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Stability and Localization of Rapid Shear in Fluid-Saturated

Fault Gouge, 2. Localized zone width and strength evolution

John D. Platt1, John W. Rudnicki2,3, and James R. Rice1,4

Abstract. Field and laboratory observations indicate that at seismic slip rates most
shearing is confined to a very narrow zone, just a few tens to hundreds of microns wide,
and sometimes as small as a few microns. Rice et al. [2013] analyzed the stability of uni-
form shear in a fluid-saturated gouge material. They considered two distinct mechanisms
to limit localization to a finite thickness zone, rate-strengthening friction and dilatancy.
In this paper we use numerical simulations to extend beyond the linearized perturba-
tion context in Rice et al. [2013], and study the behavior after the loss of stability. Ne-
glecting dilatancy we find that straining localizes to a width that is almost independent
of the gouge layer width, suggesting that the localized zone width is set by the phys-
ical properties of the gouge material. Choosing parameters thought to be representative
of a crustal depth of 7 km, this predicts that deformation should be confined to a zone
between 4 and 44 µm wide. Next, considering dilatancy alone we again find a localized
zone thickness that is independent of gouge layer thickness. For dilatancy alone we pre-
dict localized zone thicknesses between 1 and 2 µm wide for a depth of 7 km. Finally
we study the impact of localization on the shear strength and temperature evolution of
the gouge material. Strain rate localization focuses frictional heating into a narrower zone,
leading to a much faster temperature rise than that predicted when localization is not
accounted for. Since the dynamic weakening mechanism considered here is thermally driven,
this leads to accelerated dynamic weakening.

1. Introduction

Field and laboratory observations show evidence for
micron-scale strain rate localization in fluid-saturated gouge
materials sheared at seismic slip rates, as discussed in the
introduction to the companion paper Rice et al. [2013].
Such extreme localization focuses the frictional heating into
a narrow zone, making thermally driven dynamic weaken-
ing mechanisms such as thermal pressurization and thermal
decomposition very efficient. This sensitive dependence of
shear strength evolution on the width of the deforming zone
can be seen in the calculations of Rempel and Rice [2006],
Noda et al. [2009], Sulem and Famin [2009], and Garagash
[2012].

The companion paper Rice et al. [2013] used a thermo-
poro-mechanical model for deformation of a fluid-saturated
gouge material to investigate the width of the deforming
zone during rapid shear. In the absence of a stabilizing
mechanism the deformation will collapse into a zone with
zero width, as noted in Rice [2006]. Two stabilizing mech-
anisms were considered in Rice et al. [2013], frictional rate-
strengthening and dilatancy. For each mechanism a linear
stability analysis was used to determine when small devia-
tions away from uniform straining of the gouge material will
grow, and thus uniform straining will be unstable. For fric-
tional rate-strengthening alone this led to a prediction for
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the localized zone thickness as a function of the gouge prop-
erties. When localization is stabilized by dilatancy alone
Rice et al. [2013] found a critical gouge layer thickness above
which intense transient localization occurs at the onset of
shear, although the strain rate perturbations eventually de-
cay and shear is uniform at large slip.

In this paper we use numerical simulations to test the
predictions of Rice et al. [2013]. We study how the proper-
ties of the gouge combine to set the localized zone thickness
when nonlinear effects are accounted for, and compare this
with the formula predicted in Rice et al. [2013]. We also
study how the development of a localized shear zone in-
fluences the maximum temperature rise and shear strength
evolution, showing that the development of a localized zone
corresponds to a sudden strength drop.

2. Model formulation

In this section we outline the model for deformation of
a fluid-saturated gouge material. A more detailed develop-
ment of the model can be found in the companion paper,
Rice et al. [2013]. We consider a gouge layer with a finite
thickness h confined between two poroelastic half-spaces be-
ing moved relative to each other at a slip rate V . The model
is one-dimensional and we only account for spatial variations
that depend on the coordinate perpendicular to the slip di-
rection, y. All values of y are measured relative to the line
y = 0 at the center of the gouge layer. A sketch of this
system is shown in Figure 1.

2.1. Mechanical equilibrium

Rice [2006] hypothesized that, due to the small lengths
that diffusion of heat and pore fluid act over, unrealistically
high accelerations are required to make inertial effects im-
portant within the gouge layer. Motivated by this we neglect
inertia within the gouge layer, leaving us with the conditions
for mechanical equilibrium,

∂τ
∂y

= 0 ,
∂σn

∂y
= 0 (1)
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Figure 1. A sketch showing the system we are modeling. A gouge layer with a finite thickness h is
sheared between two rigid poroelastic half-spaces that are moved relative to each other at a slip rate V .
This leads to a nominal strain rate within the gouge layer γ̇o = V/h. The strain rate γ̇(y, t) will localize
within the gouge layer, as shown by the Gaussian strain rate profile sketched within the gouge layer. The
width W of the zone of localized straining is then estimated as twice the root mean square width of the
Gaussian.

where τ is the shear stress in the layer, σn is the compressive
stress normal to the fault. This means that the stresses in
the layer are at most a function of time, t. We assume that
the normal stress does not evolve with time, and thus σn

is constant. Later in this paper we determine when inertial
effects will significantly alter our results. The shear stress is
taken to be the product of the effective stress and a friction
coefficient f ,

τ = f(σn − p), (2)

where p is the local pore pressure.

2.2. Gouge friction

Constructing friction laws appropriate for the high defor-
mation rates considered here is difficult due to the complex
interplay between purely frictional, temperature and pore
fluid effects. In the absence of such a friction law we use,

f(γ̇) = (a− b) sinh−1

�
γ̇
2γ̇o

exp

�
fo

a− b

��
, (3)

which for (a−b) � fo is asymptotically the same as the fric-
tion law for steady state shearing inferred from low strain
rate velocity-stepping experiments such as those in Dieterich
[1979],

f = fo + (a− b) log

�
γ̇
γ̇o

�
. (4)

Here fo is the friction coefficient at the reference strain rate
γ̇o, and (a − b) quantifies the change in friction with strain
rate. We will assume that the gouge is rate-strengthening,
and thus (a− b) > 0. We use the regularized friction law in
equation (3) instead of the logarithmic friction law in equa-
tion (4) to avoid difficulties when γ̇ → 0.

Since the shear stress is at most a function of t, combin-
ing equations (2) and (3) we can see high pore pressures will
correspond to high values of γ̇. Equation (3) is a simplifi-
cation of reality, and neglects temperature, state evolution
and mineralogical effects. An expanded discussion of the
assumptions implicit in using steady state friction laws that
depend on strain rate alone can be found in Rice et al. [2013].

2.3. Conservation of energy

Following [Rice et al., 2013] the conservation of energy is
written as

∂T
∂t

=
τ γ̇
ρc

+ αth
∂2T
∂y2

, (5)

where T is temperature, αth is the thermal diffusivity, and
ρc is the effective heat capacity per unit volume in the ref-
erence state. Both ρc and αth are taken to be constant.
Since the shear stress τ is constant throughout the gouge
layer, frictional heating will be focused in regions of high
strain rate. Diffusion will then transport this heat into the
adjacent material.

2.4. Conservation of pore fluid

As shown in Rice et al. [2013], conservation of pore fluid
mass leads to,

∂p
∂t

= Λ
∂T
∂t

− ε
βγ̇

∂γ̇
∂t

+ αhy
∂2p
∂y2

, (6)

The first term on the right hand side of equation (6) rep-
resents thermal pressurization. As the pore fluid is heated
it will expand, and if the gouge is undrained or partially
drained this thermal expansion will lead to a pore pressure
increase. The parameter Λ is defined as,

Λ =
λf − λn

βf + βn
, (7)

where βn and λn are the compressibility and the thermal
expansivity of the pore volume, βf and λf are the com-
pressibility and the thermal expansivity of the pore fluid,
and the instantaneous pore pressure change accompanying
a temperature change ∆T is ∆p = Λ∆T . The second term
in equation (6) models pore pressure decreases due to gouge
dilatancy. Our model for dilatancy is based on the work of
Segall and Rice [1995], which assumes that changes of inelas-
tic porosity are a result of changes in strain rate. ε quanti-
fies the magnitude of dilatancy and β is the storage capacity
of the gouge.The final term in equation (6) represents hy-
draulic diffusion and, for simplicity, we have assumed that
the hydraulic diffusivity αhy is constant.

2.5. Nondimensional parameters

Now we determine the dimensionless parameters for this
system of equations. The scalings used are based upon the
geometry of the gouge layer and the solution for a uniformly
sheared gouge layer developed by Lachenbruch [1980], dis-
cussed in more detail in Section 4 and in Rice et al. [2013].
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Table 1. Representative parameters modeling a depth of 7 km. A fuller discussion on the origin of the parameters
is included in Rice et al. [2013].

Parameter Intact material, Intact material, Damaged material, Damaged material,
nominal values path-averaged values nominal values path-averaged values

αth, mm2/s 0.7 0.66 0.7 0.54
ρc, MPa/K 2.7 2.7 2.7 2.7
Λ, MPa/K 0.93 0.89 0.31 0.30
αhy , mm2/s 0.86 2.05 3.52 6.71

β, ×10−10 Pa−1 0.52 0.55 1.26 2.97
ε 1.7× 10−4 1.7× 10−4 1.7× 10−4 1.7× 10−4

σn − pa, MPa 126 126 126 126
ρ, kg/m3 2800 2800 2800 2800

First, the gouge layer width h is used to scale y. The
gouge layer of thickness h can then be combined with slip
rate V to find the nominal strain rate γ̇o = V/h for the
gouge layer. This nominal strain rate is used to scale γ̇.
The nominal strain rate is combined with the critical weak-
ening strain for thermal pressurization γw = ρc/foΛ to get
the characteristic weakening timescale tw = γw/γ̇o for ther-
mal pressurization, which is used to scale t. Finally, we use
the ambient effective stress σ̄a to scale the pore pressure
variations, and the total temperature rise from the uniform
solution σ̄aΛ to scale the temperature variations. To sum-
marize,

y = hy� , t =
ρch
foΛV

t� , γ̇ = γ̇oγ̇
� (8)

p = pa + (σn − pa)p
� , T = Ta +

σn − pa
Λ

T �

where pa and Ta are the ambient pore pressure and temper-
ature of the material, and the primed variables are dimen-
sionless.

The above scalings leads to the set of dimensionless equa-
tions,

∂T �

∂t�
= τ �γ̇� +Dth

∂2T �

∂y�2 , (9a)

∂p�

∂t�
=

∂T �

∂t�
−E
γ̇�

∂γ̇�

∂t�
+Dhy

∂2p�

∂y�2 , (9b)

∂τ �

∂y� = 0, (9c)

τ = f(γ̇�)(1− p�), (9d)

f(γ̇�) = 1+z−1 log γ̇�. (9e)

Despite the large number of parameters in our model, there
are only four dimensionless parameters,

Dth =
αthρc
foΛV h

, Dhy =
αhyρc
foΛV h

, (10)

z =
fo

a− b
, E =

ε
βσ̄a

.

All of the parameters in our problem affect the response only
in so far they affect these four dimensionless parameters.
Dth and Dhy measure the strength of thermal and hydraulic
diffusion respectively, z measures the rate-strengthening
component of friction, and E quantifies the strength of di-
latancy.

