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Dilatant strengthening as a mechanism for slow slip events
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[1] The mechanics of slow slip events (SSE) in subduction zones remain unresolved. We
suggest that SSE nucleate in areas of unstable friction under drained conditions, but as
slip accelerates dilatancy reduces pore pressure p quenching instability. Competition
between dilatant strengthening and thermal pressurization may control whether slip is slow
or fast. We model SSE with 2-D elasticity, rate-state friction, and a dilatancy law where
porosity ¢ evolves toward steady state ¢, over distance d. and ¢y = ¢g + € In(v/vp); v is
slip speed. We consider two diffusion models. Membrane diffusion (MD) is approximated
by —(p — p*)/ty where p and p” are shear zone and remote pore pressure and #,is a
characteristic diffusion time. Homogeneous diffusion (HD) accurately models fault-normal
flow with diffusivity c;,,. For MD, linearized analysis defines a boundary £ =1 — a/b
between slow and fast slip, where £ = fye/Bb(c — p™), fo, a, and b are friction parameters
and (3 is compressibility. When £ < 1 — a/b slip accelerates to instability for sufﬁciently
large faults, whereas for £ > 1 — a/b slip speeds remain quasi-static. For HD, E),
eh/(B (a D)/ V>®/cnyad,) defines dilatancy efficiency, where 7 is shear zone thickness
and v” is plate velocity. SSE are favored by large ei and low effective stress. The ratio E,,
to thermal pressurization efficiency scales with 1/(o — p™), so high p* favors SSE, cons1stent
with seismic observations. For £, ~ 10~° transient slip rates, repeat times, average slip,
and stress drops are comparable to field observations. Model updip propagation speeds are

comparable to those observed along-strike. Many simulations exhibit slow phases driven
by steady downdip slip and faster phases that relax the accumulated stress. Model SSE
accommodate only a fraction of plate motion; the remaining deficit must be accommodated

during coseismic or postseismic slip.
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1. Introduction

[2] One of the most exciting discoveries in solid earth
geophysics in recent decades has been the recognition that
many subduction zones undergo transient slip events at depths
below the locked megathrust zone. These slip events, which were
first detected by GPS networks, have been found in Cascadia
[Dragert et al., 2001; Miller et al., 2002; Szeliga et al., 2008],
southwest Japan [e.g., Hirose et al., 1999; Miyazaki et al., 2006],
Mexico [Kostoglodov et al., 2003; Larson et al., 2007], New
Zealand [Douglas et al., 2005; McCaffrey et al., 2008;
Delahaye et al., 2009], and Alaska [Ohta et al., 2006]. Slow
slip has also been found along the San Andreas Fault [Linde
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et al., 1996; Murray and Segall, 2005], and on the decolle-
ment beneath Kilauea volcano [Cervelli et al., 2002; Segall
et al., 2006; Brooks et al., 2006; Montgomery-Brown et al.,
2009]. In Cascadia slow slip events are periodic with intere-
vent times, varying with latitude, of from 11 to 18 months
[Brudzinski and Allen, 2007]. In southwest Japan, periods of
roughly 6 months, 1 year, and 6 years have been observed.

[3] Transient slip in subduction zones is often, but appar-
ently not always, accompanied by tectonic tremor [Obara,
2002; Rogers and Dragert, 2003; Obara et al., 2004]. The
periodic recurrence and accompanying seismic signature has
led to the designation Episodic Tremor and Slip (ETS).
Shelly et al. [2007] showed that tremor in southwest Japan
contains locatable events, termed low-frequency earthquakes
(LFE), and that the tremor consists largely, and possibly
completely, of repeated excitation of LFE sources. The low-
frequency events there locate on the subducting plate inter-
face [Shelly et al., 2006]. Ide et al. [2007] showed that the
LFEs have focal mechanisms consistent with slip on the plate
interface in the plate convergence direction. Together these
observations argue strongly that tremor, at least in the Nankai
region, is caused by slip on the plate interface.

[4] The mechanism of nonvolcanic tremor in Cascadia
has been more controversial, with early locations placing
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significant tremor well above the subducting plate interface
[Kao et al., 2005]. However, recent work has shown that
the Cascadia tremor contains discrete events located on the
megathrust [Brown et al., 2009]. In addition, S minus P times
within tremor directly beneath seismic arrays in Cascadia also
place the tremor source near the plate interface [La Rocca
et al., 2009]. The weight of evidence thus may be shifting
to the view that tremor in Cascadia is also caused by slip on
the plate interface. It should also be noted that tremor is
observed between the major ETS events, and tends to be
located somewhat deeper than the ETS tremor [Wech et al.,
2009].

[5] There are, however, cases where slow slip events have
been detected geodetically without observable tremor,
including New Zealand [Delahaye et al., 2009], and the Boso
Peninsula of Japan [Sagiya, 2004; Ozawa et al., 2003, 2007].
It thus appears that tremor is not necessary for slow slip to
occur. However, the clear spatial and temporal association of
these signals in Cascadia and Nankai demonstrate that they
are intimately linked in these regions. Nonvolcanic tremor
has not yet been found during slow slip beneath Kilauea
volcano; however these events are associated with swarms
of small, high-frequency earthquakes [Segall et al., 2006;
Brooks et al., 2006; Montgomery-Brown et al., 2009]. Micro-
seismicity has also been observed with slow slip events
beneath the Boso Peninsula [Sagiya, 2004; Ozawa et al., 2003,
2007], Imperial Valley [Lohman and McGuire,2007], and the
north island of New Zealand [Delahaye et al., 2009].

[6] Understanding the physics of slow slip events and
how they differ from normal, high-frequency earthquakes is
one of the most pressing current challenges in seismology.
Critical observations that must be explained by any viable
model of slow slip include the following:

[7] 1. Minimum dimensions of slow slip zones are typi-
cally several tens of kilometers.

[8] 2. Maximum slip in a single event is typically small
(~2 cm in Cascadia).

[9] 3. These observations imply low static stress drops. For
a width of 60 km, slip of 2 cm, and /(1 — v) of 4 x 10* MPa
(u is the shear modulus and v Poisson’s ratio), the stress
drop is on the order of 0.01 MPa.

[10] 4. Average slip velocities are roughly 1-2 orders of
magnitude above the plate velocity (2 cm/10 days ~ 10~® m/s
in Cascadia, versus 10 cm/2 days ~ 5 x 10°" m/s beneath
Kilauea).

[11] 5. Slow slip event durations vary from roughly 2 days
at Kilauea [Cervelli et al., 2002; Montgomery-Brown et al.,
2009] to on the order of 6 years for the Tokai slow slip
events in Japan [Miyazaki et al., 2006].

[12] 6. The repeat period between events is commonly
near 1 year, although both shorter and longer intervals are
observed.

[13] 7. Slow slip events in Cascadia propagate along strike
at rupture speeds of ~10 km/d [e.g., Schwartz and Rokosky,
2007], while others such as the Tokai slow event slip for
several years in largely the same locality [Miyazaki et al.,
2006].

[14] 8. High ratios of compressional to shear wave velocity
imaged in tomographic and/or receiver function studies
[Kodaira et al., 2004; Shelly et al., 2006; Audet et al., 2009]
have been interpreted as indicative of high ambient pore
pressures in regions where slow slip events occur.
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[15] Several classes of models to explain slow slip have
been explored. Some workers have posited a change in fric-
tional behavior from velocity weakening at low slip speeds to
velocity strengthening at higher rates [e.g., Shibazaki and Iio,
2003; Shibazaki and Shimamoto, 2007]. Such behavior has
been reported for simulated halite fault gouges [Shimamoto,
1986], and for chrysotile and lizardite serpentine at tem-
peratures below 200°C [Moore et al., 1997]. However, these
phases are not stable at temperatures above 250-300°C
[Moore et al., 1997]. Antigorite, the serpentine mineral stable
at from 200°C to 500—600°C, exhibits velocity strengthening
behavior over the range of temperatures and velocity steps
tested, as do the layer silicates brucite and talc [Moore and
Lockner, 2007]. Thus, the notably limited data available for
mafic rocks under appropriate pressure and temperature con-
ditions does not presently support this hypothesis, although
further laboratory testing is certainly warranted.

[16] Another class of model [Liu and Rice, 2005a, 2007]
exploits the fact that faults with rate and state friction exhibit
oscillatory behavior near neutral stability. This is illustrated
most simply by spring slider systems. Ruina [1983] showed
that such systems are linearly unstable with respect to per-
turbations from steady sliding if the spring stiffness is less
than a critical value, k., = (0 — p*)(b — a)/d... Here (o — p™)
is the effective normal stress, ¢ and b are rate and state
constitutive parameters, defined in equation (2) below, and
d. is the characteristic slip distance for state evolution (see
equation (3)). For spring stiffness equal to k..; small per-
turbations result in sustained oscillations, whereas for & >
keriz (k< k) perturbations from steady sliding decay (grow).
In an elastic continuum, the effective stiffness of a slip patch
decreases with the size of the patch. For plane strain defor-
mation the stiffness at the patch center is Cl[u/(1 — v)]/L,
where p is the shear modulus, v is Poisson’s ratio, L is the
patch length, and the coefficient C, of order unity, depends
upon the distribution of stress drop or slip. For a uniform
stress drop C = 1; for a periodic stress drop on an infinitely
long fault C = 2/7. Equating this stiffness to k.,;, leads to a
critical dimension for nucleation given by

dc:u/(l — V)
(0—p*)(b—a)

For C =2/ this is consistent with #* defined by Rice [1993];
we use C = 1 when reporting normalized fault dimensions
later in this paper.

