
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Stability and Localization of Rapid Shear in Fluid-Saturated

Fault Gouge, 1. Linearized stability analysis

James R. Rice,1,2, John W. Rudnicki3,4, and John D. Platt1

Abstract. Field observations of major earthquake fault zones show that shear defor-
mation is often confined to principal slipping zones that may be of order 1-100 µm wide,
located within a broader gouge layer of order 10-100 mm wide. This paper examines the
possibility that the extreme strain localization observed may be due to the coupling of
shear heating, thermal pressurization and diffusion. In the absence of a stabilizing mech-
anism shear deformation in a continuum analysis will collapse to an infinitesimally thin
zone [Rice, 2006]. Two possible stabilizing mechanisms, studied in this paper, are rate-
strengthening friction and dilatancy. For rate-strengthening friction alone, a linear sta-
bility analysis shows that uniform shear of a gouge layer is unstable for perturbations
exceeding a critical wavelength. Using this critical wavelength we predict a width for the
localized zone as a function of the gouge properties. Taking representative parameters
for fault gouge at typical centroidal depths of crustal seismogenic zones, we predict lo-
calized zones of order 5-40 µm wide, roughly consistent with field and experimental ob-
servations. For dilatancy alone, linearized strain rate perturbations with a sufficiently
large wavelength will undergo transient exponential growth before decaying back to uni-
form shear. The total perturbation strain accumulated during this transient strain rate
localization is shown to be largely controlled by a single parameter dimensionless param-
eter E, which is a measure of the dilatancy of the gouge material due to an increase in
strain rate.

1. Introduction

Detailed examinations of fault zones have shown a hierar-
chical structure, with a fault core composed of ultracatacl-
asite and fault gouge sitting within a broader damage zone.
Further investigation reveals a zone of highly localized shear
on the order of 10-300 µm wide nested within the fault core
[Heermance et al., 2003; Chester et al., 2003; De Paola et al.,
2008]. This localized shear zone is interpreted as the princi-
pal slip surface of the fault. What determines the width of
this zone? Extreme localization is readily understandable in
a fluid-saturated fault gouge undergoing thermal pressuriza-
tion during shear. In this paper and the companion paper
Platt et al. [2014] we study how two localization limiting
mechanisms could combine with thermal pressurization and
hydrothermal diffusion to set the width of the localized shear
zone during rapid shear. The first limiting mechanism is fric-
tional rate-strengthening. The friction coefficient varies with
the rate of shearing in a manner suggested by laboratory
experiments, with strengthening observed at higher temper-
atures or higher clay fractions. Such rate-strengthening fric-
tion is appropriate in stable regions of faults where rupture
cannot nucleate but can propagate through, or in initially
unstable regions that have been driven to high tempera-
tures by shear heating. The second limiting mechanism is
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dilatancy. The gouge porosity, and hence pore fluid volume,
increases with shear strain rate, reducing the pore pressure.
When this occurs faster than fluid diffusion into the newly
expanded pore space, dilatancy will have a strengthening
effect. In the absence of a limiting mechanism the shearing
will collapse to a zone of zero width in a continuum model,
as noted in Rice [2006]. In this paper we present a linear
stability analysis of these two mechanisms separately. For
frictional rate-strengthening alone the solution for homoge-
neous deformation of the gouge presented in Lachenbruch
[1980] is unstable for gouge layer thicknesses exceeding a
critical value. This critical thickness is interpreted as the lo-
calization thickness during rapid shear. For dilatancy alone
the linear stability analysis predicts intense transient strain
rate localization, followed by a return to uniform shear of
the gouge layer at large slips. We show that, except for very
small wavelengths, the total accumulated strain during this
transient localization is controlled by a single dimensionless
parameter representing the efficiency of dilatant strengthen-
ing.

The companion paper Platt et al. [2014] presents full
numerical simulations that complement the linear stability
predictions of this paper. These simulations show that for
both stabilizing mechanisms the final localized zone thick-
ness is almost independent of the initial thickness of the
gouge layer, and is controlled by the physical properties of
the gouge. The influence of strain rate localization on shear
strength evolution is also studied, and we observe dramatic
weakening associated with the onset of localization caused
by the focusing of frictional heating into a narrower zone.

1.1. Field observations of strain localization

Chester and Chester [1998] studied the structure of the
Punchbowl Fault, an inactive branch of the San Andreas
fault system thought to have accommodated 44 km of slip
[Chester et al., 2004], at a depth of ∼3-4 km [Polissar et al.,
2011]. They observed a continuous ultracataclasite layer
0.15-0.55 m wide, surrounded by a much broader damage
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zone ∼15 m wide. Within this ultracataclasite layer there
runs a single continuous fracture surface, which Chester and
Chester [1998] called the principal fracture surface, paral-
lel to the direction of shear. Other fracture surfaces exist
but are <1 m in length, and are truncated by the principal
fracture surface. These fracture surfaces are thought to rep-
resent strain localization within the ultracataclasite layer,
and the principal fracture surface is identified as the princi-
pal slip surface for the Punchbowl Fault. Subsequent studies
of a thin section sample under cross-polarized light showed
that the majority of the shearing had been accommodated
within in a zone just 100-300 µm wide [Chester et al., 2003]
(see the thin section from their work reproduced as Figure
1b in Rice [2006]). The concurrent work of Heermance et al.
[2003] also showed 100 micron-scale strain localization, and
will be discussed further below.

In another study De Paola et al. [2008] analyzed a series
of normal faults in the Northern Apennines, hosted in dolo-
stone and anhydrite rocks. On small displacement faults,
with a slip of < 10 m, they observed a cataclasite fault core
a few centimeters thick. Within this gouge layer zones of in-
tense shear strain localization are observed, ranging in width
from a few to tens of microns, running parallel to the fault
core boundary. De Paola et al. [2008] also studied a larger
displacement fault, with a slip of > 100 m. In this case the
fault core was much broader, 5 − 6 m wide, and contained
multiple principal slip surfaces. Associated with each prin-
cipal slip surface was a layer of very-fine grained cataclasites
2-3 mm wide, and within each of these layers they observed
a zone of localized shear ∼ 10 µm wide. These observations
appear to show that, in the region studied in De Paola et al.
[2008], although the width of the fault core and surrounding
damage zone increases with fault displacement, the localized
shear zones observed are consistently ∼ 1− 10 µm wide.

Not all field observations showed micron-scale strain lo-
calization. Boullier et al. [2009] analyzed the microstruc-
tural distribution in two borehole samples taken from depths
of 1111 m and 1136 m on the Chelunqpu fault after the Mw
7.6 Chi-Chi earthquake in 1999. In both samples they in-
terpreted the principal slip surface to be an isotropic gouge
layer 3-20 mm wide with no evidence of sub-millimeter scale
localized shear structures. Heermance et al. [2003] also an-
alyzed the principal slip surface of the Chelungpu fault us-
ing a combination of borehole drilling and outcrops. They
found evidence of extreme strain localization in the north-
ern region of the fault, down to a width of approximately
50-300 µm, and much more diffuse deformation in the south-
ern region. Noting that the location of distributed shear in
Boullier et al. [2009] is near the location of micron-scale lo-
calization in Heermance et al. [2003] it appears that extreme
strain localization does not occur in every seismic event, and
there may be significant spatial variation in the localized
zone thickness. For completeness we also mention one final
observation of millimeter-scale localization to supplement
the centimeter-scale and micron-scale structures discussed
above. Wibberley and Shimamoto [2003] identified a “cen-
tral slip zone” on the Median Tectonic Line fault with a
nominal thickness of 3 mm (C. A. Wibberley, private com-
munication, 2003), although no measurements were made to
look for finer scale structures within this zone.

It should be noted that there is no definitive proof that
the shear zones described in this subsection are formed co-
seismically, though highly localized shear is commonly used
as an indicator of seismic deformation.

1.2. Localization in high-velocity friction experiments

Velocity stepping experiments first presented in Dieterich
[1979] have led to a much clearer understanding of friction,
and the frictional response to velocity changes, at slip rates

of ∼ 1-10 µm/s. However, the picture at seismic slip rates
is much less clear with complicated thermal and hydraulic
processes obscuring the purely frictional response. Rotary
shear devices have been used in recent years to investigate
this high-velocity regime for rock-rock friction and gouge
materials [Tsutsumi and Shimamoto, 1997]. In a typical ex-
periment, for example Brantut et al. [2008], Kitajima et al.
[2010], Reches et al. [2012], Smith et al. [2013] and many
additional studies, a gouge layer around 1 mm wide is con-
fined between two cylindrical blocks, one rotating and one
stationary, leading to rapid shearing of the gouge.

Kitajima et al. [2010] performed rotary shear experiments
on a fluid-saturated gouge composed of disaggregated ul-
tracataclasite from the Punchbowl fault. The resulting
microstructures were analyzed under plane-polarized and
cross-polarized light by cutting thin sections through the
axis of the cylinder, creating a radial cross-section of the
gouge material. Four distinct microstructural units were
identified, and the formation of the different units was cor-
related with different slip and slip rate conditions. At slip
rates of ∼ 1 m/s they observed two distinct microstructural
units, one a less compacted gouge with a random fabric,
the other a zone of extremely fine grained material with a
very strong foliation that is interpreted as a region of in-
tense strain localization. The width of this localized zone
is typically ∼100 µm. However, the distinct banded nature
of the zone of highly localized shear may indicate multiple
slipping zones each much thinner than the total width of
the localized zone. Kitajima et al. [2010] linked the onset
of strain localization with the observed dynamic weakening,
an observation in agreement with the results presented in
the companion paper Platt et al. [2014].