The parameters Dth and Dhy can be better understood
by rewriting them as,

Dth =

�
Lthd

4π2h

�2

, Dhy =

�
Lhyd

4π2h

�2

, (11)

where Lthd and Lhyd are the distances over which diffusion
acts for a timescale comparable to the characteristic weak-

ening timescale for thermal pressurization,

Lthd = 2π
√
αthtw , Lhyd = 2π

�
αhytw. (12)

This means that small values of Dth and Dhy correspond to
diffusion distances much smaller than the gouge layer thick-
ness, allowing for the possibility of steep gradients in p and
T across the gouge layer.

3. Parameter values

The hydraulic parameters αhy, Λ and β are the least con-
strained in the model, and are expected to vary with tem-
perature, pore pressure and damage to the gouge and sur-
rounding material. In this paper we will consider one class
of hydraulic parameters modeling a depth of 7 km, a typical
centroidal depth for crustal earthquakes, and another class
of hydraulic parameters modeling a depth of 1 km, a typ-
ical depth for boreholes drilled through active fault zones.
Within each class of parameters we use the methods outlined
in Rice [2006] to account for parameters variations due to
damage, as well as pore pressure and temperature changes.

To model a depth of 7 km we use the four parameter sets
from Rempel and Rice [2006], which are based on Tables 1-3
in Rice [2006] and the procedures in Rice [2006]. Damage of
the gouge by inelastic shear and fresh micro-cracking may
occur in the concentrated stress field at the tip of a propagat-
ing rupture. This damage is modeled, somewhat arbitrarily,

Table 2. Two parameters sets intended to model a depth of
1 km, a typical intersection depth for boreholes drilled through
active faults. Parameter variations due to pore pressure and
temperature changes are neglected, so all parameters are eval-
uated at the ambient conditions pa = 10 MPa, σn = 28 MPa
and Ta = 30 ◦C. Damage is modeled by increasing the per-
meability by a factor of ten and the drained compressibility
by a factor of two, as suggested in Rice [2006]. Sources for
the parameter values are outlined in the text and include
Fine and Millero [1973], Wibberley and Shimamoto [2003],
and Likhachev [2003].

Parameter Intact material Damaged material
n 0.068 0.068

βf , ×10−9 Pa−1 0.44 0.44
βn, ×10−9 Pa−1 1.53 6.01
λf , ×10−4K−1 3.11 3.11
λn, ×10−4K−1 -1.36 -1.36
ηf , ×10−4 Pa s 7.97 7.97
k, ×10−19 m2 2.5 25
αth, mm2/s 0.7 0.7
ρc, MPa/K 2.7 2.7
Λ, MPa/K 0.22 0.068
αhy , mm2/s 2.34 7.15

β, ×10−10 Pa−1 1.34 4.39
ε 1.7× 10−4 1.7× 10−4

σn − pa, MPa 18 18
ρ, kg/m3 2800 2800
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by increasing the permeability by an order of magnitude and
the drained compressibility by a factor of two, as suggested
in Rice [2006]. Parameter variations due to temperature and
pore pressure changes are either neglected by evaluating the
parameters at the ambient conditions, leading to the nomi-
nal parameter sets, or accounted for by averaging along an
expected p-T path, leading to the path-averaged parameter
sets. The four parameter sets are summarized in Table 1
and are discussed in more detail in Rice et al. [2013].

Next we develop parameters modeling a depth of 1 km.
No attempt is made to account for the effects of pore pres-
sure and temperature changes and all parameters are evalu-
ated at the ambient conditions pa = 10 MPa, σn = 28 MPa
and Ta = 30 ◦C. As before damage is accounted for using the
procedure from Rice [2006]. The gouge properties are deter-
mined using the data from Wibberley and Shimamoto [2003].
We infer a porosity of n = 0.068, and a pore volume thermal
expansion coefficient λn = −1.36×10−4 ◦C−1. For an intact
material the pore volume compressibility is βn = 1.53×10−9

Pa−1, and for a damaged material βn = 6.01 × 10−9 Pa−1.
To estimate the permeability we assume a maximum burial
depth of 4-5 km, we find a permeability of ∼ 2.5×10−19 m2

for intact material. As suggested in Rice [2006] this value is
increased by a factor of ten to model a damaged material.
Next we consider the pore fluid properties. Fine and Millero
[1973] used sound speed data to calculate the compressibility
and thermal expansion coefficient of pure water as a function
of pressure and temperature, leading to βf = 0.44 × 10−9

Pa−1 and λf = 3.11× 10−4 ◦C−1. Finally Likhachev [2003]
provides a formula for the viscosity of water for a tempera-
ture range of 273-463 K and a pressure range of 1-250 bar.
Using this we calculate ηf = 7.97 × 10−4 Pa s. These pa-
rameter sets are summarized in Table 2.

The parameter sets in Tables 1 and 2 show that damaged
material, when modeled as in Rice [2006], is characterized
by higher values of αhy and β, and lower values of Λ. This
means that thermal pressurization and dilatancy will be less
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Figure 2. Rate-strengthening friction: The blue curve
shows the evolution of the maximum strain rate γ̇max

within the gouge layer for the path-averaged parameters
modeling a damaged material, V = 1 m/s and h = 1 mm.
The maximum strain rate grows indicating that straining
is localizing within the gouge layer. After a finite amount
of slip the peak strain rate begins to decay indicating that
the localized zone is thickening. This thickening occurs
whenever both αth and αhy are non-zero. We define the
peak strain rate γ̇peak to be the largest value of γ̇max.
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Figure 3. Rate-strengthening friction: A plot show-
ing the strain rate profile at peak localization for the
path-averaged parameters modeling a damaged material,
V = 1 m/s and h = 1 mm. The numerical solution is
shown in blue with the Gaussian fit defined by equation
(27) shown by the red dashed line. The width Wrsf of
the localized zone is estimated as twice the root mean
square width of the Gaussian, and we find Wrsf = 43
µm.

efficient in a damaged material, while hydraulic diffusion
will be more efficient. Comparing the nominal parameter
sets modeling a depth of 1 km and 7 km we see the same
pattern, with more efficient thermal pressurization and di-
latancy expected at 7 km than at 1 km and less efficient
hydraulic diffusion.

Compared with the hydraulic parameters, the thermal pa-
rameters are well constrained. The effective heat capacity
per unit volume is ρc = 2.7 MPa ◦C−1 [Lachenbruch, 1980;
Mase and Smith, 1987], and Rice [2006] quotes a range for
αth of 0.5 to 0.7 mm2/s. We choose a value of 0.7 mm2/s
for the nominal parameter sets, and use the values for αth

given in Rempel and Rice [2006] for the path-averaged pa-
rameter sets. The thermal parameters are assumed to not
change with depth. In reality there will be some variation
with depth, but we implicitly assume that changes in the
thermal parameters are negligible when compared with the
depth variation of the hydraulic parameters.

The logarithmic friction law used in this paper is taken
from experiments performed at slip rates on the order of
1-10 µm/s, and thus equation (3) may not accurately de-
scribe gouge friction at the seismic slip rates considered in
this paper. However, current high-velocity friction exper-
iments are unable to separate the frictional response from
temperature and pore fluid effects to provide a formula for
the friction coefficient valid at the deformation rates consid-
ered here. As in Rice et al. [2013] we choose fo = 0.6 and
(a − b) = 0.025 motivated by the measurements for gran-
ite under hydrothermal conditions in Blanpied et al. [1998],
though the results are presented in a form that allows pre-
dictions for a range of fo and (a − b). A larger discussion
of the simplifications associated with equation (3) can be
found in the companion paper Rice et al. [2013].

4. End-member solutions

In this section we discuss two end-member solutions for
dynamic weakening driven by thermal pressurization. To do
this we compare the hydrothermal diffusion distance

√
4αt
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with the gouge layer width h, where we define the lump
hydrothermal diffusivity as

α =
�√

αth +
√
αhy

�2
. (13)

During the initial stages of deformation the hydrother-
mal diffusion distance will be much smaller than the width
of the gouge layer,

√
4αt � h. This means that deforma-

tion is effectively undrained and adiabatic, the limit studied
in Lachenbruch [1980] when the constant dilatational strain
rate assumed in Lachenbruch [1980] is zero. Lachenbruch
[1980] solved for the strength evolution

τ = foσ̄a exp

�
−foΛ

ρc
γ̇ot

�
. (14)

Thermal pressurization leads to an exponentially decaying
shear stress, and the weakening shear strain associated with
thermal pressurization is,

γw =
ρc
foΛ

. (15)

The weakening timescale, which was used earlier to nondi-
mensionalize t, is then the ratio of the weakening strain and
strain rate, tw = γw/γ̇o. Since the system is controlled by
a critical strain, the slip-weakening distance hγw scales lin-
early with the width of the deforming zone. Lachenbruch
[1980] also solved for T in the undrained and adiabatic limit,
finding

T − Ta =
σ̄a

Λ

�
1− exp

�
− γ̇ot

γw

��
(16)

where Ta is the ambient temperature. The dynamic weaken-
ing associated with thermal pressurization leads to a finite
temperature rise of σ̄a/Λ and the critical weakening strain
γw also controls the approach of T to the maximum tem-
perature.

At very large displacements the diffusion distance will be
much larger than the gouge layer width,

√
4αt � h. In this

limit the finite thickness of the gouge layer will be negligible,
and deformation can be approximated by slip on a mathe-
matical plane. This problem was solved for a uniform slip
rate V by Mase and Smith [1985, 1987] for the special case
of an immobile pore fluid (i.e αhy = 0). The more general
solution was found by Rice [2006], for the case of non-zero
αhy, which in the end involved no more than replacing αth

in their result for τ(t) with the lump hydrothermal diffusiv-
ity α defined above in equation (13), leading to the shear
strength evolution

τ = foσ̄a exp

�
V t
L∗

�
erfc

��
V t
L∗

�
, (17)

where

L∗ =
4α
V

�
ρc
foΛ

�2

. (18)

This solution had been recognized by Mase and Smith
[1987], in the case of thermal diffusion only, as a limiting
result for a narrow shear zone. The weakening slip distance
L∗ is set by the weakening strain γw and the lengthscale
defined by the hydrothermal diffusivity α and the slip rate
V . The corresponding solution for slip surface temperature
is,

T − Ta =
σ̄a

Λ

�
1 +

�
αhy

αth

��
1− exp

�
V t
L∗

�
erfc

��
V t
L∗

��
.

(19)
Again we see that thermal pressurization leads to a finite
temperature rise, and the lengthscale that controls the tem-

perature evolution is the same length that controls the shear
strength evolution. We shall refer to the Rice [2006] solu-
tion in equations (17)-(19) as the Mase-Smith-Rice slip on
a plane solution.

Rempel and Rice [2006] showed that the two limits con-
sidered above are the end-member solutions for a gouge layer
sheared uniformly between two conducting half-spaces. We
will investigate how strain rate localization alters the results
of Rempel and Rice [2006], and how the solutions with lo-
calization relate to these two end-member solutions.

