and θ using a single value of Jtip. Figure 2 shows the231

match between the analytic and numerical solutions by plotting the downstream velocity232

as a function of θ at five different values of r, as well as the shear stress on the undeforming233

bed. The specific value of Jtip used to plot the analytic solution is found by fitting to the234

numerical solution for downstream velocity at r = 5 m and this value is used to plot the235

downstream velocity profile at other values of r as well as the stress on the undeforming236

bed. In Figure 2 one simulation is performed for a temperature independent rheology237

and a second simulation for the full temperature dependent rheology given in Perol et al.238

[2015]. Since the two solutions are in good agreement for all curves plotted in Figure 2,239
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our results demonstrate that the asymptotic solution presented in Appendix A provides240

a good approximation to the full numerical solution for several tens of meters around the241

locking point.242

We can exploit the fact that the length scale over which the analytic and numerical243

solutions agree is at least an order of magnitude greater than the estimates for channel244

radius in Perol et al. [2015] by making an approximation analogous to the small-scale245

yielding approximation commonly used in fracture mechanics when the process zone at246

the crack tip is small enough that the entire body can be treated as an elastic solid in a247

continuum model [Rice, 1967, 1968b]. The equivalent approximation in our model is that248

the region over which the channel perturbs the stress field is contained entirely within the249

zone of validity for the asymptotic solution at a sharp transition from a deforming to an250

undeforming bed, and thus all knowledge of the far-field deformation is transmitted to251

the channel through the asymptotic solution. Even though the entire ice is creeping in252

our model, henceforth we follow the terminology used in fracture mechanics and refer to253

our approach as making a small-scale yielding approximation. The small-scale yielding254

approximation allows us to draw two important conclusions. First, it tells us that all255

information about the far-field deformation is carried to the locking point through a single256

parameter Jtip, which controls the magnitude of the stresses in the asymptotic solution257

valid at the transition from a deforming to an undeforming bed. Thus, ice stream scale258

parameters such as W and τbase influence the stress at the locking point only through259

Jtip, greatly reducing the number of independent parameters we must consider. Second,260

the small-scale yielding approximation allows us to study the spatial variations in stress261
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around a channel at the locking point by imposing the asymptotic solution from Appendix262

A as a boundary condition far from the channel.263

4. Stress field around a channel

Next, we investigate how a channel with a radius R at the locking point alters the264

shear stress resolved on the undeforming bed. Since we neglect to model the stress field265

within the till and only solve for the stress field within the ice, the exact point within the266

channel where the bed transitions from deforming to undeforming is unimportant. All267

that matters is that the bed on one side of the channel is deforming and the bed on the268

other side is undeforming. Within the channel the shear stress on the till is controlled269

by turbulent flow of water, which is unlikely to be large enough to cause the till to yield270

for typical effective pressures in the channel but may allow erosion of the till to occur. A271

sketch of the geometry assumed in our calculation can be found in Figure 1. To begin, we272

use a complex variable method to solve analytically for a Newtonian rheology, then use273

numerical simulations to extend our analysis to a power law rheology.274

As discussed in Section 3, from our analogy with fracture mechanics we expect the275

presence of a channel to limit the maximum stress on the undeforming bed to a finite276

value that decreases as the channel radius increases. Our goal in this section is to quantify277

how the stress on the undeforming bed varies with parameters such as channel radius,278

ice stream width, and the average basal resistance beneath the ice stream. The small-279

scale yielding approximation justified in the previous section greatly reduces the number280

of independent parameters that influence the stress on the undeforming bed. Ice stream281

scale parameters such as W and τbase influence the stress at the locking point only through282

Jtip. The significant reduction in the number of independent parameters allows us to283
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use dimensional analysis to tightly constrain the functional form of the stress on the284

undeforming bed. We find that the stress on the bed is a function of Jtip/A, R, n, and285

y alone. There is a single way to combine these parameters to produce a quantity with286

units of stress, and thus the stress on the undeforming bed is equal to287

τ = τsharp(R)h
( y
R
, n
)
, (7)

where τsharp is the singular solution for a sharp transition given in equation (4) and h is a288

function we must solve for. For all cases the maximum stress on the bed, which is where289

the undeforming bed is most likely to yield, occurs at the channel wall and is equal to290

τmax = χτsharp(R), (8)

where χ = h(1, n) is a function of the stress exponent n alone. Thus, if we can determine291

how the parameter χ depends on the stress exponent n then equation (8) provides a292

completely general solution that allows us to predict the maximum shear stress on the293

undeforming bed for any set of parameter choices.294

4.1. Newtonian rheology

For a Newtonian rheology we can make significant progress analytically. When n = 1295

the equation for mechanical equilibrium reduces to Laplace’s equation,296

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0, (9)

where r and θ are polar coordinates centered on the origin. We solve equation (9) in297

R < r <∞ with the no slip boundary condition on the undeforming bed,298

u = 0 on θ = 0, R < r <∞, (10)
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and the traction free boundary condition on the deforming bed,299

∂u

∂θ
= 0 on θ = π, R < r <∞. (11)

An additional traction free boundary condition is applied on the channel wall,300

∂u

∂r
= 0 on r = R, 0 < θ < π. (12)

Finally we assume that u approaches the solution for a sharp transition developed in301

appendix A as r →∞, consistent with our small-scale yielding approximation.302

Equations (9)-(12) are solved using complex variables in Appendix B, leading to the303

shear stress on the undeforming bed,304

τxz =

(
Jtip

2Aπy

)1/2(
1 +

R

y

)
. (13)

We notice two distinctive features about this solution. First, the solution for a sharp305

transition is the asymptotic limit of equation (4) when y � R. Thus, the presence of a306

channel only alters the stress field on the bed in the immediate vicinity of the channel, and307

far from the channel the stress field is the same as that predicted for a sharp transition.308

Second, the presence of the channel caps the maximum shear stress on the bed at a finite309

value,310

τmax =

(
2Jtip
AπR

)1/2

. (14)

Note that a larger channel radius R leads to a lower maximum shear stress on the bed.311