A similar set of rotary shear experiments was presented
in Brantut et al. [2008] using gouge taken from the Me-
dian Tectonic Line, Southwest Japan. Optical microscopy
showed a thin, darker zone ∼1-10 µm wide, which due to a
lack of other indications of deformation in the gouge layer
was identified as the main slipping zone of the experiment.
Other high-velocity friction experiments [Boutareaud et al.,
2008; Mizoguchi et al., 2009] have also shown evidence of
micron-scale strain localization.

It should be noted that micron-scale strain localization
also occurs in rotary shear experiments performed at slip
rates of ∼ 10 µm/s [Yund et al., 1990; Beeler et al., 1996],
and the model presented here cannot explain these observa-
tions.

1.3. Influence on rupture properties

Previous studies of thermally-driven weakening mecha-
nisms have shown that the width of the deforming zone is
a key parameter. Narrow deforming zones concentrate the
frictional heating leading to large temperature rises, and
thus more rapid weakening. This can be seen in the solution
of Lachenbruch [1980] for uniform shear of a gouge layer un-
dergoing thermal pressurization, where the slip-weakening
distance scales linearly with the width of the deforming zone.
Very thin zones require only small slips to cause dynamic
weakening. This may explain why the gouge layer width
plays a significant role in determining the rupture propa-
gation mode in the calculations performed in Noda et al.
[2009], which showed a transition from crack-like ruptures
through growing slip pulses to arresting slip pulses as the
gouge layer thickness was increased. Thinner layers will ex-
perience more weakening and thus are more likely to prop-
agate as an accelerating crack-like rupture. Extending the
thermal pressurization model in a different direction, Rempel
and Rice [2006] studied the temperature rise expected for a
uniformly sheared, fluid-saturated gouge layer. They found
that, for a fixed amount of slip, thinner shear zones will ex-
perience larger temperature rises. Thus the deforming zone
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Figure 1. A fault zone idealized as a gouge layer of thickness h subjected to homogeneous shear strain
rate γ̇o. The stresses in the layer are a constant normal stress σn, a shear stress τ and whatever other
normal stresses in the x and z directions needed to maintain zero normal strain in these directions.

thickness may determine if melting occurs, or if other tem-
perature controlled dynamic weakening mechanisms such as
thermal decomposition are activated. A final example of the
importance of the deforming zone thickness are the solutions
for a steadily propagating slip pulse presented in Garagash
[2012]. In these results the total slip in the event scales
linearly with the deforming zone thickness, and the slip du-
ration scales as the square of the deforming zone thickness.

2. Model Derivation

Figure 1 shows an idealized one-dimensional model for
deformation of a fluid-saturated gouge material. The layer
represents a gouge zone inherited from previous stable or
seismic slip. In this model the only non-zero velocity com-
ponent, u(y, t), is parallel to the fault zone and depends only
on the time since the onset of shear, t, and the coordinate
perpendicular to the direction of slip, y. The stresses in the
deforming zone are the shear stress τ , a constant compres-
sive normal stress σn in the y direction, and whatever other
normal stresses are required to meet the constraints of zero
straining in the other directions.

We do not intend to model a specific fault, and our re-
sults are valid for any fluid-saturated gouge material with
a rate-strengthening friction law. Seismic shear in rate-
strengthening materials is expected to occur when a rupture
that nucleated elsewhere propagates into a stably creep-
ing region of a fault, or when a fault that can nucleate
earthquakes is heated to temperatures associated with rate-
strengthening friction [Blanpied et al., 1998; Boettcher et al.,
2007].

2.1. Mechanical equilibrium

Rice [2006] hypothesized that inertial effects within the
gouge will be negligible since even very large accelerations
contribute a small amount to the change of stress over
the small distances, on the order of a few 10’s mm, over
which thermal and fluid diffusion is important. This means
that the deformation process can be approximated as quasi-
static, and the stresses within the layer satisfy

∂τ

∂y
= 0 ,

∂σn

∂y
= 0. (1)

The quasi-static approximation means that the shear and
normal stress do not depend on y, and are at most a func-
tion of t. In the companion paper to this study we further
analyze the small inertial effects and investigate under what
conditions they may become important [Platt et al., 2014].

2.2. Gouge friction

The shear stress is taken to be the product of a friction
coefficient f and the Terzaghi effective stress

τ = f(σn − p), (2)

where p = p(y, t) is the pore pressure. Many studies of ther-
mally driven weakening mechanisms assume that the friction
coefficient is constant. When constant friction and mechani-
cal equilibrium are assumed, and dilatancy is neglected, only
two forms of deformation are possible, homogeneous shear
in the gouge material or slip on the plane of maximum pore
pressure [Rice, 2006]. However, when the friction coefficient
is allowed to vary a finite thickness shear zone can exist, with
regions of large pore pressure balanced by larger friction co-
efficients. In this paper we consider a friction coefficient that
is a function of the strain rate alone.

f = f(γ̇) , γ̇ =
∂u

∂y
. (3)

The analysis in this paper requires only the linearization of
the friction law around the uniform strain rate γ̇o,

f(γ̇) = fo +
a− b

γ̇o
(γ̇ − γ̇o) , (4)

where we have defined,

fo = f(γ̇o) , (a− b) = γ̇o
df

dγ̇

����
γ̇=γ̇o

(5)

We consider a rate-strengthening material so (a − b) > 0.
The form of these coefficients is chosen so that (a − b) is
equivalent to the typical rate-and-state friction parameter
when one writes

f = fo + (a− b) log(γ̇/γ̇o) (6)
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for shearing at steady state. This standard logarithmic form
is used in the companion paper Platt et al. [2014]. However,
the results in this paper are valid for any friction law that de-
pends on strain rate alone. We ignore the state evolution ef-
fects accompanying changes in shear rate, not least because
there is no presently accepted way of describing these effects
of distributed shear in gouge. For regions of rate-weakening
friction a fuller description that includes a dependence on
state and a procedure to limit localization would be needed.
The inclusion of the direct effect, meaning that any increase
in strain rate leads to a transient increase in the friction
coefficient, may prevent localization from evolving to an in-
finitesimally narrow zone.

2.3. Conservation of energy

Conservation of energy can be expressed as,

τ γ̇ = ρc
∂T

∂t
+

∂qh

∂y
(7)

where T is the temperature, c is the specific heat, ρ is the
density in the reference state and qh is the heat flux. This ex-
pression neglects generally small additional terms due to the
work of the normal stress and pore pressure, and internal en-
ergy transfer due to flow of the fluid, a common assumption
justified in Mase and Smith [1985, 1987] for representative
permeabilities of fault gouges. The heat flux is related to
the temperature gradient by Fourier’s law

qh = −K
∂T

∂y
(8)

where K is the thermal conductivity. Substituting (8) into
(7) and simplifying we arrive at

∂T

∂t
=

τ γ̇

ρc
+ αth

∂
2
T

∂y2
(9)

where αth = K/ρc is the thermal diffusivity. When combin-
ing equations (8) and (9) we have assumed that the ther-
mal conductivity is insensitive to temperature and porosity
changes.

2.4. Conservation of pore fluid mass

Conservation of pore fluid mass can be expressed as

∂m

∂t
+

∂qf

∂y
= 0 (10)

where m is the fluid mass per unit volume of porous medium
with that volume as measured in a reference state, and qf

is the pore fluid mass flux. According to Darcy’s Law, this
mass flux is proportional to the negative of the pore pressure
gradient,

qf = −ρfk

ηf

∂p

∂y
(11)

where k is the intrinsic permeability, and ρf and ηf are
the density and viscosity of pore fluid respectively. Writing
m = ρfn, where n is the porosity, and differentiating this
product yields

∂m

∂t
= n

∂ρf

∂t
+ ρf

�
∂n

el

∂t
+

∂n
pl

∂t

�
(12)

Here the rate of change of the porosity has been written as
the sum of elastic and inelastic or plastic contributions from
dilatancy, as in the Segall and Rice [1995] formulation. We
later explain a possible reinterpretation of the symbols n

el

and n
pl in a manner consistent with critical state soil me-

chanics [Schofield and Wroth, 1968;Muir-Wood , 1990] which
may be more appropriate for sustained shearing (rather than

nucleation of instability as considered in Segall and Rice
[1995]). Variations in the elastic porosity with pore pres-
sure and temperature can be accounted for by setting

1
n

∂n
el

∂t
= βn

∂p

∂t
+ λn

∂T

∂t
(13)

where βn and λn are the compressibility and the thermal
expansivity of the pore volume respectively. These can be
expressed in terms of coefficients for poro-thermo-elasticity
[McTigue, 1986; Coussy , 1995] evaluated for constant nor-
mal stress perpendicular to the fault zone (σn = const) and
zero normal strains in the plane of the fault zone (see Rice
[2006]). In a similar fashion the rate of change of the fluid
density ρf can be expressed as

1
ρf

∂ρf

∂t
= βf

∂p

∂t
− λf

∂T

∂t
(14)

where βf and λf are the compressibility and thermal expan-
sivity of the pore fluid respectively. Combining equations
(10)-(14) we arrive at,

∂p

∂t
= Λ

∂T

∂t
− 1

β

∂n
pl

∂t
+ αhy

∂
2
p

∂y2
(15)

where,

β ≡ n(βf + βn) , Λ ≡ λf − λn

βf + βn
. (16)

Here β is an elastic storage coefficient and Λ is the ra-
tio of pore pressure change to temperature change during
undrained, adiabatic elastic deformation.The hydraulic dif-
fusivity is defined as,

αhy = k/[ηfn(βf + βn)] (17)

and is assumed to be constant. The first term on the right
hand side of equation (15) models thermal pressurization,
the second term models pore pressure drops due to inelastic
porosity increases, and the final term represents hydraulic
diffusion.