5. Frictional rate-strengthening only

5.1. Linear stability results

Initially we consider a system in which dilatancy is ne-
glected, and thus ε = 0. Rice et al. [2013] determined
the stability of the uniform shearing solution presented in
Lachenbruch [1980]. Linearizing about this solution led to
a relationship between the wavelength λ of a perturbation
in p and T and the growth rate s, in an exp(st) form, given
by,

zγ̇o
γw

s =

�
s+

4π2αth

λ2

��
s+

4π2αhy

λ2

�
. (20)

Separating the growth rate into real and imaginary compo-
nents, s = sR(λ) + sI(λ), we determine the critical wave-
length λpT that separates growing and decaying perturba-
tions in p and T is

λpT = 2π

�
αth + αhy

z(γ̇o/γw)
. (21)
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Figure 4. Rate-strengthening friction: Figure showing
how the localized zone thickness Wrsf at peak localiza-
tion depends on gouge layer thickness h. Numerical re-
sults for the path-averaged and nominal parameters for
a damaged material and a slip rate of V = 1 m/s are
shown by solid colored lines, with the accompanying lin-
ear stability predictions for these parameters shown by
dashed colored line. For thin gouge layers we see that
the localized zone thickness is equal to the gouge layer
thickness, with the line W = h shown by dashed black
line for guidance. When the gouge layer thickness is large
the straining localizes to a width that is only weakly de-
pendent on the gouge layer thickness. This width is in
good agreement with the predictions for Wrsf from the
linear stability analysis in Rice et al. [2013].
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Figure 5. Rate-strengthening friction: A plot showing
how the localized zone thickness Wrsf changes with αth

for the path-averaged parameters modeling an intact ma-
terial and a damaged material given in Table 1, a slip rate
V = 1 m/s and gouge layer thickness h = 1 mm. This
parameter sweep allows us to vary the dimensionless pa-
rameter Dth while the other two dimensionless parame-
tersDhy and z remain unchanged. The black dashed lines
show the fitting formula given in equation (31). Larger
values of αth lead to wider localized zones.

For λ > λpT perturbations in p and T will grow unstably,
while for λ < λpT they will decay. Perturbations in strain
rate are proportional to exp((s+ γ̇o/γw)t) so we can define
a similar critical wavelength,

λshr = 2π

�
αth + αhy

(z + 2)(γ̇o/γw)
, (22)

which separates growing and decaying perturbations in
strain rate. For λ > λshr strain rate perturbations will
grow, leading to strain localization.

The critical wavelengths outlined above depend on the
nominal strain rate γ̇o, which depends on the width of the
deforming zone. Rice et al. [2013] turned the critical wave-
length (22) into an approximate prediction for the localized
zone thickness Wrsf , as controlled by rate-strengthening
friction, by setting,

Wrsf =
λshr

2
with γ̇o =

V
Wrsf

. (23)

This leads to a prediction for the localized zone thickness
that depends only on the gouge properties and the slip rate
V ,

Wrsf =
π2ρc

foΛ(z + 2)
αhy + αth

V
. (24)

The localized thickness is set by a balance between frictional
rate-strengthening, thermal pressurization and hydrother-
mal diffusion.

5.2. Localized zone thickness

Now we solve numerically for a finite thickness gouge layer
sheared between two poroelastic half-spaces, the geometry
shown in Figure 1, to see how the linear stability prediction
matches the behaviour of the full nonlinear system. The
poroelastic half-spaces do not deform and conduct heat and
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Figure 6. Rate-strengthening friction: A plot showing
how the localized zone thickness Wrsf changes with αhy

for the path-averaged parameters modeling an intact ma-
terial and a damaged material given in Table 1, a slip rate
V = 1 m/s and gouge layer thickness h = 1 mm. This
parameter sweep allows us to vary the dimensionless pa-
rameter Dhy while the other two dimensionless parame-
ters Dth and z remain unchanged. The black dashed lines
show the fitting formula given in equation (31). Larger
values of αhy lead to wider localized zones. The deviation
at large values of αhy for the damaged parameter set is
due to Wrsf becoming comparable to h.

pore fluid away from the gouge layer. We assume that the
transport properties of the half-spaces are the same as those
of the gouge material. For initial conditions we set pressure
and temperature to the ambient values pa = 70 MPa and
Ta = 210 ◦C, and assumes that the gouge begins shearing
uniformly with γ̇ = γ̇o. Interestingly the three dimension-
less parameters that control this system are independent of
the ambient pore pressure and temperature. The additional
constraint imposed to solve for τ ,

� h/2

−h/2

γ̇(y, t)dy = V, (25)

assures that the total straining within the gouge layer is
equal to the slip rate V imposed across the gouge layer, as
shown in Figure 1. This means that the average strain rate
within the layer is equal to the nominal strain rate γ̇o = V/h.

Using the path-averaged parameters for a damaged ma-
terial (see Table 1) we now solve for a gouge layer thickness
h = 1 mm and a slip rate V = 1 m/s, justified as an average
earthquake slip rate in Rice et al. [2013]. For this parameter
set the linear stability prediction for the localized zone thick-
ness is W = 41 µm, over an order of magnitude smaller than
the gouge layer thickness. This leads us to expect significant
strain rate localization to occur.

To visualize the evolution of strain rate localization we
plot the maximum strain rate in the gouge layer,

γ̇max(t) = max
y

[γ̇(y, t)], (26)

as a function of time. Since the total straining accommo-
dated across the gouge layer is fixed at γ̇o a larger value of
γ̇max corresponds to a narrower deforming zone. Figure 2
shows how the maximum strain rate within the gouge layer
evolves with time. Initially the maximum strain rate grows
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to values over an order of magnitude greater than the nom-
inal strain rate γ̇o showing that, as expected, straining is
localizing within the gouge layer. Eventually γ̇max reaches
a peak value and begins to decay. This means that the thick-
ness of the deforming zone, which initially will be the width
of the gouge layer, gradually decreases to a narrowest value
before widening again. Two additional instabilities exist
that lead to movement of the localized straining zone across
the gouge layer and these prevent the maximum strain rate
decaying all the way back to uniform straining. These insta-
bilities are not discussed here but will be the focus of future
work.

Having described the temporal evolution of the maximum
strain rate within the layer we next look at the spatial dis-
tribution of straining. The blue curve in Figure 3 shows the
strain rate profile at peak localization, where peak localiza-
tion is the point at which γ̇max reaches its maximum value.
The shape of the strain rate curve leads us to try to fit γ̇
using the Gaussian function,

γ̇fit = A+B exp

�
− 2y2

W 2
rsf

�
. (27)

This provides an excellent fit to the numerical solution as
shown by the dashed red curve in Figure 3. To determine the
three constants A, B and Wrsf we impose three conditions;
γ̇fit matches the numerical solution for γ̇ at the centre of the
gouge layer, the edge of the gouge layer, and accommodates
the right amount of straining,

� h/2

−h/2

γ̇fit(y, t)dy = V. (28)

This fitting formula gives us an objective way to measure
the width of the zone of localized straining, allowing a com-
parison with the linear stability predictions. The constant
A is included to allow us to fit straining profiles that have
a width comparable to the gouge layer thickness. When
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Figure 7. Rate-strengthening friction: A plot showing
how the localized zone thicknessWrsf changes with (a−b)
for the path-averaged parameters modeling an intact ma-
terial and a damaged material given in Table 1, a slip rate
V = 1 m/s and gouge layer thickness h = 1 mm. This
parameter sweep allows us to vary the dimensionless pa-
rameter z while the other two dimensionless parameters
Dhy and Dth remain unchanged. The black dashed lines
show the fitting formula given in equation (31). Larger
values of (a− b) lead to wider localized zones.

0 2 4 6 8 10
0.4

0.6

0.8

1

 

 Localizing strain

Uniform strain

Figure 8. Rate-strengthening friction: A plot show-
ing how the strength of the gouge layer evolves, nor-
malized by the initial strength, for localizing shear and
uniform shear. These simulations were produced using
the path-averaged parameters modeling a damaged ma-
terial, V = 1 m/s and h = 1 mm. We see that a sudden
drop in strength coincides with the onset of localization.
The initial deformation, before diffusion and localization
have had time to act, is well described by the solution
for uniform shear under undrained and adiabatic condi-
tion [Lachenbruch, 1980] . At large slips the solution is
no longer influenced by the small yet finite width of the
shearing zone and the strength is well approximated by
the solution for slip on a plane [Mase and Smith, 1987;
Rice, 2006]. The two limits for undrained adiabatic de-
formation and slip on a plane are shown above by the
dashed black lines. Note that the undrained adiabatic
solution from Lachenbruch [1980] differs from our simu-
lation of a uniformly sheared layer because our numerical
simulations allow for diffusion of heat and fluid into the
surroundings.

straining is localized A becomes negligible and our fitting
function becomes equivalent to the Gaussian straining pro-
file previously used in models of thermal pressurization, for
example Andrews [2002], Rempel and Rice [2006],Noda et
al. [2009], and Garagash [2012]. For this limit where A is
negligible we can calculate Wrsf using the formula,

Wrsf =

�
2
π

V
γ̇peak

, (29)

where we have defined the peak strain rate

γ̇peak = max
t,y

[γ̇(y, t)] . (30)

For the rate-strengthening friction simulation shown in 3
we find Wrsf = 43 µm, in good agreement with the linear
stability prediction of 41 µm. While Figure 3 only shows
a snapshot of the strain rate profile, the Gaussian function
above provides an excellent fit to the numerical solutions
throughout the evolution of the localized zone.

Next we see how the width of the gouge layer influences
the width of the localized zone. Figure 4 shows the localized
zone thickness at peak localization found using the gaussian
fit versus gouge layer thickness for the nominal and path-
averaged parameters modeling a damaged material, h = 1
mm and V = 1 m/s. We see two distinct regimes. For thin
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Figure 9. Rate-strengthening friction: A plot showing
how the nominal strain at which peak localization oc-
curs varies with αhy. These simulations were produced
using the path-averaged parameters for an intact and a
damaged material, V = 1 m/s and h = 1 mm. For low
values of αhy, corresponding to localized zone thicknesses
that are much smaller than the gouge layer thickness, the
critical strain is a decreasing function of αhy. For both
parameter sets γpeak reaches a minimum before increas-
ing at large values of αhy.

gouge layers Wrsf ≈ h, corresponding to a gouge layer that
is too narrow to allow straining to localize. However, once
the gouge layer width exceeds a critical value the straining
begins to localize, shown by the two curves falling beneath
the line W = h. Once h exceeds this critical width the lo-
calized zone thickness is almost independent of h, changing
by just twenty percent while h changes by three orders of
magnitude. The linear stability predictions, shown by the
colored dashed lines in Figure 4, provide reasonable agree-
ment with the widths observed in the numerical simulations.
It is encouraging that the linear stability prediction, which
is taken infinitesimally close to uniform shearing, agrees so
well with the localized zone thickness inferred at peak local-
ization.

Next we perform a parameter sweep to determine how
Wrsf depends on the gouge properties, implicitly assuming
that the weak dependence of h is unimportant and the lo-
calized zone thickness is set by the gouge properties. As
shown in Subsection 2.5, when dilatancy is neglected, there
are just three dimensionless parameters that can be varied
independently. This means it is sufficient to vary just αth,
αhy and (a−b), which corresponds to varying Dth, Dhy and
z respectively. The parameters not being varied are fixed to
the base parameters shown in Table 1. The results of this
are shown in Figures 5, 6 and 7.