Comparing equation (14) to the solution for a sharp transition we find312

τmax = 2τsharp(R), (15)

and thus χ = 2 for n = 1. The maximum stress applied to the bed is equal to twice the313

stress predicted by evaluating the singular solution for a sharp transition at the channel314
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radius R. As highlighted before, the finite maximum stress allows for a stable margin con-315

figuration where the stress on the undeforming bed is always less than the yield strength316

of the bed even when Jtip 6= 0.317

4.2. Nonlinear rheology

The complex variable solution presented in the previous subsection cannot be gener-318

alized to a nonlinear rheology so we study other values of the stress exponent n using319

numerical solutions. We use a finite difference method on a uniform gird in r and θ and320

enforce the far-field velocity field given by equation (A24) on a semi-circular boundary321

with radius D. The traction free boundary condition on the channel wall remains the same322

as in the previous subsection and the boundary conditions on the bed are now applied323

for R < r < D. The finite domain size introduces an additional dimensionless param-324

eter R/D into equation (7), but we expect to recover the solution where the boundary325

conditions are applied at infinity as R/D → 0 .326

The homogeneous boundary conditions allow us to calculate the dependence of χ on327

R/D analytically for n = 1. We find328

χ = 2

(
1 +

R

D

)−1
. (16)

As expected, χ→ 2 as R/D → 0. Next we determine how χ depends on R/D for several329

values of n numerically. Figure 3 shows how χ varies with R/D for n = 1, n = 3, and330

n = 4 when the channel radius is fixed at R = 1 m and the outer radius D is varied.331

To perform these simulations we assume an ice thickness of 1 km, an ice stream width of332

34 km, a slope S = 0.0012, and a basal stress of τbase = 3.5 kPa. These parameters are333

intended to model Dragon margin of Ice Stream B2 and are equivalent to τlat = 124 kPa.334
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We observe a weak dependence of χ on R/D for all n, with larger values of R/D leading335

to smaller values of χ. Our analytic solution for n = 1 allows us to guess a functional336

form for this dependence,337

χ = χinf (n)

(
1 +

R

D

)− 1
n

, (17)

which is shown by dashed curves in Figure 3. We infer best fitting values for χinf of 1.15338

for n = 3 and 1.09 for n = 4. The final form for the maximum stress on the bed is339

τmax = χ(n)

(
nJtip

(n+ 1)AπR

)1/(n+1)

. (18)

where χ(n) is set to the value inferred in Figure 3 as R/D → 0 (i.e. χinf ).340

Numerical simulations also allow us to study the spatial variations in shear stress on the341

undeforming bed when a channel is present. Figure 4 shows the stress on the undeforming342

bed for n = 1 and n = 3 and the parameters in Table 1. As the stress exponent increases343

the maximum stress on the undeforming bed drops significantly, in excellent agreement344

with the behavior predicted for a sharp transition in equation (4) that showed a strong345

dependence of the singularity on the stress exponent. Our simulations show that for n = 3346

and n = 4 the stresses calculated numerically accounting for the channel are comparable347

to the predictions for a sharp transition for several tens of meters adjacent to the channel.348

4.3. The importance of basal resistance

Up until now we have neglected the basal resistance beneath the ice stream when solving349

for the stress field around the locking point, arguing that τbase is much smaller than the350

large stresses concentrated near the locking point. While this is true for values of the basal351

resistance inferred beneath the majority of an ice stream – typically 1 − 5 kPa [Kamb,352

2001] – it may not be true for the large basal resistance we expect to occur near a channel353
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[Perol et al., 2015]. We can make some simple estimates analytically if we assume that354

n = 1 and the basal resistance immediately adjacent to the channel takes a uniform value355

τf , which is linked to but potentially much greater than τbase. As shown in Appendix B,356

the stress on the undeforming bed is357

τxz = τf +

√
Jtip

2πAy

(
1 +

∞∑
n=1

Cn

(
R

y

)n)
, (19)

where the constants Cn are given in equations (B18) and (B19). Figure 5 plots the stress358

on the undeforming bed for different values of τf using the parameters in Tables 1 and359

2. Our results show that for these parameter choices the dependence of maximum stress360

on τf is not significant, with the maximum stress on the bed increasing by approximately361

25% as τf varies by 600 kPa. To explore the dependence on τf for other parameter choices362

we use equation (19) to calculate the maximum stress on the bed,363

τmax =

(
1 +

4

π

)
τf +

√
2Jtip
πAR

. (20)

Comparing the magnitude of the two terms in equation (20) we conclude that for all values364

of Jtip the maximum stress resolved on the bed increases with τf , and this increase can be365

significant if τf is comparable to τsharp(R). Note that even when Jtip = 0 the maximum366

shear stress on the undeforming bed exceeds the yield strength of the deforming bed.367

Our analysis could be extended to account for a nonlinear rheology and a spatially368

variable basal resistance on the deforming bed numerically. However, as discussed in369

more detail in Section 7.1, the exact form of the spatial variations in basal resistance is370

currently unclear, and is complicated by many additional processes not accounted for here371

including the coupling between in-plane and anti-plane deformation, a change in boundary372

conditions across the channel, and changes in channel geometry due to asymmetric creep373
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closure. If our conclusion that the importance of τf increases as τf approaches τsharp(R)374

holds for n 6= 1 then we expect basal resistance to become more important as the stress375

exponent increases because the maximum stress on the bed decreases with increasing n.376

5. Basal yield strength adjacent to channel

Here we model the yield strength of the undeforming bed adjacent to the channel, which377

is governed by a Coulomb-plastic rheology controlled by the effective stress in the till and378

a friction coefficient379

τyield = f(σn − p), (21)

where σn is the normal stress acting on the bed, p is the pore pressure, and f is the friction380

coefficient of the till.381

To determine the effective stress of the bed we model a steady state channel following382

the approach from Röthlisberger [1972]. First, we use the Gauckler-Manning law for383

turbulent flow in a conduit to relate the water flux in the channel Qw to the channel384

geometry through385

Qw

Ach
=
R

2/3
h S1/2

nm
, (22)

where Ach is the area of the channel, Rh is the hydraulic radius of the channel, and nm is386

the Gauckler-Manning coefficient. For the semi-circular channel shown in Figure 1,387