Equations equivalent to (9) and (15) have been used by
Garagash and Rudnicki [2003] and Segall and Rice [1995]
with ∂

2
p/∂y

2 and ∂
2
T/∂y

2 approximated by the difference
between local and remote values of p and T divided by a
characteristic length squared. This form is appropriate for
the single degree-of-freedom (spring-slider) model consid-
ered in those papers, but is too severe an idealization for
continuum deformation.

2.5. Gouge dilatancy

In this paper we assume that all of the inelastic porosity
change is due to dilatancy, although other mechanisms also
exist, with one possible example being thermal decomposi-
tion [Sulem and Famin, 2009]. We assume that the gouge
is sufficiently sheared that all porosity changes are due to
changes in strain rate, allowing us to write n

pl = n
pl(γ̇). As

with the friction law, the analysis in this paper requires only
the linearized form,

n
pl(γ̇) = n

pl
o + ε

γ̇ − γ̇o

γ̇o
, (18)

where we define,

n
pl
o = n

pl(γ̇o) , ε = γ̇o
dn

pl

dγ̇

����
γ̇=γ̇o

(19)



RICE, RUDNICKI, AND PLATT: STRAIN LOCALIZATION IN SATURATED GOUGE X - 5

Table 1. Representative parameters modeling a centroidal depth of 7 km. Thermal and hydraulic properties are
taken from Rempel and Rice [2006, Table 1], based on [Rice, 2006, Tables 1-3] and the procedures in Rice [2006]
to take account of (1) damage to the fault zone material at the onset of shearing, due to concentrated stresses near
the tip of a propagating rupture front, and (2) variations of properties with pressure and temperature (for the
path-averaged values). To model the damaged gouge, permeability is increased by a factor of ten, and the drained
compressibility by a factor of two. The path-averaged values roughly account for parameter variations with pore
pressure p and temperature T ; a p-T path is calculated based on the nominal parameters, and new parameter
values are chosen as averages of parameter values along that path. The ambient effective stress is calculated using
an effective stress gradient of 18 MPa/km. The value of ε is taken from Segall and Rice [1995], and is found by
fitting to the low strain rate experiments performed by Marone et al. [1990].

Parameter Intact material, Intact material, Damaged material, Damaged material,
nominal values path-averaged values nominal values path-averaged values

αth, mm2/s 0.7 0.66 0.7 0.54
ρc, MPa/K 2.7 2.7 2.7 2.7
Λ, MPa/K 0.93 0.89 0.31 0.30
αhy , mm2/s 0.86 2.05 3.52 6.71

β, ×10−10 Pa−1 0.52 0.55 1.26 2.97
ε 1.7× 10−4 1.7× 10−4 1.7× 10−4 1.7× 10−4

σn − pa, MPa 126 126 126 126
ρ, kg/m3 2800 2800 2800 2800

Here n
pl
o is the plastic porosity at the uniform strain rate

γ̇o, and ε is a measure of the strength of dilatancy in the
gouge material, with a larger value of ε leading to more dila-
tion. The forms of the coefficients are chosen to agree with
the steady state form for shear dilatancy at low strain rates
introduced by Segall and Rice [1995], and based on experi-
ments in Marone et al. [1990]. Note that the dilatancy rate
vanishes for constant strain-rate.

2.6. Critical state reinterpretation

In the classical critical state formulation for sustained
shear, rate effects are ignored and the porosity is taken
to be a function of effective normal stress (which we may
generalize to be a function of effective stress and, weakly,
temperature). We reinterpret the symbol nel as

n
el = n

cs(σn − p, T ) (20)

where the superscript cs denotes critical state and, in our
case, σn is constant. That is, we represent the porosity
as the sum of the rate-independent critical state form (20),
and take n

pl as above in equations (18) and (19) to repre-
sent the actual rate effects neglected in the standard critical
state formulations. Thus βn and λn are redefined by equa-
tion (13) above, now with n

el replaced by n
cs, with σn con-

stant. They are now interpreted as coefficients expressing
rate-independent changes of porosity linearized about the
critical state.

We expect the (small) thermal expansion effect to be lit-
tle changed, although now βn is expected to be larger be-
cause the change of porosity n with effective stress at the
critical state (defining −βn) is comparable in magnitude to
the change of n with effective stress during one-dimensional
consolidation. The latter compressibility is typically several
times larger than the compressibility for elastic response (say
by unloading from one-dimensional consolidation), which is
the basis for estimates of βn in Segall and Rice [1995] and
Rice [2006].

3. Parameter Values

The hydraulic parameters of the problem are poorly con-
strained, and depend strongly on the stress state, pore pres-
sure, temperature, and amount of damage that develops
during initial shear of the fault gouge. To account approxi-
mately for these complications we use the parameters in Ta-
ble 1 of Rempel and Rice [2006], which are based on [Rice,
2006, Tables 1-3] and the procedures in Rice [2006] to ac-

count for damage and variations of properties with pressure
and temperature.

The large stresses near the tip of a dynamically propa-
gating rupture may alter the gouge through processes such
as comminution and opening of cemented micro-cracks. To
model this damage Rice [2006] made the somewhat arbi-
trary choices to increase the permeability by a factor of ten
and the drained compressibility by a factor of two relative
to their laboratory values at a given stress, pore pressure,
and temperature. This leads to parameter sets modeling an
intact and damaged material.

Pore fluid properties, and thus parameters such as αhy

and Λ that depend on the fluid properties, will change with
pore pressure and temperature. The simplest choice to ac-
count for these changes is to evaluate all properties at the
ambient pore pressure and temperature conditions. We call
parameter sets created using this choice the nominal pa-
rameters. Another approach suggested in Rice [2006] is to
average the parameters over the p-T path anticipated from
calculations based on the nominal parameter values. Pa-
rameter sets that use this method are called path-averaged
parameters.

These methods lead to the four parameter sets, nominal
and path-averaged parameters for an intact and damaged
material, summarized in Table 1. All four parameter sets
are intended to model a depth of 7 km, a typical centroidal
depth for a crustal seismogenic zone.

The final parameter in the pore pressure equation is ε,
which models the inelastic porosity change associated with
a change in strain rate. We choose ε = 1.7 × 10−4, which
is the value Segall and Rice [1995] found by fitting to the
experimental data in Marone et al. [1990]. As with the fric-
tional parameters, ε is inferred from experiments performed
at strain rates much lower than those considered here. The
value of ε appropriate for high strain rates is uncertain.

Table 2. Representative parameters modeling a depth of 1
km, taken from Platt et al. [2014]. A fuller discussion on the
origin of the parameters is included in Platt et al. [2014].

Parameter Intact material, Damaged material,
αth, mm2/s 0.7 0.7
ρc, MPa/K 2.7 2.7
Λ, MPa/K 0.22 0.068
αhy , mm2/s 2.34 7.15

β, ×10−10 Pa−1 1.34 4.39
ε 1.7× 10−4 1.7× 10−4

σn − pa, MPa 18 18
ρ, kg/m3 2800 2800
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Some observations of strain localization come from bore-
hole drilling, which typically intersects the fault at a depth
much shallower than 7 km [Heermance et al., 2003; Boullier
et al., 2009]. To allow comparisons with these observations
we also select an additional set of parameters intended to
model the uppermost region of the crust, assuming ambient
conditions appropriate for a depth of 1 km. These are listed
in Table 2, and a full discussion on how these parameters are
chosen is included in the companion paper Platt et al. [2014].
As with the parameters modeling a depth of 7 km, we ac-
count for damage to the material using the method in Rice
[2006]. However, we do not use the path-averaging tech-
nique to account for parameter variations due to changes in
temperature and pressure, and all parameters are evaluated
at the ambient conditions.

The thermal parameters of the problem are more tightly
constrained than the hydraulic parameters. We choose the
specific heat ρc = 2.7 MPa/K [Lachenbruch, 1980; Mase and
Smith, 1987]. Rice [2006] notes a range of 0.5-0.7 mm2/s for
αth, and based on this we choose αth = 0.7 mm2/s for the
nominal parameter sets, and take the values from Rempel
and Rice [2006] for the path-averaged parameter sets.

Current experiments are unable to provide a friction law
of the form f(γ̇) at the high strain rates considered in this
study due to the difficulty of isolating the pure frictional
response from other temperature and pore fluid related ef-
fects, and problems confining gouge materials at high slip
rates. Lacking data in the ideal strain rate range we instead
use steady state friction values from low slip rate friction ex-
periments [Dieterich, 1979; Ruina, 1983; Tullis and Weeks,
1986; Linker and Dieterich, 1992]. We implicitly ignore dy-
namic weakening mechanisms such as flash heating [Rice,
2006; Goldsby and Tullis, 2011] or the as yet poorly un-
derstood weakening that seems to be associated with gouge
particles in the nanometer size range [Di Toro et al., 2011].
One ad-hoc way to account for such a mechanism may be
to choose a lower value of fo. Even when we have accepted
the compromise of using the low strain rate friction law to
describe seismic deformation there is still a wide range of
possible values for fo and (a − b). Data from low strain
rate experiments on granite under hydrothermal conditions
show that both fo and a−b vary with temperature [Chester ,
1994; Blanpied et al., 1995, 1998; Boettcher et al., 2007]; an-
other study shows how fault mineralogy can alter the steady
state friction coefficient fo [Ikari et al., 2009]. For the sake of
simplicity we will neglect these complications and choose the
fixed values fo = 0.6 and a− b = 0.025. A strong argument
could be made for different values. Predicted thicknesses
of shear zones will be shown to be proportional to approxi-
mately (a− b)/f2

o , making it straightforward to reinterpret
numbers and plots for other choices of the frictional param-
eters. If a different friction law that depends on strain rate
alone is assumed than effective values of fo and a − b can
be found by linearizing about the uniform strain rate γ̇o, as
shown in equation (5).