[17] Translating the critical stiffness concept into a nucle-
ation length for faults in elastic continua is nontrivial because
in general the fault stiffness varies in both space and time.
One manifestation of this is that, unlike spring slider systems
with k slightly below k,;, faults modestly longer than A*
do not accelerate to instability. Instead, there is a range of
fault lengths larger than 4* that exhibit stable, oscillatory
departures from steady sliding. One way of rationalizing this
is to note that for a fixed length fault with uniform stress drop,
the stiffness (stress drop per slip) is greater near the ends
than at the center. For a fault modestly longer than A#* with
pinned ends this leads to a gradual shrinking of the accel-
erating region, a negative feedback that further increases
the stiffness and ultimately leads to decelerating slip. With
unpinned ends, however, the “aging” form of the state evo-
lution law (defined below), and laboratory values of a/b, the

h*=C (1)
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Figure 1. Ratio of maximum to minimum moment rate as a function of length of the velocity weakening
zone W, normalized by drained critical nucleation dimension /.i,. These computations include a velocity
strengthening region (with a/b = 1.2) of length 4/ between the velocity weakening zone and the fixed slip
rate boundary condition. Drained behavior with slip law (green), aging law (red), and slip law with mem-
brane diffusion (blue). Single dots show periodic behavior, while fat and thin lines show the middle 50% and
80%, respectively, when the behavior is aperiodic. Vertical green and red lines show the onset of dynamic
instability for the slip and aging laws, respectively. d. =40 um, b=0.01, and v° = 10"’ m/s. For membrane

diffusion calculations £ = 0.6 and v*t,/d,. = 1.

large stress concentrations at the margins of the slipping
zone cause the nucleation zone to expand such that it
asymptotically approaches a length larger than /#* (with C=1)
by a factor of (2/m)(1 — a/b) "' [Rubin and Ampuero, 2005]
(note that this is twice the half-length L, defined there).

[18] For the aging law form of state evolution, stable
oscillatory slip can thus occur over a range of fault lengths
from roughly 4* to 2L... This range becomes quite large as
a/b approaches 1; that is, for faults that are near velocity-
neutral. However, for the “slip” law form of state evolution
numerical simulations show that nucleation occurs as a single-
sided slip pulse that reaches dynamic slip speeds at a length
that is several times smaller than 2L, [Ampuero and Rubin,
2008; Rubin and Ampuero, 2009]. Thus, the range of fault
lengths that exhibit stable oscillatory slip is significantly
smaller with the slip law than it is for the aging law.

[19] In short, for slow slip events to arise from rate-state
friction effects near neutral stability with either evolution law
the dimension of the fault participating in the slow slip event
must be only modestly larger than the critical dimension for
nonsteady slip to nucleate. If the slip zone is smaller than
h*, slip is steady and no transients occur; if the slip zone is
too much larger than 4%, slip becomes dynamically unstable.
For laboratory values of friction parameters and normal
stresses of order 100 MPa, /4* is of the order of meters, far
too small to reconcile with the order 10 km minimum
dimension of slow slip events. Kuroki et al. [2004] find
models of transient slip with appropriate spatial dimensions
by choosing slip weakening distances, d., 3—4 orders of
magnitude larger than observed in laboratory experiments.

[20] Alternatively, Liu and Rice [2007] suggest that low
effective normal stresses within slow slip zones (i.e., highly
elevated pore pressure p there, which they inferred from
petrologic constraints on seafloor dehydration and seismic
studies of compressional to shear speed ratios) cause 4* to
be sufficiently large to explain geodetic observations. These
authors model simulated transient slip events that have

durations and interevent times comparable to what has been
observed in the Cascade subduction zone. Episodic slip
occurs in the transition between the locked megathrust zone
and the velocity strengthening fault at greater depth. Liu and
Rice [2009] extend this work, considering laboratory data
for gabbro that indicate a transition from velocity weakening
to velocity strengthening friction at a considerably higher
temperature than for granite, which was used in previous
studies. Mapping these data to depth using thermal models for
the Cascade subduction zone places the transient slip events
at a depth range more compatible with geodetic observations
than do the granite results. In these models, the width of the
transition zone, referred to as W, must be larger than 4*, but
not so large that the slip becomes dynamically unstable. For
the aging law form of the state evolution equations employed
by Liu and Rice [2007] the ratio W/h* can be up to ~7 for
spatially uniform a/b = 0.8 before the slip becomes dynami-
cally unstable (Figure 1). For the nonuniform distribution of
a/b adopted by Liu and Rice [2007] stable oscillatory slip
occurs for a reasonably broad range of fault widths, roughly
1.4 < Wih* < 10, suggesting that such behavior has a rea-
sonable chance of occurring in nature. This broad range
derives from the large increase in apparent fracture energy
with increasing slip speed implied by the aging law, an
increase that derives from an increase in the effective slip-
weakening distance with increasing slip speed [Rubin and
Ampuero, 2005]. However, no laboratory data support this
behavior [Nakatani, 2001].

[21] Rather, laboratory experiments indicate that in
response to a step increase in sliding velocity the effective
slip-weakening distance is independent of the magnitude of
the velocity increase, an observation consistent with the slip
law [Ruina, 1980; Bayart et al., 2006] (although the slip law
is less successful, compared to the aging law, in representing
restrengthening in nominally stationary contact [Beeler et al.,
1994; Marone, 1998]). Calculations similar to those of
Liu and Rice [2007] employing the slip law show that the
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maximum value of W/h* allowing stable slip is only 3 for
alb = 0.8 (Figure 1) and 5 for a/b = 0.9 [Rubin, 2008].
Because the two evolution laws are asymptotically identical
near steady state, the minimum values of W/h* allowing
oscillatory slip (~2 for the boundary conditions of Figure 1
and a/b = 0.8; ~2.5 for a/b = 0.9) are the same for both
laws. Thus, the range of W/h* allowing oscillatory slip is
only 1.5 and 2 for the slip law and the aforementioned values
of a/b. For this reason it is difficult for models employing
rate and state friction alone to explain the observations,
especially with the best laboratory-supported state evolution
law for describing response to abrupt increases in slip rate.
The dimensions of slow slip zones would have to be within
an extremely narrow range in order to generate a significant
transient without becoming dynamically unstable. It appears
that an additional strengthening mechanism is required to
explain the common occurrence of stable slow slip in nature.
Based on prior studies of dilatancy in slip stabilization [Segall
and Rice, 1995; Taylor, 1998, chapter 6; Taylor and Rice,
1998; Segall and Rubin, 2007], Liu and Rice [2007, 2009]
suggested that its consideration might expand the stable
range of W/h*, and hence the spatial extent W of their
predicted stable slip zone, in a manner as required to better
fit observations from Cascadia. However, they did not model
and quantify the dilatancy effect except for a preliminary
study [Liu and Rice, 2005b] showing that what we call the
“membrane diffusion model” here did reduce along-strike
propagation speeds of episodic slip events in 3-D subduction
simulations.

[22] An alternative model was offered by Perfettini and
Ampuero [2008], who explored the possibility that slow
slip events occur in regions of steady state velocity
strengthening friction (a > b), with transient slip induced by
external stress perturbations. They further suggest that pore
pressure transients due to so-called “fault valve” behavior
could provide the requisite external forcing. In this model the
periodicity of slow slip is controlled by the period of the fault
valve phenomenon.

[23] Here we explore the possibility that dilatancy pro-
vides the additional stabilization required to expand the
permissible range for slow slip events to occur in velocity
weakening regions. The hypothesis is that frictional weak-
ening allows slip to nucleate under drained conditions, but
that as the slip rate increases the fault becomes increasingly
undrained. Depending on constitutive parameters and the
ambient effective normal stress, dilatancy can quench the
instability resulting in a slow slip event. Dilatant stabiliza-
tion is not a new concept, having been extensively studied in
the context of slip-weakening friction by Rice [1975], Rice
and Simons [1976], and Rudnicki [1979], among others.
Dilatant stabilization has also been suggested as a mecha-
nism for stabilizing some landslides [Schulz et al., 2008].
Segall and Rice [1995] combined dilatancy and mechanical
compaction with rate-state friction in single-degree-of-
freedom spring slider systems. Taylor [1998, chapter 6]
extended this work to two-dimensional continuum models
of subduction zones with an approximate diffusion model.
He showed that dilatancy can limit the updip extent of
dynamic ruptures such that they do not reach the trench, as
predicted in the absence of dilatancy. Hillers and Miller
[2006] extend this work to two dimensional faults, retaining
the simplified diffusion model. They find instabilities for
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drained behavior, stable sliding for undrained behavior, and
transient aseismic slip for intermediate behavior. Segall and
Rubin [2007] showed that propagating slow slip events can
occur for appropriate parameter range with the approximate
diffusion model, while Segall et al. [2008] showed that such
behavior extends to the more accurate homogeneous diffu-
sion case, employing finite difference calculations. The latter
further suggest that whether slip is slow or fast depends on
whether or not dilatancy limits slip to speeds below those at
which thermal weakening effects dominate; Segall and Rice
[2006], Schmitt et al. [2007], and Schmitt and Segall [2008]
show that above a critical slip speed thermal pressurization
dominates rate-state friction during earthquake nucleation.
Suzuki and Yamashita [2009] consider the same hypothesis
in the context of slip-weakening friction and with a different
dilatancy formulation. They show slow ruptures occur when
the ambient effective normal stress is sufficiently low con-
sistent with results presented here; however, their computa-
tions are limited to integration times of order of seconds,
such that results are dependent on assumed initial conditions.

