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1 Abstract

Fault intersections are a geometric complexity that frequently occurs in nature. Here
we focus on earthquake rupture behavior when a continuous, planar main fault has
a second fault branching off of it. We use the finite element method to examine which
faults are activated and how the surrounding material responds for both elastic and
elastic-plastic off-fault descriptions. Compared to an elastic model, a non-cohesive,
elastic-plastic material, intended to account for zones of damaged rock bordering ma-
turely slipped faults, will inhibit rupture on compressional side branches and pro-
mote rupture of extensional side branches. Activation of extensional side branches
can be delayed and is triggered by continued rupture propagation on the main fault.
We examine the deformation near the branching junction and find that fault open-
ing is common for elastic materials, especially for compressional side branches. An
elastic-plastic material is more realistic since elevated stresses around the propagat-
ing rupture tip and at the branching junction should bring the surrounding material
to failure. With an elastic-plastic material model, fault opening is inhibited for a
range of realistic material parameters. For large cohesive strengths opening can oc-
cur, but with material softening, a real feature of plastically deforming rocks, opening
can be prevented. We also discuss algorithmic artifacts that may arise due to the
presence of such a triple junction. When opening does not occur, the behavior at the
triple junction is simplified and standard contact routines in finite element programs
are able to properly represent the physical situation.
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2 Introduction

Earthquake ruptures are rarely confined to a single planar fault, but rather propagate
through various geometric complexities including step-overs, bends and branches.
While the likelihood of rupture propagation through all of these features is important
for understanding the interactions between faults, we confine our discussion here to
fault intersections where there is a through-going, straight, main fault and a second
fault, the branch, that intersects the main fault.

The dynamics of earthquake rupture through branched geometries has been stud-
ied (e.g., Aochi et al., 2000; Kame et al., 2003; Bhat et al., 2004; Duan and Oglesby,
2007), but the physical processes that take place at the branching junction have not
been thoroughly examined. The presence of the triple junction introduces physical
and algorithmic complexities that require attention. These include the issue of fault
opening in the vicinity of the triple junction and how finite element procedures im-
plement the interactions at the fault intersection. The material model (elastic versus
elastic-plastic) alters the physical process and the resulting deformation near the
junction may or may not be adequately described by standard finite element contact
procedures.

2.1 Background on Fault Branch Geometries and Dynamic Rup-
ture Modeling

Ando et al. (2009) use a California based study to show that examples of branched
fault geometries are numerous at a range of length scales. They find that true Y-
shape geometries are rare and the dominant geometry is of one planar fault through
the junction and a branch fault intersecting this at an angle of 17◦. The dominant
geometry is the same for all length scales investigated. The branches are equally
distributed on both sides of the fault, so in a strike-slip setting, branches that exist in
the compressional side of a propagating rupture are equally as common as those in the
extensional side (see figure 1b for a definition of compressional and extensional side
branches). The equal distribution on both sides would presumably not be retained
in the thrust fault setting, where most branches exist in the hanging wall, or the
compressional side of the fault.

Additional recent work has considered how branch faults form. Scholz et al. (2010)
explain the occurrence of fault branches as a result of a rotation of the principal
stresses over time. This leads to branch formation when the main fault rotates out of
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optimal orientation and the stress state is able to cause failure on a new fault plane.
Ando and Yamashita (2007) model the nucleation and propagation of shear branches
extending from a predefined main fault. They see that one branch can become dom-
inant over other branches and this may be the start of a macroscopic branch like we
observe in nature.

To investigate the likelihood of these branch faults rupturing during an earth-
quake on the main fault, Poliakov et al. (2002) considered the dynamic stress field
around a propagating mode II crack. Using a slip-weakening friction law on a preex-
isting fault in an elastic medium, they found regions where the stress field exceeded
the Mohr-Coulomb failure criterion and plastic deformation should occur. The loca-
tion of this region was shown to depend on rupture velocity and the orientation of the
most compressive stress. Branch faults located in these highly stressed areas could
potentially rupture during a dynamic event.

Models of rupture propagation through branch geometries assume the location
of the branch a priori, and have primarily focused on strike-slip events. Bhat et al.
(2004) studied the 2002 Denali event, Fukuyama and Mikumo (2006) studied the 1891
Nobi event, and Oglesby et al. (2003) examined the 1999 Hector Mine event. The
surface rupture of the 1992 Landers earthquake activated multiple fault branches
and illustrates the complexities of a rupture path (Sowers et al., 1994). Fliss et al.
(2005) studied backwards branching in this event and Bhat et al. (2007) considered
the interaction between the main fault and finite length branches. In addition to
these strike-slip studies, Kame et al. (2003) addressed the presence of branched faults
in thrusting regime and Templeton et al. (2010) investigated branch activation during
normal faulting.

Kame et al. (2003) identified the dependence of the rupture path selection on the
stress state (specifically the angle, Ψ, that the most compressive principal stress
makes with the main fault), the branch angle δ (the angle between the main fault
and the branch), and the velocity of the rupture, Vr, on the main fault at the branch-
ing junction. Both Ψ and Vr alter the stress field around the propagating rupture tip
(Poliakov et al., 2002) and depending on δ, this may or may not lead to rupture on the
branch fault.

2.2 Objectives

We seek to address both physical and algorithmic issues that arise due to the presence
of the triple junction. Physically, we focus on the material description and how this
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alters the deformation around the triple junction as well as the rupture behavior at
the junction. Algorithmically, we address the finite element (FE) implementation at
the fault intersection. We discuss FE contact procedures and how artifacts of these
affect the branch activation results, a problem when opening occurs at the junction.

Physically, McKenzie and Morgan (1969) pointed out that fault triple junctions
are unstable; the geometry is not maintained when slip occurs and an opening at the
intersection is necessitated. Andrews (1989) also closely examined the mechanics of
fault interactions at fault bends and branches, and found that opening could occur at
a triple junction. He determined that after multiple earthquake cycles, the resulting
void would become a barrier to rupture and a fresh fracture would need to be gen-
erated in the area of the junction. Andrews (1989) also determined that the stress
concentration due to slip at a fault bend would require slip on an associated spur
fault.

We consider both elastic and elastic-plastic material descriptions to determine
when opening is predicted in the vicinity of the triple junction. Opening should only
occur, for the geometries studied here, for elastic material models and elastic-plastic
models with large cohesive strengths. We also examine how the material description
changes the branch activation. The stress field around an elastic rupture tip is very
different from that of an elastic-plastic rupture tip. We examine these differences and
discuss how the stress field affects the rupture path selection.

Proper assumptions and computational model implementation are key for an ac-
curate interpretation of the likelihood of multi-segment ruptures. Branch activation
has been examined using a variety of numerical approaches including the Boundary
Integral Equation (BIE) method, Finite Element (FE) and Finite Difference (FD) rou-
tines. Depending on the numerical implementation, a choice may have to be made
at the branching junction. Here we use the FE method, and while the FE procedure
inherently has no problem handling a triple junction geometry, FE contact procedures
can require specifications at the junction. These algorithmic choices can include how
the faults are able to slide and if opening can occur. We discuss these choices and
what is valid in the case of no fault opening. In certain cases, like when fault opening
does occur, we show how these specifications can affect branch activation.

3 Model Setup

We used the explicit dynamic finite element package ABAQUS/Explicit to investigate
branch activation in a 2D plane strain model. The faults are predefined and imbed-
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ded in an otherwise homogeneous full space (figure 1). The model is surrounded by
absorbing elements, which minimize reflections from the boundaries, and here we do
not take into account the presence of a free surface or depth dependent stress states.

The stress states used in this analysis result in right lateral rupture and stresses
are positive in tension. They are defined by an initial main fault normal stress, σ0

yy,
fault parallel stress, σ0

xx, shear stress, τ 0xy, and plane perpendicular stress, σ0
zz, which

is only relevant for elastic-plastic models. The stress state can be characterized by a
prestress angle, Ψ, which is the angle between the most compressive principal stress
and the main fault, and an S ratio on the main fault. The S ratio is defined as S =

(τp−τ 0xy)/(τ 0xy−τr) where τp and τr are the peak and residual shear stresses respectively,
based on the fault friction, f , and σ0

yy. For sufficiently low seismic S ratios, S < 1.77,
the rupture can transition from sub-Rayleigh to supershear rupture velocities by the
formation of a daughter crack ahead of the main rupture (Andrews, 1976). While
stress states are used in which supershear rupture is possible, here we only examine
rupture behavior for cases of subsonic rupture velocities at the branching junction.

We consider two values for Ψ and examine both compressional and extensional
side branches, −30◦ ≤ δ ≤ 30◦ (figure 1b). For right lateral configurations, and a
rupture propagating to the right, compressional side branches are in the top half of
the model (δ > 0), and extensional side branches are in the lower half of the model
(δ < 0). Previous work by Kame et al. (2003) has shown that compressional side
branches can be activated for low values of Ψ, and extensional side branches can be
activated for high values of Ψ. We use Ψ = 13◦ and Ψ = 47◦ to examine compressional
and extensional side branches, respectively. These angles are chosen for the range in
behaviors exhibited for the stress states we consider (we examine stress states with
1.0 ≤ S ≤ 3.0, although not all results are shown here). For example, with Ψ = 55◦, all
extensional side branches in an elastic model are activated, but for Ψ = 40◦, almost
no extensional side branches will be activated (for the parameters considered here).
Therefore we use Ψ = 47◦ because it is in the transitional regime and activation is
sensitive to parameter choices.

3.1 Mesh Geometry and Element Definitions

The FE model is composed of 4-noded linear rectangular elements and 3-noded linear
triangular elements (types CPE4R and CPE3 in ABAQUS). The domain boundaries
are 4-noded absorbing elements (Lysmer and Kuhlemeyer, 1969) (type CINPE4 in
ABAQUS), which are perfectly effective when the incident wave front is parallel to
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the absorbing elements. Along the fault, the element size, ∆x, is chosen such that the
slip-weakening zone size is well resolved, ∆x = R0/40, where R0 is the nominal static
slip-weakening zone size (figure 2). The slip-weakening zone size is the important
length scale in the problem, and the element size is chosen to be certain that this
length scale is well resolved. Even with contraction of the slip-weakening zone as the
rupture accelerates, there are still∼10 elements in the zone, indicating that increased
mesh refinement is not necessary. To verify this, for some test cases we implement an
element size of ∆x = R0/60 and find no difference in branch activation results.