Ach =
πR2

2
, Rh =

R

2(1 + 2/π)
. (23)

Combining equations (22) and (23) we solve for the channel radius,388

R = 25/8

(
nmQw

πS1/2

)3/8(
1 +

2

π

)1/4

. (24)

Note that for fixed values of nm and S the channel radius is a function of the water flux389

alone, with larger water fluxes leading to a larger channel radius.390
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The heat generated by turbulent flow in the channel leads to melting at the channel wall391

[Röthlisberger , 1972; Shreve, 1972]. Using the rate at which water flowing in the channel392

converts gravitational potential energy into heat we calculate the rate at which melting393

expands the channel radius,394

Ṙmelt =
ρwgSQw

πLρiceR
, (25)

where ρw is the density of water and L is the latent heat of fusion for ice. Melting at the395

channel interface is balanced by creep closure of the channel due to the ice overburden.396

For the power law rheology given in equation (3) we use the solution from Nye [1953] for397

creep closure of a circular channel to estimate the closure rate as,398

Ṙcreep =
AR (σo − p)n

nn
, (26)

where σo = ρicegH is the ice overburden pressure. A steady state size occurs when melting399

at the channel wall exactly balances creep closure. Setting (25) equal to (26) we find that400

the pore pressure in the channel is equal to401

p = σo − n
(

ρwgSQw

πALρiceR2

)1/n

. (27)

Note that the pore pressure decreases as the flux within the channel increases, and thus402

the till yield strength in the vicinity of the channel increases with Qw.403

Perol et al. [2015] showed that hydraulic diffusion equilibrates the pore pressure in the

till with the pore pressure in the channel over the few tens of meters immediately adjacent

to the channel. However, the presence of a channel alters the yield strength immediately

adjacent to the channel by changing the normal stress resolved on the till. We can use

the creep closure solution from Nye [1953] to determine the normal stress resolved on the
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till adjacent to the channel,

σn = p+ (σo − p)

(
1 +

2− n
n

(
R

y

)2/n
)
. (28)

Combining equations (27) and (28) with the Coulomb-plastic rheology from equation (21)404

we calculate the strength of undeforming bed to be405

τyield = f

(
ρwgSQw

πALρiceR2

)1/n
(
n+ (2− n)

(
R

y

)2/n
)
. (29)

Equation (29) predicts large changes in the yield strength of the undeforming bed in the406

immediate vicinity of the channel, with the strength increasing near the channel for n < 2407

but decreasing near the channel for n > 2. The yield strength at the channel wall, where408

the highest shear stress is resolved on the bed, is409

τyield = 2f

(
ρwgSQw

πALρiceR2

)1/n

. (30)

6. Stable margin configurations

To determine when the locking point can be stably collocated with a channel we compare410

the maximum stress on the undeforming bed with the yield strength at the channel wall.411

We focus on a Glen’s law rheology but generalize our analysis to other stress exponents in412

Appendix C. Assuming that the bed first yields at the channel wall, where the maximum413

shear stress on the bed is greatest, we use equations (18) and (30) to write the condition414

for a stable margin configuration as415

χ

(
3Jtip

4πAR

)1/4

< 2f

(
ρwgSQw

πALρiceR2

)1/3

. (31)

We rearrange the inequality to find that a stable margin configuration only occurs when416

the channel radius is less than the critical locking radius417

Rlock =

(
2f

χ

)12/5(
ρwgSQw

πALρice

)4/5(
4πA

3Jtip

)3/5

. (32)
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Even though larger channels are more effective at limiting the maximum stress on the418

undeforming bed, we find that a stable margin configuration occurs if the channel radius419

is lower than a critical value because the dependence of till strength on channel size is420

more sensitive than the dependence of the maximum stress on channel size.421

For fixed material properties and far-field loading the channel radius and the locking422

radius are functions of the water flux in the channel alone. Figure 6 plots R and Rlock as423

a function of Qw for the parameters in Table 1 and a Glen’s law rheology. At low water424

fluxes the channel radius is larger than the locking radius Rlock, and thus the margin425

configuration is not stable. However, Rlock increases faster with Qw than R, leading to a426

stable margin configuration above a critical flux water flux.427

Using our formulae for R and Rlock we solve for the critical water flux that must be428

exceeded for a stable margin to occur,429

Qlock = 225/17
( nm
πS1/2

)15/17(
1 +

2

π

)10/17(
χ

2f

)96/17(
πALρice
ρwgSQw

)32/17(
3Jtip
4πA

)24/17

.

(33)

Figure 7 plots Qlock as a function of A for different values of f and τlat. We choose this430

range of A based on the scatter in the experimentally measured values of A at 0 ◦C431

reported in Cuffey and Paterson [2010]. We observe a strong dependence of the critical432

water flux on A, with the smallest values of A leading to the smallest values of Qlock.433

If based on the estimates in Perol et al. [2015] we assume that a typical water flux in a434

channel is approximately 0.1 m3/s then Figure 7 suggests that the locking point is not435

collocated with a channel at Dragon margin if the ice deforms with a Glen’s law rheology.436

Choosing a single value for the water flux, which varies significantly in space and time, is437

somewhat unsatisfying and long-term we hope to incorporate our analysis into a model438
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for ice stream hydrology that will allows us to solve for the water flux in the channel439

instead of just picking a value. However, developing and analyzing such a model is far440

beyond the scope of this paper.441

We observe a strong dependence of Qlock on τlat for all three stress exponents, as shown442

in Figure 8. If we again choose a typical channel flux to be 0.1 m3/s then for a Glen’s law443

rheology the locking point can coincide with a channel if the lateral stress is less than ∼50444

kPa and for dislocation creep the locking point can coincide with a channel if the lateral445

stress is less than ∼115 kPa. Using data for a range of shear margins from Joughin et al.446