The numerical results agree well with the formula,

Wrsf ≈ C(a− b)ρc
foΛ

(
√
αhy +

√
αth)

2

V (fo + 2(a− b))
(31)

This equation is shown by the dashed black lines in Figures
5, 6 and 7 for C = 6.9. While we have only shown a narrow
range of values for αth, slightly larger than the range quoted
in Rice [2006], further simulations show that equation (31)
provides a good fit across nearly three orders of magnitude.
In the limit fo � (a − b), which is valid for almost all val-
ues of fo and (a − b) found in laboratory experiments, we
can neglect (a− b) in the denominator of equation (31) and
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Figure 10. Rate-strengthening friction: A plot showing
how the nominal strain at which peak localization occurs
varies with αhy. These simulations were produced using
the path-averaged parameters for an intact and a dam-
aged material, V = 1 m/s and h = 1 mm. We see that
small values of (a−b) lead to small values of γpeak, and so
the more intense localized zones also develop the fastest.

Wrsf becomes linear in (a−b). The localized zone thickness
is a balance between thermal pressurization, frictional rate-
strengthening and hydrothermal diffusion, with hydrother-
mal diffusion entering through the lump diffusivity α of Rice
[2006].

Using equation (31) we now make predictions for the lo-
calized zone thickness using the four parameter sets model-
ing a depth of 7 km. Using the superscript int to represent
intact material, dam to represent damaged material, n for
nominal parameter sets, and pa for path-averaged parameter
sets, we find

W int,n
rsf = 4µm , W int,pa

rsf = 7µm (32a)

W dam,n
rsf = 28µm , W dam,pa

rsf = 44µm. (32b)

These predictions are close to the predicted values in Rice
et al. [2013], and in good agreement with some field and
laboratory observations, for example De Paola et al. [2008],
Brantut et al. [2008], and Kitajima et al. [2010]. These ob-
servations are discussed in detail in the introduction to Rice
et al. [2013]. Due to more efficient hydraulic diffusion and
less efficient thermal pressurization, we predict a wider lo-
calized zone for the damaged parameter sets. Parameter
variations due to changes in pore pressure and temperature,
which are accounted for using the path-averaging method
from Rice [2006], increase the localized zone thickness by
60− 75%.

Next we evaluate (31) for the parameter sets modeling a
depth of 1 km from Table 2, finding,

W 1km,int
rsf = 30µm , W 1km,dam

rsf = 216µm. (33)

Wider localized zones are predicted at shallower depths, as
predicted in Rice et al. [2013]. Changes in gouge properties
due to changes in pore fluid pressure and temperature were
not accounted for when making these predictions. Tenta-
tively assuming that the percentage increase in thickness is
the same as the values for a depth of 7 km we predict a
width of ∼ 55 µm for an intact material and ∼ 340 µm.



PLATT, RUDNICKI, AND RICE: STRAIN LOCALIZATION IN SATURATED GOUGE X - 9

5.3. Impact of localization on shear strength

evolution

During our calculations we also track the shear strength.
Figure 8 shows the shear strength evolution when we use the
path-averaged parameters for a damaged material, h = 1
mm and V = 1 m/s, the same calculation used to produce
the localized straining profile in Figure 3. For comparison
we also show the shear strength evolution when the gouge
layer is forced to deform uniformly, with the uniform solu-
tion calculated by setting γ̇ = γ̇o throughout the gouge layer
and approximating the shear stress using the pore pressure
in the center of the gouge layer,

τ(t) = fo[σn − p(0, t)]. (34)

This calculation is very similar to those performed in Rempel
and Rice [2006]. Henceforth, the solution where the gouge
layer is forced to deform uniformly is referred to as the uni-
form shear solution, and the solution where the straining is
allowed to localize within the gouge layer is referred to as
the localized shear solution.

Initially the shear strength evolution is the same for the
uniform shear solution and the localized shear solution. This
corresponds to the early stages of deformation when strain-
ing has not had time to localize. As expected both the uni-
form shear and localized shear solutions also agree with the
solution for uniform shear under undrained and adiabatic
conditions from Lachenbruch [1980]. At the onset of local-
ization we see a dramatic drop in strength, typically 20-40%
of the initial strength τ0 = fo(σn − pa). The exact strength
drop at the onset of localization depends on the gouge layer
width h, with more dramatic strength drops for larger values
of h. These observation can be explained by recalling that
thinner deforming zones lead to more rapid dynamic weak-
ening. As the straining localizes the deforming zone thins
leading to accelerated weakening. Larger values of h lead
to larger strength drops at the onset of localization due to
the larger contrast between the initial gouge layer width and
final localized zone thickness. After straining has strongly
localized the shear strength evolution is in excellent agree-
ment with the Mase-Smith-Rice solution for slip on a plane.

Since the most rapid dynamic weakening is linked to
strain rate localization, our results predict that the slip
at which the most rapid dynamic weakening occurs is con-
trolled by the gouge parameters. Motivated by this we now
track γpeak as a function of the gouge properties. Figures 9
and 10 shows the strain at which γ̇max reaches its peak value
divided by the weakening strain γw for thermal pressuriza-
tion as a function of αhy, and (a − b). We see that smaller
values of (a− b), and thus larger values of z, lead to smaller
value of γpeak/γw. This means that not only does frictional
rate-strengthening limit localization, it also slows the rate
at which a localized zone develops. The dependence of γpeak
on αhy is the reverse of that observed for (a− b). Whenever
the localized zone thickness is over an order of magnitude
thinner than the gouge layer thickness, smaller values of αhy

lead to larger values of γpeak/γw. The increase in γpeak for
larger values of αhy occurs when the localized zone thickness
becomes comparable to the gouge layer thickness. Since the
thermal diffusivity is relatively well constrained we do not
show the dependence of γpeak on αth, but the results are
qualitatively very similar to those observed for αhy.

It should be emphasized that this dependence of γpeak on
αhy may not transfer to other geometries. In our system
the localization is initiated by hydrothermal diffusion from
the gouge layer into the half-spaces, leading to larger pore
pressures and strain rates in the center of the gouge layer,
and thus the formation of a localized zone. Lower values of
the bulk hydrothermal diffusivity α defined in equation (13)

limit diffusion into the half-spaces leading to larger values of
γpeak. If localization is instead initiated by heterogeneities
within the gouge layer then the dependence of γpeak on αhy

could be very different. This link between localization and
heterogeneities within the gouge layer is the subject of on-
going work.
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Figure 11. Rate-strengthening friction: A plot showing
how the maximum temperature rise, ∆Tmax = Tmax−Ta,
in the gouge layer evolves for localized and uniform shear
using the path-averaged parameters for a damaged ma-
terial, h = 1 mm and V = 1 m/s. The initial behav-
ior, before localization and diffusion become important,
is well described by the undrained adiabatic solution of
Lachenbruch [1980] (marked ∆Tundr.,adia.). As strain-
ing localizes the frictional heating is focused into a zone
much narrower than the gouge layer thickness, leading
to a sharp temperature rise. After localization the lo-
calized shear solution mirrors the Mase-Smith-Rice slip
on a plane solution (marked ∆Tplane), but the slip on a
plane solution never provides a good approximation for
maximum temperature rise.

If the gouge layer is sufficiently thick, or the slip is suf-
ficiently small it may be possible that a fully developed lo-
calized zone will not occur during a seismic event. To esti-
mate when this will happen we assume that for a wide gouge
layer γpeak/γw = 1, which lead to a critical slip that must
be reached for localization to fully develop

Dloc. =
ρch
foΛ

(35)

Using a typical slip of 1 meter and the range of γw implied
by the parameters in Table 1 we predict the critical gouge
layer thickness above which localization does not have suf-
ficient time to fully develop to be 6.6− 20 cm. If the gouge
layer thickness is only slightly less than the critical thickness
then the majority of shear will have occurred with an un-
derdeveloped localized zone, with full localization occurring
just before deformation ceases.

A underdeveloped localized zone will have three impor-
tant consequences. First, even though strain rate localiza-
tion is occurring, there may be little evidence of highly local-
ized shear in the final strain profile. Second, since the most
rapid dynamic weakening occurs during the most rapid lo-
calization, we would expect a much smoother strength evo-
lution profile than the one shown in Figure 8. Finally, since
the straining is never focused into a narrow zone we would
expect a significantly lower temperature rise.
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Figure 12. Gouge dilatancy: A plot showing how the
maximum strain rate γ̇max evolves for the path-averaged
parameters modeling an intact and a damaged material,
for V = 1 m/s and h = 0.5 mm. As predicted by the lin-
ear stability analysis there is an initial transient of intense
strain rate localization followed by decay to homogeneous
straining. In contrast with the frictional strengthening
case, the damaged material shows more intense localiza-
tion.

5.4. Influence on maximum temperature rise

Rempel and Rice [2006] showed that the undrained and
adiabatic solution of Lachenbruch [1980] and the Mase-
Smith-Rice slip on a plane solution. equations (16) and (19)
respectively, are the end-member solutions for the maximum
temperature rise in the uniform shear solution. However,
the maximum temperature rise for the uniform shear so-
lution will approach the Mase-Smith-Rice slip on a plane
solution only at very large slips that may be larger than
typical seismic slips.

We now compare the maximum temperature rise

∆Tmax(t) = max
y

[T (y, t)]− Ta, (36)

predicted by our new localized shear solution with these two
end-members, as well as the uniform shear solution. This
is done using the path-averaged parameters for a damaged
material, gouge layer width h = 1mm, and slip rate of V = 1
m/s, the same parameter set used to generate Figures 2, 3
and 8. The blue curve in Figure 11 shows the maximum
temperature for the localized shear solution as a function of
time. The symmetry of the system means that this maxi-
mum temperature occurs in the middle of the gouge layer,
which in our coordinate system is y = 0. Alongside this is
plotted the maximum temperature rise for the uniform shear
solution in red, as well as the two end-member solutions for
undrained and adiabatic conditions, and the Mase-Smith-
Rice slip on a plane solution. The onset of localization is
accompanied by a large increase in the maximum tempera-
ture as frictional heating is focused into a narrow zone in the
center of the gouge layer. After a slip of 10 mm the tem-
perature rise for the localized shear solution is over three
times larger than the temperature rise for the uniform shear
solution. For the parameters used in this simulation this
corresponds to a difference of ∼ 580◦C.

Initially the uniform shear solution and localized shear so-
lution are in excellent agreement with equation (16), which
describes the temperature evolution under undrained and
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Figure 13. Gouge dilatancy: A plot showing how the
peak strain rate γ̇peak depends on the dimensionless pa-
rameter E = ε/(βσ̄a) for the dilatancy only system using
the path-averaged parameters modeling an intact and a
damaged material, V = 1 m/s and h = 0.5 mm. For
both parameter sets we observe larger peak strain rates
for smaller values of E, corresponding to narrower local-
ized shear zones. For all but the smallest values of E our
results are well described by equation (47), and for each
parameter set this formula is shown by the dashed black
line.

adiabatic conditions. After localization the solution mir-
rors the solution for slip on a plane, as would be expected
when all of the deformation is accommodated in a very nar-
row zone, though the slip on a plane solution still does not
give an accurate prediction of the maximum temperature
since it neglects the initial stages of shear when deformation
is distributed throughout the gouge layer. The maximum
temperature rise for the localized shear solution will never
approach the slip on a plane solution due to a pair of in-
stabilities that cause the zone of localized straining to move
across the gouge layer, thus distributing the frictional heat-
ing across a wider zone.