Some previous models have used a uniform element size throughout the model
domain, but this is computationally inefficient so we use an non-uniform element
size, increasing with distance from the fault (figure 1). A uniform element size with
∆x = R0/40 exists within a predetermined range from the fault and extends to 5-
16 R0 depending on the FE model run and if off-fault plasticity is included. This is
bounded by six layers of progressively increasing element size, composed of triangles
and squares, which are followed by more layers of the largest elements. By testing
multiple geometries and stress states, we find that the branch activation results do
not differ for a mesh with a uniform element size throughout the model domain and
the coarsening mesh used here.

The mesh is predominantly composed of elements with a ∼1:1 aspect ratio to mini-
mize the number of elements required to fill the model domain. The precise geometry
of the elements around the branch is dependent on the branch angle, but all meshes
are qualitatively similar to that shown in figure 1.

Elements with a large aspect ratio are still required in the corner of the branch-
ing junction, and since it is the smallest element that determines the time step, we
increase the density of the few small elements so that the time it takes the P wave to
travel across these elements is the same as for the regular fine resolution elements.
This decreases the run time and we do not see a change in model results.

We employ a contact procedure on the faults that effectively reduces to a split-node
procedure (see Templeton and Rice (2008), appendix B, for a complete description).
Within that implementation in the FE package, ABAQUS, fault surfaces participate
in contact interactions (there is an interaction that defines the main fault and an
interaction that defines the branch), and a node cannot belong to two surfaces if each
surface is involved in different contact interactions. This is not a feature common to
all FE implementations, but rather an algorithmic issue due to the programming of
the contact procedure. A decision must then be made for each of the nodes at the
branching junction. Specifically, in figure 3b, do nodes 1 and 2 participate in the main
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fault or the branch fault contact interaction?
Our default model setup is that which constrains slip to occur only on the main

fault at the branching junction. This is accomplished by defining the elements in such
a way that the two sides of the branch fault merge at the junction, i.e., nodes 1 and
2 are actually the same node, as shown in figure 3d. This model definition prescribes
that slip on the branch fault goes to zero as the branching junction is approached.
This must be true if there is no opening of the main fault, because as shown in figure
3c, branch slip at the junction leads to opening of the main fault. This default mesh
definition implies no artificial algorithmic constraint if there is no fault opening, but
there is no physical basis to make this choice in the event of fault opening.

3.2 Elastic and Elastic-Plastic Materials

For the model cases studied here, we use a homogenous, isotropic elastic or elastic-
plastic material (see table 1 for a complete list of parameters). We specify a represen-
tative density, ρ, of 2700 kg/m3, as well as a Poisson’s ratio of ν = 0.25, and a compres-
sional wave speed, Cp = 5200 m/s. This results in a Young’s modulus, E = 61 GPa,
shear modulus, G = 24 GPa, and shear wave speed, Cs = 3002 m/s.

To simulate an elastic-plastic material, we use the pressure dependent Drucker-
Prager yield criterion, given by

τ̄ − µ p = b (1)

where b is the cohesion, p is the pressure, p = −σkk/3, for a stress tensor, σ, τ̄ =√
(1/2)sijsij is the second invariant of the deviatoric stress sij, with sij = σij + δijp,

and µ is the slope of the yield surface in the τ̄ -p space (figure 4). For the initial stress
states used here, in which σ0

zz = (σ0
xx + σ0

yy)/2, the Drucker-Prager yield criterion
coincides exactly with the Mohr-Coulomb (M-C) criterion

max[τ − σn tanφ] = c (2)

where c is the cohesion, φ is the angle of internal friction, τ and σn are the shear and
normal tractions on any plane (σn, positive in compression, is defined by σn = −niσijnj

for surface normal n). For these stress states, the two yield criteria are related by
b = c cosφ and µ = sinφ, although this exact agreement is lost as stresses vary during
rupture.

When off-fault plastic deformation is included, we report contours of accumulated
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plastic strain, γpleq, where

γpleq =

∫ t

0

dγpl

dt′
dt′ (3)

and dγpl =
√

2 deplij de
pl
ij , and deplij = dεplij − δijdεkk/3 for a strain tensor, ε.

When investigating fault opening at the junction, we consider a range in cohesive
strengths. If a representative normal stress at seismogenic depth is |σ0

yy| = 100 MPa,
the cohesive strengths we consider have the range, 60 Pa ≤ b ≤ 30 MPa. This is the
same as a M-C cohesive strength of 70 Pa ≤ c ≤ 35 MPa, and c = 35 MPa is a high
cohesive strength for a range of rock types (Carmichael, 1982). If we assume that the
fault is well developed and multiple ruptures have passed through, the fault will be
surrounded by highly granulated rock. When that rock can be regarded as effectively
cohesionless, b = 60 Pa is representative cohesion value (given its smallness compared
to stress changes of order one to several MPa during rupture). If, however, significant
cementation occurs during the interseismic time, cohesive strength can be partially
or fully regained and higher values for cohesion are relevant.

We also allow some amount of dilatancy, and sometimes hardening, to occur during
the plastic deformation. We define the dilatancy factor, β, as the ratio of an increment
of volumetric plastic strain, dεplkk, to an increment of shear plastic strain, dγpl

β =
dεplkk
dγpl

(4)

where dγpl is defined in eq. (3). The range for β is 0 ≤ β ≤ µ, where β = 0 is non-
dilative and β = µ is associated flow. We investigate dilatancy values of β = 0.256 and
0.389. Material hardening (h > 0) or softening (h < 0) is defined as

h =
d b

dγpl
(5)

and it describes how the yield surface shifts as plastic shear deformation occurs (fig-
ure 4). If h > 0, the yield surface shifts up in τ̄ -p space, and the material gains
cohesive strength, i.e., it hardens. If h < 0, the yield surface shifts down, and the
material can lose all cohesive strength, i.e., it softens.

3.3 Fault Constitutive Behavior

This study differs from many earlier works of fault rupture propagation by the im-
plementation of a regularized form of slip-weakening. The linear slip-weakening for-
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mulation proposed by Ida (1972) and the general slip-weakening form proposed by
Palmer and Rice (1973), depend only on slip, but the regularized form introduces a
time scale that builds on the slip-weakening formulation as described below.

3.3.1 Linear Slip-Weakening

We define fsw as the slip-weakening coefficient of friction, which depends on the
amount of slip on the surface, s = s(x, t), where x is position and t is time. The
strength of the surface, τ , depends on the coefficient of friction f and the normal
stress, σn = −niσijnj, such that

τ = fσn (6)

where f = fsw except in the region of rupture nucleation (discussed in section 3.4).
We adopt the linear slip-weakening formulation (figure 2b), in which the coefficient

of friction, fsw, decays linearly from a peak static value, fs, to a residual dynamic
value, fd, over a characteristic amount of slip, Dc, according to the law:

fsw(s) =

{
fs − (fs − fd) s

Dc
, s < Dc

fd, s ≥ Dc

(7)

Using this law, the strength of the fault linearly decays from a peak value of τp = fsσn,
to a residual value, τr = fdσn. In the event of fault opening, fsw does not continue to
evolve. This is because there is no accumulation of “slip” in its sense as the variable
on which the friction coefficient fsw depends, although the surfaces can continue to
displace tangentially relative to one another. If contact across the fault is later re-
established (not a phenomena observed in most simulations), the evolution of friction
resumes from its prior, potentially weakened value.

This formulation does not take important dynamic weakening effects into account,
but has successfully been used to model earthquake rupture in single fault models
(e.g., Duan and Oglesby, 2005), fault step models (e.g. Harris and Day, 1999) and
branched geometries (e.g., Aochi et al., 2000; Kame et al., 2003; Templeton et al., 2009).

A length scale that arises is the slip-weakening zone size, R, the distance between
the crack tip and the area of the fault that has undergone complete weakening (figure
2a). At low speeds and large S, R ≈ R0, and a relation between R0 and Dc can be found
for a similar slip-weakening law in which the strength of the fault decays linearly in
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space rather than with slip (Palmer and Rice, 1973),

R0 =
9π

32(1− ν)

GDc

(τp − τr)
(8)

where G is the shear modulus and ν is Poisson’s ratio. This can also be expressed in
terms of the fracture energy, G, where G = Dc(τp − τr)/2. We use eq. (8) to determine
the ratio Dc/R0 implemented in the numerical model and maintain a resolution of 40
elements in R0. Rice et al. (2005) estimated that a representative value for R0 is 20-40
m for mid-crustal continental earthquakes.

3.3.2 Regularized Friction Routine

We implement a regularized friction routine based on the oblique shock experiments
of Prakash and Clifton (1993) and Prakash (1998), who showed that there was no
instantaneous response in shear strength to changes in normal stress. The recent
laboratory study of Lozos and Kilgore (2010), which repeated the Linker and Dieterich
(1992) experiments with improved instrumentation, suggests that no instantaneous
change may be the proper interpretation in those too, thus resolving the apparent
disagreement with the findings of Prakash and Clifton (1993) and Prakash (1998).

We implement a friction law with a simplified form from that suggested by Prakash
and Clifton (1993) and Prakash (1998). For that, the shear strength, τ , evolves over
a finite time scale, t∗, with the relationship

dτ

dt
= − 1

t∗
[τ − fσn] (9)

where τ(t = 0) = fsσn and f is generally fsw except in the area of rupture nucleation
(see section 3.4). This form was investigated for its stability properties in Ranjith
and Rice (2001) for its ability to regularize the ill-posed problem of sliding at constant
friction between two dissimilar elastic bodies and implemented in Cochard and Rice
(2000) for that case. The bimaterial problem is ill-posed because as the wavelength of
the perturbation decreases, the growth rate diverges (Cochard and Rice, 2000; Ran-
jith and Rice, 2001). While we do not model a material contrast here, use of this law
is justified based on observational constraints (Prakash and Clifton, 1993; Prakash,
1998; Lozos and Kilgore, 2010), and it has the added benefit of reducing numerical
noise that develops in the ABAQUS contact implementation after the rupture tip
passes and sliding at constant friction occurs.