4. Spatially uniform solution

In this section we model a homogeneous medium that is
uniformly sheared at a constant strain rate γ̇ = γ̇o under
locally undrained and adiabatic conditions, writing the cor-
responding solutions to equations (9) and (15). The assump-
tion of undrained and adiabatic conditions is valid when the
boundaries of the gouge layer are impermeable and ther-
mally insulating. These conditions are also asymptotically
valid for the earliest stage of deformation when diffusion
has had very limited time to act. In this scenario the stress,
pore pressure and temperature are independent of y, mean-
ing that

{τ(y, t), p(y, t), T (y, t)} = {τ0(t), p0(t), T0(t)} (21)

For a gouge layer with a thickness h accommodating a slip
rate V , the geometry sketched in Figure 1, Lachenbruch
[1980] developed an exact solution for this system. The shear
stress and pore pressure are related by,

τ0(t) = foσ̄0(t) (22)

where

σ̄0(t) = σn − p0(t) = (σn − pa) exp

�
−foΛ

ρc
γ̇ot

�
(23)

where pa is the ambient pore pressure present before shear
begins.This means that

γw =
ρc

foΛ
(24)

is the characteristic weakening shear strain for thermal pres-
surization under undrained and adiabatic conditions. This
can be converted to a slip weakening distance for a gouge
layer with a finite thickness h,

Dud,ad = h
ρc

foΛ
. (25)

Note that the slip weakening distance scales with the width
of the deforming gouge, making strain localization crucial in
the evolution of strength during shear. This will be inves-
tigated further in the companion paper Platt et al. [2014].
Lachenbruch [1980] also solved for the temperature evolu-
tion,

T0(t) = T0(0) +
σ̄a

Λ

�
1− exp

�
−foΛ

ρc
γ̇ot

��
, (26)

where σ̄a = σn−pa is the ambient effective stress. Note that
our formulation of dilatancy, that accounts only for poros-
ity changes due to changes in strain rate, does not alter
the solution from Lachenbruch [1980]. Lachenbruch [1980]
also considered a constant dilation rate, and in this case the
shear strength (22) decays exponentially to a finite value
rather than zero. However, if dilation is confined to the
early stages of deformation, as is consistent with our formu-
lation of dilatancy, then the effect is essentially to increase
σ̄0(0) (see Rice [2006]).

For a constant friction coefficient this uniform shear so-
lution is the only possible solution in which the deforming
zone has a finite width. The alternative is slip on the plane
of maximum pore pressure, with no deformation in the rest
of the system. If the rate-dependence of the friction law is
accounted for then the straining can localize to a thin zone
with a small, but finite, width. In the following section we
show what selects this critical width for the deforming zone.

5. Linear stability of uniform shear

In this section we study the stability of small spatial per-
turbations away from the uniform shear solution. The ve-
locity, pore pressure and temperature are written as the sum
of the spatially uniform solution from the previous section
and a small spatially dependent perturbation,

τ(y, t) = foσ̄0(t) + τ1(y, t) (27a)

γ̇(y, t) = γ̇0 + γ̇1(y, t) (27b)

p(y, t) = p0(t) + p1(y, t) (27c)

T (y, t) = T0(t) + T1(y, t) (27d)
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where the unperturbed strain rate γ̇0 is chosen as the ref-
erence strain rate γ̇o in the previous section. Substituting
these forms for τ , γ̇, p and T into our model from Section
2 (Equations (1)-(4), (9) and (15)) and linearizing we arrive
at,

∂τ1

∂y
= 0 , τ1 = (σn − p0)

(a− b)
γ̇o

γ̇1 − fop1 (28a)

∂T1

∂t
=

γ̇oτ1 + foσ̄0(t)γ̇1
ρc

+ αth
∂
2
T1

∂y2
(28b)

∂p1

∂t
= Λ

∂T1

∂t
− ε

βγ̇o

∂γ̇1

∂t
+ αhy

∂
2
p1

∂y2
(28c)

Next the spatial dependence of the perturbations is decom-
posed into Fourier modes with wavelength λ,

{p1, T1, γ̇1} = �
�
{p1, T1, γ̇1}(t) exp

�
2πiy
λ

��
(29)

where the new functions p1, T1 and γ̇1 now denote complex
functions of t alone, and �(F ) indicates the real part of a
complex function F . Equations (28) then become

σ̄0(t)
(a− b)

γ̇o
γ̇1 − fop1 = 0 (30a)

dT1

dt
=

foσ̄0(t)γ̇1
ρc

− 4π2
αth

λ2
T1 (30b)

dp1

dt
= Λ

dT1

dt
− ε

βγ̇o

dγ̇1

dt
− 4π2

αhy

λ2
p1 (30c)

The above equations, a linear but non-autonomous sys-
tem due to the exponentially decaying σ̄0(t), describe the
stability of an unbounded gouge material being sheared uni-
formly with a strain rate of γ̇o. This can be specialized for
a gouge layer of thickness h sheared between rigid, imper-
meable and thermally insulating blocks moving relative to
each other with a slip rate V using the boundary conditions

∂T

∂y
=

∂p

∂y
= 0 at y = 0, h (31)

These can be satisfied by perturbations that are propor-
tional to the Fourier mode,

cos

�
πNy

h

�
(32)

where N is any positive integer and the wavelength is de-
fined by λ = 2h/N . We see that N corresponds to the num-
ber of half-wavelength oscillations in the gouge layer. Once
we have determined the allowed values of λ corresponding
to growth or decay of strain rate perturbations, and call-
ing λshr the longest stable wavelength for which strain rate
perturbations do not grow, only shear zones with

h < λshr/2 (33)

will support stable homogeneous shear.

6. Stabilization by Frictional Rate-Strength-

ening Only

First we consider only the effects of frictional rate-
strengthening, neglecting dilatancy by setting ε = 0. Us-
ing equation (30a) we can relate the perturbations in pore
pressure and strain rate,

γ̇1 =
foγ̇o

(a− b)σ̄0(t)
p1, (34)
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Figure 2. Rate-strengthening friction: A plot showing
how the critical half-wavelength λshr/2 varies with gouge
layer thickness for parameters modeling a depth of 7 km
and a slip rate V = 1 m/s. Since γ̇o = V/h thicker
gouge layers experience lower strain rates, leading to a
wider critical half-wavelength. Modeling damage as in
Rice [2006] we find that damaged material is less suscep-
tible to localization due to larger hydraulic diffusion and
less efficient thermal pressurization. When we use the
path-averaging method from Rice [2006] to account for
parameter variations with pressure and temperature the
predictions increase by about a factor of two.

allowing us to eliminate γ̇1 from equations (30). We arrive
at the pair of equations for p1 and T1,

dT1

dt
=

f
2
o γ̇o

(a− b)ρc
p1 −

4π2
αth

λ2
T1 (35a)

dp1

dt
= Λ

dT1

dt
− 4π2

αhy

λ2
p1 (35b)

Remarkably, this sub-system does not explicitly depend on
time. It can be solved by perturbations of pressure and
temperature of the form

�
p1(t)
T1(t)

�
=

�
p1(0)
T1(0)

�
exp(st) (36)

and equation (34) then provides the solution for the strain
rate perturbation,

γ̇1(t) =
foγ̇op1(0)

(a− b)(σn − pa)
exp

��
s+

foΛ
ρc

γ̇o

�
t

�
(37)

This is a rare case where a system of linear differential equa-
tions with some time-dependent coefficients has exact solu-
tions in exponential form, albeit with coefficients of t in the
exponentials that are different for γ̇1 than for p1 and T1.
Substituting (36) into (35) yields two linear equations for
p1(0) and T1(0). Since the equations are homogeneous, a
nonzero solution is possible only if the determinant of the
coefficients vanishes. This requires that s satisfy

f
2
oΛ

(a− b)ρc
γ̇os =

�
s+

4π2
αth

λ2

��
s+

4π2
αhy

λ2

�
(38)
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We can use this equation to determine the stability of uni-
form shear of a fluid-saturated gouge material. If the real
part of the exponential coefficient s + foΛγ̇o/ρc is positive,
then the perturbation away from uniform straining grows ex-
ponentially in time. This exponential growth is interpreted
as strain rate localization. Consequently, the condition that
uniform shear be linearly stable is

�
�
s+

foΛ
ρc

γ̇o

�
< 0 (39)

As shown in Appendix A, this condition is equivalent to
wavelengths satisfying,

λ < λshr ≡ 2π

�
(a− b)ρc

foΛ
αth + αhy

(fo + 2(a− b))γ̇o
(40)

Spatial perturbations with wavelengths shorter than the
critical value will decay exponentially, and those greater
than the critical value will grow exponentially. We high-
light (40) as the key result of the linear stability analysis.
Interested readers can find a much fuller discussion of the
possible behaviors associated with different values of s in
Appendix A.