Finally we investigate how the magnitude of the temper-
ature rise associated with localization depends on the gouge
parameters. To quantify this we study the maximum heat-
ing rate, �

∂T
∂t

�

peak

= max
t,y

�
∂T
∂t

�
. (37)

This is found to be a decreasing function of αhy, αth and
(a − b). This is easily understood by noticing that the lo-
calized zone thickness Wrsf is an increasing function of αhy,
αth and (a−b). Parameters that predict a narrower localized
zone will lead to a larger maximum heating rate as straining
is focused more intensely.

6. Stabilization by Dilatancy Only

Having considered the case where the localized zone is sta-
bilized by frictional strengthening alone, we now consider a
system with constant (i.e. rate-independent) friction where
stabilization is provided by dilatancy only. For this case the
model simplifies to,

∂T
∂t

=
τ γ̇
ρc

+ αth
∂2T
∂y2

, (38a)

∂p
∂t

= Λ
∂T
∂t

− ε
βγ̇

∂γ̇
∂t

. (38b)
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Mechanical equilibrium combined with constant friction re-
quires that p be a function of t alone, and the shear strength
is given by τ = fo[σn − p(t)].

6.1. Linear stability predictions

As with the frictional strengthening only case, Rice et al.
[2013] analyzed small perturbations away from this uniform
shear solution, finding the linearized equation for a strain
rate perturbation γ̇1 with a wavelength λ,

dγ̇1
dt�

=

�
1
E

exp
�
−t�

�
− 1

λ̂2

�
γ̇1 +

C

λ̂2
, (39)

Here we have defined the dimensionless time t� = (γ̇o/γw)t,
E is defined as in equation (10), λ̂ is a dimensionless wave-
length defined by,

λ̂ =
λ

Lthd
, Lthd = 2π

√
αthtw (40)

and C is a constant set by the initial perturbations in strain
rate and temperature,

C = γ̇1(0)− (Λβγ̇oε)T1(0). (41)

Rice et al. [2013] showed that the large slip solution to (39)
is γ̇1 → C as t → ∞. However, for gouge layer thicknesses
exceeding a critical width Wdil the strain rate perturbation
will undergo transient growth. This transient growth is in-
terpreted as strain rate localization. By determining the
maximum values of γ̇1 it was shown that small values of E
correspond to more extreme growth. This can be under-
stood in the stabilization framework since small values of E
correspond to small dilatant suctions, less stabilization, and
thus more intense localization.

6.2. Localized zone thickness

The solution to the linearized equation (39) predicts very
large strain rate perturbations, far beyond the magnitudes
at which the linearization is valid, unless the initial strain
rate perturbations are unrealistically small, on the order of
10−10 to 10−20 of γ̇o or less (see Rice et al. [2013]). To
account for nonlinear effects we now solve the full system
numerically for a slip rate V =1 m/s, and a gouge layer
thickness h = 0.5mm. In all that follows the strain local-
ization develops from an initial perturbation away from uni-
form straining,

γ̇ = γ̇o

�
1 + δ cos

�
2πy
h

��
, (42)

where δ = 10−3. Since y = 0 is located at the center of
the gouge layer this initial perturbation is symmetric about
the center of the gouge layer. The initial pore pressure and
temperature are assumed to be the ambient values p = pa
and T = Ta. Other values of δ were tested, as were initial
conditions with a temperature perturbation, but the results
are qualitatively the same. Slightly larger peak strain rates
are observed for larger initial perturbations.

For strain rate localization stabilized by dilatancy alone
we assume that the half-spaces adjacent to the gouge layer
are thermally and hydraulically insulating. This is in
contrast to the results for stabilization by frictional rate-
strengthening alone presented in the previous section that
accounted for transport of heat and pore fluid into the half-
spaces. We assume the the half-spaces are thermally and
hydraulically insulating to match the requirement that p is
independent of y within the gouge layer. The symmetry of
the no-flux boundary conditions at the edge of the gouge
layer means that our simulations for a finite thickness gouge
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Figure 14. Gouge dilatancy: A plot showing how the
peak strain rate γ̇peak depends on the ratio of the thermal
diffusion distance Lthd = 2π

√
αthtw, where tw is the char-

acteristic weakening time for thermal pressurization, and
the gouge layer thickness h. These simulations were pro-
duced using the path-averaged parameters modeling an
intact and a damaged material, V = 1 m/s and h = 0.5
mm. Larger values of Lthd, corresponding to more effi-
cient thermal diffusion, lead to lower peak strain rates
and thus wider localized zones. The simulations are well
fit by the formula given in equation (47), and this curve is
shown by the dashed black line. No line is shown for the
damaged parameters since the value of E is sufficiently
small that equation (47) is no longer accurate.

layer are equivalent to the periodic domain considered in the
companion paper Rice et al. [2013].

As before the maximum strain rate γ̇max in the gouge
layer is used as a proxy for localization, recalling that a
higher maximum strain rate indicates more intense local-
ization. The maximum strain rate is defined in equation
(26). Figure 12 shows how γ̇max evolves for the path-
averaged parameters modeling intact and damaged material.
As predicted by the linear stability analysis straining local-
izes within the gouge layer. Even when nonlinear effects are
accounted for the strain rate localization is transient. As
in the system where strain rate localization is stabilized by
frictional rate-strengthening alone the maximum tempera-
ture within the gouge layer increases rapidly as straining
localizes, and this is accompanied by a sudden reduction in
the shear strength. The spatial distribution of straining is
well described by a Gaussian function throughout the sim-
ulations.

We can understand the transient nature of localization
by rewriting (38a) and (38b) as,

ε
βγ̇

∂γ̇
∂t

= Λ

�
τ γ̇
ρc

+ αth
∂2T
∂y2

�
− ∂p

∂t
(43)

The high strain rates associated with localization lead to
increased thermal pressurization and a sudden drop in
strength, leading us to look at the large slip limit in which
the pore pressure approaches the normal stress,

p → σn ,
∂p
∂t

→ 0. (44)

This leads to,
1
γ̇
∂γ̇
∂t

=
αthΛβ

ε
∂2T
∂y2

. (45)



X - 12 PLATT, RUDNICKI, AND RICE: STRAIN LOCALIZATION IN SATURATED GOUGE

The zero flux boundary conditions at the end of the gouge
layer and the symmetry about the center of the gouge layer
allow us to deduce that T has its maximum value at y = 0
and minimum values at y = ±h/2 for the initial perturba-
tion given in equation (42). Integrating equation (38b) we
can also show that the maximum and minimum values of T
coincide with the maximum and minimum values of γ̇. Thus,
using equation (45) we conclude that at large slips the maxi-
mum strain rate will decay and the minimum strain rate will
grow. As the maximum and minimum values of γ̇ approach
each other the straining profile in the layer must return to
uniform shear, meaning that strain rate localization will al-
ways be transient. If we had attempted to model transport
of pore fluid and heat into the adjoining half-spaces it may
have taken much longer for the limit described in equation
(44) to be reached, possibly allowing straining to remain at
peak localization for longer than is observed in Figure 12.

Next we quantify the intensity of localization by track-
ing the peak strain rate as a function of the two controlling
dimensionless parameters

E =
ε

βσ̄a
, Lthd = 2π

√
αthtw. (46)

By considering the dimensionless parameters we can reduce
the number of parameters we must vary dramatically. Note
that when setting λ = h the parameter λ̂ = λ/(2π

√
αthtw)

from Rice et al. [2013] becomes the ratio of the gouge layer
thickness and the diffusional lengthscale Lthd. Having dis-
cussed how we can use the maximum strain rate as a proxy
for intensity of localization, we next use the peak strain
rate γ̇peak defined in equation (30) to quantify the width of
localized zone at peak localization. Since for stabilization
by dilatancy alone our initial perturbation has a maximum
value on y = 0 the peak strain rate γ̇peak will always occur
at y = 0. γ̇peak can be thought of as the maximum value
ever achieved by γ̇max(t). Figures 13 and 14 show how γ̇peak
varies with the two dimensionless parameters E and Lthd.
In agreement with the linear stability predictions, we ob-
serve that smaller values of E lead to larger values of γ̇peak
and thus more intense localization.

Except for the very lowest values of E, the simulations
can be well fit using the equation,

γ̇peak
γ̇o

= 30π2 h2

L2
thd

e−50E , (47)

as shown by the black dashed lines in Figures 13 and 14.
As E gets very small the peak strain rate starts to increase
more rapidly than predicted by equation (47), and as E → 0
the peak strain rate must go to infinity. A fitting curve is
not shown for the damaged parameters in Figure 14 since
the value of E for this parameter set is in the range of val-
ues where (47) does not accurately describe our results. For
this parameter set the peak strain rate is still proportional
to λ̂2. In theory the exponential in equation (47) could be
replaced by a more complicated function of E that diverges
as E → 0, though we did not attempt to do this due to the
computational expense of simulations for very low values of
E, and the fact that the localized zone thicknesses in this
limit will approach the size of individual grains within the
gouge. We emphasize that the exact numerical values in
(47) depend on the size of the initial perturbations, though
the qualitative picture is the same for a wide range of initial
perturbations.

Equation (47) can be rearranged to give the peak strain
rate in dimensional variables,

γ̇peak =
15V 2

2αthγw
exp

�
− 50ε
βσ̄a

�
. (48)
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Figure 15. Gouge dilatancy: A plot showing how γpeak,
the strain at which peak localization occurs, depends on
E. These simulations were done using the path-averaged
parameters for an intact and damaged material, V = 1
m/s and h = 0.5 mm. Our results show that when E is
small enough that transient strain rate localization occurs
γpeak is an increasing function of E, with small values of
E leading to small values of γpeak. This means that the
most intense localized zones develop very rapidly. Very
little difference is observed between the two parameter
sets, which can be explained by noting that γpeak is rela-
tively insensitive to changes in Lthd, as shown in Figure
16.

As in the frictional strengthening only scenario, this for-
mula is independent of the gouge layer width h, and the
peak strain rate is controlled solely by the internal proper-
ties of the gouge material. We can relate this to a localized
zone width Wdil using the relation

Wdil =

�
2
π

V
γ̇peak

, (49)

which implies that,

Wdil =

�
2
π

2αthρc
15V foΛ

exp

�
50ε
βσ̄a

�
. (50)

The localized zone thickness is set by a balance be-
tween thermal pressurization, thermal diffusion, and dila-
tant strengthening.

The formula in equation (50) is now used to predict the
localized zone width for the different parameter sets. First
for the four parameter sets modeling a depth of 7 km we
find,

Wint,n = 1.32µm , Wint,pa = 1.21µm (51a)

Wdam,n = 1.85µm , Wdam,pa = 1.08µm. (51b)

All four parameter sets predict a localized zone between 1
µm and 2 µm wide. The range of values is much more com-
pact than for the frictional rate-strengthening only analysis.
Damaged and intact parameters predict comparable thick-
nesses.

Next we look at the parameters modeling a depth of 1
km, predicting the localized zone thicknesses,

W1km,int = 52µm , W1km,dam = 14µm. (52)
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The predicted localized zone thicknesses are an order of mag-
nitude larger than our predictions for a depth of 7 km, but
still on the micron-scale. This is largely due to the sensitive
dependence of Wdil on the ambient effective stress σ̄a.