[2002], Perol and Rice [2015] estimated that τlat ≈ 100−135 kPa. From these observations447

we conclude that there are some scenarios where the locking point can be collocated with448

a drainage channel, though this configuration is not probably typical and only occurs in449

regions of high water flux. Predicting specific locations where the drainage channel is450

likely collocated with a drainage channel is difficult due to the poor constraints on the451

presence of drainage channels within shear margins and the water fluxes through such a452

channel. Note that our results are sensitive to the assumed rheology, and collocation of453

the locking point with a channel can only occur if the ice deformation at the locking point454

follows the dislocation creep rheology of Durham et al. [1997], which dominates at the455

highest shear stresses. Our results highlight the importance of properly determining how456

ice deforms over a range of shear stresses, grain sizes, and temperatures.457

7. Discussion

In this paper we investigated when the locking point can be collocated with a drainage458

channel within a shear margin. We showed that the presence of the channel limits the459

maximum shear stress on the undeforming bed and alters the yield strength of the till by460
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changing the normal stress on the ice-till interface. By determining when the shear stress461

on the undeforming bed is always less than the till strength we found that the locking462

point can be collocated with a drainage channel only if the water flux in the channel463

exceeds a critical flux that depends sensitively on the ice rheology.464

Our analysis complements Perol et al. [2015], which demonstrated how a drainage chan-465

nel not collocated with the locking point can select the margin location by raising the yield466

strength of the till over a broad zone within the shear margin. In contrast, our analysis467

studied the scenario where the locking point is collocated with a channel and focused on468

understanding how the presence of a channel alters the shear stress and normal stress469

resolved on the undeforming bed. However, our conclusions are in good agreement with470

Perol et al. [2015]. Figure 8 shows that for the Glen’s law rheology (i.e. n = 3) used471

exclusively in Perol et al. [2015] the locking point cannot be collocated with a channel,472

which is the same conclusion reached in Perol et al. [2015].473

The two distinct hydrologic mechanisms presented in this paper and Perol et al. [2015]474

– one with the locking point collocated with the channel and the other with the locking475

point occurring inboard of the channel on a temperate bed – both become more effective476

as the flux in the channel increases. Thus, the hydrologic mechanisms are most likely477

to select the shear margin location in regions of high water flux. When the hydrologic478

mechanisms are ineffective we expect the margin location to be controlled by where the479

subglacial till freezes, a scenario studied in Jacobson and Raymond [1998], Schoof [2012],480

and Haseloff [2015].481

7.1. Limitations of model
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In this subsection we outline the limitations of our model and discuss how these lim-482

itation may alter our conclusions. The solution from Nye [1953] used to model creep483

closure of the channel was developed for axisymmetric creep closure of a circular hole and484

implicitly assumes free slip boundary conditions at the bed. However, our boundary con-485

ditions are no slip on one side of the channel and a deforming bed providing a finite basal486

resistance on the other. Weertman [1972] suggested that the change to no slip bound-487

ary conditions at the bed will alter the strength of the undeforming bed in several ways.488

First, additional basal resistance will lower the creep closure rate, leading to a lower pore489

pressure in the channel and thus a stronger bed. If the realistic boundary conditions lead490

to a creep closure rate equal to half the value predicted by equation (26) then the effective491

stress in the channel increases by a factor of 2n, which highlights the importance of ac-492

curately determining n. Second, Weertman [1972] showed that for a Newtonian rheology493

the no slip boundary condition reduces the normal stress applied to the bed, and thus the494

yield strength of the till, far from the channel. However, Weertman [1972] was unable to495

produce a formula for the normal stress immediately adjacent to the channel or account496

for a spatially variable in-plane strain rate and a nonlinear rheology. Finally, our creep497

closure model neglects to couple the in-plane strain rates from channel closure with the498

large anti-plane strain rates present at the locking point. This important coupling, first499

noted in Röthlisberger [1972] and studied further in Weertman [1972] and Fernandes et al.500

[2014], is expected to lead to easier channel closure, and thus a lower effective stress and501

yield strength adjacent to the channel. Currently it is unclear how the three uncertainties502

associated with the closure model, one of which raises τyield and two of which lower τyield,503

balance each other to control the yield strength of the till near a drainage channel. Note504
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that the coupling with lateral flow in our model through the nonlinear ice rheology is505

physically different from the dependence on lateral flow in Suckale et al. [2014], which506

highlighted that the advection of cold ice into the margin driven by lateral gradients in507

ice thickness greatly influences the large scale temperature structure of a shear margin. In508

our model we consider a channel sitting within a broad region of temperate ice, and thus509

temperature gradients are unimportant and we are insensitive to the effects of advection.510

Determining how the presence of a channel alters the till yield strength is important511

for the deforming bed as well as the undeforming bed. As shown in Section 4.3, the512

basal resistance provided by the deforming bed near the channel plays an important role513

in setting the maximum stress on the undeforming bed. However, we did not explore514

this effect in depth because the exact functional form of the basal resistance is unclear.515

To clarify the spatial variations in basal resistance on the deforming bed requires new516

calculations accounting for realistic basal boundary conditions and the coupling between517

in-plane and anti-plane deformation, as discussed earlier in this section. Note that a broad518

zone of elevated basal resistance will lower Jtip, as shown in Perol et al. [2015], leading to519

a substantially lower value of Qlock and a greater likelihood that the locking point could520

be collocated with a drainage channel.521

Next we discuss our assumed channel geometry. The asymmetry of the boundary con-522

ditions across the channel will lead to asymmetric creep closure of the channel, suggesting523

that our assumption of a semi-circular may not be valid. If creep closure is less rapid near524

the undeforming bed then the radius of curvature of the channel wall at the undeforming525

bed may be greater than the average channel radius, making the stress limiting effects of526

the channel more effective. Note that the asymmetry of the boundary conditions will lead527
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to different normal stresses on the deforming and undeforming bed, leading to a jump in528

the till yield strength across the channel. Furthermore, asymmetry in the creep closure of529

the channel will lead to gradual migration of the channel towards the undeforming bed.530

The upper bound for this migration rate is the melt rate at the channel wall, which rarely531

exceeds 0.1 m/a in our calculations.532

Another limitation of the model regards the details of how the subglacial till deforms.533

For simplicity we assume a deforming bed on one side of the channel and an undeforming534

bed on other, but do not explicitly model how this transition occurs in the till. Fur-535

thermore, we assume that the entirety of the channel is incised into the ice, ignoring the536

possibility that a channel may develop in the till or other physical effects that may become537

important at high effective stresses such as the penetration of ice into the till studied in538