6.1. Width of the localized zone

We now evaluate the critical wavelength using the nom-
inal parameter set for intact material at a depth of 7 km.
For a representative seismic slip rate V = 1 m/s accom-
modated over a gouge thickness h = 10 mm, leading to a
nominal strain rate γ̇o = 100 s−1, the critical wavelength
is λshr = 0.34 mm. Recall that for a layer of thickness h

the largest possible half-wavelength satisfying insulating and
impermeable boundary conditions at the edge of the gouge
layer is λ/2 = h. If the strain-rate γ̇o = 100 s−1 then the
critical half-wavelength is much less than the layer thick-
ness, and thus homogeneous shearing is unstable. Straining
will not be distributed over the gouge thickness but, as more
fully studied in the companion paper Platt et al. [2014], will
localize to a thinner zone within the gouge comparable to
the critical half-wavelength.

Figure 2 shows the critical half-wavelength as a function
of the gouge layer width h for each of the four parameter
sets and a fixed slip rate of V = 1 m/s, representative of the
time-averaged slip rate in tectonic earthquakes. This value
of V can be compared with the slip rate range 0.48 − 1.5
m/s found as the ratio of the slips to slip durations inferred
for seven earthquakes analyzed in Heaton [1990]. The av-
erage slip rate for this range of values is 0.95 m/s. As h

increases the strain rate γ̇o decreases leading to wider crit-
ical half-wavelengths. We note that parameters modeling
damaged material predict larger values of λshr/2 than the
parameter sets modeling an intact material, due to larger
values of αhy and lower values of Λ in the damaged pa-
rameter sets. The path-averaged parameters predict larger
values of λshr/2 than the nominal parameter sets, possibly
suggesting that λshr/2 will increase during shearing.

To turn the critical half-wavelength into a consistent es-
timate for the localized zone thickness Wrsf , based on rate-
strengthening friction, we search for solutions where the crit-
ical half-wavelength is equal to the gouge layer thickness by
setting,

λshr

2
= Wrsf , γ̇o =

V

Wrsf
, (41)

leading to the formula

Wrsf = π
2 (a− b)ρc

foΛ
αhy + αth

V (fo + 2(a− b))
. (42)

Figure 3 shows a graphical solution for this problem. Typ-
ical friction data from low strain rate experiments show

fo � (a− b), which allows us to simplify the formula to

Wrsf = π
2 a− b

f2
o

ρc

Λ
αhy + αth

V
. (43)

We see that the critical thickness is a balance between com-
peting processes. Fluid and thermal diffusion and rate-
dependent frictional strengthening tend to expand the zone,
while thermal pressurization tends to narrow it.

Our predictions for the localized zone thickness are equiv-
alent to the widest gouge layer that can be sheared uni-
formly. Localization is expected to occur when the initial
width of the deforming zone is thicker than this critical
width, and numerical simulations in Platt et al. [2014] show
that straining localizes until it reaches a width very simi-
lar to the thickness predicted by equation (43). This allows
us to compare the predictions from equation (43) with field
and laboratory observations of localized shear zones sitting
within a broader gouge layer without having to make any as-
sumptions about the initial thickness of the deforming zone.

We now evaluate equation (42) for the different parame-
ter sets. For a depth of 7 km, using the superscript int to
represent intact material, dam to represent damaged mate-
rial, n for nominal parameter sets, and pa for path-averaged
parameter sets,

W
int,n
rsf = 3µm , W

int,pa
rsf = 5µm, (44)

W
dam,n
rsf = 23µm , W

dam,pa
rsf = 41µm.

Comparison of the nominal and path-averaged parameters
demonstrates that variations with pressure and tempera-
ture do not strongly influence the results, changing Wrsf

by about a factor of two. More important in controlling the
width is the amount of damage. Damaged material has a
larger value of αhy and a smaller value of Λ, leading to pre-
dictions for Wrsf that are an order of magnitude wider than
those for intact material. Caution must be used in applying
this result, since the model for damage used in Rice [2006]
is somewhat arbitrary.

Next we compare the predictions for a depths of 7 km
and 1 km. Using the parameters from Platt et al. [2014] for
an ambient effective stress (σn−pa) = 18 MPa, summarized
in Table 2, in (42) we find

W
1km,int
rsf = 24µm , W

1km,dam
rsf = 197µm. (45)

The localized zone is predicted to be wider at shallower
depths. When considering the parameters modeling a depth
of 7 km, the path-averaged values approximately doubled
Wrsf for both intact and damaged material. Although we
do not have calculations of path-averaged parameters for a
depth of 1 km, we tentatively assume they will also increase
Wrsf by 70− 80%, suggesting widths of ∼ 40 µm for intact
material, and ∼ 350 µm for damaged material.

We note that Benallal and Comi [2003] have addressed
the possible instability of spatially homogeneous elastic-
plastic deformation, and onset of localized straining, in fluid-
saturated porous media. That was studied initially without
consideration of the effects of frictional heating and ther-
mal pressurization, with those effects being added to their
analysis subsequently by Benallal [2005]. Their model did
not include a non-zero viscoplastic, or rate-dependence, of
friction, which is represented here by the (a − b) term and
is seen in the expressions above, and in the accompanying
paper Platt et al. [2014], to be critical to our results for
a non-zero thickness of the localized zone, which thickness
vanishes when (a− b) → 0.
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Figure 3. Rate-strengthening friction: A pair of plots showing how the critical width Wrsf can be
calculated graphically for depths of 1 km and 7 km. Both plots use the nominal parameter sets and a
slip rate V = 1 m/s. To find the self-consistent width for the shear zone we look for points at which the
critical half wavelength is equal to the gouge layer thickness. This condition is indicated by the black
line, and the intersection points indicated give the localized zone thickness for the different parameter
sets. Localization is expected when the gouge layer thickness is greater than this critical width, and
uniform shaer is expected when the gouge layer thickness is thinner than this critical width. Using the
nominal parameter sets for a depth of 7 km we predict a width of 3 µm for the intact material, and a
width of 23 µm for the damaged material. Accounting for changes in the parameters with pressure and
temperature using the path-averaging technique of Rice [2006] increases both of these predictions by a
factor of two. At a depth of 1 km we predict a width of 24 µm for the intact material and 197 µm for
the damaged material. We do not have access to path-averaged parameter sets for a depth of 1 km but
we tentatively assume that the change in localized zone width due to changes in parameters with pore
pressure and temperature will be the same at 1 km and 7 km.

7. Stabilization by Dilatancy Only

7.1. Transient growth of perturbations

Neglecting frictional rate-strengthening corresponds to
taking (a − b) → 0 in (30a), which requires that the per-
turbation in pore fluid pressure vanish. Setting p1 = 0 in
equation (30c) we find,

−ΛT1(t) + (ε/βγ̇o) γ̇1(t) = (ε/βγ̇o)C (46)

where C is the constant

C = γ̇1(0)− (Λβγ̇o/ε)T1(0). (47)

We can use (46) to eliminate T1 from (30b) leading to an
equation for γ̇1 alone. To have a more compact notation in
the formulae which follow we redefine the strain rate pertur-
bation γ̇1 as a function of the nondimensional time t̂ = t/tw,
where tw = ρc/foΛγ̇o(= γw/γ̇o) is the characteristic weak-
ening time for the homogeneous solution from Lachenbruch
[1980] given in equation (23). We arrive at the following
equation for γ̇1(t̂),

dγ̇1

dt̂
=

�
1
E

exp(−t̂)− 1

λ̂2

�
γ̇1 +

C

λ̂2
, (48)

where E is a dimensionless parameter measuring the
strength of the gouge dilatancy,

E =
ε

(σn − pa)β
, (49)

and λ̂ is the nondimensionalized wavelength,

λ̂ = λ/Lthd , Lthd = 2π
√
αthtw (50)

Here Lthd is the lengthscale over which thermal diffusion
acts on a timescale comparable to the weakening timescale
tw. The long time solution of equation (48) is γ̇1(t̂ → ∞) =
C, where C is the constant defined in equation (47), and is
on the order of the initial perturbations in strain-rate and
temperature. While strain rate perturbations will always de-
cay, for small values of E the solution can experience rapid
initial growth.

If γ̇1 is to experience large transient growth before decay-
ing back to C there must be a point satisfying,

dγ̇1

dt̂
= 0 , γ̇1 � C. (51)

Equation (48) allows us to calculate that such a turning
point must occur at,

tmax = tw log

�
λ̂
2

E

�
. (52)

From this we conclude that transient growth of γ̇1 will only
be possible when tmax > 0, and thus

λ > Lthd

√
E. (53)

Recalling that Lthd depends on the nominal strain rate γ̇o
this inequality can be converted into a critical gouge layer
thickness Wdil that must be exceeded for transient localiza-
tion to be possible. As with the frictional rate-strengthening
only case, this is done by setting,

Wdil =
Lthd

√
E

2
, γ̇o =

V

Wdil
, (54)
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Figure 4. Gouge dilatancy: A plot of the total pertur-
bation strain parameter Γ versus gouge layer thickness
for the parameters modeling a depth of 1 km (see Table
2). Damaged material experiences more intense strain
localization, in contrast with the results for stabiliza-
tion by frictional-strengthening alone. The dashed line
shows the asymptotic approximation from equation (69),
which agrees well with the values of Γ found by integrat-
ing equation (67) numerically. This linearized analysis
is only valid while the perturbations are small compared
to the uniform shear solution. For the largest values of
Γ this will only be true for unrealistically small values
of γ̇1(0). However, we still argue that localization stabi-
lized by dilatancy alone is highly sensitive to changes in
E, and insensitive to changes in other parameters.

leading to,
Wdil = π

2 ρcαth

foΛV
ε

βσ̄a
. (55)

For gouge layers with thicknesses greater than Wdil uniform
shear will be initially unstable and γ̇1 will undergo transient
growth.