2. Governing Equations

[24] Laboratory experiments show that the frictional
resistance depends on the instantaneous slip speed v and the
past sliding history, which can be characterized by an internal
state variable 6,

0
T=(0c—p) fo—}—alni—i—blnﬂ (2)
Vo dc

[Ruina, 1983; Kilgore et al., 1993]. Here a and b are material
constants, v is a normalizing constant, and f; is the nominal
friction. The state is sometimes interpreted as the average
asperity contact lifetime, and evolves over a characteristic
displacement d.. The proper mathematical description of
state evolution has not been fully resolved (and may not be
fully described by any simple analytical representation),
although two forms in wide use are

@, v
dt—  d,
do Ov. (Ov

The first exhibits healing in stationary contact and is thus
referred to as the “aging” law. In the second form state
evolves only with slip (d6/dt vanishes when v = 0), and is
thus referred to as the “slip law.” In both cases the steady
state value of # is d./v. Laboratory studies inevitably indi-
cate strengthening with increased time of stationary contact
[Dieterich and Kilgore, 1994; Beeler et al., 1994], indi-
cating that the aging law is more consistent with data when 6
is far below steady state as it must be between SSE episodes.
However, velocity stepping tests exhibit a symmetric stress
versus slip response to step increases and decreases in loading
velocity. In addition, the distance scale over which stress
decays to steady state following a step velocity increase,
when 6 is far above steady state, is nearly independent of the
magnitude of the velocity step. Both features are consistent
with the slip law but not the aging law [Ruina, 1983; Bayart
et al., 2006]. Because nucleation is most sensitive to fault
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Figure 2. Change in porosity and friction upon step changes in slip rate. Data from Marone et al. [1990]
at 150 MPa confining stress. (a) Change in porosity after removing long-duration slip-dependent variations.
The slip speed first increases from 1 to 10 um/s and then drops back to 1 pm/s. Fit to the porosity evolution
using a constitutive law of the form of equation (4) (dashed line), with = 1.7 x 10™* and d,. = 20 microns. An
alternate formulation is shown as the solid line. (b) Change in friction fit with the same value of d, and
a = 0.01 and b = 0.006. From Segall and Rice [1995].

behavior near to and well above steady state [Ampuero and
Rubin, 2008], the slip law appears to be the more relevant
one for nucleation, although it may bias the state at which
nucleation begins after a prior event.

[25] Following Segall and Rice [1995] we assume a
constitutive equation for the inelastic change in porosity d¢,
including both dilatancy and compaction, motivated in part
by experiments of Marone et al. [1990]. In particular, we
associate dilatancy/compaction with changes in the average
lifetime of asperity contacts within the fault gouge, such that

o) e

dp  d v\ edd
E—*Ealn(df)— gar )

where ¢ is an empirically derived constant of order 107*,
based on Marone et al.’s [1990] experiments. Above steady
state, that is for 8 > d /v, 6 decreases (from (3)), and the
gouge dilates, while below steady state, 6 increases and the
gouge compacts (Figure 2). Sleep [1997] considered a mod-
ification of this constitutive law in which compaction satu-
rates when 6 is far below steady state.

[26] The fault is taken to lie in the plane y = 0. We employ
the radiation damping approximation of elastodynamics
[Rice, 1993] such that stress equilibrium on the fault becomes

1 06/ 0¢ o
(=) ) Ex eSO =) =y (6)

where the difference between the elastic stress and the fric-
tional resistance is balanced by the stress change associated
with plane shear waves (with velocity v;) radiating from the
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fault. The first term on left represents the elastic stress due to
gradients in slip §, while the second term is the frictional
resistance. Note that for antiplane geometry we simply
replace /(1 — v) with u. Lapusta et al [2000] show that this
“quasi-dynamic” formulation seems to lead to a reasonable
representation of dynamic slip, although maximum slip
speeds and propagation rates are underpredicted relative to
the full elastodynamic results.

[27] To investigate the role of dilatancy in slow slip events
we consider coupled friction, dilatancy and pore fluid flow.
Neglecting conduction parallel to the fault (the x direction)
and heat advection in the pore fluid phase [see Lachenbruch,
1980], and assuming spatially uniform thermal properties,
the temperature field follows

T 2T )
gyt ™
[e.g., Rice, 2006]. Here, - is the shear strain rate, ¢ is specific
heat capacity and c;, is thermal diffusivity. For a thermal
diffusivity of 10~® m?/s, a thermal anomaly penetrates on the
order of a few meters in the 1 year cycle time for typical slow
slip events. Compared to the tens of kilometers characteristic
dimensions of the slow slip events, this indicates that gra-
dients in the along-fault direction are likely to be extremely
small compared to the across-fault direction. The actively
shearing zone, for which + is nonzero, is assumed to have
uniform thickness 4. For times greater than the characteristic
diffusion time across the layer (at most a few seconds) the
limit 2 — 0 is sensible, in which case (7) reduces to [Rice,
2006],

oT o*T

o aT
e oy

7). N

TV

(®)

i 2cpeq '

[28] Neglecting pore fluid flow parallel to the fault, for the
same reason that heat flow in this direction is negligible,
changes in pore pressure in the rock surrounding the shear
zone is given by

dp 10 /[ Op oT

o0 5@( )*Aa
where 7 is pore fluid viscosity, 3 is compressibility of the
fluid and the pore space, and « is the permeability. A is
the thermal pressurization parameter, equal to the ratio of
thermal expansivity to compressibility [e.g., Segall and Rice,
2006, equation 19]. For spatially uniform permeability, the
transport term can be written in terms of the hydraulic dif-
fusivity ¢, = x/13. Within the shear zone, conservation of
fluid mass, Darcy’s law, and a constitutive equation for the

fault gouge [e.g., Segall and Rice, 2006, equation 21] (cor-
recting a sign error there) yield

y<_h7y>07 (9)

P, o_\IT

_ _ zchyd 6_]7
ot g ot

h Oy 0+

—h<y<0,  (10)

where ¢, is the hydraulic diffusivity of the rock adjacent to
the shearing zone, and p, 7 and ¢ on the left are averages
across that layer. (For times that are long compared to the
characteristic diffusion times across the layer, variations of
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p and 7 with y within it are negligible.) Equation (10)
shows that, as expected, dilatancy acts as a fluid pressure
sink, whereas an increase in 7 acts as a pressure source.
Assuming, due to the constraint of the bordering material, that
dilatancy (and compaction) act only normal to the plane of
the fault it can be shown that ¢ = (1 — ¢)h, where A is the
change in thickness of the shearing layer. Indeed in many
experimental studies of fault gouge dilation it is 4 that is
actually measured. Multiplying both sides of (10) by 4, the
left hand side becomes 4p + (1 — ¢)h/G — hAT. We assume
dilatancy greatly dominates effects of p and 7 variation on
porosity change within the thin shearing layer, so that the p
and A7 terms can be neglected compared to that with . It
is convenient to then formally take the limit # — 0, with
ho remaining finite, so that the left-hand side reduces to
(1 — ¢)h/B. Thus, in this limit, and assuming uniform
hydraulic properties in y > 0, equations (9) and (10) reduce to

__hd
2B¢nya”

dp &p

oT O
e

or  op|  _(1-¢)h
o’ Oy,

2[3¢hya (1)

2.1. Dimensional Analysis

[29] To clarify the role of thermal pressurization relative to
dilatant strengthening, we explore a nondimensionalization of
equations (8) and (11). Specifically, define nondimensional
variables, v =v/V", i = n"/d., 0 = */d.,p=p/(c — p*), T =
T/fo (0 — p *), and T AT /(o0 — p™). The fault perpendicular
distance is normalized by the characteristic fluid diffusion
distance such that, y = |/y*v>/ Chyad,.. This leads to a heat
equation in which the thermal diffusivity is scaled by ¢4,
with boundary condition

£ =—Er ™
oy
y=0

fOA Ch 'ddcvoQ

Cih

T =

The nondimensional pore pressure equation (11) now has
unit coefficients, with boundary condition

% __p ¢
|, "o
€ e
E, = . 13
v 2[3(0 _poo) Chyddc ( )

Dilatancy acts to decrease pore pressure thereby stabilizing
slip, while thermal pressurization increases pore pressure
and thus acts to destabilize slip. Of particular interest for
understanding the tendency for slow versus fast slip, is the
ratio of dilatancy to shear heating efficiency,

E, _ pc (eh) (c,h )
Er  foAB(o —p*) \d.) \cna

Equation (14) shows that slow slip is favored by strong
dilatancy (large eh/d.), low compressibility, and low effec-
tive stress. The latter result is easily understood; high

(14)
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effective normal stress leads to high rates of heat production.
In contrast, the rate of pore pressure change due to dilatancy
is independent of effective normal stress, but scales inversely
with the compressibility, equation (10).