The damaged parameters predict a thinner zone than the
intact material, the exact opposite of the dependence pre-
dicted in the strengthening-only system. These predictions
for Wdil must be used with caution due to the sensitive de-
pendence on ε. We have used a parameter extracted from
a single set of low strain rate experiments, but ε may be
different at higher strain rates. An order of magnitude in-
crease in ε leads to localized zone predictions on the tens of
centimeters wide.

The formula for Wdil given in equation (50) is very differ-
ent than the linear stability prediction from Rice et al. [2013]
for the critical gouge layer thickness above which transient
strain rate localization is expected. This means that the lin-
ear stability analysis cannot be used to make quantitative
predictions for the localized zone thickness when localization
is stabilized by dilatancy alone.

Since the shear strength evolution is linked to the onset of
localization we also track the strain γpeak at which the peak
strain rate is achieved, where the peak strain rate is defined
in equation (30). Figures 15 and 16 show γpeak/γw as a func-
tion of E and Lthd. The critical strain γpeak increases with ε
but is relatively insensitive to changes in Lthd provided that
straining localizes to a zone much thinner than the gouge
layer thickness. Comparing this dependence on ε with the
results from the previous section we see that, for both fric-
tional rate-strengthening and dilatancy, a thicker localized
zone corresponds to a larger value of γpeak; a weaker lo-
calization limiting mechanism not only allows a narrower
localized zone to form, it also allows this zone to develop
faster.

6.3. Strain vs. strain rate localization

It is virtually impossible to observe in-situ strain rate
profiles from seismic events or high-velocity friction experi-
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Figure 16. Gouge dilatancy: A plot showing how
γpeak, the strain at which peak localization occurs, de-
pends on the ratio of the thermal diffusion distance
Lthd = 2π

√
αthtw, where tw is the characteristic weaken-

ing time for thermal pressurization, and the gouge layer
thickness h. These simulations were done using the path-
averaged parameters for an intact and damaged material,
V = 1 m/s and h = 0.5 mm. Our results show that γpeak
is an increasing function of Lthd, though when the lo-
calized zone width is much smaller than the gouge layer
thickness γpeak/γw does not depend strongly on Lthd.

ments, with at best only the final strain pattern being ob-
servable. We now study the final strain profiles by integrat-
ing γ̇(y, t) to find the total strain γ(y). Due to the transient
nature of the localization for the dilatancy only system the
final strain profile will be controlled by the amount of time
spent straining in a localized fashion versus the amount of
time spent straining in a more uniform state.

Figure 17 shows the final strain profile for three total slips
of 1 cm, 10 cm, and 100 cm. These results were produced
using the path-averaged parameters for a damaged mate-
rial, V = 1 m/s and h = 0.5 mm. We observe a reduction
in strain localization with increasing slip. This is because,
for V t � h, the transient strain rate localization lasts for
a small fraction of the event and the gouge spends the ma-
jority of the simulation shearing uniformly. This leads to
final strain profiles with very little strain localization. Thus,
even when uniform straining is initially unstable, localiza-
tion may not be observed in final strain profiles if a large
quantity of deformation occurring at the end of the event is
approximately uniform.

7. Inertial effects in the gouge layer

7.1. Model including inertia

In this section we study inertial effects within the gouge
layer. Rice [2006] argued that inertial effects across the
gouge layer are negligible due to the short distances over
which hydraulic and thermal diffusion act. Following this
we assumed that deformation within the gouge layer could
be regarded as quasi-static, an assumption we now test in
this section.

The inertial effects considered here are different from the
inertial effects in the bulk material on either side of a fault
associated with dynamic rupture. Since we consider kine-
matically applied slip, in which the motion of the two half-
spaces is fixed to a uniform slip rate at ±V/2, we have im-
plicitly neglected unloading waves that would propagate into
an elastic solid adjacent to the gouge layer.

Accounting for inertial effects within the gouge layer the
equation for conservation of linear momentum becomes,

ρ
∂u
∂t

=
∂τ
∂y

, (53)

where ρ is the density of the gouge material, and u is the
local slip rate. This replaces equation (1), which modeled
quasi-static deformation within the gouge layer. Differenti-
ating equation (53) with respect to y we can express this in
terms of the strain rate γ̇,

ρ
∂γ̇
∂t

=
∂2τ
∂y2

, (54)

recalling that the strain rate is defined as,

γ̇ =
∂u
∂y

. (55)

Using the same scalings as before, given in equation (8), the
nondimensional form of equation (54) is,

I2
∂γ̇�

∂t�
=

∂2τ �

∂y�2 , I =

�
ρV 2

(σn − pa)
, (56)

where primes indicate dimensionless variables. The dimen-
sionless parameter I quantifies the effect of inertia in the
gouge material. Interestingly the definition of I does not
depend on the thickness of the gouge layer or the two diffu-
sivities, and is a balance between an inertial stress and the
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Figure 17. Gouge dilatancy: A plot of the final strain
normalized by the average strain in the layer γo, for slips
of 1 cm, 10 cm and 100 cm. These results were gener-
ated using the path-averaged parameters for a damaged
material, V = 1 m/s, and h = 0.5 mm. We observe a
decrease in strain localization with increasing slip. This
can be understood by considering the transient nature
of the localization; longer events will spend more time
straining uniformly, and thus the effects of the transient
strain rate localization will be less pronounced in the final
strain profile.

ambient compressive effective stress. For the parameters in
Table 1 and the slip rate V = 1 m/s we find I = 0.0047.

This inertial formulation of the problem is compatible
with the kinematically applied slip condition (25), and thus
the gouge material accommodates the correct amount of
straining. To show this we integrate equation (54) with re-
spect to y to find,

∂
∂t

�� h/2

−h/2

γ̇ dy

�
=

�
∂τ
∂y

�h/2

−h/2

. (57)

If the half-spaces adjacent to the gouge layer are in uniform
motion, and thus have no change in strain, then the right
hand side of this equation will vanish and the total strain
rate accommodated by the gouge layer will not change with
time. Assuming that the initial state of shearing is uniform,
γ̇ = γ̇o for |y| < h/2, we recover condition (25),

� h/2

−h/2

γ̇ dy = V. (58)

This means that the results from the model accounting for
inertial effects can be directly compared with the results
that assumed mechanical equilibrium, allowing us to quan-
tify the effects of inertia. For small values of I we expect
inertial effects to be negligible and the two models to agree
very well.

We now solve the frictional rate-strengthening only sys-
tem for a range of values of I and compare with the results
generated by the model that assumed mechanical equilib-
rium. As in previous sections we use the maximum strain
rate γ̇max in the layer as a function of time as a proxy for
localization, with larger values of γ̇max indicating a thin-
ner deforming zone. Figure 18 shows γ̇max as a function of
time for the nominal parameters describing a damaged ma-
terial, a gouge layer width h = 0.5 mm, V = 1 m/s, and

I = 10−1.5, I = 10−1, and I = 10−0.5. For I = 10−1.5 the
inertial and mechanical equilibrium models agree very well,
but for I = 10−1 and I = 10−0.5 the inertial results begin
to differ from the mechanical equilibrium solutions. More
noticeable differences are observed for the largest value of I.

To quantify these inertial effects we now track the peak
strain rate γ̇peak and the time tpeak at which this peak strain
rate occurs as a function of I. This is shown in Figure 19 for
the nominal parameters modeling intact and damaged mate-
rial, h = 0.5 mm, and V = 1 m/s. To allow easy comparison
between the two parameter sets the results are normalized
by the value from the mechanical equilibrium model; a value
of unity means that the results from the mechanical equi-
librium and inertial models agree exactly. As seen in the
simulations shown in Figure 18, for very small values of I
the two models agree almost exactly, but as I increases iner-
tia becomes important and the two models diverge. Inertial
effects within the gouge layer lead to lower values of γ̇peak
and larger values of tpeak, indicating that inertial effects lead
to wider localized zones that take longer to develop.

Using the results shown in Figures 18 and 19 we choose a
value of I = 0.1 as a cutoff above which inertial effects be-
come important. An argument could be made for a slightly
larger or smaller critical value of I but this appears to be
the correct order of magnitude. This critical value allows us
to define a critical slip rate,

Vc =

�
σ̄a

100ρ
. (59)

Inertial effects will become important when slip rates exceed
this critical value, and will act to limit localization.

Here we chose the I = 0.1 as an estimate of the critical
value based on simulations performed using two different pa-
rameter sets. A fuller analysis would find the critical value
of I for a much wider range of parameters, showing how it
varies as the intensity of strain rate localization varies.
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Figure 18. Rate-strengthening friction: A plot showing
how maximum strain rate evolves in the inertial model
for I = 10−0.5, 10−1 and 10−1.5. This plot was created
using the nominal parameters modeling a damaged ma-
terial, h = 0.5 mm and V = 1 m/s. For comparison
the solution when mechanical equilibrium is assumed is
shown by the dashed black line. For the lowest value of
I the inertial and equilibrium solutions agree almost ex-
actly, while for the larger values we see deviation away
from the equilibrium solution.
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7.2. Implications for high-velocity friction experiments

We now use the critical slip rate Vc to comment on the role
of inertia during high-velocity friction experiments. These
experiments are typically performed using a rotary shear
configuration and allow experiments to be performed at seis-
mic slip rates, albeit at compressive stresses much lower than
those present during seismic events [Brantut et al., 2008; Ki-
tajima et al., 2010; Reches et al., 2012; Smith et al., 2013].
Highly localized shear zones are commonly observed in high-
velocity friction experiments. A fuller discussion of these
observations can be found in the introduction to Rice et al.
[2013].

To estimate Vc for conditions typical in high-velocity fric-
tion experiments we use σn = 0.6 MPa and assume that the
initial pore pressure is negligible compared with this normal
stress. The gouge density appropriate for laboratory condi-
tions is assumed to be the same as that given in Tables 1
and 2. Combining these values leads to a critical slip rate of
Vc = 1.46 m/s. This value of Vc is higher than the 1 m/s slip
rates normally used in high-velocity shear experiments, and
thus we conclude that inertial effects within the gouge layer
are not playing a significant role in limiting localization in
high-velocity friction experiments.

Additional simulations in which the half-spaces are
undrained and adiabatic show that when pore pressures have
risen to a significant fraction of the normal stress the appro-
priate definition of I may be based on the current effective
stress not the ambient effective stress. Motivated by this
we make an estimate for Vc based on a much lower effective
stress σ̄a = 0.15 MPa, which is intended to model a gouge
with a compressive stress σn = 0.6 MPa and a pore pressure
that has risen to seventy-five percent of the normal stress.
In this case we find Vc = 0.73 m/s. Thus, for this scenario
we would predict that inertial effects within the gouge are
not negligible when the applied slip rate is 1 m/s. However,
since the critical slip rate Vc is only exceeded by a small
amount the actual limiting of localization by inertia would
probably not be dramatic. Figure 19 shows that significant
localization limiting only occurs once I > 0.3.