This implementation results is zero instantaneous change in the shear strength

11



of the surface in response to an instantaneous change in normal stress (figure 2c).
Ideally t∗ should be much larger than the numerical time step, ∆t, yet very much
smaller than the time to undergo slip-weakening, T . Here we use, t∗ = 2∆x/Cs, where
∆x is the element dimension in the direction of slip. The stable time step can be
approximated by ∆t = ∆x/

√
2Cp. The time to undergo slip-weakening depends on the

rupture velocity and is of the order T = R0/Vr ≈ 40∆x/Cs, where 40 is determined by
our resolution. This results in t∗ = 2.5∆t and T = 20t∗, but time steps are often smaller
than this approximation, and T decreases as the rupture velocity increases. For most
models in this study, these parameter choices result in t∗ ≈ 7.5∆t and T ≈ 7t∗, making
this a reasonable choice for t∗.

We implicitly integrate eq. (9) so that at time step m, τm and σm
n are related by

τm − τm−1 = −∆t

t∗
(τm − fmσm

n ) (10)

Then, the shear stress on the fault surface is prescribed as the minimum of τ (from
eq. (10)) and τstick (the stress required to bring the slip velocity to zero at the end of
the next time step). In the case of fault opening and eventual re-closure, the stress
evolution continues to obey equation (10), but the value of τm−1 is the shear stress on
the surface at the time just before opening.

To understand the effect of using this law, figure 5 shows a direct comparison of the
slip and shear stress profiles of a propagating rupture for both the regularized and
traditional, non-regularized slip-weakening formulation. The friction values for this
comparison are fs = 0.6 and fd = 0.12, and an S ratio of S = 1.8 is used. Both ruptures
are traveling at Vr = 0.86Cs when they cross the observation point (vertical line in
figure 5), but the regularized friction law requires a longer crack length to reach the
same velocity. The slip distribution is very similar for the two cases, just behind the
crack tip, but the regularized case has a larger physical distance over which the shear
stress decays from peak to residual values (figure 5b). Although strictly speaking eq.
(9) shows that τ never reaches τr in finite time, it does approach τr in finite time, the
duration of which is set by the value chosen for t∗.

The time and slip histories at the observation point are shown in figure 6 for the
regularized and non-regularized cases. The time history illustrates that, as expected,
it takes longer for a point to undergo slip-weakening with the regularized routine
due to the non-instantaneous response in shear strength to a change in the friction
coefficient. The slip-weakening curves in figure 6 show that while Dc is the same for
both cases, the effective Dc is increased when the regularized friction routine is used.
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This results in a higher fracture energy, G, for the regularized case.
In Appendix A we provide an estimate to this increase in G for a choice of t∗ and Vr.

We also show that there is an approximate way to tailor parameter choices (specifi-
cally Dc) of the regularized law so as to agree with a desired fracture energy. We
note that these parameters depend on the rupture velocity at which the desired frac-
ture energy should be attained. As the rupture velocity increases, there is a Lorentz
type contraction of the slip-weakening zone, and therefore the time to undergo slip-
weakening is reduced. Since we have introduced a time scale through the use of t∗,
and the time to undergo weakening is dependent on the rupture velocity, the specifi-
cation of regularized routine parameters depends on Vr (see equation eq. (A17)).

With the use of the regularized friction routine, the branch activation results can
differ from the case of traditional linear slip weakening. However, the small subset of
cases that are affected by this choice have initial conditions that are near the transi-
tional regime between branch activation and no branch activation. The general trend
of the results (i.e., more or less likely to branch with variation of a given parameter) is
not affected by the choice of regularized or non-regularized slip-weakening routines.

3.4 Rupture Nucleation

To nucleate rupture we use the forced expansion of a crack (Andrews, 1985; Dunham
and Rice, 2008). Nucleation starts by weakening at a point, x = 0, and forcing the
growth of the weakened region by prescribing a non-constant lower coefficient of fric-
tion, fe = fe(x), over a growing patch. The weakened patch has a transition of fe, from
fs (at the edge) to fd (towards the middle), that occurs linearly over a distance R0. At
the boundaries of the weakened patch, dfe/dx = ±(fs − fd)/R0, for expansion in the
±x direction. The edge of the patch expands at a velocity, Ve = 0.144Cs, until the crack
approaches an unstable size, and rupture propagates spontaneously. The coefficient
of friction due to the expanding patch is determined by

fe(x, t) = max

{
fs −

fs − fd
R0

(Vet− |x|), fd
}

(11)

The coefficient of friction on the surface, f , is the lesser of fe, due to the forced ex-
pansion, and fsw, which is determined by the amount of slip a point has experienced.

f(x, t) = min {fsw(s(x, t)), fe(x, t)} (12)

and from this the shear stress on the surface can be determined by using this value
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for friction in regularization routine (see equation eq. (10)).

4 Results

4.1 Conditions for Fault Opening at the Branching Junction

We investigate under what conditions opening can occur at the branching junction
with both the elastic and elastic-plastic material descriptions. This is a physical pro-
cess, not the result of an algorithmic artifact, that occurs when the stress state on
the fault becomes tensile. We will show that opening can, and often does, occur for
an elastic material. However, with an elastic-plastic material, opening does not occur
except in the case of very high cohesive strength.

4.1.1 Compressional Side Branches

First we consider compressional side branches, for which low angles of Ψ are needed
for branch activation. For this principal stress orientation, there is a relatively low
main fault normal stress to keep the main fault closed. We find that when the branch
fault is activated in a purely elastic model, opening occurs on the main fault, prior to
the branching junction (figure 7a). The fact that opening can occur is in disagreement
with a common modeling procedure (traction-at-split-nodes) that prescribes no fault
opening (e.g., Andrews, 1999), although modifications to this procedure can allow for
opening (Day et al., 2005). A split-node procedure that assumes no opening results in
a fault that supports a tensile normal stress.

Opening occurs in all elastic models with a low Ψ, if the full length of the branch
ruptures. Opening begins shortly after the rupture tip passes the junction and as
slip is accruing on the branch and main faults. Figure 7a is shown for when the
rupture tip is 12R0 away on the branch fault and another 4Dc of slip has accrued on
the main fault. The compressional side of the branch fault is moving up and to the
right, resulting in the material pulling away from the main fault. Sometimes, rupture
terminates quickly on the branch (Ls ≤ 3.0R0) and only a small amount of slip is able
to accrue (s < Dc). In this case of partial branch rupture, no opening occurs, and the
default model setup introduces no algorithmic artifacts.

An analogous case is shown in figure 7b for an incohesive elastic-plastic material,
and we see that opening is inhibited. For this constitutive model, cohesion is negli-
gible, b = 6 × 10−7|σ0

yy|, the slope of the yield surface was µ = 0.51, and a dilation of
β = 0.256 was used. All other parameters (S, Ψ, Vr and δ) are equivalent to the elastic
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case, but due to the slower rupture acceleration for the elastic-plastic model, the nu-
cleation points differ. In figure 7b, the rupture has propagated a distance of 11R0 on
the branch, but died out on the main fault after 3.3R0, and an additional 6Dc of slip
has occurred on the main fault, prior to the junction.

Figure 8a shows the distribution of plastic deformation for this incohesive model,
and it is clear that there is a significant stress concentration at the junction. A spur
of substantial plastic deformation, stemming from the triple junction, was the result
(note the change in color contour levels between columns 1 and 2 of figure 8). This
spur may be related to the conjugate spur noted by Andrews (1989), although that was
for an elastic analysis, and was also observed in elastic-plastic analyses of rupture
through a kinked fault (Duan and Day, 2008). There is a small amount of plastic
deformation on the main fault after the branching junction, due to the continuation
of rupture for a finite distance. The rupture propagation on the branch caused only
a small amount of plastic deformation around the branch fault, although the width
of this zone does increase with propagation distance. The deformed mesh geometry
(column 3 of figure 8) shows that the fault does not open for this incohesive material
description. The stress on the fault, σyy, is always negative, indicating that the fault
does not undergo tension.

4.1.2 Effect of Finite Cohesive Strength on Opening

Compressional side branches, in an elastic model, are prone to opening on the main
fault. An incohesive elastic-plastic model can prevent this opening, and here we
examine the effect of finite cohesive strengths on the plastic deformation and fault
opening, while keeping µ and β constant. Figure 8 shows the plastic deformation for
6 × 10−7 |σ0

yy| ≤ b ≤ 0.3 |σ0
yy| and a close up of the deformation and deformed mesh

geometry at the branching junction. Note that in all of these models, the branch is
activated, and rupture terminates on the main fault close to the branching junction.
Although these have the same rupture behavior, at the junction the rupture velocity
ranges from 0.80Cs ≤ Vr ≤ 0.87Cs. This is because the nucleation point is the same
for all cases shown, and the rupture accelerates faster for larger cohesive strengths,
since less plastic deformation occurs.

As the cohesive strength increases, the extent of plastic deformation decreases.
This is because stresses far from the fault are not high enough to reach yield when
the yield surface has been shifted away from the hydrostatic axis (τ̄ = 0). The dis-
tribution of plastic deformation in the immediate vicinity of the branching junction
(column two of figure 8) is not significantly different as the cohesion changes. There
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are spurs of high deformation stemming from the junction for all cohesive strengths,
but the precise size, shape and amount of plastic deformation varies with cohesion.
For low cohesion, there is plastic deformation on the entire compressive side of the
fault (referring to column 2 of figure 8 only). The only case that exhibits significant
opening on either fault is the case of b = 0.3 |σ0

yy| (figure 8e). For slightly less cohesion,
b = 0.2 |σ0

yy|, opening can occur, but not until long after the rupture has passed the
branching junction.