2.2. Thermal Weakening During Slow Slip

[30] Segall and Rice [2006], Schmitt et al. [2007], and
Schmitt and Segall [2008] examined the relative importance
of thermal pressurization and rate-state friction during earth-
quake nucleation, ignoring dilatancy effects. These studies
demonstrate that for permeabilities associated with active
crustal faults thermal weakening dominates rate- and state-
dependent weakening at slip speeds in excess of roughly
10 m/s, to 102 m/s, depending on material parameters,
particularly hydraulic diffusivity. These results suggest that
thermal pressurization is unlikely to be dominant during slow
slip events with characteristic slip rates of 10”7 m/s or less.
Thus, for simplicity we assume in the remainder of the dis-
cussion that the fault remains isothermal, an approximation
that will be violated if slip rates become too high. Work in
progress combines both dilatancy and thermal pressurization
effects [Segall and Bradley, 2009].

3. Isothermal Membrane Diffusion

[31] A significant simplification occurs when, as observed
in some fault zones, the rock adjacent to the shearing zone has
an extremely low permeability, whereas rocks farther away
are highly fractured and orders of magnitude more permeable
(see Rice [2006] for summary of field observations). We may
approximate this setting with a low-permeability wall zone,
of thickness 4,,, bordering the fault surrounded by an external
reservoir that is sustained at constant pore pressure p™. For
times that are long compared to the characteristic time for
diffusion through the border zone, the solution of the iso-
thermal form of (9) subject to the stated boundary conditions
yields op/oyl,—o = —(p — p™)/h,,. Applying this to the iso-
thermal form of (10) yields,

1 0¢

B ot

_19 _pr-p
B ot t

ot hh,

O _Zomd (o0 _ ) (15)

[Segall and Rice, 1995], which we refer to as isothermal
membrane diffusion. Here t,is a characteristic diffusion time,
and p is the pore pressure within the shearing zone. While
(15) is only valid for times that are long compared to the
diffusion time across the bordering low-permeability zone, it
offers a significant simplification, over the isothermal forms
of (9) and (10), or (11).

3.1. Isothermal Membrane Diffusion:
Dimensional Analysis

[32] We write the equations for the membrane diffusion
approximation in nondimensional form as follows. Taking
the time derivative of (6) and making use of (2)

I * v/ v 6
27(1 —v) 7oofixd£—(a—p) a\_z+b§]
. 1s) 0
+ f(&v)éj:%vvg‘;. (16)
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The membrane diffusion approximation (15) is combined
with the dilatancy law (5), yielding

(o.¢)

€0
36

op _p*-p
ot t

(17)

Equations (16) and (17) combined with the state evolu-
tion law (3) define the system. We choose the same non-
dimensional time as in section 2.1, define v = v/v*° and f =

flfo, and normalize the along-fault distance scale by A%,

where A5, is the drained critical stiffness from equation (1)
with C = 1,

x  x(oc—p>)(b—a)

A () 18

X=

Assuming the slip law form of the state evolution equations,
this leads to the following system of equations

b—a\ 1 [0/ - (o—p) |av 0 fof(0.%) p
( b )E/,méfscdg‘w—poc) {557} bo —p~) 0
m v o

 2b(0—p®) v, OF "

fo 6_p:@(p°°—p)(dc) foe 0 (20)
blo—p>) 0t b(o—p>)\v<t)  Bblo—p>)g

06 .
5 = —0vin(6v). (1)

The appropriate scaling for both effective stress and pore
pressure is the nominal effective stress (o — p™). Equation (20)
reveals two dimensionless parameters that are important for
understanding the effects of dilatancy on friction. From
equation (19) note that the importance of pore pressure
induced changes in strength relative to rate-state friction
changes in strength is given by ( fo/b)dp/0t. The nondimen-
sional pore pressure change, (f,/b)op/ct, is given by (20),
which depends on two dimensionless parameters. The first,

Joe

£ = Bbto—p)

(22)

gives the importance of dilatancy relative to frictional
weakening. This scaling arises because dilatant strengthen-
ing scales with fye/3, whereas frictional weakening scales
with b(c — p). Note importantly that dilatancy is relatively
stronger when the effective stress is low. In general, we
expect dilatancy to be significant relative to rate and state
friction if £ 2 1, assuming that fluid drainage is not so
fast that the fault zone pore pressure remains unchanged
(drained conditions). Assuming that b ~ 10_2,f0 =0.6, 0 is
in the range 5 to 10 x 107 1/Pa [Segall and Rice, 2006; Rice,
2006], and € is in the range of 107° to 107, then £ = 1
occurs for effective normal stresses of from 4 to 100 MPa.
This suggests that, especially at low effective stresses, dilat-
ancy will be significant in controlling fault strength.
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Figure 3. W is the width of the zone over which rate and
state friction and dilatancy are computed. At the right
boundary the slip rate is set to v (“downdip”), whereas
the left boundary is set either to v* or for all results pre-
sented here to 10>v* (“updip”).

[33] The fluid transport term in (20) (first term on right)
scales with

Vvt

U=
d.

(23)

the ratio of the characteristic fluid diffusion time to the
characteristic time for state evolution. In response to changes
in state near a slip speed of v, the system is effectively
undrained when &/ > 1 and drained when I/ < 1. In the
limit of drained behavior the system behaves as in the
absence of dilatancy. For &/ < 1 we expect the system to
transition to undrained behavior for slip speeds v/v° = U "

[34] The system is completely described by the following
dimensionless parameters: £, U, a/b, Wih¥,., fo/b (which is
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of order 30 based on laboratory data), and pv*/2b(c — p™)v,.
The last quantity scales the radiation damping term; because
v¥/vy < 1 this term is insignificant until the nondimensional
accelerations become of order 10°.

[35] The system of equations (19), (20), and (21), are
solved assuming periodic boundary conditions in the along-
fault, x direction. This allows the convolution term in (16)
associated with elastic stress interactions to be computed
in the Fourier domain. The width of the fault for which
friction and dilatancy are computed is W (Figure 3). Outside
this region constant slip rate equal to the plate velocity v* is
imposed on both edges (symmetric loading), or on one side
with the other side set to 107v” (asymmetric loading), to
roughly approximate a frictionally locked interface. To
properly resolve the propagating front of the slow slip zone
we require the spatial grid in the along-fault direction to be
on the order of 1/20 of the length scale L, = (1 — a/b)h},.
Although in general this is too coarse for the slip law alone
[Ampuero and Rubin, 2008], dilatancy spreads out the front
to the extent that it is sufficient for our purposes. The gov-
erning equations (16), (17), and (21) are cast as a coupled
system of first-order ordinary differential equations in dv/dt,
do/dt, and dp/dt that are integrated using ODE solvers in
Matlab. Because state decreases with increasing slip speed,
we have found it to be useful to map the parameters v and 6
to the variables In(v/vy) and In(v8/d..).

E=1;ab=0.833; v°°tf/dC =1

-8

w
S~
£
©

(]

()]

o
(V]

2
n

1 0'1 2], 1 1 1 1 1 I o
-10 -8 -6 -4 -2 0 2 4

Figure 4. A representative calculation with asymmetric loading. Each curve represents a snapshot, not
evenly spaced, in time. Slip event propagates from right to left. (top) Slip speed. (bottom) Shear stress and
pore pressure change, both normalized by nominal effective stress. Pore pressure curves are offset verti-
cally by the nominal friction; far from the rupture front p — p™ = 0. Isothermal, membrane diffusion

approximation.
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(b) e=0.25:am=07;v “t/d = 0.1; W/h' =8
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Figure 5. Variation in behavior with changes in £: (a) £ =0.32 and (b) £ = 0.25. All other parameters are
the same in both calculations, U = 0.1, W/h%,= 8, and a/b = 0.7. Isothermal, membrane diffusion. Different
colors in Figure 5a indicate different (nonuniform) time intervals between snapshots. In Figure 5b the time
steps continue to decrease by factors of 10 (gaps in the snapshots) as the slip speed increases.

3.2. Membrane Diffusion Results

[36] Figure 4 shows a sample calculation with £ = 1,
U=1,alb=0.833, W/h¥, =8, and the slip law. Slip propa-
gates from the right to left driven by the increasing dis-
placement at the right boundary. The maximum slip rate
increases as the slip event expands, but remains less than an
order of magnitude above v*. In these calculations v* is taken
to be 0.04 m/yr ~ 1.3 x 10~° m/s. Figure 4 also shows a
significant stress concentration as well as pore pressure
reduction at the front of the propagating slip front. It is the
relative suction at the rupture front that stabilizes the slip
against dynamic instability. This can be seen by comparing
with Figure 1, which shows that with the slip law for a/b =
0.8 and no dilatancy, slip becomes dynamic for W/h%¥, ~ 3.
For a/b = 0.833 we expect that the transition to inertially
limited slip to occur at only a slightly larger value of W/h#%,. In
contrast, with membrane diffusion dilatancy and £ = 0.6,
U =1, Figure 1 shows that slip is stable to at least W/h¥, =48.
These results demonstrate that dilatancy is capable of stabi-
lizing slip over a broad range of fault lengths.