We now calculate the values of Wdil for the different pa-
rameter sets modeling a depth of 7 km.We find,

W
int,n
dil = 0.87µm , W

int,pa
dil = 0.81µm, (56)

W
dam,n
dil = 1.08µm , W

dam,pa
dil = 0.35µm,

Here we have used the previous superscript definitions to
indicate intact or damaged material, and nominal or path-
averaged parameters. All four parameter sets predict widths
that are on the order of a micron or less. For a given param-
eter set the values of Wdil are at least a factor of two, and up
to a factor of forty, less than the predictions for Wrsf . This
means that dilatancy, as modeled by Segall and Rice [1995],
is less effective than frictional rate-strengthening at limiting
localization for the parameters chosen here. The values of
Wdil cover a narrower range than the predictions for Wrsf .

Next we make a comparison with the parameters for a
depth of 1 km. Using the parameters in Table 2 we find

W
1km,int
dil = 1.42µm , W

1km,dam
dil = 1.41µm, (57)

We see that the shallower parameters predict larger values
of Wdil, but the predictions for Wdil at 1 km are still thinner
than the smallest prediction for Wrsf at 7 km.

While Wdil tells us when transient strain rate localization
is expected, it does not predict how intense this localization

will be when the gouge layer is wider than Wdil. To inves-
tigate the intensity of localization we solve equation (48) to
find the full solution for γ̇1,

γ̇1(t̂) = exp

�
1
E

�
1− exp(−t̂)

�
− t̂

λ̂2

�
× (58)

�
γ̇1(0) +

C

λ̂2

� t̂

0

exp

�
1
E

�
exp(−ξ)− 1

�
+

ξ

λ̂2

�
dξ

�

For the case C = 0 this has the simple solution,

γ̇1

γ̇1(0)
= exp

�
1
E

�
1− exp(−t̂)

�
− t̂

λ̂2

�
, (59)

Figure 5 shows the normalized strain rate perturbation pre-
dicted by equation (59) as a function of slip. We observe
large initial growth of the perturbations, followed by a re-
turn to uniform shearing as the perturbations decay. For
a small enough initial perturbation γ̇1(0), the remarkably
large γ̇1(t)/γ̇1(0) need not be at conflict with a linearized
perturbation approach. However, unless the initial pertur-
bation γ̇1(0) is taken to be unrealistically small, the size of
the perturbations far exceeds the region in which the lin-
earized model can be applied. The linearized behavior ob-
served is in qualitative agreement with the numerical sim-
ulations for the fully nonlinear system presented in Platt et
al. [2014], so we use these linearized results to predict which
parameters are most important in controlling the severity of
localization.

Using the solution for C = 0, given in equation (59), we
can determine the maximum value of γ̇1,

�
γ̇1(t̂)
γ̇1(0)

�

max

= exp

�
1
E

�
1− E

λ̂2

�
− 1

λ̂2
ln

�
λ̂
2

E

��
, (60)
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Figure 5. Gouge dilatancy: A plot showing the evolu-
tion of the strain rate perturbation γ̇1, normalized by the
initial value γ̇1(0), for a slip rate of V = 1 m/s accom-
modated across a 1 mm wide gouge layer, a wavelength
λ = 100 µm, and the parameter sets modeling a depth
of 7 km (see Table 1). We see dramatic initial growth,
followed by a decay back to zero. In our model a dam-
aged material has a higher storage capacity, leading to a
smaller value of E = ε/βσa, and larger excursions away
from homogeneous shearing.
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which occurs at tmax = tw log(λ̂2
/E). As shown in Figure

5 smaller values of E lead to larger peak strain rates, which
can be interpreted as more intense localization. Recalling
that for E = 0 the solution collapses to slip on a plane, we
see that as the strength of dilatancy increases the straining
is distributed over a wider zone. This fits well with the idea
of stabilization by dilatancy.

When calculating this maximum value of γ̇1 the assump-
tion that C = 0 is valid provided that,

γ̇1(0) �
C

λ̂2

� log(λ̂2/E)

0

exp

�
1
E

�
exp(−ξ)− 1

�
+

ξ

λ̂2

�
dξ.

(61)
For small values of E the integrand decays rapidly and thus
the largest contribution to the integral comes from around
ξ = 0. This leads us to approximate the integrand as,

exp

�
1
E

�
exp(−ξ)− 1

�
+

ξ

λ̂2

�
≈ exp

��
1

λ̂2
− 1

E

�
ξ

�
.

(62)
allowing the integral to be evaluated as,

� tmax

0

exp

�
1
E

�
exp(−ξ)− 1

�
+

ξ

λ̂2

�
dξ ≈ λ̂

2
E

λ̂2 − E

. (63)

This approximation is valid to within a few percent when
E < 0.05. Inequality (61) then simplifies to,

γ̇1(0) �
CE

λ̂2 − E

. (64)

If this condition is not satisfied then the maximum value
of γ̇1 given in equation (60) will have an additional con-
tribution which can be calculated using the approximation
for the integral developed above. This does not change the
conclusion that smaller values of E will lead to larger peak
strain rates.

Since the maximum value of γ̇1 depends most sensitively
on E we calculate values for the different parameter sets.
For a the parameter sets modeling a depth of 7 km we find,

Eint,n = 0.0259 , Eint,pa = 0.0245, (65)

Edam,n = 0.0107 , Edam,pa = 0.0045,

Here we have used the previous superscript definitions to
indicate intact or damaged material, and nominal or path-
averaged parameters. For a depth of 1 km we find,

E1km,int = 0.0705 , E1km,dam = 0.0215, (66)

We see that the shallower parameters have larger values of
E, leading us to expect more stabilization from dilatancy at
shallower depths, and thus wider localized zones.

7.2. Total strain accumulated

Field observations are unable to observe in-situ strain
rates, and can only, at best, observe the final strain dis-
tribution. Motivated by this we integrate the strain rate
perturbation γ̇1 to find the total perturbation strain,

γ1(t) =
γw

γ̇o

� t̂

0

γ̇1(s)ds (67)

Taking t̂ → ∞ we capture all of the transient localization,
allowing us to define a measure of the total perturbation
strain,

Γ =
γ̇oγ1(t → ∞)

γwγ̇1(0)
. (68)

For E � 1 the integral in equation (67) can be approxi-
mated using Laplace’s method [Bender and Orszag , 1999]
to find,

Γ ∼ λ̂

√
2π exp

�
1
E

�
1− E

λ̂2

�
− 1

λ̂2
ln

�
λ̂
2

E

��
, (69)

which for large values of λ̂ simplifies to,

Γ ∼ λ̂

√
2π exp

�
1
E

�
. (70)

The exponential function means that Γ depends sensitively
on E, and is relatively insensitive to changes in λ̂. Setting
λ/2 = h, corresponding to a single localized straining peak
located at the boundary of the gouge layer, we now plot
Γ as a function of gouge layer thickness for the different
parameter sets. As predicted Γ reaches a value relatively
independent of h, with this final value largely controlled by
the value of E. Larger values of E lead to smaller values of
Γ showing that stronger dilatancy will lead to a wider local-
ized zone. The asymptotic approximation (69) is plotted in
Figure 4 alongside the actual values of Γ, showing that the
asymptotic approximation provides a good prediction for Γ.

As before the assumption that C = 0 is valid provided
that inequality (64) is satisfied. If this is not true then there
will be an additional pre-factor in equation (69), but this
does not change the conclusion that Γ depends most sensi-
tively on E.

8. Discussion

8.1. Frictional rate-strengthening only

Equation (43) predicts a localized zone thickness Wrsf as
a function of the gouge properties and the slip rate V . The
shear zone thickness is set by a balance between thermal
pressurization, diffusion and frictional rate-strengthening.
Using the parameters from Section 3, this formula was used
to predict localized zone thicknesses in the range 3-41 µm
for a depth of 7 km and a slip rate V = 1 m/s. We now
discuss how various factors could alter these predictions.

While the analysis above considered a fixed slip rate ap-
plied across the gouge layer, in reality the slip rate will vary
dramatically during seismic slip. Previous dynamic rupture
simulations accounting for thermal pressurization showed
that slip rates within the slipping patch of the fault vary
by at least an order of magnitude, with the largest slip rates
near the rupture tip [Noda et al., 2009; Garagash, 2012].
The linear stability analysis predicts Wrsf ∝ 1/V , suggest-
ing that the localized zone thickness will evolve with V dur-
ing seismic shear. For the slip rate profiles in Noda et al.
[2009] and Garagash [2012] the zone of localized zone shear
will be thinnest at the rupture tip and will gradually widen
as shear continues. Large changes in localized zone thickness
during rupture may make it hard to compare our prediction
for localized zone thickness with field observations of final
strain profiles. We intend to address the variable slip rate
scenario in future work.