Carmichael (1982) report that cohesive strengths of igneous, sedimentary and
metamorphic rock types are in the range 0 < c ≤ 45 MPa, with most values falling
below 30 MPa and equally distributed between 0-30 MPa. If a representative normal
stress at seismogenic depth is 100 MPa, the b = 0.3 |σ0

yy| and b = 0.1 |σ0
yy| models rep-

resent a cohesive strength of c = 35 MPa and 11.7 MPa, respectively. These two cases
are representative of pristine rock, while b = 0.01 |σ0

yy|might approximately represent
a highly granulated rock that has regained a minimal amount of cohesive strength
through cementation during the interseismic period. Substantial opening occurs if
b = 0.3 |σ0

yy|, which is at the high end of pristine rock cohesive strength values at
depth. For the cohesive strengths that may be reasonable for a mature rock system
(figure 8a-c), there is no opening at the junction.

The results for b = 6 × 10−7 |σ0
yy| can be applied to all depths because the material

is effectively incohesive. For larger cohesive strengths, there is a difference between
rupture at depth and rupture near the surface. Closer to the surface, where the
effective normal stress is lower, b = 0.3 |σ0

yy| would represent a cohesive strength less
than that of pristine rock. But high cohesive strengths may not apply to damaged
near-surface rocks because observations of exhumed faults indicate a large degree of
pulverization (e.g., Chester et al., 2004; Dor et al., 2006). The degree of cementation
during the interseismic period will depend on, among other things, the availability of
pore fluids and the temperature, so it is not straightforward to quantify the degree of
cementation at depth versus near the surface.

4.1.3 Finite Cohesive Strength with Material Softening

Opening occurs for the case of b = 0.3 |σ0
yy|, which may represent the response of a

rock that has regained all of its cohesive strength due to cementation during the
interseismic process. We have assumed that the rock has a perfectly plastic response,
but softening is a real feature of plastically deforming rocks. This softening occurs
as off-fault damage is reactivated due to the high stresses around the rupture tip.
This reactivation results in a loss of cohesive strength and the yield surface is shifted
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closer to the hydrostatic axis.
In figure 9 we show the deformation around the branching junction for a range

in softening (i.e., negative hardening) values −0.1G ≤ h ≤ 0. Depending on h, the
material will lose all cohesive strength after differing amounts of strain. From eq.
(5) we see that dγpl = db/h. Therefore, a cohesive strength of b = 0.3 |σ0

yy| will be lost
after 1.2% strain if h = −0.10G and 12% strain if h = −0.01G, using the parameters
|σ0

yy| =100 MPa and G =24.3 GPa.
The nature of the plastic deformation distribution changes as the material soft-

ens. This is due to localization of the plastic deformation, which is in accord with the
established theory of Rudnicki and Rice (1975). There is a nonzero critical hardening
for the plane strain conditions modeled here, under which localizations can develop.
Localization occurs when h < hcr, where hcr depends on µ, β, and on the ratios of
principal stresses. So localizations, for a given stress state, can be inhibited by in-
creasing h, or suitably changing β or µ. By using h < 0 we are promoting localizations
since as the material deforms, it loses strength, and becomes easier to deform. Due
to these localizations, our treatment of the softening is somewhat ad-hoc. We do not
have a tractable, unambiguously rigorous methodology for resolving these features
(e.g., with strain gradient or non-local features assumed in the stress-deformation
constitutive relation, as reviewed in Templeton and Rice (2008)). Thus, aspects of the
localized deformations, as we model them, have an inherent grid size dependence.

Of particular importance, regarding the introduction of softening, is that with suf-
ficient softening, opening is inhibited. With softening, the material approaches the
incohesisve state as plastic deformation occurs and opening is once again inhibited.
With significant softening, h = −0.1G, cohesive strength is quickly lost and opening
does not occur. For small amounts of softening, −0.02G ≤ h ≤ 0, opening of the mesh
occurs and is visible to the naked eye (column two of figure 9). For intermediate values
of softening −0.05G ≤ h ≤ −0.03G, the fault initially opens, but as strain continues to
accumulate, and cohesion is lost, the fault opening cannot be sustained and the fault
closes.

Hardening (h > 0) can cause opening for material parameters that would not oth-
erwise open. For h = 0.03G and b = 0.01 |σ0

yy|, the main fault will eventually open
a small amount, while with no hardening, it stays closed (figure 8b). By introduc-
ing hardening, the material gains cohesive strength as plastic deformation occurs,
but this material response does not describe how real damaged material plastically
deforms.
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4.1.4 Branches on the Extensional Side of the Fault

We also examine the model response for branches that exist on the extensional side
of the fault. For an elastic model with Ψ = 47◦, S = 1.0 and a rupture velocity of Vr =

0.80Cs, both the branch and the main fault are activated. Opening occurs on the main
fault further along strike, beyond the branching junction, rather than prior to the
junction, as it did for compressional side branches (figure 10a, rupture has propagated
22.9R0 past the junction on both faults). The nodes on the branch also come out of
contact, but the opening displacement is small and cannot be seen in the image. For
the case of compressional side branches, opening begins almost immediately after the
branch begins to slip, but for extensional side branches, opening only occurs when a
substantial amount of slip (∼ 12Dc) has accrued on the main fault and rupture is no
longer near the junction.

Figure 10b and c shows the stress and plastic deformation for the same Ψ, S and Vr
as the elastic case, but for an elastic-plastic material. The values for µ and b are the
same as for the compressional side branch, but a larger dilatancy value, β = 0.389,
is used here. This larger value inhibits localizations but does not effect the extent
of plastic deformation. The rupture is far from the junction, 25R0 on both of the
faults, and the elastic-plastic deformation inhibits opening at and near the branching
junction.

4.2 Off-fault Plastic Deformation and Branch Activation

Off-fault plastic deformation changes the branch activation for both compressional
and extensional side faults compared to an elastic model (figure 11). With an incohe-
sive material, plasticity can inhibit the activation of compressional side branches and
promote activation of extensional side branches. Additionally, with an incohesive ma-
terial, fault opening does not occur and therefore the results are free from algorithmic
artifacts due to the node constraints placed at the triple junction.

4.2.1 Compressional Side Branches

Figure 11a shows the change in behavior for a compressional side branch with S = 1.0,
Ψ = 13◦ and Vr = 0.80Cs. The branching results are reported with thick lines that
denote how far the rupture propagated on each fault. Rupture will propagate the full
length of one of the faults, and while the other fault may not fully rupture, a small
amount of slip (generally s < Dc) accrues for some distance away from the branching
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junction. If rupture terminates on one of the faults, the distance the fail rupture
propagated, Ls (normalized by R0), is reported.

For a purely elastic off-fault behavior, all but the largest branch angle, δ = 30◦,
have branch activation, and rupture does not continue on the main fault. For δ = 30◦,
a small amount of slip occurs, s < Dc, but dies out after a distance Ls = 0.6. When the
off-fault material behavior is elastic-plastic, with β = 0.256 and negligible cohesion,
b = 6 × 10−7 |σ0

yy|, only the δ = 15◦ branch is activated. The rest of the branch fault
angles are completely ignored and rupture does not propagate on them for even a
short distance (Ls = 0).

To determine why these differences occur, we examine the stresses around a prop-
agating crack as well as the stress changes induced on the branch due to rupture
propagating past the junction on the main fault. The Coulomb Failure Stress (CFS)
accounts for increases in shear stress and decreases in compressional stress, both of
which promote failure through the linear combination ∆CFS= ∆τ − fs∆σn, where
τ and σn are calculated for a specified fault plane and σn is positive in compression
(King et al., 1994).

The branching results in figure 11 are for Vr = 0.80Cs, so this is the rupture velocity
used to examine the ∆CFS distribution. Figure 12a shows the ∆CFS for both the
elastic and the elastic-plastic material model, on all potential fault planes radiating
from the rupture tip, at a specified distance, r, from the rupture tip. Since the rupture
accelerates more quickly in the elastic material, the target rupture velocity is reached
for a much shorter crack length, L, in the elastic case. For the elastic material, L =

11R0, and r/L = 0.034, while for the elastic-plastic material, L = 33.4R0 and r/L =

0.011. We use the distribution in figure 12 as a qualitative assessment of the influence
of elastic-plastic deformation on the stress field. For both the elastic and the elastic-
plastic scenarios the extensional side of the fault is more highly stressed for failure.
There is also a region of the compressional side in which there is an increase in CFS.
This region spans a smaller θ range for the elastic-plastic material, at this r/L. It is
this increase in CFS that begins to nucleate rupture on a compressional side branch
so the small θ range for the elastic-plastic material leads to less compressional side
branch activation.

We also examine the ∆CFS on a fictional branch as the rupture propagates on
the main fault. The rupture path selection is dependent on the interactions between
ruptures on the two faults (Bhat et al., 2007), so by looking at this stressing we see
how the main fault rupture alters the stress state on the branch. In figure 12b and c
we consider branch angles of δ = 14◦ and 26◦. At time 1, the rupture is at the fictional
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branch junction, and this is when the high stresses associated with the rupture tip
nucleate rupture on the branch. At time 2 and 3, the rupture has propagated past the
junction a distance of a and b respectively.

For the 14◦ branch, at time 1, both the elastic and elastic-plastic materials result
in an increase in CFS at the junction. As the rupture propagates past (times 2 and 3),
there are only small differences in the stress distribution (figure 12b). These small
differences are consistent with the identical behavior of the elastic and elastic-plastic
branch activation results for δ = 15◦. For the 26◦ branch, the stress distribution at
time 1 is different for the elastic and elastic-plastic cases (figure 12c). The elastic
branch has an increase in CFS at the junction, while the elastic-plastic branch has a
decrease in CFS. This decrease prevents rupture from ever nucleating on the elastic-
plastic branch. This is evidenced by the Ls = 0.0 values observed for δ = 20-30◦ (figure
11a) and means that, for an elastic-plastic material, compressional side branches with
a large branch angle are unlikely to rupture.