Rempel [2009]. If the radius of curvature at the channel wall is lowered by incision into539

the till then our mechanism for limiting the maximum stress using a channel becomes less540

effective.541

Finally our model could be extended to account for non-steady state effects such as vari-542

able water flux, time-dependent transport of water to the channel, and evolving channel543

shape. Non-steady state effects could be particularly important when determining how544

our results relate to observations of margin migration.545

7.2. Importance of ice rheology

While a simple Glen’s law rheology may be a good approximation for ice stream scale546

simulations, our paper highlights the importance of properly determining the dominant547

physical processes that allow ice to deform over a range of stresses. Figures 7 and 8548

show that the critical water flux that controls if the transition from a deforming to an549
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undeforming bed across a channel is stable depends sensitively on the assumed values of550

n and A. More generally, the closure rate of and pore pressure in a channel, important551

considerations in all models of subglacial drainage channels, depend strongly on A and n.552

The high shear stresses present at the locking point may allow deformation to occur553

solely through dislocation creep. Dislocation creep is the dominant deformation mecha-554

nism ice at the highest shear stresses and is governed by n = 4 [Durham et al., 1997]. If555

we assume a grain size of 4 mm – a typical grain size observed in the shear margin cores556

from Jackson and Kamb [1997] – Figure 60.3 from Goldsby [2006] predicts that disloca-557

tion creep dominates for stresses exceeding ∼ 200 kPa. Figure 4 shows that this critical558

stress is lower than the shear stress expected on the undeforming bed for a channel with559

radius 1 m, and thus n = 4. However, the stress concentration at the locking point could560

drive significant grain size reduction. If the grain size is reduced to 1 mm then dislocation561

creep dominates above ∼ 1 MPa, and if the grain size reaches 100 µm then dislocation562

creep dominates above ∼ 2 MPa. For comparison, Perol et al. [2015] and Figure 4 show563

that peak stresses within the shear margin are at least a few hundred kPa, though it564

should be noted that the analysis in Perol et al. [2015] uses a Glen’s law rheology with the565

temperature dependence from Cuffey and Paterson [2010]. If dislocation creep is not the566

dominant deformation mechanism then the grain-boundary sliding regime governed by567

n = 1.8 described in Goldsby and Kohlstedt [2001] dominates. The concentrated stresses568

present at the locking point may produce a fabric in the ice. If this occurs then the value569

of A governing the creep closure of the channel will differ from the value of A governing570

the shear stress resolved on the bed.571
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In Section 2 we assumed that the melt content of the ice immediately adjacent to the572

channel could be neglected when determining values of A and n. However, this assumption573

may not be valid for all shear margins, especially if a large quantity of melt is generated574

in the temperate ice. Accurately determining the effect of melt fraction on rheology is575

beyond the capability of current experiments, though the experiments in Duval [1977] and576

Lliboutry and Duval [1985] showed that a melt fraction of just 1.1% increases A by about a577

factor of three. Other experiments performed on partially molten olivine – which deforms578

through similar physical mechanisms as ice – showed increasing the melt fraction promotes579

grain boundary diffusion creep, which is governed by n = 1 [Cooper and Kohlstedt , 1986].580

Thus, it may not be sufficient to just make A a function of the melt fraction, and there581

may also be a change in n at a given shear stress.582

When predicting the melt content in the ice adjacent to the channel it may be helpful583

to consider two end-members dictated by the balance between subglacial drainage and584

englacial drainage. For the case where the subglacial transport of melt – either through585

the till or along the ice-till interface – is more efficient than englacial transport we expect586

melt to be routed to the bed before flowing to the channel. For this scenario we expect the587

water content in the temperate ice immediately adjacent to the channel to be negligible. In588

contrast, if subglacial flow is inefficient then melt may be routed to the channel englacially,589

implying a significant water content in the ice next to the channel, and thus a much590

larger value of A. Our qualitative argument assuming that drainage naturally selects591

the most efficient route from where melt is generated to the channel is motivated by the592

quantitative analysis in Fisher [1951] that studied how diffusion along grain boundaries593

and diffusion through individual crystals balance to control diffusion into a polycrystalline594
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metal. Fisher [1951] showed that if the grain boundary diffusivity is significantly higher595

than the diffusivity for an individual crystal then the most efficient way to penetrate into596

the polycrystal is to diffuse as far as possible along the grain boundary before leaking into597

the adjoining crystal. In this analogy subglacial drainage is equivalent to diffusion along598

a grain boundary and englacial drainage is equivalent to diffusion through an individual599

crystal.600

8. Conclusions

Our paper investigated when the transition from a deforming to an undeforming bed601

can occur across a subglacial drainage channel. We showed that the presence of a channel602

at the locking point limits the maximum shear stress resolved on the undeforming bed and603

alters the till strength by changing the normal stress on the ice-till interface. Comparing604

stress and strength on the undeforming bed, we determined that the locking point can605

be collocated with a drainage channel if and only if the water flux in the channel exceeds606

a critical value. For a Glen’s law rheology this critical flux is unrealistically large if the607

average lateral shear stress in the shear margin exceeds ∼ 35− 50 kPa. However, for the608

dislocation creep rheology of Durham et al. [1997] the critical flux is substantially lower,609

and the locking point can be collocated with the channel if the average lateral shear stress610

in the shear margin is less than ∼ 85 − 115 kPa. From these observations we conclude611

that there are some scenarios where the locking point can be collocated with a drainage612

channel, though this configuration is probably not typical.613
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Creyts and Alan Rempel for fruitful discussions.619

D R A F T May 12, 2016, 4:11pm D R A F T



PLATT, PEROL, SUCKALE, RICE: LOCATION OF A SHEAR MARGIN AT A CHANNEL X - 33

Appendix A: Derivation of near-tip solution

In this appendix we solve for the stress field and velocity near the transition from a620

deforming to an undeforming bed, assuming a sharp transition at y = z = 0. We use the621

hodograph plane methods from Rice [1967] and Rice [1968b] to solve for the downstream622

velocity profile as well as the stress field. Our approach is different from Suckale et al.623