Next we discuss the influence of the frictional parameters
on Wrsf . We recall that the linear stability analysis is valid
for any rate-strengthening friction law that depends on γ̇

alone, and for a general friction law the parameter (a− b) is
defined as,

(a− b) = γ̇o
∂f(γ̇)
∂γ̇

���
γ̇o

. (71)

Equation (43) provides the framework to discuss how our
predictions would change for different friction laws. We see
that Wrsf scales linearly with (a − b), meaning that a fric-
tion law that exhibits stronger rate-strengthening will more
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Figure 6. Rate-strengthening friction: A plot
showing the normalized perturbations γ̇1(t)/γ̇1(0) and
p1(t)/p1(0)for the nominal parameters for a damaged ma-
terial, a uniform strain rate γ̇o = 1000 s−1, and a per-
turbation wavelength λ = 310 µm. The linear stability
predicts an exponential form for the two perturbations, as
shown by the dashed black lines. For the chosen parame-
ters we see that the linear stability analysis predicts that
the strain rate perturbation will grow while the pore pres-
sure and temperature perturbations decay. This is sup-
ported by the numerical simulations (solid lines) which
use the logarithmic friction law as in equation (6), rather
than its linearization in equation (4). After the strain
rate perturbation has grown sufficiently nonlinear effects
become important. We see that the exponential growth
predicted by the linear stability analysis does not con-
tinue indefinitely and nonlinear effects limit the strain
rate perturbation to a finite value.

effectively limit localization leading to wider localized shear
zones. Also Wrsf ∝ f

−2
o , the most sensitive dependence of

Wrsf on any parameter. If other dynamic weakening mech-
anisms such as flash heating or nanoscale effects are active,
and these mechanisms can be modeled in an ad-hoc fashion
by reducing fo without altering (a− b), then we expect dy-
namic weakening to lead to wider localized zones. A drop
from fo = 0.6 to fo = 0.2, a typical friction value from
Goldsby and Tullis [2011] and Di Toro et al. [2011], would
increase the localized zone width by a factor of nine. Precise
predictions are hard until laboratory experiments are able
to separate strain rate, temperature and pore fluid effects at
high strain rates to provide a function f(γ̇).

The parameter sets used in this paper use the model for
damage proposed in Rice [2006]. In this model the perme-
ability is increased by an order of magnitude and the drained
compressibility by a factor of two. The parameter sets mod-
eling a damaged material predict a localized zone width ap-
proximately five times wider than those for an intact ma-
terial. This is because the increased permeability leads to
more efficient hydraulic transport, while the increased pore
volume compressibility leads to less efficient thermal pres-
surization, as shown by the values of Λ in Table 1. Other
damage models will predict different parameter values, but
the generality of the formula for Wrsf allows other dam-
age models to be used to predict a localized zone thickness.
Any damage that increases the permeability or makes ther-
mal pressurization less efficient will lead to a wider shear
zone.

Since the linear stability analysis only has a simple ex-
ponential solution when the gouge properties are constant,
we accounted for parameter changes due to changes in pore
fluid state using the path-averaging approach suggested in
Rice [2006]. A better approach is to solve numerically us-
ing the full equation of state for the pore fluid and allowing
the hydraulic properties of the gouge to vary with effective
stress, as done by Rempel and Rice [2006] for a uniformly
sheared gouge layer. They found that the most significant
parameter variation was the change in permeability due to
changes in pore pressure. Using the data from Wibberley
and Shimamoto [2003] we see that the gouge may expe-
rience an order of magnitude increase in permeability, or
possibly more, as the pore pressure goes from the ambient
conditions to a pore pressure that is a significant fraction
of the compressive stress. Assuming that, as observed by
Rempel and Rice [2006], the dependence of permeability on
pore pressure is the most important change, this suggests
that our estimates for Wrsf may be an order of magnitude
too low. Since the loading and unloading paths differ for the
permeability data in Wibberley and Shimamoto [2003], the
exact value of the permeability for a given effective stress
will also depend on the maximum effective stress the gouge
has previously experienced, possibly making the exhumation
history of the gouge an important variable to consider when
comparing with field observations.

8.2. Dilatancy only

Our analysis in Section 7 showed that for the dilatancy
only system strain rate perturbations always decay as t →
∞. However, strain rate perturbations can experience initial
transient growth whenever the gouge layer thickness exceeds
the critical value Wdil. This critical thickness is a balance
between thermal pressurization, thermal diffusion and dila-
tancy. For the parameter sets modeling a depth of 7 km (see
table 1) we predict values of Wdil between 0.35 µm and 1.08
µm. In contrast with the predictions for Wrsf , the predic-
tions for Wdil do not change dramatically when we change
from modeling an intact gouge to a damaged gouge. This is
because, for the parameterization for damage given in Rice
[2006], the decrease in Λ is balanced by an increase in the
storage capacity β. For a given parameter set these values
of Wdil are at least a factor of two thinner than the localized
zone thickness predictions for stabilization by frictional rate-
strengthening alone, implying that dilatancy is less efficient
at limiting strain rate localization.

When the gouge layer thickness exceeds Wdil the strain
rate perturbation will experience transient growth. The
scaling developed for Γ, the total strain accumulated by the
strain rate perturbation, shows the strongest dependence on
the parameter E = ε/βσ̄a. This means that the parameter
ε plays a crucial role in limiting localization. The value of
ε used in Section 7 is taken from Segall and Rice [1995],
which fitted to the low strain rate experiments in Marone
et al. [1990]. However, for the high strain rates considered
here this value of ε may not be appropriate. The sensitive
dependence of Γ on ε means that even a modest increases in
ε should lead to a significant increase in localization limiting
due to dilatancy.

If we neglect the significant grain size reduction or even
amorphization that may be associated with seismic strain
rates then the localized zone thicknesses predicted for the
dilatancy only model – and the thinnest predictions for the
frictional rate-strengthening only model – are comparable
to a typical grain size in the gouge. This means that our
model may not be valid for the very thinnest localized shear
zones when the size of individual grains may be an impor-
tant localization limiter.

One prediction for the localized zone thickness when the
size of individual grains is important can be found in Sulem
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et al. [2011], which studied localization in a fluid-saturated
material accounting for the motion of individual grains using
a Cosserat microstructure. Another prediction that comes
from a wide body of research on localization in granular
systems suggests setting the localized zone thickness equal
to 10 − 20d50, where d50 is the grain size such that 50%
by weight of the particles have larger size. A discussion of
the many experiments and numerical simulations that lead
to this prediction can be found in Rice [2006]. Using the
grain size distribution for ultracataclasite from the Punch-
bowl fault presented in Chester et al. [2005], Rice [2006]
estimated d50 fault gouge to be ∼ 1 µm, which leads to a
localized zone thickness of 10− 20 µ m. We emphasize that
care must be taken when extrapolating the results of nu-
merical simulations of granular flows to natural fault gouges
because of the narrow range of grain sizes, uniform grain
shapes, and two-dimensional geometry used in typical sim-
ulations.

8.3. Comparison with observations

Several field studies have shown evidence of 100 micron-
scale strain localization, as discussed in the introduction
[Chester et al., 2003; Heermance et al., 2003; De Paola et
al., 2008]. Our predictions for localized zone thickness are
in good agreement with the lower end of these observations.
Elsewhere in this section we have highlighted mechanisms
that could increase the localized zone thickness, for exam-
ple a reduction in fo due to flash heating or nanoparticle
effects or an increase in permeability due to elevated pore
pressures. If one or more of these mechanisms is activated
then our predictions would be in the middle, or even above,
the range of observed localized zone thicknesses.

Not all observations of faults show such extreme strain
localization. For example Boullier et al. [2009] presented a
study of two boreholes drilled in the Chelungpu Fault, which
hosted the Mw 7.6 Chi-Chi earthquake in 1999, at depths of
1111m and 1136m. Since fault drilling programs typically
intersect the rupture surface near the top of the seismogenic
zone we compare these observations with our prediction for
localized zone thickness at a depth of 1 km, where we predict
a range for Wrsf of 24-350 µm. The gouge layer that Boul-
lier et al. [2009] interpreted to be the principal slip zone
was observed to be 0.3 cm and 2 cm, considerably wider
than our estimates. The discrepancy between our predic-
tions and the observations of centimeter wide shear zones
could be due to poor constraints in our parameters, or ev-
idence of another localization limiting mechanism that is
active at shallow depths.

Interestingly the study by Heermance et al. [2003] sam-
pled the Chelungpu fault in a region near to the observations
of Boullier et al. [2009], though at a depth of approximately
330m, which is 800m shallower than the observation in Boul-
lier et al. [2009]. They observed a diffuse shear zone in some
locations on the fault and evidence of 50-300 micron wide lo-
calization in others. This suggests that there may be signifi-
cant along strike variability in localized zone thickness. The
widths observed by Heermance et al. [2003] for the highly
localized shear zones are in excellent with our predictions
for Wrsf at a depth of 1 km.

Current laboratory experiments studying the frictional
behavior of gouge materials at high deformation rates use a
rotary shear configuration. We compare our results with the
microstructures in Kitajima et al. [2010], which are taken
from high-velocity friction experiments on fluid-saturated
ultracataclasite from the Punchbowl fault. Figure 9 in Ki-
tajima et al. [2010] shows typical microstructural arrange-
ments in a cross-section taken perpendicular to the direction
of deformation. At the highest slip rates, present at the ex-
terior of the cylindrical sample, a region of highly localized
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Figure 7. Rate-strengthening friction: A plot showing
γ̇(y, t) for a system with periodic boundary conditions
using the nominal parameters for a damaged material, a
uniform strain rate γ̇o = 1000 s−1, a perturbation wave-
length λ = 360 µm and an initial pore pressure pertur-
bation that is 1% of the ambient effective stress σ̄a. The
parameters and uniform strain rate determine the critical
wavelength λshr, and this determines if the perturbation
grows or decays. For this case, as predicted by the lin-
ear stability analysis, the initial strain rate perturbation
propagates as it grows. The black line in the bottom-
right corner indicates the predicted propagation speed,
and we see excellent agreement between the numerical
simulations, which are based on the logarithmic friction
law in equation (6) and not the linearization given in
equation (4), and the analytic prediction. Once nonlin-
ear effects become important the strain rate perturba-
tion ceases growing but continues to propagate at a speed
slightly faster than the predicted phase velocity.

slip forms. They show the highly localized zone in red. We
estimate this zone to have a width of approximately 100 µm.