4.2.2 Extensional Side Branches

Extensional side faults have a very different response to the inclusion of off-fault
plastic deformation. For the elastic cases shown in figure 11b, with S = 1.4, Ψ = 47◦

and Vr = 0.80Cs, only the δ = −20◦ branch is activated. The other branch angles
have a small amount of rupture on the branch fault, but rupture terminates quickly.
However, when the off-fault material is elastic-plastic, with negligible cohesion and
β = 0.389, all of the branch angles investigated show rupture on both the branch and
the main fault.

There is also a change in the method of branch activation when an elastic-plastic
material is used. For an elastic model, when the main fault rupture tip reaches the
junction, rupture nucleates on the branch, at the junction, and propagates unilater-
ally away. With the elastic-plastic model, rupture tries to nucleate at the branching
junction, but only a small pulse of slip travels along the fault, with s < Dc. After
some amount of travel on the branch fault, the slip begins to increase and complete
dynamic weakening is attained (figure 13). At this point, rupture propagates away
from the junction, but also travels back towards the junction to rupture the entire
branch fault. We call this a delayed branch rupture. For δ = 15◦, this occurs 20R0

from the branching junction, but for all other branch angles, this happens within a
few R0 of the junction.

To understand this behavior, we once again examine the stresses on a fictional
branch fault as the rupture propagates on the main fault. Figure 12d shows that
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there is a big difference between the stress distribution around the propagating crack
tip for the elastic (r/L = 0.023) and elastic-plastic (r/L = 0.006) materials. For the
elastic-plastic material, the ∆CFS is smaller on the extensional side of the fault than
on the compressional side. At first glance, this should make it less likely for rupture
to initiate on the extensional side elastic-plastic branches, but this disagrees with the
observed branch activation.

An analysis of the stress distribution on the branch, as the rupture passes by,
explains why the delayed rupture on the branch occurs. At time 1, for the elastic
and the elastic-plastic models, both the δ = −14◦ and −26◦ branches show an increase
in CFS over the entirety of the branch. For the elastic case, this is the maximum
stressing felt on the branch. But, for the elastic-plastic case, the maximum stressing
occurs as the rupture propagates past on the main fault. We believe that it is this
maximum peak that is causing the delayed rupture on the branch. We also note that
the peak slowly increases in amplitude for the −14◦ case, and can cause the rupture
to take off at the long distance from the junction that was observed. The maximum
stressing level felt by the compressional branch also occurs as the rupture propagates
past the junction (for the elastic-plastic material) but these compressional branch
stressing levels are much lower than the stressing levels felt by the extensional side
branch. Therefore, delayed rupture of extensional side branches can occur but this
same effect does not apply to the compressional side branches considered.

4.3 Artifacts from Branch Definition in the Finite Element Con-
tact Formulation

There is no fundamental reason, inherent to the FE method, that the FE mesh must
be of the form used as our default model setup (figure 3d). An unfortunate feature
of standard FE program contact procedures, including ABAQUS, is that only two
nodes can be properly represented at the triple junction. This is similar to codes that
implement a split-node contact interaction, which is typically written for two node
interactions, and therefore cannot handle three nodes at the junction either.

If only two nodes can be present at the branching junction, the two possible con-
figurations are: 1) continuous through the main fault, and 2) continuous through the
branch fault. We consider a third configuration for completeness, that has only one
node at the junction and neither fault is continuous. We find that each of these pos-
sible model configurations results in a different rupture behavior at the branching
junction (figure 14).
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We test a few stress states with different S ratios on the main and branch faults
(S = 1.4, 1.8, 2.2, and 2.6 on the main fault), but maintain a constant orientation of
most compressive stress, Ψ = 13◦, and rupture velocity, Vr = 0.86Cs, at the branching
junction. The branching results are reported in figure 14.

The default model is shown in figure 14a, where the main fault is defined as a
continuous surface. If the main fault does not experience stresses which would cause
it to open, this procedure is free of artifacts. On the branch, slip must go to zero
as the junction is approached, since the mesh definition prohibits branch slip at the
junction. This is how slip must accumulate at the junction if there is no fault opening.
Otherwise, right lateral slip between nodes 1 and 2 (figure 3b) would result in opening
on the main fault prior to the branching junction (figure 3c). For this model definition,
the branch is chosen for low S ratios, and low branch angles, but largely neglected for
a large number of stress states and geometries investigated. Opening on the main
fault only occurs in the event that the branch fault is completely activated. If rupture
is not established on the branch fault, and s < Dc, there is no fault opening.

The opposite model setup is shown in figure 14c, in which the branch fault is de-
fined as the continuous surface, and the rupture must abruptly stop before continuing
to propagate along the main fault. This allows for slip to occur on the branch, at the
junction, and opening on the main fault occurs. For this mesh geometry, the branch
is chosen for all stress states and branch geometries investigated, and the main fault
is largely ignored, except for a few cases where both faults rupture.

The third case combines the previous two cases and neither fault is continuous
through the junction. For this mesh geometry, the behavior is intermediate to the
two end members just discussed. The branch is taken more often than when the
main fault is continuous, and less frequently than when the branch is the continuous
surface.

5 Discussion

The fault junction introduces complexities and there are two main points that we will
discuss. The first is what is happening physically at the branching junction, and the
second is how this can be analyzed numerically.
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5.1 Does Opening Occur at the Junction?

If slip occurs only on the main fault, so that the branch is completely neglected, there
will be no opening on any faults near the junction. If slip occurs on the branch, at
the junction, opening of the main fault must occur (figure 3c). Therefore, in circum-
stances for which there is no opening of a fault, slip must go to zero on the branch, as
the branching junction is approached. This slip distribution on the branch is consis-
tent with the default model setup that we use. Figure 3d shows that for this setup,
the elements on the branch, at the junction, share a common node. This forces slip
to go to zero at the junction and is free of algorithmic artifacts if no fault opening
occurs. When opening does occur, there is no longer a physical basis for the otherwise
reasonable algorithmic choice that slip on the branch must vanish at the junction.

However, we have shown that opening can occur if the rupture propagates onto
either a compressional or an extensional side fault with a purely elastic material
description. For an extensional side branch, this opening is small and does not occur
until long after the rupture tip has passed the junction. At the time of opening,
rupture has been established on both, or either, of the faults. Therefore, since there
is no physical opening until long after the rupture passes, the model results, which
indicate on which faults rupture is established, are valid for extensional side branch
activation. This is because, in the case of no opening, this FE model definition is free
from numerical artifacts.

For a compressional side branch, opening occurs on the main fault, prior to the
junction, when the rupture has propagated only a few R0 along the branch. If rupture
is not established on the branch fault, and s < Dc, there is no fault opening. The fault
only opens if the branch fault is completely activated. We conclude that opening only
occurs with sufficient slip on the branch, which would allow the fault to fully weaken.
This weakening allows for a self-sustained rupture on the branch, so opening is a
result of the activation, not the other way around. While the details of the model (i.e.,
slip distribution on the main fault at the branch) may not be accurate at long time,
the activation or disregard of the branch fault is a valid result.

Fortunately, opening is unlikely to occur at depth, for these geometries, given the
fact that stresses around the propagating rupture are high enough to cause plas-
tic deformation (Poliakov et al., 2002). If the fault is mature, the material in the
vicinity of the fault should have lost most of its cohesive strength. A non-cohesive
material description does not show fault opening for any of the cases examined here,
and we discuss why in the next section. If there is cementation during the interseis-
mic period, some cohesive strength may be regained, but even a cohesive strength of
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b = 0.1|σ0
yy| does not show fault opening. For the highest cohesive strength consid-

ered here, b = 0.3|σ0
yy|, which is representative of a strong pristine rock (Carmichael,

1982), opening occurs even with off-fault plastic deformation. But if the high cohesive
strength rock softens, which represents the reactivation of initial damage to the rock
that was partially healed by cementation, opening may not occur. This softening is a
real process that the off-fault material will undergo. We note that our treatment of
softening uses a formulation that has material beyond the localization condition and
has a somewhat ad-hoc character, with some features of the solution dependent on
grid size.

5.1.1 Stress State in the Presence of Opening

For the initial stress state used here (σ0
zz = (σ0

xx + σ0
yy)/2), the D-P yield criterion

is identical to the M-C yield criterion, and a non-cohesive D-P yield criterion will
intersect the origin in the τ -σ space. This yield criterion requires that no principal
stresses be tensile. If a segment of the fault has opened, the minimum compressive
principal stress, σ3, goes to zero. As such, Mohr’s circle must collapse to a point or it
will intersect the yield surface. This means that σ1 and σ2 must also go to zero and
all stress components must vanish along an opened fault wall. However, if there is
cohesion, the yield surface translates up and away from the hydrostatic axis, and a
Mohr’s circle of non-zero radius (i.e., σ1 6= 0) can exist with σ3 = 0.

Now we examine the stress states that satisfy the incohesive D-P yield criterion,
eq. (1) with b = 0. Our model uses the D-P criterion and we determine under what
circumstances fault opening can occur. One solution to this relation is that if one
principal stress goes to zero, all principal stresses go to zero (σ1 = σ2 = σ3 = 0).
To see if this is unique, we also search for a stress state in which yield occurs (the
yield criterion is satisfied), and only one principal stress is zero, σ3 = 0. If one of
the stresses, σ2, is nonzero, then without loss of generality, we can say that σ1 = λσ2,
where λ can be positive, negative, or zero (note that we have made no assumptions
about the relative magnitudes of the principal stresses).

Using this framework, we find that λ is only real for µ ≥
√

3/2 = sin 60◦. Since µ =

sinφ for the initial stress state, λ only exists for φ ≥ 60◦, which does not represent most
materials, including those assumed here. Therefore, if σ3 = 0, there is no real value for
λ and D-P can only be satisfied if σ2 and σ1 also vanish. For an incohesive constitutive
model, if the fault opens, all stresses must vanish along the opened surfaces.