[2014] because we need to solve for the downstream velocity profile, as well as the stress624

field. The downstream velocity profile is later used as a boundary condition in numerical625

simulations for the stress field around a channel.626

To begin we define the Legendre transform of the downstream velocity u627

ψ = yγ̇y + zγ̇z − u, (A1)

where γ̇y and γ̇z are the engineering strain rates defined by628

γ̇y =
∂u

∂y
, γ̇z =

∂u

∂z
. (A2)

The effective engineering strain rate is equal to [γ̇2y + γ̇2z ]
1/2, and the power law rheology629

given in equation (3) can be written as γ̇ = 2Aτn. Differentiating equation (A1) with630

respect to γ̇y and γ̇z, and noting that631

∂u

∂γ̇y
= γ̇y

∂y

∂γ̇y
+ γ̇z

∂z

∂γ̇y
,

∂u

∂γ̇z
= γ̇y

∂y

∂γ̇z
+ γ̇z

∂z

∂γ̇z
, (A3)

we can relate the first derivatives of ψ to the coordinates y and z through632

∂ψ

∂γ̇y
= y ,

∂ψ

∂γ̇z
= z. (A4)

Following Rice [1967] we rewrite the equation for mechanical equilibrium as633

∂y

∂τxy
+

∂z

∂τxz
= 0 (A5)
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and define polar coordinates in the strain plane634

γ̇y = −γ̇ sinφ , γ̇z = γ̇ cosφ. (A6)

Note that in the hodograph plane radius from the origin is equal to the equivalent engi-635

neering strain rate γ̇. As shown in Rice [1967], the equation for mechanical equilibrium636

in the hodograph plane is637

n
∂2ψ

∂γ̇2
+

1

γ̇

∂ψ

∂γ̇
+

1

γ̇2
∂2ψ

∂φ2
= 0. (A7)

Note that transforming from the physical plane to the hodograph plane has turned the638

nonlinear equation for u into a linear equation for ψ.639

Next we map the two boundary conditions in the physical plane to the hodograph plane.640

We can determine where these two boundary conditions map to in the hodograph plane641

by noting that for the traction free condition γ̇z = 0 and γ̇y < 0, while for the no slip642

boundary condition γ̇y = 0 and γ̇z > 0. Thus the no-slip condition maps to the positive643

γ̇z-axis and the traction free condition maps to the negative γ̇y-axis.644

Having located the boundary conditions in the hodograph plane we next determine the645

form of the boundary conditions. For the no slip condition all three terms in equation646

(A1) vanish, leading to647

ψ = 0 on φ = 0. (A8)

In the physical plane the traction free boundary condition occurs on z = 0, and thus from648

equation (A4) we find ∂ψ/∂γ̇z = 0. This is equivalent to saying that the normal derivative649

must vanish,650

∂ψ

∂φ
= 0 on φ = π/2. (A9)
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Figure 9 shows a sketch of the physical plane and hodograph highlighting the equations651

and boundary conditions.652

We solve equation (A7) with the boundary conditions given in (A8) and (A9) using the653

separable solution654

ψ = −Cγ̇−1/n sinφ, (A10)

where the constant C > 0 is an arbitrary constant that we determine later and the negative655

sign is required to ensure that when we map back to the physical plane our solution lies in656

z > 0. Note that equation (A10) is a much simplified case of the eigenfunction expansion657

given in the original solution of this problem from Rice [1967]. Using the solution for658

ψ we now determine the mapping to switch between (γ̇, φ) and (r, θ). In the hodograph659

plane polar coordinates defined in equation (A6) equation (A4) becomes660

y = − sinφ
∂ψ

∂γ̇
− cosφ

γ̇

∂ψ

∂φ
, (A11)

661

z = cosφ
∂ψ

∂γ̇
− sinφ

γ̇

∂ψ

∂φ
. (A12)

Inserting the solution given in equation (A10) we find662

y = −Cγ̇−(n+1)/n

((
n+ 1

n

)
sin2 φ− 1

)
, (A13)

663

z =
n+ 1

n
Cγ̇−(n+1)/n sinφ cosφ. (A14)

Dividing z by y we arrive at an equation for θ,664

tan θ =
(n+ 1) tanφ

n− tan2 φ
. (A15)

Noting that equation (A15) defines a quadratic equation in tanφ we solve to find665

tanφ = −(n+ 1) cot θ

2
+

√
(n+ 1)2 cot2 θ

4
+ n. (A16)
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To find the radius r in the physical plane we use r2 = y2 + z2, leading to666

r = Cγ̇−(n+1)/n

√(
1 + n

n

)(
1− n
n

)
sin2 φ+ 1. (A17)

We rearrange equation (A17) to give γ̇ in terms of r,667

γ̇(n+1)/n =
C

r

√(
1 + n

n

)(
1− n
n

)
sin2 φ+ 1, (A18)

where tanφ is given by equation (A16) and we use the trigonometric identity,668

sin2 φ =
tan2 φ

1 + tan2 φ
. (A19)

At this point we solve for the constant C using the J-integral, which links the far-field669

loading to the asymptotic solution valid near the locking point. This process is greatly670

simplified by comparing with the solution for the stress field around a sharp transition671

from Suckale et al. [2014]. Comparing our solution for z given in equation (A12) with672

equation (B2) in Suckale et al. [2014] allows us to relate the function F defined in Suckale673

et al. [2014] to our solution through674

F =
n+ 1

2n
Cγ̇−(n+1)/n. (A20)

Using the definition of F given in equation (B4) of Suckale et al. [2014] we arrive at675

C =
2n(2A)1/nJtip
π(n+ 1)

. (A21)

Determining the constant C completes our solution for ψ.676

Finally we invert for u using677

u = γ̇
∂ψ

∂γ̇
− ψ, (A22)

allowing us to find the velocity field around the locking point in terms of γ̇ and φ,678

u =
(n+ 1)C

n
γ̇−1/n sinφ. (A23)
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Using equations (A16) and (A18) we rewrite this in terms of r and θ to find,679

u =

(
2A(n+ 1)

n

)1/(n+1)(
2Jtip
π

)n/(n+1)

r1/(n+1)g(θ), (A24)

where the shape of the velocity field is given by the function680

g(θ) =

(
n2fn+1

(n2 + f)(1 + f)n)