However, the distinct banded structure of the localized
zone noted in Kitajima et al. [2010] may indicate that the
width of the shear zone at any given moment may be much
less than 100 µm. This is in general agreement with other
observations of strain localization from laboratory, which
were discussed in more detail in the introduction. Bran-
tut et al. [2008] identified a primary slipping zone 1-10 µm
wide, while other studies also reported extreme localization
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at seismic slip rates [Boutareaud et al., 2008; Mizoguchi et
al., 2009].

While these observations of localized zone thickness are
in good agreement with our predictions from the frictional
rate-strengthening only system, care must be taken when
making this comparison. Due to difficulties confining gouge
at high slip rates most current experiments are performed
at modest normal stress of 1 MPa. Since the critical point
for water is at p = 22.06 MPa and T = 374◦C, this modest
normal stress means that the pore water may boil at labora-
tory conditions even though this will not happen at typical
seismogenic conditions. The onset of localization in high-
velocity friction experiments has been linked to this phase
transition [Boutareaud et al., 2008; Kitajima et al., 2010].
Choosing parameter values to model the experiment is also
difficult, and it is unlikely that any of our parameter sets
modeling depths of 1 and 7 km will accurately represent
the hydraulic properties of the gouge used in high-velocity
friction experiments. The phase transition and poorly con-
strained parameters make comparing our predictions with
such experimental observations of localization difficult. Re-
cent advances in gouge confinement [Reches et al., 2012;
Smith et al., 2013] now make it possible to do experiments
at supercritical pore pressure, eliminating the complications
associated with the phase transition.

It should be noted that the geometry assumed in our
model is different from the typical rotary shear experiment.
Though we hope that far from the concentric cylinders that
form the lateral boundaries of the sample the deformation
can be well approximated by one-dimensional shearing, we
cannot rule out the possibility that the localization is largely
controlled by the teflon sleeve used to confine the gouge.

9. Conclusions

In this paper we analyzed the stability of uniform shear in
a fluid-saturated gouge material. To prevent the collapsing
of the straining region to a mathematical plane, we con-
sidered two separate stabilizing mechanisms, frictional rate-
strengthening and dilatancy. For both mechanisms we used
a linear stability analysis to determine if small perturbations
away from uniform shear will grow or decay. We interpret
growing perturbations as a sign of strain localization.

For frictional rate strengthening alone we solved for the
critical wavelength λshr separating growing and decaying
strain rate perturbations. Localization is expected for per-
turbations with wavelengths exceeding the critical wave-
length λshr. The critical wavelength depends on the uniform
strain rate, but was converted into a prediction for the local-
ized zone thickness Wrsf that depends only on the slip rate
V . This localized zone thickness is found to be a balance be-
tween frictional rate-strengthening, thermal pressurization
and diffusion. Constraining the parameters is difficult, but
using the parameters from Rempel and Rice [2006] and Rice
[2006] modeling a depth of 7 km and frictional data from
Blanpied et al. [1998] we predict localized zone thicknesses
between 3 µm and 41 µm.

In the system stabilized by dilatancy alone strain rate
perturbations will always decay, making uniform straining
stable as t → ∞. However, perturbations may experience
dramatic transient growth, and this transient growth is in-
terpreted as strain localization. The system has a critical
gouge layer thickness above which straining will localize.
For the parameters modeling a depth of 7 km we predict
critical thicknesses between 0.35 µm and 1.08 µm. When
transient strain rate localization does occur the peak strain
rate perturbation is largely controlled by a single dimension-
less parameter modeling the efficiency of dilatancy, making
ε a crucial parameter in our model.

This analysis only determines the initial stability of in-
finitesimally small perturbations away from uniform shear,
but neglects nonlinear effects that become important as the
perturbations grow. The companion paper Platt et al. [2014]
extends this work using numerical solutions for the full set
of equations to determine the width of the localized zone
at peak localization, and the impact that strain rate local-
ization has on the shear strength evolution and maximum
temperature rise.
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Appendix A: Possible responses for frictional

rate-strengthening only

Here we present a more detailed discussion of the possi-
ble responses for the frictional strengthening only system.
Equation (38) relates the growth exponent s for the pertur-
bations to the wavelength λ of the perturbations. This equa-
tion can be solved using standard techniques for quadratic
equations to find,

s =
1
2

�
zH γ̇o −

4π2

λ2
(αth + αhy)

�
±

√
D

2
(A1)

where D is the discriminant of the equation,

D =
16π4

λ4
(αth − αhy)

2 − 8π2

λ2
(αth + αhy)zH γ̇o (A2)

+ z
2
H

2
γ̇
2
o .

For simplicity we have used the definitions,

H =
foΛ
ρc

, z =
fo

a− b
. (A3)

Noting that D itself is a quadratic in λ
−2, we can solve to

find the range for which D < 0. When D < 0 the exponen-
tial coefficient s will have a non-zero imaginary component,
signaling an oscillatory response to perturbation with ex-
ponentially growing or decaying amplitude. We find that
D < 0 for the finite range of wavelengths λ1 < λ < λ2

where,

λ1 = 2π

��√αhy −√
αth

��
√
zH γ̇o

, λ2 = 2π

√
αhy +

√
αth√

zH γ̇o
. (A4)

Assuming that D < 0 when Re(s) = 0 we can find the
critical wavelength separating growing and decaying pertur-
bations in p and T to be,

λpT = 2π

�
αth + αhy

zH γ̇0
. (A5)

For λ > λpT perturbations in p and T will grow. Recalling
equation (37), which shows that the time dependence for
the strain perturbation γ̇1 is s + H γ̇o, we can determine a
similar critical wavelength for the strain rate perturbation
γ̇1,

λshr = 2π

�
αth + αhy

(z + 2)H γ̇0
. (A6)
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For λ > λshr the perturbation γ̇1 will grow and homoge-
neous shear is unstable. For all physical parameter choices,

λshr < λpT < λ2. (A7)

A final ordering λ1 < λshr can also be proven provided
that z > zc where the critical value of z is

zc =
(
√
αhy −√

αth)
2

√
αthαhy

(A8)

If z > zc then the assumption D < 0 used to calculate
the formulas for λpT and λshr is true, and the formulae in
equations (A5) and (A6) are exactly the critical wavelengths
separating growing and decaying perturbations in {p, T} and
γ̇ respectively. The four parameters sets considered in this
paper lead to the range zc = 0.01 − 1.81, meaning that
z > zc for any realistic values of fo and (a− b), which have
fo � (a − b). When z < zc the formulae for λpT and λshr

are no longer valid. Noting that the value of αth is relatively
well constrained [Rice, 2006], a parameter set with z < zc

would require a value of αhy at least an order of magnitude
greater than the largest values assumed here.

Having solved for the critical wavelengths controlling the
system we next discuss how perturbations of different wave-
lengths will evolve. As mentioned before, for λ > λpT per-
turbations in p and T will grow exponentially; similarly for
λ > λshr perturbations in γ̇ will grow, making uniform shear
of the gouge material unstable. The small difference between
λpT and λshr means that for a narrow range of wavelengths
γ̇1 will grow while p1 and T1 decay. Figure 6 shows γ̇1 and
p1, normalized by the initial perturbation size, for a sys-
tem with periodic boundary conditions. This calculation
uses the nominal parameters for a damaged material, a uni-
form strain rate γ̇o = 1000 s−1, a perturbation wavelength

λ = 310 µm, and the logarithmic friction law in equation
(6).

For λ1 < λ < λ2 there will be an imaginary component
to s. This is associated with propagation of the perturba-
tions, with the two complex conjugate roots corresponding
to propagation in the positive and negative y-direction. This
propagation is compatible with a formulation that uses pe-
riodic boundary conditions to model an infinite domain, but
not with zero flux boundary conditions at the edge of a finite
thickness gouge layer. Any propagation of the Fourier mode
in the y-direction will lead to a perturbation that no longer
satisfies the zero flux boundary conditions at the edge of the
gouge layer. In the system with zero flux boundary condi-
tions at the boundary of the gouge layer a complex value of
s leads to oscillatory growth or decay, provided that the ini-
tial conditions are symmetric about the center of the layer
this can be thought of as a standing wave. Figure 7 shows
γ̇(y, t) for a system with periodic boundary conditions using
the nominal parameters for a damaged material, a uniform
strain rate γ̇o = 1000 s−1, and a perturbation wavelength
λ = 360 µm. This is based on numerical simulations, again
like in Figure 6, but using the logarithmic friction law from
equation (6) rather than the linearization given in equation
(4). As predicted by the linear stability analysis, we see
growth and propagation of the perturbation. The pertur-
bation does not grow indefinitely but is instead capped by
nonlinear effects at a finite value. The black line indicates
the phase velocity predicted by the linear stability analysis,
and we see excellent agreement between the predicted prop-
agation speed and that initially observed in the numerical
simulations. Once nonlinear effects become important the
perturbations continue to propagate, but now do so with
a velocity faster than the phase velocity predicted by the
linearized analysis.
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