7.3. Implications for natural faults

Next we discuss the importance of inertial effects during
earthquakes. Consider a fault at a depth D where the depth
is measured in kilometers. The effective overburden stress is
(ρ− ρw)gD, assuming hydrostatic fluid pressure. Typically
ρ = 2.8ρw so the gradient in overburden effective stress is
18 MPa/km and σ̄ = 18D MPa. This is consistent with the
values of σ̄a we chose in the parameter sets given in Tables
1 and 2. For a depth of 1 km we set σ̄a = 18 MPa, and for
a depth of 7 km we set σ̄a = 126 MPa.

Taking the values in Table 1 we can calculate a critical slip
rate Vc = 21.2 m/s for a depth of 7 km. Since the hydraulic
parameters do not enter the formula for Vc this value is the
same for all four parameter sets. This is compared with a
typical coseismic slip rates of 1 m/s, justified as an average
earthquake slip rate in Rice et al. [2013]. Since Vc is much
larger than typical coseismic slip rates we conclude that, as
predicted in Rice [2006], inertial effects within the gouge
layer are negligible at seismic depths. Using our formula
for Vc we can calculate what depth D must be exceeded for
inertial effects to be negligible. Setting Vc = 1 m/s we find
that this critical depth is just 15 meters, and thus inertial
effects will be negligible throughout the seismogenic zone.

So far the analysis in this section has compared Vc to a
typical coseismic slip rate of 1 m/s. However, near the tip of
a dynamically propagating fracture the slip rates will be sig-
nificantly larger. The peak slip velocity V = 300 m/s from
Noda et al. [2009], which is taken as a typical peak slip rate
during dynamic rupture, is far in excess of our prediction
for Vc. This may mean that shear localization is initially

limited by inertial effects even though they are unimportant
throughout the vast majority of the rupture. Using our for-
mula for σ̄a as a function of depth we find that this picture,
in which inertial effects are important near the crack tip yet
unimportant for the majority of a rupture, is valid for all
depths spanning the seismogenic zone.

Interestingly Noda et al. [2009] noted that the slip rates
above ∼ 100 m/s persist for only 1 µs, which corresponds
to a slip of just 100 µm. Comparing this small slip with
the results in Section 5, which showed that a finite strain is
required for the localized zone to develop, we conclude that
near the tip localization may not have time to fully develop.

A better description of localization near the tip of a dy-
namically propagating fracture that balances the high slip
rates, small slips and inertial effects is still required. It may
be possible to use an analysis near the crack tip to predict
a thickness of the deforming zone when inertial effects be-
come unimportant and shear of the gouge material is well
described by the model in Section 2. This could then be used
as an input for the model in Section 2, and the gouge layer
thickness h would be reinterpreted as the thickness of the
deforming zone when inertial effects become unimportant.
Of course there may be some scenarios in which negligible
localization occurs near the tip and the initial width of the
deforming zone will be equal to the gouge layer thickness.

As mentioned in the previous subsection, when pore pres-
sures have risen to a significant fraction of the normal stress
the appropriate definition of I may be based on the current
effective stress not the ambient effective stress. We highlight
two scenarios when this distinction may be important.

Simulations that account for thermal decomposition show
that the onset of the reaction is accompanied by a large pore
pressure increase that can drive the gouge layer into a regime
where the pore pressure exceeds the normal stress [Sulem
and Famin, 2009]. As the pore pressure approaches the nor-
mal stress inertial effects will become important within the
gouge layer and will act to widen the deforming zone. Since
this widening will spread frictional heating over a wider
zone, which will lead to slower pore pressure rises at the
location of peak pore pressure, delocalization driven by in-
ertial effects may be one mechanism to stop the maximum
pore pressure exceeding the normal stress.

The other scenario in which inertial effects may become
important as pore pressures approach the normal stress is
near the trailing edge of a dynamically propagating rup-
ture. We can estimate the minimum effective stress σ̄min(t)
in the late stages of rupture using the Mase-Smith-Rice slip
on a plane solution. Using the asymptotic expansion for the
complementary error function valid at large slips this leads
to,

σ̄min

σ̄a
=

�
L∗

πδ
, (60)

where δ = V t is the total slip accommodated across the
gouge layer. Defining Icur. in a similar fashion to the def-
inition of I but using the current minimum effective stress
σ̄min we find,

Icur. =

�
πδ
L∗

�1/4

I. (61)

The four parameter sets in Table 1 predict values of L∗ be-
tween 1.69 mm and 57.7 mm. Using a typical seismic slip
of one meter this predicts values of Icur. between a factor of
2.71 and a factor of 6.57 larger than I. For a larger slip of
ten meters this range of values increases to 4.83 and 11.68.
These values of Icur./I mean that inertial effects may be-
come important near the trailing edge of a rupture for small
values of σ̄a, which correspond to shallow events, and small
values of L∗. However, the range of values for L∗ means that
this behavior should not be expected for all earthquakes.
Since inertial effects act to limit localization, and having
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shown the link between localization and dynamic weaken-
ing, we hypothesize that the gradual onset of inertial effects
at the trailing edge of a rupture may lead to a slowdown
in dynamic weakening. Without further work it is hard to
quantify how much strengthening this mechanism could lead
to at the trailing edge, and if this would be a viable mech-
anism to promote ruptures that propagate as self-healing
pulses (as opposed to crack-like ruptures).

7.4. Links with granular flow

Discrete simulations of granular flows commonly quantify
the effects of particle inertia using a dimensionless parameter
known as the inertia number [Da Cruz et al., 2005; Forterre
and Pouliquen, 2008], which is defined as

Igran. = γ̇d

�
ρg
P

. (62)

Here ρg is the density of the grains, P is the applied pressure,
γ̇ is the applied shear rate, and d is the grain size. Assuming
that the density of the grains is equal to the density of the
porous material per unit reference volume, an assumption
that is justified for a gouge material with a low porosity,
and that the pressure is equivalent to the ambient compres-
sive stress σ̄a we can write our dimensionless parameter I
as

I =
d
h
Igran.. (63)

Our parameter I is equal to the inertia number multiplied by
the ratio of the grain diameter and the gouge layer thickness.
When shear is highly localized it may be more appropriate to
use the current width of the deforming zone, Wrsf when lo-
calization is stabilized by frictional rate-strengthening alone,
instead of the initial gouge layer thickness h. This corre-
sponds to setting γ̇ = V/Wrsf instead of γ̇ = V/h in the
definition of Igran.. For either choice we expect Igran. to be
at least an order of magnitude greater than I.

We now compare the point at which inertial effects across
the gouge layer, as described by equation (54), become im-
portant with the point at which the inertia of individual
grains becomes important. Da Cruz et al. [2005] cites the
critical value Igran. = 0.1 as the point at which the inertia
of individual grains becomes important. Our simulations
show that inertial effects across the gouge layer become im-
portant when I > 0.1. Since Igran. is at least an order of
magnitude larger than I we deduce that the inertia of indi-
vidual particles should become important before the inertial
effects across the gouge layer become important. However,
without determining how the critical value of I inferred from
Figure (19) varies with the gouge properties we cannot be
sure that this conclusion is valid for all parameter choices.

There are some drawbacks with the granular simulations
used to find the critical value of Igran.. First the granular
simulations typically use particles that are roughly equal in
size. This in stark contrast with the particle size distribu-
tion for the Punchbowl fault found in Chester et al. [2005],
which showed that in a thin section the particle density was
proportional to d−2, where d is the grain size, for a d be-
tween 30 nm and 70 µm. This may mean that in a three-
dimensional packing the particle density is proportional to
d−3. Another problem is the shape of the particles. Granu-
lar simulations frequently use discs in two-dimensional sim-
ulations, and sometimes spherical particles, while real fault
gouge can have a much more diverse set of particles shapes.
It is unclear if these considerations will dramatically alter
the critical value of Igran. = 0.1 at which the inertia of in-
dividual particles becomes important.

Our predictions for the localized zone thickness are not
valid when the inertia of individual grains becomes impor-
tant, though several options exist to create a new prediction.
The first option is to linearize the friction laws in Da Cruz

et al. [2005] that account for the inertia of individual grains
to find effective values of fo and (a − b), as suggested in
equation (5) of Rice et al. [2013]. These effective values can
then be used in the formulae for the localized zone thickness
provided in this paper. Another option is to use a higher
order continua or gradient theory that models the inertia
of individual grains, and examples of how these models in-
teract with thermal and pore fluid effects can be found in
Vardoulakis [2002] and Sulem et al. [2011].

8. Discussion

8.1. Frictional rate-strengthening only

Our simulations predict micron-scale strain rate localiza-
tion in a fluid-saturated gouge material. The strain rate
profile has a Gaussian shape throughout the simulation, the
same form assumed in previous models for thermal pres-
surization [Andrews, 2002; Rempel and Rice, 2006; Noda et
al., 2009; Garagash, 2012]. The excellent fit between the
Gaussian function and our numerical simulations allows us
to infer a width for the localized straining zone, which is
taken to be twice the root mean square width of the Gaus-
sian. Tracking this width as a function of the gouge layer
thickness h we find that straining localizes to a zone that
has a very weak dependence on the gouge layer thickness
h. This means that the thickness of the localized zone is
controlled by the gouge properties not the initial width of
the gouge layer.

The nondimensionalization in subsection 2.5 shows that
for localization stabilized by frictional rate-strengthening
alone there are only three dimensionless parameters. One
parameter quantifies the rate-strengthening component of
the friction law and the other two compare the diffusion
distances for thermal and hydraulic diffusion on timescales
comparable to the characteristic weakening timescale for
thermal pressurization with the gouge layer thickness. A
parameter sweep over these three parameters allows us to
determine the localized zone thickness at peak localization
as a function of the gouge properties. The results are shown
in Figures 5, 6 and 7, and our simulations are well fit by

Wrsf ≈ 6.9(a− b)γw
fo + 2(a− b)

(
√
αhy +

√
αth)

2

V
(64)

The localized zone thickness is set by a balance between
frictional rate-strengthening, thermal pressurization and hy-
drothermal diffusion. Comparing this formula with the lin-
ear stability prediction from Rice et al. [2013] we see one
crucial difference. In the linear stability prediction hy-
drothermal diffusion enters through the sum of the diffu-
sivities αhy + αth, while the results of our simulations are
better fit by the Rice [2006] lump hydrothermal diffusiv-
ity α =

�√
αhy +

√
αth

�2
from the Mase-Smith-Rice slip on

a plane solution. Since nonlinear terms are properly ac-
counted for and the localized zone thickness is tracked from
the initial instability all the way to peak localization, we con-
sider the formula in this paper to be a better predictor for
localized zone thickness than the formula given in Rice et al.
[2013], which was based on a linear stability analysis. How-
ever, the two formulae produce very similar predictions, and
in the limit where one diffusivity is much greater than the
other the two formulae differ only in the constant fore-factor
(π2 in the linear stability analysis and 6.9 in the nonlinear
simulations).