[37] Figure 5 compares two solutions with slightly differ-
ent values of £. In both cases U/ = 0.1, W/h#%,. =8, and a/b =
0.7. In one £ = 0.32, whereas in the other it is reduced
slightly to £ = 0.25. For £ = 0.32, a slip event propagates
from the right-hand (constant slip rate) boundary with max-
imum slip rates on the order of the plate velocity. At some
point, before the rupture front reaches the “locked” boundary,
slip accelerates to order of 10® m/s, and begins to propagate
bilaterally (Figure 5a). The slip rate, however, is always well
within the quasi-static regime. Reducing £ only slightly to 0.25,
changes the behavior dramatically. The left-propagating
front accelerates, spawning a fast rightward propagating
phase that dies out after encountering the fixed velocity
boundary (Figure 5b). The left-propagating front continues
to accelerate, eventually spawning a second rightward prop-
agating phase. Ultimately, slip reaches order 0.1 m/s at which
point radiation damping effects are significant, and the

rupture is considered dynamic. In section 3.3 we show
that a linearized stability analysis can provide guidance in
explaining the difference in behavior for relatively small
changes in €&.

3.3. Membrane Diffusion: Linearized Stability Analysis

[38] Segall and Rice [1995] conducted a linearized sta-
bility analysis for the membrane diffusion model with spring
slider elasticity. They find that, as in the drained case, a
critical spring stiffness k.., exists such that small perturba-
tions from steady state are damped for stiffness greater than
kerir, but grow without bound when the stiffness is less than
this critical value. The critical stiffness is given by

o x (b—a)ifos
kerie = (00— p™) a ﬂch(g,u, a/b) (24)
where the function F(E, U, a/b) is
2
F_[1+A+w_ (1+X+7) . (25)
2 4
r=¢"(5) L (26)
b U+U’
R b—a u
v=¢€ ( b ) U+ 1 27)

The limiting behavior for fast drainage is F({{ — 0) =0, so
that the drained stiffness is equivalent to that found by Ruina
[1983]. Normalizing the critical stiffness by the drained
critical stiffness, we have

f(cm _ kcritdc — a) —1_ 5( b

(U—p“)(b E)F(E,U,a/b). (28)
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Figure 6. Stability boundary for membrane diffusion model for a/b = 0.9. (top) Normalized critical
stiffness. System is linearly stable for stiffness less than the critical value (below the curve for given
value of &). (bottom) Normalized critical crack length 4*/h%,. System is stable for lengths less than the
critical length. Dotted line indicates asymptotic undrained limit given by equation (31). Dashed line

indicates hypothetical path.

In the undrained limit, { — oo, A — 0, and K _,;, exhibits two
limiting behaviors. For v > 1, lim,,_,.. F =1 and

~ b
U=c0 _ 1 _
Kl= = g(b - a).

If, on the other hand, v <1 then, limy_,,, £ = . This implies
that in the undrained limit, with v < 1, that K%;,* = 0. Since
the stiffness is nonnegative, the system is linearly stable in
the undrained limit for all stiffnesses if v < 1. For &/ > 1
the condition that v < 1 corresponds to

(29)

a

8crit Z 1 - Z (30)

This result was obtained earlier by Segall and Rice [1995,
equation (28)] in the context of a critical pore pressure above
which instabilities are suppressed. [Note that if we had
defined &€ by & = fye/B (b — a)(o — p™), then the condition
(30) would be &, > 1].

[39] Figure 6 illustrates the linearized stability boundary
for a/b = 0.9 as a function of U = v*t//d. and different
values of €. For a/b=10.9, £, = 0.1, from (30). For a fixed
value of £ the critical stiffness decreases with increasing U,
as pore fluid flow is less and less able to compensate for
dilatancy. For £ < &, the undrained critical stiffness is
positive and for sufficiently low stiffness the system is lin-

early unstable. On the other hand, for £ > £, the undrained

stiffness is zero and the system is stable for all stiffnesses.

[40] The predicted critical crack length is inversely pro-

portional to the critical stiffness. Thus, /#*/A%, is equal to the

inverse of the normalized critical stiffness, K. It can be

shown from (27) that for v <« 1, the limiting behavior as
K4 = 1/U, so that in this same limit

=00

U — o is K4,

l. h* Voctf
m - = .
U—o0 h;, d.

(1)

This behavior is shown in Figure 6 (bottom), where each
curve represents h*/hj, for a different value of £. For £ <
Eriry W*/h%,. asymptotes to a finite value in the undrained
limit. In this case a sufficiently long slipping zone will be
linearly unstable regardless of ¢/. On the other hand, if £ >
Eriry W*/R%, increases linearly with U, such that in the limit
U — o no slipping zone is long enough to be linearly
unstable. The limiting behavior given by equation (31),
shown as the dotted line in Figure 6, well approximates the
behavior for £ > &, and U > 1.

3.4. Application of Linear Stability Results

[41] The above result applies to small perturbations from
steady sliding at speed v*; however, it may provide insight
more generally into the tendency for slip to accelerate in the
following sense. Consider slip at rate v that is nearly uniform
spatially. Local acceleration from this quasi-uniform slip
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£=0.5; v°°tf/dC =1:ab=0.3
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Figure 7. Maximum slip rate for £ = 0.5, & = 1, and a/b = 0.3 for two different values of W/h¥,. For
Wih%, = 3 there are periodic slow slip events, while for W/h%, = 4 there are periodic dynamic slip

events.

could be considered as a perturbation from the locally steady
sliding, in which case the previous results hold with v
replacing v*. Dilatancy itself promotes more spatially uni-
form slip rate distributions than would be obtained under
drained conditions; any section of the fault that accelerates
above the background slip rate experiences less effective
drainage and therefore a greater strengthening effect. This is
illustrated in Figure 5, where the tendency for slip speed to
increase at the slip front is mitigated by dilatant strengthen-
ing, allowing the remainder of the slip zone to “catch up,”
leading to rather uniform slip rate profiles (at least on a log-
arithmic scale).

[42] As noted by Liu and Rubin [2010], further insight can
be gained by considering the slip to be fast enough that the
fault is completely undrained on the time scale of the slow
event. Assuming that the fault had previously been slipping
at steady state, and that well behind the propagating front of
the slow event the friction has reached its steady state value,
then the stress drop for a unit increase in In v is given by
—dTg/d In v at constant fluid mass. From Segall and Rice
[1995, equation (20)] in current notation, this is b(c — p™)
(1 —alb =€), so that the stress drop becomes negative in the
undrained limit when £ > 1 — a/b.

[43] These considerations suggest that the linearized sta-
bility analysis may provide useful insights even far from
steady state conditions. As discussed above, the linearized
analysis implies that for £ < £,;, a sufficiently long slipping

zone can become dynamically unstable, whereas for £ >
E.ir, any slipping zone, no matter how long, will eventually
slip fast enough to become effectively undrained at which
point further acceleration is inhibited. This is illustrated in
Figure 6 for a hypothetical slipping zone with W/h%, = 10,
shown by the dashed line. For £ = 0.08 for example, this
zone is sufficiently long that it is predicted to remain in the
unstable regime as v increases. On the other hand, if £ =1
an accelerating slip zone intersects the stability boundary
near v°t/d. ~ 10. The conclusion is that for nominally
unstable friction and £ > &, slip will ultimately be sta-
bilized by dilatancy regardless of the width of the slipping
zone, W/h%,. Of course, for sufficiently large W/h%, the slip
speed at which dilatancy is predicted to stabilize against
further acceleration may exceed inertial limits.

[44] Figure 7 illustrates simulations for a/b = 0.3, which
according to equation (30) is conditionally stable for £ <0.7.
For £ =0.5, and ¢/ = 1 the nondimensional critical length,
h*/h%, is predicted to be ~1.5, whereas in the undrained
limit A%,/h%, ~ 3.5. Indeed, for W/h%,. = 3 the system
responds with periodic noninertial slip events with maximum
slip speeds of order 1077 m/s, whereas for W/h*, = 4, maxi-
mum slip speeds reach the order of 1 m/s (Figure 7).
Increasing £ to be greater than or equal to &£..;, which for
this value of a/b is 0.7, however, leads to stable slip events
that do not reach inertial speeds. For example, Figure 8a
shows the case for £ = £,,;, = 0.7 for W/h%, = 12 and 15.
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Figure 8. Slip speed as a function of along fault distance, for symmetric loading conditions. Each curve
marks a snapshot, not equally spaced, in time. Blue curves denote inward propagating slow phase,
whereas red curves mark outward propagating faster slip followed by deceleration. Note different velocity
scale in Figure 8b. (a) £ = 0.7, U = 1, and a/b = 0.3 with (top) W/h#%, = 12 and (bottom) W/h¥, = 15.
(b) £ =0.675, U = 1, and a/b = 0.3 with (top) W/h¥%, = 12 and (bottom) W/h%, = 15.
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Figure 9. Stability boundary between fast and slow slip. Each symbol may represent multiple runs with
varying W/h%,. Red symbols indicate solutions that reach radiation damping velocities for a sufficiently
large W/h%,. Black symbols represent solutions that never reach inertially limited slip speeds regardless of
W/h%,. Square symbols are loaded from one side, and circles are loaded from both sides. Line £ =1 — a/b
is the linearized stability boundary between stable and unstable domains.