)1/(2n+2)

(A25)

and the function f(θ) is681

f(θ) = n+
(n+ 1)2

2
cot2 θ − (n+ 1) cot θ

√
(n+ 1)2

4
cot2 θ + n. (A26)

Noting that ∂u/∂y = 0 on the undeforming bed, we inserting the derivative of u with682

respect to z into the power law given in equation (3) to find the stress on the undeforming683

bed,684

τsharp =

(
nJtip

(n+ 1)Aπy

)1/(n+1)

. (A27)

Appendix B: Solution for circular channel and Newtonian rheology

Here we develop an analytic solution for the stress on the undeforming bed a semi-685

circular channel in ice with a Newtonian rheology. Because our solution relies on complex686

variables, it cannot be extended to other stress exponents n 6= 1. To begin we assume that687

the basal resistance acting on the deforming bed is much smaller than the concentrated688

stresses at the locking point, allowing us to model the deforming bed as a stress free689

boundary. After we generalize the solution to account for the finite basal resistance that690

Perol et al. [2015] argued is important to a drainage channel in the margin691
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B1. Negligible basal resistance

To begin we define the complex coordinate ξ = y + iz = reiθ and the holomorphic692

function G such that693

u = 2A=(G(ξ)), (B1)

where =(G) indicates the imaginary part of G. Differentiating G with respect to ξ we694

find695

G′(ξ) = τxz + iτxy. (B2)

Based on the small-scale yielding assumption validated in Section 3, we require that G696

match the solution for a sharp transition as ξ →∞,697

G′(ξ)→
(
Jtip
2Aπ

)1/2

ξ−1/2 as ξ →∞. (B3)

In addition we have a traction free boundary condition at the channel face r = R,698

τzyny + τxznz = 0, (B4)

where ny and nz are the y and z components of the unit normal to the channel wall699

respectively. Using our definition of ξ and equation (B2) we rewrite the traction free700

condition on the channel face as701

=[eiθG′(ξ)] = 0. (B5)

To match the stress free boundary condition at r = R we look for a series solution,702

G′(ξ) =

(
Jtip
2Aπ

)1/2

ξ−1/2

(
1 +

∞∑
k=1

Ck
ξk

)
, (B6)

using the fact that all holomorphic functions are analytic to write G′(ξ) as a series expan-703

sion in ξ. Our series expansion naturally satisfies the no slip condition at θ = 0 and the704
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traction free boundary condition at θ = π. Inserting (B6) into (B5) leads to705

=

[
eiθ/2

(
1 +

∞∑
k=1

CkR
−ke−ikθ

)]
= 0, (B7)

which is satisfied by setting C1 = R and Ck = 0 for k > 1. Thus, our final solution for706

G′(ξ) is707

G′(ξ) =

(
Jtip
2Aπ

)1/2

ξ−1/2
(

1 +
R

ξ

)
. (B8)

We extract the shear stress along the undeforming portion of the bed by setting ξ = y to708

arrive at709

τxz =

(
Jtip

2Aπy

)1/2(
1 +

R

y

)
. (B9)

B2. Finite basal resistance

The method used to calculate the maximum stress on the locked portion of the bed for710

a Newtonian rheology and a circular channel can be generalized to allow for a non-zero711

basal stress. When the deforming bed applies a non-zero shear stress τf to the ice the712

far-field solution for a singular crack becomes713

τxz + iτxy = τf +

(
Jtip
2Aπ

)1/2

ξ−1/2, (B10)

which is equal to the linear superposition of a constant stress field (τxy, τxz) = (0, τf ) and714

the solution for a sharp transition assuming that the bed provides no resistance. To find a715

solution that approaches the singular solution as ξ →∞ we again use a series expansion,716

τxz + iτxy = τf +

(
Jtip
2Aπ

)1/2

ξ−1/2

(
1 +

∞∑
k=1

Ck
ξk

)
. (B11)

Inserting this expansion into the traction free boundary condition given in equation (B5)717

we arrive at718

τf sin θ +

√
Jtip

2πAR

∞∑
k=0

Ck sin((1/2− n) θ)) = 0, (B12)
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where we have set C0 = 1. To find the coefficients Ck we use the series expansion719

sin θ =
∞∑
k=1

Dk sin ((n− 1/2)θ) , −π ≤ θ < π, (B13)

which is equivalent to720

sin 2ψ =
∞∑

k=1,3,5,...

Dk sin (nψ) , −π
2
≤ ψ <

π

2
. (B14)

To find the coefficients Dk we use the orthogonality condition721 ∫ π/2

−π/2
sin(nψ) sin(mψ)dψ =

π

2
δmn, (B15)

where δmn is the Kronecker delta and m,n are both odd. Using equation (B15) we722

calculate the formula for Dk,723

Dk =
2

π

∫ π/2

−π/2
sin(2ψ) sin(kψ)dψ, (B16)

and evaluate this to find724

Dk =
8

π(k2 − 4)
(−1)

(k+1)
2 . (B17)

Having found the values for Dk we can convert this to the coefficients Ck. We find that725

C1 = 1 +
8τf
3π

√
2πAR

Jtip
, (B18)

726

Cn =

√
2πAR

Jtip

8τf
π(2n+ 1)(2n− 3)

(−1)n , n ≥ 2. (B19)

These coefficients allow us to calculate the stress applied to the locked portion of the bed727

τxz = τf +

√
Jtip

2πAy

(
1 +

∞∑
n=1

Cn

(
R

y

)n)
. (B20)

Appendix C: Generalization of locking to radius to n 6= 3

Here we generalize the analysis in section 6 to stress exponents n 6= 3. To do this we728

compare the maximum stress on the bed given by equation (18),729

χ

(
nJtip

(n+ 1)πAR

)1/(n+1)

. (C1)
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with the yield strength of the undeforming bed adjacent to the channel from equation730

(30),731

2f

(
ρwgSQw

πLρiceAR2

)1/n

. (C2)

Setting the stress less than or equal to the yield strength of the undeforming lead to the732

inequality,733

χ

(
nJtip

(n+ 1)πAR

)1/(n+1)