Using the parameters from Rempel and Rice [2006] mod-
eling a depth of 7 km and frictional data from Blanpied et al.
[1998] our formula for Wrsf predicts localized zone thick-
nesses between 4 µm and 44 µm. We also developed a set
of hydraulic parameters intended to model a depth of 1 km,
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Figure 19. Rate-strengthening friction: A plot showing how the peak strain rate γ̇peak and time tpeak
at which this peak strain occurs vary with I for the nominal parameters modeling intact and damaged
material, a gouge layer thickness h = 0.5 mm, and a slip rate V = 1 m/s. To allow easy comparison
between the two parameter sets all values of γ̇peak and tpeak are normalized by the values found when
mechanical equilibrium is assumed. These mechanical equilibrium values are indicated by a superscript
ME. Above I = 10−1 inertial effects become important and the two models diverge. Inertial effects lead
to two key differences. The value of γ̇peak is decreased, which corresponds to a wider localized zone; the
time tpeak at which peak localization occurs is larger indicating that the localized zone takes longer to
develop.

a typical intersection depth for boreholes drilled into active
faults. At shallower depths thermal pressurization is less ef-
ficient and hydraulic diffusion is more efficient, leading us to
predict wider localized zones. For an intact material we pre-
dict a localized zone thickness of 31 µm, and for a damaged
material, where damage is modeled as in Rice [2006], we pre-
dict a thickness of 217 µm. These values are very similar to
those predicted in Rice et al. [2013]. A comparison between
our predictions and observations from laboratory and field
studies, and a discussion of other factors that that could
alter our predictions, can be found in Rice et al. [2013].

The discussion above assumes that peak localization is
achieved during a seismic event. However, this may not al-
ways be the case. Figures 9 and 10 show γpeak, the nominal
strain at which peak localization occurs, as a function of
the gouge properties. A typical value for γpeak/γw is 0.5. If
the nominal strain is less than γpeak, as will be the case for
small slips or wide gouge layers, then the localized zone will
not have time to fully develop. This will mean that final
strain profiles will be thicker than the predictions from our
formula for Wrsf .

8.2. Dilatancy only

For localization limited by dilatancy alone we see rapid
strain rate localization, followed by a decay back to uniform
shear. As for strain rate localization stabilized by frictional
rate-strengthening alone, the localized zone has a Gaussian
shape throughout the simulation. The system is controlled
by just two dimensionless parameters, one modeling the
strength of dilatancy and the other modeling the strength of
thermal diffusion. Varying these parameters independently
we find a formula for the localized zone thickness Wdil at
peak localization

Wdil =

�
2
π

2αthρc
15V foΛ

exp

�
50ε
βσ̄a

�
. (65)

As before the width of the localized zone is independent
of the gouge layer thickness, and Wdil is set by the gouge
properties. Using this formula and the parameters model-

ing a depth of 7 km (see Table 1) we predict localized zone
thicknesses between ∼ 1 and 2 µm. This range of values is
lower than those predicted for frictional rate-strengthening
alone, suggesting that dilatancy is less effective at limiting
strain rate localization (if a wider localized zone is equiva-
lent to more effective localization limiting). Our predictions
fall into a more compact interval than our predictions for
Wrsf . This is because the localized zone thickness is less
sensitive to changes in hydraulic parameters than the fric-
tional rate-strengthening system, and the hydraulic param-
eters are among the least constrained parameters in the sys-
tem. We also predicted localized zone thicknesses at a depth
of 1 km, with this depth intended to model a typical intersec-
tion depth for boreholes drilled in active faults. We predict
Wdil = 54 µm for an intact material, and Wdil = 15 µm for
a damaged material. Damaged parameters lead to thinner
localized zones due to the increase in the storage capacity
β. A larger storage capacity leads to less efficient limiting
of localization by dilatant suctions. This is in contrast to
the frictional rate-strengthening results that predicted wider
localized zones for the damaged parameters.

The linear stability analysis in Rice et al. [2013] predicts
transient growth followed by decay back to uniform shear-
ing. However, the transient growth quickly leads to strain
rate perturbations that violate the linearization assump-
tions. Our simulations properly account for nonlinear terms
and qualitatively reproduce the transient growth predicted
by the linear stability analysis. However, the quantitative
predictions from the linear stability analysis do not agree
with the widths inferred from our numerical simulations,
and the formulae for Wdil predicted by the two methods
have a very different structure. The linear stability predic-
tions from Rice et al. [2013] provide a poor prediction of the
localized zone thickness because the linearized model is ap-
plied beyond the point at which the linearization becomes
invalid.

Finally we studied how the transient strain rate localiza-
tion is expressed in final strain profiles. Figure 17 shows
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the final strain profile for three different slips for the path-
averaged parameters modeling a damaged material, V = 1
m/s and h = 0.5 mm. For slips that are large compared
to the gouge layer thickness the majority of time will be
spent shearing the gouge uniformly, leading to final strain
profiles with little noticeable strain localization. As with
the previous discussion of a localized shear zone that does
not fully develop, this is another example of how final strain
profiles can look like shearing was uniform even when uni-
form shearing is unstable. This difference between strain
localization and strain rate localization must be considered
when interpreting final strain profiles.

8.3. Localization and dynamic weakening

Rempel and Rice [2006] studied the shear strength evolu-
tion for a uniformly sheared gouge layer undergoing thermal
pressurization. They verified that the initial stages of de-
formation are well described by the solution of Lachenbruch
[1980] for uniform shear under undrained and adiabatic con-
ditions, and the later stages of deformation are described by
the Mase-Smith-Rice slip on a plane solution. Using this
framework we studied the impact of strain rate localization
on shear strength evolution.

Figure 8 shows that, for localization stabilized by fric-
tional rate-strengthening alone, the onset of strain rate lo-
calization is accompanied by an acceleration in dynamic
weakening, with the most rapid dynamic weakening coin-
ciding with the most rapid thinning of the localized zone.
As straining localizes the frictional heating is focused into a
narrow zone leading to more efficient thermal pressurization.
The early stages of deformation are still in good agreement
with the uniform shear solution from Lachenbruch [1980].
During this period straining is localizing but is far from peak
localization. After peak localization the shear strength is
well described by the Mase-Smith-Rice slip on a plane solu-
tion. Our solutions are all for a fixed slip rate V . The results
for strain rate localization stabilized by dilatancy alone also
show this link between the onset of localization and acceler-
ated dynamic weakening.

We found that the most rapid weakening corresponds to
the time when the localized zone is thinning most rapidly.
This means that the strain until peak localization, γpeak,
controls the slip at which the most rapid weakening oc-
curs. For strain rate localization stabilized by frictional
rate-strengthening alone γpeak is an increasing function of
(a− b) and a decreasing function of αhy and αth. Values of
γpeak/γw are typically around 0.5.

For strain rate localization stabilized by dilatancy alone
γpeak is relatively insensitive to changes in the thermal dif-
fusion lengthscale Lthd, provided that the gouge layer thick-
ness is not comparable to the localized zone thickness. The
critical strain γpeak is an increasing function of ε so, as for
the frictional rate-strengthening only system, a more effec-
tive localization limiting mechanism not only leads to wider
localized shear zones, but also slows the rate at which strain
localization occurs.

Since the most rapid dynamic weakening occurs at strains
comparable to γpeak, if the gouge layer is sufficiently thick
or the slip in an event is sufficiently small then the localized
zone may not fully develop. If this occurs then we expect
the strength evolution to be far smoother than the example
shown in Figure 8. One caveat is that it may not be possible
for slip to cease during the accelerating dynamic weakening
that occurs just before a fully developed localized zone is
generated.

8.4. Maximum temperature rise

Strain rate localization also has a pronounced effect on
the maximum temperature. Figure 11 shows the maximum
temperature rise for the localized shear solution and uniform

shear solution when localization is stabilized by frictional
rate-strengthening alone. For the initial stages of deforma-
tion the maximum temperature rise is well described the
undrained and adiabatic solution from Lachenbruch [1980].
However, as the strain rate localizes the frictional heating
is focused into a narrow zone, leading to a large increase in
the maximum temperature rise. After straining has local-
ized the maximum temperature rise mirrors the solution for
slip on a plane, but will never converge to this solution. For
the simulation shown in Figure 11 the maximum tempera-
ture rise for the localized shear solution is about three times
larger than that of the uniform shear solution after a slip of
10 mm, a difference of ∼ 580◦C. Such a dramatic increase
temperature rise has obvious implications for the onset of
melting and the triggering of other temperature controlled
dynamic weakening mechanisms such as thermal decompo-
sition. Varying the gouge properties we find that the most
rapid rises in the maximum temperature correspond to the
lowest values of Wrsf , as would be expected since lower val-
ues of Wrsf means straining is confined to a narrower zone.

While the maximum temperature rise for the localized
shear solution is much larger than that of the uniform shear
solution, the temperature anomaly that might be observed
in fault drilling studies would be smaller. This is because
the temperature rise observed during drilling is controlled
by the total dissipation,

� D

0

τ(δ)dδ, (66)

where δ is slip and D is the total slip in an event. The
rapid weakening that accompanies localization means that
the total dissipation for the localized shear solution will be
less than the total dissipation for the uniform shear solution,
leading to a lower temperature anomaly.

We can understand the apparent contradiction between a
higher maximum temperature rise and a lower temperature
anomaly by realizing that the extremely small width of the
localized zone means that the maximum temperature rise
will rapidly decay after the cessation of slip. The timescale
for decay of the localized peak in temperature can be esti-
mated by W 2

rsf/αth. Using our predictions of localized zone
thickness we predict decay timescales between 0.022 and 3.6
milliseconds. The very short decay time may be important
when estimating the maximum temperature rise on a fault
using thermal maturity methods Polissar et al. [2011], with
narrower localized zones corresponding to a larger estimate
for the temperature rise.

9. Conclusions

In this paper we have used numerical simulations to study
strain rate localization in a fluid-saturated gouge material
undergoing thermal pressurization. Two stabilizing mecha-
nisms were considered to prevent the deformation collaps-
ing onto a mathematical plane, frictional rate-strengthening
and dilatancy. We predict a localized zone thickness, which
is compared with the predictions for localized zone thickness
from the companion paper Rice et al. [2013], and show the
impact localization has on the maximum temperature rise
and shear strength evolution.

For frictional rate-strengthening alone the strain rate pro-
file has a Gaussian shape throughout the deformation allow-
ing us to infer the width of the localized zone Wrsf . The
peak localized zone thickness is found to be almost indepen-
dent of the gouge layer thickness. A parameter sweep leads
to a formula for the localized zone thickness as a function
of the gouge properties, and the thickness is set by a bal-
ance between thermal pressurization, hydrothermal diffusion
and rate-strengthening friction. For parameters modeling a
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depth of 7 km we predict localized zone thicknesses between
4 µm and 44 µm.

For dilatancy alone we also predict a localized zone thick-
ness that is independent of the gouge layer thickness. A
parameter sweep leads to a formula for the localized zone
thickness Wdil as a function of the gouge parameters, with
the formula given in equation (50). Using this formula we
predict localized zone thicknesses between 1 µm and 2 µm
at a depth of 7 km. The most sensitive dependence of Wdil

is on ε, which models the magnitude of dilatancy.
Strain rate localization has a dramatic effect on the

strength and temperature evolution of the gouge layer. As
straining localizes the frictional heating is focused into a nar-
rower zone, leading to a much larger temperature rise than
that predicted if localization is neglected. This focusing of
frictional heating also leads to rapid thermal pressurization
and the development of a localized shear zone coincides with
a significant strength drop.

Finally, we tested the hypothesis in Rice [2006] that iner-
tial effects across the gouge layer will be unimportant during

shear. We found that in general inertial effects across the
gouge layer will be unimportant in both real earthquakes
and high-velocity friction experiments, but may play a role
very close to the tip of a dynamically propagating rupture
or when the pore pressure approaches the normal stress on
the fault.
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