In both cases slip is stable, with repeated cycles of first a slow
inward propagating phase, shown in blue, followed by a
faster outward propagating phase, shown in red. Decreasing
& from 0.7 to 0.675, however, leads to the potential for
unstable slip, as shown in Figure 8b, for the two same values
of Wih%,. For Wih¥, = 12 slip is stable and the behavior is
similar to that observed for £ = 0.7 (Figure 8). However, for
Wih%,. = 15 the outward propagating phase accelerates to
radiation damping limits. This is consistent with the predic-
tion that £ = &.,,;; marks a qualitative boundary in behavior.
Note that for £ = 0.675, the stability analysis predicts that
in the undrained limit A%,/h%, ~ 28, roughly a factor of 2
greater than the length at the observed transition to unstable
slip. When the two inward propagating phases meet in the
center a localized region of fast slip initiates. This pre-
sumably allows the transition to dynamic slip to occur at
smaller W/h%, than predicted by the linearized analysis.
[45] The above analysis was repeated for different values
of a/b and &, recording the maximum slip rates achieved in
each simulation. Maximum slip speeds were recorded many
cycles after the onset of the calculation to ensure that the
values are not strongly dependent on the initial conditions.
Results are shown in Figure 9. If the maximum slip speed
reaches dynamic values (taken to be 0.1 m/s) for a sufficiently
large steady state weakening zone W/h%, (a wide range
around the predicted critical value is tested) the result is

indicated in red. If, however, the behavior is quasi-static
regardless of W/h#%, the result is indicated in black. Values of
W/h%, up to twice the critical value for the largest unstable
value of £ were examined; I/ is generally within an order
of magnitude of 1.0. The line £ = 1 — a/b does a remarkably
good job of dividing the space into fast and slow slip
behavior. The numerically inferred boundary lies slightly
below the line £ = 1 — a/b, at least for large a/b where the
friction alone is nearly velocity neutral. Note that the simu-
lations shown in Figure 5 are indicated by the two points
at a/b = 0.7; for £ = 0.32 the maximum slip speed was
well below inertial limits, regardless of the length tested,
whereas the solution for £ = 0.25 exhibited fast slip at
Wik, = 8.

[46] Another example is shown for asymmetric loading
and a/b=0.7 in Figure 10. The conditions are similar to those
in Figure 5, except that ¢/ = 1, rather than 0.1. Figures 10a
and 10b are for £ = 0.25, which is predicted to be condi-
tionally unstable. Indeed, for W/h%, = 6 and W/h%, = 8 the
maximum slip speed is well below radiation damping limits.
For W/h%,. = 6, the slow phase propagates across the
velocity weakening region before the faster phase begins.
For W/h%, = 8 the fast phase begins before the slow phase
has propagated fully across the velocity weakening region.
For a slightly longer velocity weakening region, W/h%, = 10,
the rupture reaches radiation damping limits (not shown).

13 of 37



B12305

ab =0.7 £=025 v “if/dc =10 Wh*=6

10

2xh*,
b. ]
ab =0.7 £=0.25vT/d =1.0 Wh*=8
6 c
10 ‘
-7
10
-8
10
-9
10
-10
o []]]])) |
-11
10 ]
-12
0 g % 4 =2 0 2 4 6 s
2x/h*,,
c. 3
. alb =0.7 £=0.32 Vi/d_=1.0 Wh* =10
10 ‘

SEGALL ET AL.: DILATANT SLOW SLIP

B12305

For U = 0.1, and all other parameters equal, the transition
to unstable behavior occurs at W/h%, = 8; see Figure 5.
(The linear stability analysis predicts that the undrained
critical width A*/h%, ~ 6; apparently the fixed boundary
condition on the updip end allows the fault width to slightly
exceed this critical dimension.) In contrast, if £ = 0.32,
slightly in excess of the critical value of 0.3, the maximum
slip speed for W/h%, = 10 is less than 10"’ m/s, as shown in
Figure 10c.

[47] Indeed, if the length of the slipping zone is extended
by a factor of roughly 2, to W/h¥, = 18, with £ maintained at
0.32, the slip remains quasi-static. The behavior does, how-
ever, become significantly more complex. It does remain
quasiperiodic, with a period of roughly 0.4 years. Slip speeds
averaged over the full velocity weakening region only
slightly exceed 10~ m/s (Figure 11a). In detail, however, as
shown in Figures 11b and 12, there are multiple pulses of
slip, all originating at the right-hand (“downdip”’) boundary.
The first phase propagates slowly updip initiating a fast
bilaterally propagating phase at about 1.7 years, that ulti-
mately stalls near x/A* = —10 (Figures 11b and 12 (top
left)). Meanwhile, a second pulse starts at the right-hand
boundary and propagates updip (Figures 11b and 12 (top
right)). When this phase reaches roughly x/A* = -5, a third
phase initiates and propagates rapidly updip (Figure 12,
bottom left), eventually overtaking the previous slip rate
maxima (Figure 12, bottom right). When the slip rate maxima
collide, a much faster phase initiates, propagating bilaterally
but most rapidly in the downdip direction (Figures 12 (bottom
right) and 11). Ultimately, a similar, but not identical cycle
repeats in these simulations. These results emphasize that
while stable for £ > 1 — a/b, large values of W/h¥, results
in complex behavior with multiple slip events propagating
away from the fixed velocity boundary in between periods
of high moment release.

[48] There may be cases where the system is nominally
unstable in the undrained limit; however, the requisite W/h%,
is extremely large. Reference to Figure 6, however, suggests
that this set of conditions may be very small. For £ = 0.08,
which is only 20% less than &, the undrained critical
nucleation dimension is only ~5 times the drained value.
Thus, for A, to significantly exceed 4%,, £ would need to
be very nearly &, such that £ = 1 — a/b remains the
effective stability boundary.

[49] With reference to Figure 6 one might speculate that
for £ > £,., the fault accelerates until it reaches the stability
boundary. In other words we might associate vy,,, with v in
equation (31), such that

Vmax w

=Y 32
VAX\' h;lkr ’ ( )

where v is the steady state velocity. This predicts that the
maximum velocity increases linearly in W/h¥,, is independent

Figure 10. Slip rate as a function of along-fault distance for
asymmetric loading, a/b = 0.7, and U = 1. with (a) £ = 0.25
and Wih¥, =6, (b) £ =0.25 and W/h%, =8, and (c) £ =0.32
and W/h%, = 10. Each curve marks a snapshot in time, not
equally spaced in time. Blue curves denote the slower phase
that propagates away from the boundary fixed at v, whereas
red curves mark the bilaterally propagating faster phase.
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Figure 11. (a) Average slip speed when a/b =0.7, £ =0.32, U4 = 1, and W/h¥, = 18. (b) Space-time plot
showing the evolution of log;o(v), for the last cycle shown in Figure 11a. Colors indicate log;, of the slip
speed.

of &, and a/b, as long as £ > 1 — a/b. Note that this would increases linearly with W/h%,, at least for some range of
be expected to hold only if the velocity distribution is parameters. Liu and Rubin [2010] estimate the maximum slip
relatively uniform and the friction is near steady state. A  speed by approximating the rupture front as a step change in
limited number of computations does suggest that v, slip rate. Assuming that the interior of the slip zone is
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Figure 12. Snapshots of slip speed as a function of along strike distance, x/A%, at different times, not
equally spaced, through a slow slip cycle. In each plot the snapshots grade in color from blue toward red
with increasing time. Time goes in the order of top left, top right, bottom left, and bottom right. a/b =

0.7, £=0.32,U =1, and W/h%, = 18.

essentially drained and that the effective fracture energy is
dominated by dilatancy (implying £ Z 1), an energy balance
argument leads to

-1
Vimax Vmax Wgcrit —1
max 1 oty
Vs {n(vsg)} A

which is not dissimilar to (32), in that v,,x grows only
slightly faster than linearly with W/h%{'. Whereas (32) is
independent of &, v.x in equation (33) scales with &,./E.
On dimensional grounds we anticipate that for U/ < 1
dilatancy effects will no longer be significant, and that the
behavior will revert to drained rate and state friction. From
equation (32) we expect that for W/h%¥, of order 10, that in
order for maximum slip speeds not to exceed 100 x v* that
U should not be less than 107", Similarly, for maximum
slip speeds not to exceed radiation dam_})ing limits we
expect that ¢/ should not be less than 10 .

[s50] Many numerical solutions exhibit periodic, or quasi-
periodic, behavior; for example, Figure 11 exhibits periods
near 0.3 years. The linearized stability analysis predicts the
period of oscillations at neutral stability as a function of the

(33)

nondimensional parameters £, U, and a/b. For £ > 1 — a/b
the nondimensional period Tv*/d. in the undrained limit is

Tv ey E—(1-a/b)

1 and 1—a/b.
a (= a/b) U>1and € > al

(34)

Results for £ < 1 — a/b are given in Appendix A. For ref-

erence, the drained result is T;v°/d. = 2my\/a/(b — a)
[Ruina, 1983]. For U > 1 the period can be considerably

longer than the drained period.