Our results show that no stresses go to zero in the incohesive case, for all config-
urations studied, and consistently, fault opening does not occur. For the elastic case,
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there are no restrictions on stress state that can be attained, and fault opening does
occur without all stresses vanishing. For finite cohesion, the response is intermediate
to these two end members, and opening occurs with sufficient cohesion.

5.2 Numerical Implementation

The FE method, at its core, is finding displacements of nodes, from which strains and
stresses are calculated within the element. Although a system of equations is solved
for the nodes, the basic principle of virtual work (including D’Alembert’s reversed
inertial forces from density times acceleration), does not act on the nodes. Traction
boundary conditions are applied to surfaces, and this surface operation is represented
by an equivalent, by virtual work, force at a node. There is no fundamental reason
why node 1 (figure 3b) cannot have a force applied due to the traction on the branch
fault and another force due to traction on the main fault. With both of these forces, the
FE equations can be solved. The algorithmic challenge regarding the triple junction
arises from the implementation of surface interactions within a given program.

For ABAQUS, and programs with similar treatments of contact interactions, the
problem is that a node can only be part of one surface. The surfaces are defined, and
then their interactions are prescribed (there is an interaction that defines the main
fault and an interaction that defines the branch). An individual node cannot belong
to two surfaces, if the two surfaces participate in different contact interactions. This
is a result of the contact routine and not an inherent problem with the finite element
formulation. In figure 3a, we see that there are three distinct blocks that define the
model, and there are five planar surfaces. Three of these surfaces interact as the main
fault, and two of these surfaces interact as the branch fault. Within the constraints
of the contact routine, we are left with a question regarding nodes 1 and 2 in figure
3b: do they belong to the main fault surface or do they belong to the branch surface?

The Traction at Split-Nodes (TSN) procedure is implemented in many numerical
models (e.g., Duan and Oglesby, 2005; Day et al., 2005; Ma and Archuleta, 2006). This
method, discussed in Andrews (1999), is based on the assumption of two nodes, one
on each side of the fault, which only slide past one another and do not open. There
are forms of this implementation that do allow for fault opening (Day et al., 2005),
but the assumption of two nodes interacting is still the base of the formulation. Since
it is assumed that only two nodes are co-located, codes that use this procedure cannot
directly implement a geometry in which three nodes exist at the junction. If only two
nodes can exist, which node should be removed?
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These two questions, for different implementations, reduce to effectively the same
algorithmic issue at the junction. The solution is based on the physical processes
that take place at the junction. If rupture propagates onto the branch, and node 1 is
allowed to slide up the branch, there will be opening (figure 3c). Therefore if opening
does not occur (a common assumption in the TSN implementation), slip on the branch
fault must go to zero at the branching junction. This is consistent with our default
mesh definition in which nodes 1 and 2 are the same node (figure 3d). And, since there
are now only two nodes at the junction, the interactions are no longer ambiguous and
this specification can be easily implemented by contact or split-node routines. From
this definition we see that the two nodes that now exist at the junction are part of
the main fault, and the specification of the contact interactions, in FE models like
ABAQUS, is no longer problematic.

Although we investigated the effects of alternate branch definitions (figure 14b &
c), we do not think that these are reasonable setups to use for the fault geometry
investigated here. Without one continuous, planar main fault through the model,
these alternate definitions force the rupture to abruptly stop on the main fault at the
junction and “jump” onto the main fault continuation. If the branch is completely
ignored, this results in a strange slip distribution on the main fault, but rupture
should be able to continue along the main fault as if the branch was not there.

A final issue worthy of note is the specification of master and slave surfaces in
typical contact routines (Hallquist, 2006; ABAQUS Inc., 2007). Master surfaces are
defined by elements, and slave surfaces are defined by nodes. Slave nodes cannot
penetrate the master surface, but nodes on the master surface can penetrate the
slave surface. Due to the large strains that occur at the junction, if the incorrect
specification is made, an unreasonable amount of interpenetration is possible. This
can be prevented by the specification, for compressional side branches, that the slave
surface defines the right hand side of the branch fault in figure 3.

6 Conclusions

When addressing the problem of branched ruptures, it is important to consider both
the physical intricacies of the deformation at the branching junction and the algorith-
mic challenges in properly allowing for them.

Physical opening can occur at the triple junction if the stress state is able to
achieve a state of no normal stress across the fault. This is possible and frequently
occurs if the off-fault material is elastic. Real rocks are not perfectly elastic, and
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we have shown that an elastic-plastic material description can inhibit opening of the
faults near the junction.

There should not be opening at the branching junction unless the rock has a very
high cohesive strength. For an incohesive material, intended to account for zones
of damaged rock bordering maturely slipped faults, fault opening does not occur. If
some cohesive strength is regained due to cementation during the interseismic period,
opening does not occur unless there is a full recovery of cohesive strength to pristine
rock values. Material softening, which is a real behavior of plastically deforming
rocks, represents the reactivation of initial damage. Within the uncertainties of ma-
terial localization and the inherent grid dependence of these features, we find that
sufficient material softening can inhibit opening in cases of high cohesive strength.
We conclude that mature fault rocks, even those that have undergone interseismic
cementation, should not open.

Besides inhibiting opening at the junction, off-fault plasticity strongly affects the
branch activation. Compared to an elastic case, compressional side branches are less
likely to activate with a non-cohesive elastic-plastic material description, but exten-
sional side branches are more likely to rupture. The interactions between ruptures
on the main fault and the branch are complex, and it is possible to have a delayed
rupture on the branch fault driven by the stress field of the rupture propagating on
the main fault and its associated plastic deformation.

We also discuss algorithmic issues that may arise due to the presence of such a
triple junction. When opening does not occur, the behavior at the triple junction is
simplified and standard contact routines in FE programs are able to properly repre-
sent the physical situation. A mesh definition in which slip goes to zero on the branch
fault as the junction is approached, is the only proper choice if there is no fault open-
ing. This is consistent with the way that we have defined the FE model and results in
an easily implemented numerical procedure in other FE and FD models. Thus, in the
case of no fault opening, possible artifacts of the finite element methodology do not
enter, and we suitably simulate the response of our conceptual model (within limita-
tions of grid refinements and localizations). If fault opening does occur, we show that
alternate mesh definitions can drastically change the branch activation results.

For an elastic model, fault opening can occur, but we determine that our numer-
ical algorithms are producing valid results with our specified default geometry. For
extensional side branches, opening does not occur until long after the rupture tip
has passed the junction. Therefore, since there is no physical opening until after the
rupture has been established on the faults, the branch activation results are valid

27



for extensional side branches. This is because, in the case of no opening, this FE
model definition is free from numerical artifacts. For compressional side branches,
opening occurs much earlier than for extensional side branches, but if rupture is not
established on the branch fault there is no fault opening. The fault only opens if the
branch fault is completely activated. The opening is a result of the activation, not the
other way around. While the details of the model (i.e., slip distribution on the main
fault at the branch) may not be accurate at long time, the activation or disregard of
the branch fault is a valid result.

Data and Resources

No data were used in this paper. The software package, ABAQUS/Explicit was use to
produce model results.
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A Approximation of the Fracture Energy for the Reg-
ularized Friction Routine

In these investigations we used a regularized form of linear slip-weakening which
introduces a time scale over which the strength of the surface evolves. Therefore,
the time it takes for a point to undergo complete slip-weakening is increased using
the regularized routine due to the non-instantaneous response of shear strength to
a change in the normal stress. In fact, when the regularized case is used, the time
to undergo complete slip-weakening is infinite (see eq. (9)), but the strength closely
approaches the residual level after finite time. Using the regularized friction routine
rather than the non-regularized slip-weakening law also changes the shape of the
slip-weakening curve and thus the fracture energy (figure 6). When Dc is the same
for both cases, the effective Dc is increased in the regularized friction routine. Figure
5 shows that the slip-weakening zone size for the regularized routine, Rr, is then
larger than that of the non-regularized form, Rnr, where r and nr superscripts denote
regularized and non-regularized slip-weakening, respectively.

To choose parameters in the regularized procedure that will simulate a given frac-
ture energy, it must be understood how the choice of regularized time scale, t∗, and
rupture velocity, Vr, affect the resulting slip-weakening curves.

A.1 Calculation of Fracture Energy

The time it takes a point to undergo an amount of slip, Dc, is defined as T (note that
for the regularized routine this is not the same as the time is takes for a point to
reach a nominal shear stress of τr). T will be different for the regularized and the
traditional slip-weakening formulations but our model results show that these do not
differ by more than 10%. We define a characteristic average slip velocity during the
slip-weakening process, V , for both regularized (r) and non-regularized (nr) forms, by

V r,nr =
Dc

T r,nr
(A1)

For the non-regularized slip-weakening, the fracture energy, G, is defined in terms
of slip, s, as

G =

∫ Dc

0

(τ(s)− τr) ds (A2)

(Palmer and Rice, 1973) (generalizing Rice (1968) to a case of τr 6= 0, and for the shear
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mode). The result for Gnr is the familiar

Gnr = 1
2
Dc(τp − τr) (A3)

and substituting for Dc using eq. (A1), this becomes

Gnr = 1
2
V nrT nr∆τ (A4)

where ∆τ = τp − τr is the strength drop.
For the regularized case, τ 6= τ(s), but rather τ = τ(s, t). Therefore to arrive at

an approximation to Gr without having to run a numerical model to determine the
behavior, we make the approximation that slip accumulates linearly with time as s =

V t. This implies that the slip distribution is linear in space, behind the rupture tip,
for steady-state rupture propagation, which we know is not true, but this is a rough
approximation. This can change the calculation for fracture energy to an integral
over time rather than slip

Gr =

∫ ∞
0

V (τ(t)− τr)dt (A5)

We substitute equation eq.(7)into eq.(9) and find the form of the strength evolution
in time.

dτ

dt
= − 1

t∗

[
τ −

(
τp −∆τ

V rt

Dc

)]
for t < T r (A6)

dτ

dt
= − 1

t∗
[τ − τr] for t ≥ T r (A7)

Using the initial condition that τ = τp at t = 0 we find that for t < T r

τ(t) = τp −
∆τ

Dc

V r
(
t∗e−t/t

∗
+ t− t∗

)
(A8)

We define the transitional shear strength, τ t, at time t = T r when an amount of
slip, Dc, has accumulated using eq. (A8)

τ t = τp −
∆τ

Dc

V r
(
t∗e−T

r/t∗ + T r − t∗
)

(A9)

Using τ t as the initial condition for the solution to equation eq. (A7) for t > T r, we
find

τ(t) = τp −
V r∆τ

Dc

(
t∗e−t/t

∗
+ t− t∗

)
for t < T r (A10)

τ(t) = (τ t − τ r)e(T r−t)/t∗ + τ r for t ≥ T r (A11)
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¿From here we evaluate the fracture energy for the regularized procedure by sub-
stitution of eq. (A10)-eq. (A11) into eq.(A5).