< 2f

(
ρwgSQw

πLρiceAR2

)1/n

. (C3)

We rearrange to find the critical locking radius below which a stable margin configuration734

occurs,735

R < Rlock, (C4)

where the locking radius is defined as736

Rlock =

(
2f

χ

)n(n+1)
n+2

(
ρwgSQw

πLρiceA

)n+1
n+2
(
πA(n+ 1)

nJtip

) n
n+2

. (C5)

Recalling that for fixed material properties and loading conditions R and Rlock depend on737

the water flux Qw alone, we rewrite the inequality (C5) as738

Qw > Qlock, (C6)

where the critical water flux that must be exceeded for locking to occur is739

Qlock = 2
5(n+2)
5n+2

( nm
πS1/2

) 3(n+2)
5n+2

(
1 +

2

π

) 2(n+2)
5n+2

(
χ

2f

) 8n(n+1)
n+2

(
πLρiceA

ρwgS

) 8(n+1)
5n+2

(
nJtip

πA(n+ 1)

) 8n
5n+2

.

(C7)
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Parameter Units Value
Ice stream width, W km 34

Ice sheet thickness, H km 1
Ice sheet slope, S – 0.0012

Basal shear stress beneath ice stream, τbase kPa 3.5
Gravitational acceleration, g m s−2 9.81

Density of ice, ρice kg m−3 917
Density of water, ρw kg m−3 1000

Latent heat per unit mass, L kJ/kg 335
Friction coefficient, f – 0.6

Gauckler-Manning coefficient, nm s m−1/3 0.01

Table 1. A table showing the parameters used in this paper. The values of ice thickness, ice

stream width, and slope are intended to model ice stream B2 [Joughin et al., 2002]. As shown in

the text, these parameters cannot be varied independently, and variations in these parameters

only alter the stress around the locking point through Jtip.

Pre-factor, A Stress exponent, n

2.4× 10−14, Pa−1 s−1 1
2.4× 10−24, Pa−3 s−1 3
2.2× 10−30, Pa−4 s−1 4

Table 2. A table showing the parameters for the three different power law rheologies used

in this paper. The rheology with n = 3 is Glen’s law and we use the recommended value of A

at 0 ◦C from Cuffey and Paterson [2010]. The n = 4 rheology is based upon the dislocation

creep experiments rheology proposed in Durham et al. [1997] and is expected to dominate at the

highest stresses.
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Deforming Undeforming
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Water

Figure 1. A sketch of the geometry used in our calculations for the deformation around the

channel. We assume a semi-circular channel with a radius R incised into the ice, which rests

upon a subglacial till layer. The anti-plane strain rates are calculated assuming that the bed is

deforming to the left of the channel, and undeforming to the right of the channel. We model

the creep closure of the channel using the pressure difference between the channel operating at

a pressure p and the ice overburden σo.
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Figure 2. A plot comparing the analytic solution given in equation (A24) valid right at the

locking point and numerical simulations generated using the finite element package COMSOL for

the whole ice stream model from Perol et al. [2015]. The left hand column shows simulations that

assume a constant viscosity and the right hand column shows simulations that couple deformation

and temperature through a temperature dependent rheology as described in Perol et al. [2015].

The upper panels show the downstream velocity as a function of θ for a range of r and the lower

panels shows the stress concentrated on the undeforming bed. The curve at r = 5 m is used

to infer a best-fitting value of Jtip that is then used to fit all remaining curves. We see good

agreement between the analytic and numerical solutions for several tens of meters, allowing us

to make a small-scale yielding approximation.

D R A F T May 12, 2016, 4:11pm D R A F T



PLATT, PEROL, SUCKALE, RICE: LOCATION OF A SHEAR MARGIN AT A CHANNEL X - 51

0.02 0.04 0.06

1

1.25

1.5

1.75

2

0.1

Figure 3. A plot of χ against R/D for n = 1, n = 3, and n = 4, alongside the fitting function

χ = χinf (1+R/D)−1/n. This plot allows us to infer values of χinf that are then used to determine

the maximum stress resolved on the undeforming bed. We find best fitting values of χinf to be

2 for n = 1, 1.15 for n = 3, and 1.09 for n = 4.
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Figure 4. A plot showing the maximum stress on the undeforming bed accounting for the

channel in blue alongside the prediction using the solution for a sharp margin given in equation

(4) for n = 1 and n = 3. We see that the Newtonian rheology leads to significantly higher

shear stresses on the bed than the Glen’s law rheology, and that the solution for a sharp margin

provides a reasonable approximation to the stress field accounting for the channel for all y.
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Figure 5. A plot showing how the stress on the undeforming bed varies with the basal

resistance of the deforming bed τf for the parameters in Table 1 and n = 1. Our results show

that for these parameter choices the dependence of maximum stress on τf is not significant.

However, as discussed in Section 4.3, we expect the role of τf to become more important as τf

becomes comparable to τsharp(R).
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Figure 6. A plot of the channel radius R and locking radius Rlock against the water flux in

the channel for the parameters in Tables 1 and 2 assuming a Glen’s law rheology. We see that

R < Rlock – and thus a stable margin configuration exists – whenever the water flux exceeds a

critical value of ∼ 127 m3/s. This water flux corresponds to a channel with a radius of 4 m.
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Figure 7. A plot showing how the critical water flux Qlock varies for a Glen’s law rheology

across the range of values for A at 0 ◦C outlined in Cuffey and Paterson [2010] for different

values of f and τlat. These plots were produced using the parameters in Tables 1 and 2. We

see significant variability with A with higher values of A leading to larger critical fluxes. This

sensitive dependence on the poorly constrained A makes it hard to predict values of Qlock.
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Figure 8. A plot of the critical water flux Qlock against the average stress supported at the

shear margin τlat for n = 1, n = 3, and n = 4. This plot was produced using the parameters in

Tables 1 and 2. We see that Qlock increases rapidly with τlat. Note that the n = 4 curve predicts

much lower critical water fluxes that n = 1 and n = 3.
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Figure 9. A sketch of the physical plane and hodograph plane used in Appendix A showing

the equations solved, boundary conditions used, and coordinates in both planes.
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