[51] Rubin [2008] found, excluding dilatancy, that for a
variety of loading conditions the period normalized by the
drained value at neutral stability 7, increased systematically
with W/h*. Figure 13 shows that the membrane diffusion
results, when normalized by 4* and T rather than by A%,
and T, follow the same trend. Figures 13a and 13b show
(as dots) the sampled values of £ and U with a/b = 0.8 and
Wih%,. = 3, 6, 12, and (in one case) 24. Superimposed on
these are contours showing the values of T and /#* accounting
for dilatancy (to estimate 7 for a continuum fault, rather
than a spring slider, we must modify equation (A2) in
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Figure 13. (a and b) Contours of In(7/T,; — 1) (from equation (A2)) and In(A*/h%, — 1) (from the
reciprocal of equation (28)) as functions of £ and U, for membrane diffusion simulations with a/b = 0.8,
where 7 is the period at neutral stability and the subscript “dr” refers to the drained value. Horizontal
dashed line indicates the value of £ =1 — a/b = £_,;, separating potentially unstable behavior below from
stable behavior above. Dots indicate the values of £ and U/ used in numerical simulations with a/b = 0.8.
Numbers (3, 6, 12, or 24) indicate values of W/h%, for which the simulations resulted in periodic or nearly
periodic slow slip; results of these are shown in Figures 13c¢ and 13d. Letters in those same locations
signify the following: S, stable sliding; C, chaotic velocity excursions; U, unstable slip (speeds limited by
radiation damping). Letters in parentheses are inferred from the expectation that more stable sliding is
promoted by increasing &, increasing U, and decreasing W. (c) Normalized period from periodic or
quasiperiodic numerical simulations, as a function of W/h%¥,. Values of three points that plot off the top of
Figure 13c are indicated in parentheses. Solid symbols are for a/b = 0.8, open symbols are for a/b =9, and
different colors and symbols (stars or circles) are for different values of £. Red crosses are for models
where a/b increases linearly from 0.8 at the nearly locked end to 1.2 at the forced (downdip) end. Open
triangles are for half-space diffusion with £, = 1073 (blue) and 3 x 107> (red). (d) The same data as in
Figure 13c but with W now normalized by 4#* and the period by 7.
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Appendix A by substituting for v the average slip speed at
a representative point within the velocity-weakening region;
we take this to be its center, where this slip speed is simply
v*/2). Figure 13c shows the normalized period for all of
these simulations that were either strictly periodic or quasi-
periodic. Also included are results from a smaller number of
simulations with: a/b = 0.9 (open circles and stars); (2) a
linear gradient in a/b from 0.8 to 1.2, so that only half the
frictional domain was velocity-weakening (red crosses); and
(3) homogeneous half-space diffusion (see section 4) with a
uniform a/b = 0.9 (open triangles). For the linear gradient in
al/b, W is defined as the length of the velocity-weakening
region, #* and T are defined using the average value of a/b
within that region (0.9), and the average slip speed at its
midpoint is v**/3 (from equation (35) below).

[52] The range of normalized periods in Figure 13c exceeds
a factor of 10 at W/h#¥, = 6 and a factor of 40 at W/h#%, = 12.
However, after normalizing W by A* and the period by 7,
this range is reduced to a factor of 2 or less (Figure 13d),
and furthermore coincides with (but extends to much larger
W/h*) the no-dilatancy trend of Rubin [2008]. While the
increase in normalized period with W/h* in Figure 13d is not
fully understood, it appears to be related to the time it takes
the slow event to traverse the (velocity weakening) fault.

[53] Tosummarize the membrane diffusion results, we note
that in numerical simulations the simple result given by
equation (30) does a remarkably good job of predicting the
conditions of slow versus fast slip. Slow slip is favored by
nearly velocity neutral friction parameters (a/b close to 1), by
strong dilatancy (large €), and by low effective normal stress.
While these qualitative results are expected to apply more
generally, the stability boundary £, = 1 — § holds only for
the model membrane diffusion system. We thus turn attention
next to the presumably more representative system with full
diffusion of pore fluid from the surroundings into the fault
zone.

4. Homogeneous Diffusion Calculations

[54] In this section we extend the isothermal membrane
diffusion results to consider homogeneous pore pressure
diffusion into the rock adjacent to the shear zone. For the
same reasons discussed in section 2.2 we neglect thermal
pressurization, which is unlikely to be significant at the
average slip speeds active in slow slip events. Furthermore,
for simplicity we consider the limit of a vanishingly thin
shear layer, # — 0. The governing equations are thus: the
stress equilibrium equations on the fault (16), constitutive
equations for dilatancy (5), the slip law form of the state
evolution (3), and the isothermal form of the diffusion
equations for the infinitesimal fault zone; that is equation (11)
with A = 0. The fluid flux (Neumann) boundary condition is
driven by dilatancy on the fault, as in equation (11). The pore
pressure on the fault p(y = 0, ) drives changes in effective
normal stress and hence shear strength, and thus couples to
the friction and elasticity equations (16). Ignoring radiation
damping effects, the solutions with spatially uniform prop-
erties are dependent on the nondimensional parameters: a/b,
Wih%,, fo/b, and E,, (given by equation (13)). In all calcula-
tions here we take f, = 0.6, and b = 0.0167, such that fo/b =
36, and focus on how the predicted behavior varies with a/b,
Wih%,, and E,,.
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[5s] A plausible range for £, is obtained by considering,
from lab measurements € in the range of 10> to 10, d, in the
range 107> to 10™* m, 3 in the range 5 to 10 x 107'" 1/Pa,
and v* ~ 10~° m/s. The thickness of the actively shearing
layer at depth in subduction zones is, of course, unknown.
Based on mature crustal faults we take % to be in the range
of 10* to 10 m, such that the ratio A/d. is of order 10.
This gives ek in the range of 107° to 107’ m. Hydraulic
diffusivities adjacent to the plate interface are similarly
poorly constrained. Measurements from strike-slip fault zones
at effective stresses appropriate for the depth of shallow
crustal earthquakes are within an order of magnitude of
107% m?/s [Lockner et al., 2000; Wibberly and Shimamoto,
2003]. Inferences of high fluid pressure in regions where
slow slip occurs similarly imply low pore fluid transmi-
sivities [e.g., Audet et al., 2009]. For the sake of discussion
we take a range of 1077 to 10> m%/s. This yields a range
of E,, from 10 %/ (MPa) to 10 %/a (MPa), where 7 is the
effective normal stress. For effective normal stresses of order
500 MPa, corresponding to depths near 30 km and hydro-
static pore pressure, L), is in the range 10% to 107°. How-
ever, for low effective stresses, as inferred for some slow
slip areas, E, could be considerably larger; 10° to 107°
for & of 10 MPa, and as much as 1072 for & of 1 MPa.

[s6] The pore pressure diffusion equation is computed with
a finite difference scheme, which is coupled to the friction
elasticity equations through the pore pressure (and its time
derivative) on the fault. There are a number of challenges in
the finite difference computation of the pore pressure. First,
we require a sufficiently fine grid near the fault to resolve
steep gradients in p induced by dilatancy as the rupture tip
passes. At the same time, we require the pore pressure to
remain unchanged at p® some significant distance from the
fault. This problem is rectified by choosing a logarithmic
finite difference grid, such that the grid spacing is small near
the fault, where gradients may be steep, but becomes more
widely spaced far from the fault. Details are given in
Appendix B.

[57] Figure 14 shows the normalized pore pressure as a
function of fault perpendicular distance at different snap-
shots in time for a representative calculation. The plot is
zoomed in near the fault to show the changes in this region.
The pore pressure decreases as the slip front passes, and
then slowly recovers as fluid flows in from the surrounding
rock. Note that the logarithmic spacing in the finite differ-
ence mesh points guarantees that the steep gradients near the
fault are accurately represented while at the same time the
mesh extends sufficiently far from the fault (not shown) to
properly represent the remote boundary condition.

[58] In order for the results to be insensitive to arbitrary
initial conditions it is necessary to run simulations over many
slow slip cycles. This requires the numerical procedure to be
quite efficient. To accurately resolve the slip front requires
the along-fault grid spacing of the order of L/20; for large
values of W/h%, this can require thousands of points in the
along-fault dimension. With the logarithmic finite differ-
ence grid we have found acceptable results with of the order
of 40 points in the fault-normal dimension. Systems of this
size require efficient time stepping algorithms. In an explicit
finite difference scheme the time steps must be less than the
Courant-Friedrichs-Lewy (CFL) condition (for the diffusion
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Figure 14. Numerical results illustrating pore pressure as a function of distance perpendicular to the fault
at different snapshots in time. Pore pressure is normalized by the remote pore pressure, p(y = 0)/p”. Circles
denote the finite difference grid points, more closely spaced near the fault. The finite difference grid extends
to a distance of 15.8 m from the fault; only the first 0.3 m are shown here. The particular simulation is shown

for E,= 1.0 x 107, a/b = 0.9, and W/h%, = 16.

equation At < (Ay)z/Zchyd, where Ay is the finite difference
spacing). With a very fine grid near the fault the time steps
in an explicit scheme become unacceptably small. A fully
implicit scheme can take far bigger time steps, but requires
the solution of a very large system of equations at every
time step. Consequently, we developed a semi-implicit
scheme that employs an explicit scheme for the friction-
elasticity equations (which are not subject to the stringent
stability constraints), but implicit time stepping for each
one-dimensional diffusion profile normal to the fault. This
involves the solution of (many) small linear systems of
equations, and is consequently very efficient. This scheme
permits integration of the equations over numerous slow slip
cycles. Details are given in Appendix B.