Gr =
∆τV rT r

2

(
1 +

2t∗

T r

)
(A12)

A.1.1 Ratio of Fracture Energies

Using the fact that V rT r = V nrT nr = Dc, the ratio of fracture energies, G, for the
regularized and non-regularized linear slip-weakening is estimated from eq. (A4)
and eq. (A12) to be

G =
Gr

Gnr
= 1 +

2t∗

T r
(A13)

To utilize this relation, an estimate is needed for T r. T r is not significantly differ-
ent from T nr, and T nr can be estimated as

T nr =
Rnr

Vr
(A14)

and where Rnr is found from the equation

Rnr

R0

=
1

f(Vr)
(A15)

where
f(Vr) =

αsV
2
r

(1− ν)C2
s (4αsαp − (1 + α2

s)
2)

(A16)

is the familiar equation from Rice (1980) and α2
p = 1− V 2

r /C
2
p and α2

s = 1− V 2
r /C

2
s .

Using eq. (A14)-eq. (A16), we can arrive at an approximate value for T nr, and
predict G using eq. (A13) for a specified t∗ and Vr. We compare this to the numerically
determined G values, Gmeas, in figure 15. This comparison used three values for t∗

(t∗ = 1, 2, and 4 ∆x/Cs), and a range in rupture velocities (Vr = 0.42Cs − 0.90Cs), S
ratios (S = 1.0− 3.0), and residual friction coefficients (fs = 0.12− 0.4).

Using the above equations consistently under-predicts the measured ratio. The
discrepancy is due to the assumption in the above derivation that the slip accumu-
lates linearly with time, which we show to be an overly simple assumption in figure
6. But, with a simple modification, and using a value for T nr that is 70% of the value
calculated from eq. (A14)-eq. (A16), a good approximation to the resulting fracture
energy can be made (pink line in figure 15).

A desired fracture energy is represented by a Dc in the non-regularized procedure.
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To represent this same fracture energy within the regularized routine, at a specified
rupture velocity, a modified value for Dc must be used. The above relations can be use
to find this modified Dc

Dmod.
c =

Dc

2 + 4t∗

0.7Tnr

(A17)

where T nr is calculated for the desired Vr using eq. (A14)-eq. (A16) and the factor of
0.7 is the corrective factor.

The ratio of fracture energies changes with the rupture velocity. As the rupture
velocity increases, there is a Lorentz type contraction of the slip-weakening zone,
imbedded in the relation eq. (A15), and therefore the time to undergo slip-weakening
is reduced as the rupture velocity is increased. Since we have introduced a time scale
through the use of t∗, and the time scale for weakening is dependent on the velocity,
there will be a non-constant ratio of fracture energies that’s dependent on the rupture
velocity.

32



References

ABAQUS Inc. (2007), ABAQUS Theory manual, Version 6.7, Providence, R. I.

Ando, R., and T. Yamashita (2007), Effects of mesoscopic-scale fault structure on dy-
namic earthquake ruptures: Dynamic formation of geometrical complexity of earth-
quake faults, J. Geophys. Res., 112(B9), doi:10.1029/2006JB004612.

Ando, R., B. E. Shaw, and C. H. Scholz (2009), Quantifying natural fault geom-
etry: Statistics of splay fault angles, Bull. Seis. Soc. Am., 99(1), 389–395, doi:
10.1785/0120080942.

Andrews, D. J. (1976), Rupture velocity of plane strain shear cracks, J. Geophys. Res.,
81(32), 5679–5687.

Andrews, D. J. (1985), Dynamic plane-strain shear rupture with a slip-weakening
friction law calculated by a boundary integral method, Bull. Seis. Soc. Am., 75(1),
1–21.

Andrews, D. J. (1989), Mechanics of fault junctions, J. Geophys. Res., 94(B7), 9389–
9397.

Andrews, D. J. (1999), Test of two methods for faulting in finite-difference calcula-
tions, Bull. Seis. Soc. Am., 89(4), 931–937.

Aochi, H., E. Fukuyama, and M. Matsuura (2000), Selectivity of spontaneous rupture
propagation on a branched fault, Geophys. Res. Lett., 27(22), 635–638.

Bhat, H. S., R. Dmowska, J. R. Rice, and N. Kame (2004), Dynamic slip transfer from
the Denali to Totschunda faults, Alaska: testing theory for fault branching, Bull.
Seis. Soc. Am., 94(6), S202–S213, doi:10.1785/0120040601.

Bhat, H. S., M. Olives, R. Dmowska, and J. R. Rice (2007), Role of fault
branches in earthquake rupture dynamics, J. Geophys. Res., 112(B11), doi:
10.1029/2007JB005027.

Carmichael, R. S. (1982), Handbook of Physical Properties of Rocks, CRC Press, Boca
Raton, FL.

Chester, F. M., J. S. Chester, D. L. Kirschner, S. E. Schulz, and J. P. Evans (2004),
Structure of large-displacement strike-slip fault zones in the brittle continental

33



crust, in Rheology in the LIthosphere at Continental Margins, edited by G. D. K.
B. T. N. W. Driscoll and D. L. Kohlstedt, Columbia Univ. Press, New York.

Cochard, A., and J. R. Rice (2000), Fault rupture between dissimilar materials:
Ill-posedness, regularization and slip-pulse response, J. Geophys. Res., 105(B11),
25,891–907.

Day, S. M., L. A. Dalguer, N. Lapusta, and Y. Liu (2005), Comparison of finite differ-
ence and boundary integral solutions to three-dimensional spontaneous rupture, J.
Geophys. Res., 110, B12,307, doi:10.1029/2005JB003813.

Dor, O., Y. Ben-Zion, T. K. Rockwell, and J. Brune (2006), Pulverized rocks in the
Mojave section of the San Andreas Fault Zone, Earth. Planet. Sci. Lett., 245, 642–
654.

Duan, B., and S. M. Day (2008), Inelastic strain distribution and seismic ra-
diation from rupture of a fault kink, J. Geophys. Res., 113, B12,311, doi:
10.1029/2008JB005847.

Duan, B., and D. D. Oglesby (2005), Multicycle dynamics of nonplanar strike-slip
faults, J. Geophys. Res., 110, B03,304, doi:10.1029/2004JB003298.

Duan, B., and D. D. Oglesby (2007), Nonuniform prestress from prior earthquakes and
the effect on dynamics of branched fault systems, J. Geophys. Res., 112, B05,308,
doi:10.1029/2006JB004443.

Dunham, E. M., and J. R. Rice (2008), Earthquake slip between dissimilar poroelastic
materials, J. Geophys. Res., 113, B09,304, doi:10.1029/2007JB005405.

Fliss, S., H. S. Bhat, R. Dmowska, and J. R. Rice (2005), Fault branching and rupture
directivity, J. Geophys. Res., 110(B6), doi:10.1029/2004JB003368.

Fukuyama, E., and T. Mikumo (2006), Dynamic rupture propagation during the 1891
Nobi, central Japan, earthquake: A possible extension to the branched faults, Bull.
Seis. Soc. Am., 96(4A), 1257–1266, doi:10.1785/01200050151.

Hallquist, J. O. (2006), LS-DYNA Theory manual, Livermore, CA.

Harris, R. A., and S. M. Day (1999), Dynamic 3D simulations of earthquakes on en
echelon faults, Geophys. Res. Lett., 26(14), 20892092.

34



Ida, Y. (1972), Cohesive force across the tip of a Longitudinal-Shear crack and Grif-
fith’s specific surface energy, J. Geophys. Res., 77(20), 3796–3805.

Kame, N., J. R. Rice, and R. Dmowska (2003), Effect of prestress state and
rupture velocity on dynamic fault branching, J. Geophys. Res., 108(B5), 2265,
doi:10.1029/2002JB002189.

King, G. C. P., R. S. Stein, and J. Lin (1994), Static stress changes and the triggering
of earthquakes, Bull. Seis. Soc. Am., 84(3), 935–953.

Linker, M. F., and J. H. Dieterich (1992), Effects of variable normal stress on rock
friction: Observations and constitutive relations, J. Geophys. Res., 97, 4923–4940.

Lozos, J. C., and B. Kilgore (2010), Laboratory observations of the response of fault
strength as normal stress is changed, and implications for dynamic rupture, SCEC
Annual Meeting, Proceedings and Abstracts, XX, 2–076.

Lysmer, J., and R. L. Kuhlemeyer (1969), Finite dynamic model for infinite media, J.
Eng. Mech. Div. ASCE, pp. 859–877.

Ma, S., and R. J. Archuleta (2006), Radiated seismic energy based on dynamic rupture
models of faulting, J. Geophys. Res., 111, B05,315, doi:10.1029/2005JB004055.

McKenzie, D. P., and W. J. Morgan (1969), Evolution of triple junctions, Nature, 224,
125–133.

Oglesby, D. D., S. M. Day, Y.-G. Li, and J. E. Vidale (2003), The 1999 Hector Mine
earthquake: The dynamics of a branched fault system, Bull. Seis. Soc. Am., 93(6),
2459–2476.

Palmer, A. C., and J. R. Rice (1973), Growth of slip surfaces in progressive fail-
ure of over-consolidated clay, Proceedings of the Royal Society of London Series
A-Mathematical Physical and Engineering Sciences, 332(1591), 527–548.

Poliakov, A. N. B., R. Dmowska, and J. R. Rice (2002), Dynamic shear rupture inter-
actions with fault bends and off-axis secondary faulting, J. Geophys. Res., 107(B11),
2295, doi:10.1029/2001JB000572.

Prakash, V. (1998), Frictional response of sliding interfaces subjected to time varying
normal pressures, J. of Tribol., 120, 97–102, doi:10.1115/1/2834197.

35



Prakash, V., and R. J. Clifton (1993), Time resolved dynamic friction measurements in
pressure-shear, in Experimental Techniques in the Dynamics of Deformable Solids,
edited by A. K. T. Ramesh, pp. 33–48, Appl. Mech. Div., Am. Soc. of Mechanical
Eng., Ney York.

Ranjith, K., and J. R. Rice (2001), Slip dynamics at an interface between dissimilar
materials, J. Mech. Phys. Solids, 49, 341–361.

Rice, J. R. (1968), A path independent integral and the approximate analysis of strain
concentration by notches and cracks, J. App. Mech., 35, 379–386.

Rice, J. R. (1980), The mechanics of earthquake rupture, in Physics of the Earth’s
Interior, edited by A. M. Dzieswonski and E. Boschi, Italian Physical Society and
North Holland Publ. Co., Amsterdam.

Rice, J. R., C. G. Sammis, and R. Parsons (2005), Off-fault secondary failure
induced by a dynamic slip pulse, Bull. Seis. Soc. Am., 95(1), 109–134, doi:
10.1785/0120030166.

Rudnicki, J. W., and J. R. Rice (1975), Conditions for localization of deformation
in pressure-sensitive dilatant materials, Journal of the Mechanics and Physics of
Solids, 23, 371–394.

Scholz, C. H., R. Ando, and B. E. Shaw (2010), The mechanics of first order splay fault-
ing: The strike-slip case, J. Struct. Geol., 32, 118–126, doi:10.1016/j.jsg.2009.10.007.

Sowers, J. M., J. R. Unruh, W. R. Lettis, and T. D. Rubin (1994), Relationship of the
Kickapoo fault to the Johnson Valley and Homestead Valley faults, San Bernardino
County, California, Bull. Seis. Soc. Am., 84(3), 528–536.

Templeton, E. L., and J. R. Rice (2008), Off-fault plasticity and earthquake rupture
dynamics: 1. Dry materials or neglect of fluid pressure changes, J. Geophys. Res.,
113, B09,306, doi:10.1029/2007JB005529.

Templeton, E. L., A. Baudet, H. S. Bhat, R. Dmowska, J. R. Rice, A. J. Rosakis, and
C. Ernst Rousseau (2009), Finite element simulations of dynamic shear rupture
experiments and dynamic path selection along kinked and branched faults, J. Geo-
phys. Res., 114, B08,304, doi:10.1029/2008JB006174.

Templeton, E. L., H. S. Bhat, R. Dmowska, and J. R. Rice (2010), Dynamic rupture
through a branched fault configuration at Yucca Mountain, and resulting ground
motions, Bull. Seis. Soc. Am., 100(4), 1485–1497, doi:10.1785/0120090121.

36



Author Affiliation and Addresses

Nora DeDontney
Dept. of Earth and Planetary Sciences
20 Oxford St.
Harvard University
Cambridge MA 02138, USA
(ndedontn@post.harvard.edu)

James R. Rice
Dept. of Earth and Planetary Sciences and School of Engineering and Applied Sci-
ences
29 Oxford St.
Harvard University
Cambridge MA 02138, USA

Renata Dmowska
School of Engineering and Applied Sciences
29 Oxford St.
Harvard University
Cambridge MA 02138, USA

37



Tables

Table 1: Representative Material Parameters
ρ Density 2700 kg/m3

E Young’s modulus 60.84 GPa
G Shear modulus 24.34 GPa
ν Poisson’s ratio 0.25
Cp P wave speed 5200 m/s
Cs S wave speed 3002 m/s
R0 Slip weakening zone size 40 m
fs Static friction 0.6
fd Dynamic friction 0.12
Dc Slip weakening distance ∼70 mm
t∗ Regularization time scale 6.66e-4 s
|σ0

yy| Normal stress 100 MPa
b Drucker-Prager cohesion 60 Pa - 30 MPa
µ Drucker-Prager surface slope 0.51
β Plastic dilatancy 0.257-0.389
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Absorbing Boundary 
Conditions

Fault Friction
fs = 0.60
 fd = 0.12

-σyy

τxy

-σxx
0 τxy

0

Ψ

σ1

δ

-σyy
0

a)

b) Compressional
Side Branch

Extensional
Side Branch

Figure 1: (a) Basic Finite Element Model setup with absorbing boundary conditions
and a uniform stress state with plane strain elements. New mesh geometry in which
larger elements are utilized far away from the faults for computational efficiency. The
few corner elements which are much smaller than the fine resolution section are arti-
ficially denser so as to not dictate the model time step. (b) Definition of compressional
and extensional side branches.
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Slip Weakening
of Friction Coe�cient

Slip Weakening 
Zone Size

at low speed and high S
Slip

distance 
from crack tip

Slip or Time

M
Pa

Simpli�ed Prakash-
Clifton Law

Linear

Regularized

a) b) c)

Figure 2: Slip weakening laws. (a) R is the physical dimension over which stress
decays from peak to residual value. (b) For linear slip weakening, Dc is the amount of
slip over which the strength decays from peak to residual value. For the regularized
friction routine, this amount of slip is increased. (c) Regularized friction routine has
a non-instantaneous response in strength (gray line) to an instantaneous change in
friction or normal stress (black line).

a)

c) d)

b)
?

1 2

3

Figure 3: Models used for discussion of branch point definition. (a) Fault bounded
blocks. (b) Node discretization and surface interactions. (c) Junction opening. (d)
Model geometry used.
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τ
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p = -σkk/3

b

h

Stress State
h = 

d γ pl
d b

Figure 4: The Drucker-Prager yield surface is defined by a cohesion, b, and a slope, µ.
Hardening, h, shifts the yield surface as plastic deformation, γpl, occurs. The initial
stress state is represented by a point in this space.
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Figure 5: Comparison of the regularized slip friction law used in this study to the
non-regularized slip-weakening law. Lines plotted at even time increments. Vertical
line denotes the position at which the friction history is reported in figure 6. (a) The
slip distribution is similar, near the rupture tip, for the two laws. (b) The regularized
routine results in a larger physical distance over which slip-weakening occurs.
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Figure 6: Shear stress values at a point, as the rupture tip travels at Vr = 0.86Cs. Reg-
ularized friction effectively increases the slip-weakening distance. (a) Shear stress
time history of the observation point. Note that the time histories have been offset
so that the peaks align. (b) Shear stress evolution as slip accumulates, i.e. the slip-
weakening curve.
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Figure 7: Image of the branching junction some time after the rupture has propagated
onto the compressive side branch and a small distance along the main fault. Contours
show the shear stress level, τ̄ 0/σ0

yy = 0.82. (a) Opening occurs at the junction for an
elastic off-fault material. (b) Opening does not occur for an incohesive elastic-plastic
material.
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Figure 8: Plastic deformation for models with varying amounts of cohesion, increasing
from (a) to (d). Column two is the same case as shown in column one, but shows a
close up of the branching junction and uses a different color scale since deformation is
very high near the junction. Column three shows the mesh deformation for a further
close up of the junction. (d) The only case that shows opening on the main fault.
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Figure 9: The addition of material softening to the strongest cohesion case shown in
figure 8a only affects the plastic strain in the area of the branching junction. Here
we show the response for increasing amounts of softening which reduces the cohesive
strength and allows the plastic shear strain to localize. With sufficient softening, fault
opening no longer occurs. Softening is a real feature of plastically deforming rocks,
but the implementation here does have an inherent grid size dependence.
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Figure 10: Image of the branching junction some time after the rupture has propa-
gated onto the extensional side branch and a small distance along the main fault. (a)
Opening occurs at the junction for elastic cases. Vertical deformation is exaggerated
by a deformation factor of 20, only on the main fault to make the small opening visi-
ble. (b) & (c) Opening does not occur at the junction with an incohesive elastic-plastic
material behavior.
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Figure 11: Influence of off-fault plastic deformation on branch activation. (a) Com-
pressional side branch. (b) Extensional side branch.
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Figure 12: Change in CFS due to rupture propagation for elastic and elastic-plastic
materials (∆CFS= ∆τ − 0.6∆σn). (a) - (c) Compressional side branch. (d) - (f) Ex-
tensional side branch. (a) & (d) Stress distribution on all planes radiating from the
rupture tip, at a distance r/L from the tip. (b), (c), (e) and (f) Change in CFS on a
fictional branch due to rupture propagating past the junction on the main fault.
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Figure 13: Slip distribution on the branch fault shown in figure 11b, δ = −25◦. Lines
plotted at equal time increments. Slip travels as a small pulse along the branch until
a distance of 3.0, at which point full dynamic weakening occurs and the rupture goes
bilateral to complete the rupture of the branch.
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Figure 14: Effect of the definition at the branching junction on the rupture path
selection. The rupture prefers to propagate on the continuous surface. All cases
shown for Ψ = 13◦ and Vr = 0.86Cs. As the S ratio changes, so does the rupture path
selection. Ls indicates the distance of terminated rupture propagation, normalized by
R0.
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Figure 15: Predicted value for G, from equations eq.(A13)-eq. (A16), shown against
value measured for G from model runs. G is consistently under-predicted, but the use
of a modified value for T r (see fit line) can predict the value.
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