[59] A sample simulation is shown for E, = 1.0 x 1073,
a/b=10.9, and W/h%, =16 in Figure 15. Loading is constant
slip rate at v on the right-hand boundary (“downdip”) and
1073y on the left-hand (“updip”) boundary. For these para-
meters, slip occurs in two phases; the slow phase involves
propagation away from the downdip boundary with maxi-
mum slip rates less than an order of magnitude above the
plate velocity (Figure 15, blue curves). Following the end of
the slow phase, a faster slip phase initiates near the middle
of the velocity-weakening region, propagating first updip
and subsequently bilaterally (Figure 15, red curves). Maxi-
mum slip rates during the rapid phase are less than 10™° m/s,
and are thus well within the quasi-static regime. A sharp

decrease in fault zone pore pressure propagates with the
rupture tip, and is more pronounced during the fast phase. In
many respects the behavior is similar to membrane diffusion
(compare to Figure 4); the main difference being that the
pore pressure recovers more slowly, such that p(y = 0) is
significantly less than the ambient pore pressure over a much
longer portion of the fault than with membrane diffusion.

[60] Slip speed as a function of space and time is shown in
Figure 16. Figure 16 (left) shows the slow phase propagating
updip over ~0.75 years, followed by the onset of the faster
transient. Figure 16 (right) zooms in on the faster phase,
where slip speeds locally exceed 10™® m/s. The upward phase
propagates at something close to 2 km/d for several days,
while the downward phase initially lacks a clear front, but
ultimately propagates at close to 9 km/d.

[61] Figure 17 illustrates slip during a single slow slip
cycle. The slow phase occurs with slip migrating updip for
roughly 1 year. During this time more than 3 cm of slip
accumulates at the downdip end of the velocity weakening
region, suggesting that the propagation is driven by the plate
motion rather than by relaxing stored strain energy. This is
confirmed by examination of the stress acting on the fault,
as discussed below. The faster phase is seen to nucleate near
the center of the velocity-weakening region (x ~ 0) and
propagate bilaterally, as seen in Figure 16.

[62] Stress accumulates during the slow phase; that is, it
occurs with negative stress drop. Slip is driven by steadily
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Figure 15. (a) Slip rate and (b) normalized pore pressure, p(y = 0, #)/p™, as a function of along-strike
distance for £, = 1.0 x 1073, a/b = 0.9, and W/h%, = 16. Each curve represents a different snapshot in
time, not regularly spaced. Blue curves represent slower phase, while red curves represent faster phase.

accumulating displacement at the fixed velocity boundary,
rather than by relaxation of stored elastic strain. This can be
seen in Figure 18. The dashed curve labeled 1 shows the
stress prior to the onset of the slower phase, while curves 2
and 3 are during this phase. Notice that the stress well
behind the propagating tip (the strong stress concentration)
is higher at the end of the slow phase than it was prior to its
onset. At the end of the slow phase the stress is uniformly
high (curve 4 in Figure 18). The slow phase does, however,
set the stage for the fast (but quasi-static) phase which drops
the accumulated stress. At the start of the slow phase most
of the fault is well below steady state (v8/d. < 1); however,
by the end of the slow phase much of the fault is at or near
steady state (Figure 18b, curve 4). Following the cessation
of fast slip (curve 5), the stress has dropped over the entire
fault and the friction is well below steady state.

[63] One of the striking results of these simulations, which
seems to apply for at least a modestly broad range of
parameter space, is that the fault is never “locked,” or
slipping at many orders of magnitude below the plate
velocity. Rather, there is generally some form of propagating
slip, although often at rates much lower than geodetically
observable slow slip events. If we associate the fast quasi-
static phase with a geodetically observable transient, it is
tempting to speculate that the slower phases are associated
with the occurrence of nonvolcanic tremor which has been
observed between major ETS events [e.g., Wech et al., 2009].
This assumes that tremor is associated with locally acceler-

ated slip, which may or may not be detected geodetically. At
present there is no accepted physical model for tremor itself.

[64] It is also worth noting for this particular simulation
that at the midpoint of the velocity weakening region
(x/h* = 0), roughly half of the slip (~1 cm) accumulates
during the fast phase, whereas the other half accumulates in
between fast events, during the slow phase (Figure 17). All
together the accumulated slip (during both phases of this
slow slip cycle) amount to only 2/3 of the relative plate
motion (v*) during this time interval. That is, only roughly
1/3 of the plate motion is accommodated by the fast slip
phase (at the midpoint of the slipping region). Any model in
which slow slip cycles beneath a locked zone are driven by
stress accumulating due to deeper plate motion must accu-
mulate a slip deficit relative to the plate velocity, as illus-
trated for example in Figure 17.

[65] Slip as a function of time is illustrated in Figure 19,
averaged over either the full velocity weakening region, or
only the updip half of the velocity weakening region.
Figure 19 emphasizes that only a fraction of the total moment
that accumulates during a model slow slip cycle occurs during
the rapid phase that is most clearly associated with a slow
slip event. For this simulation there are four events in 4 years,
for a recurrence interval of roughly 1 year. The average slip
accumulated during the 4 year interval (~8 cm) is roughly
half of the net plate motion during this period (4 cm/yr x
4 years = 16 cm). If one considers only the updip half of
the velocity weakening region, where the slip events appear
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Figure 17. Slip as a function of along-strike distance for £, = 1.0 x 107, a/b = 0.9, and W/h%,

= 16.

Curves are not at regularly spaced time intervals; however, the black curves are separated by roughly
0.1 years. The red dashed curves correspond to times when the average slip speed exceeds 107 m/s,
roughly the plate velocity, and are mostly at intervals of roughly 2 days, although in some cases they

are as short as 2 h apart.

more impulsive, then the accumulated slip is only roughly
one third of the net relative plate motion.

[66] In order to determine how observable quantities vary
as a function of the governing nondimensional parameters,
we examined how the normalized moment rate and the period
of the moment oscillations vary as a function of W/h%, for
fixed a/b = 0.9 and E, = 1 X 1073, We define a normalized
moment rate as the moment rate over the full velocity
weakening region, divided by the moment rate corre-
sponding to slip at constant shear stress over that region.
For constant shear stress acting on a two-dimensional fault
of width W in a full space, subject to boundary conditions
v(x = W/2) = v* and v(x = —W/2) = 0, the slip rate distri-
bution, is

v(x) = (v /m)[sin” ! (2x/ W) + 7/2] (35)

[e.g., Segall, 2010, equation 12.3]. The steady state moment
rate is thus M, = v°W/2. The normalized moment rate for
a/b=10.9 and E, = 1 x 107 is shown in Figure 20a. For W/
h¥%, = 6 the behavior is purely periodic with a period of
~0.25 years. For W/h%, = 4 the period is the same; however,
the oscillations slowly decay For larger W/h¥, the 20%
to 80% range of M max/M s is shown with vertical bars There

is considerable subjectivity in plotting these data. We first
eliminate early cycles to reduce dependence on initial con-

ditions. In some cases it is clear when a stable limit cycle is
reached, in others it is not at all clear. Secondly, we eliminate
subsidiary moment rate peaks that are very close in time to
neighboring larger peaks. Finally, we threshold such that
normalized moment rate excursions below some cutoff are
not recorded, as these are unlikely to be observed geodeti-
cally. The effect of thresholding can be to introduce a period
doubling with increasing W/h%,. This is well illustrated, for
example, at W/h¥%, = 10 in Figure 20b. With a threshold of
2M g, the smaller excursions are excluded, and the cycles are
extremely periodic with 7= 0.72 years. The moment rate
shows little variability with M naxd M s = 4.3. However, with
a threshold of M the smaller moment rate excursions are
included and the period drops to 7= 0.32 to 0.4 years, and
the moment rate spans the indicated range. With increasing
Wih#%,. % 15 the longer-period oscillations dominate the moment
rate function.

[67] For comparison Rubin [2008, Figure 9] finds that
without dilatancy, and a/b = 0.9, M ,.,/M , is roughly 6 for
Wih%, = 4, but that the simulations become inertially limited
at W/h%, of slightly less than 5. (These calculations include a
transitional region of velocity strengthening friction between
the velocity-weakening region and the imposed constant
velocity boundary condition. However, Rubin [2008] shows
that the presence of the velocity strengthening region does
not qualitatively alter the behavior.) In contrast, with dilat-
ancy, and £, = 1 x 1073, the behavior remains stable at least
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Figure 18. (a) Stress as a function of along fault position for the simulation illustrated in Figure 15.
Curve 1 (dashed red) is before the start of the “slow phase.” Curves 2 and 3 (solid blue) are during the
slow phase; the strong stress concentration marks the tip of the slipping zone. Curves 4 (cyan) and 5 (solid
red) are at the ends of the slow and fast phases, respectively. (b) Plot of In(vf/d,) as a function of along
fault position. Colors correspond to Figure 18a.
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Figure 19. Average slip as a function of time for slow slip simulation with £, = 1.0 x 1073, a/b = 0.9,
and W/h%, = 16. Blue curve illustrates the slip averaged over the full velocity weakening region. Red

curve illustrates the slip averaged over the “updip” half of the velocity weakening region.
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Figure 20. Normalized (a) moment rate M /M, and (b) period as a function of normalized fault width
Wik, for fixed values of a/b=0.9 and £, = 1 x 107>, For periodic solutions the data are shown with circles.
For quasiperiodic behavior the 20% to 80% range is shown. The solution at W/h%, = 4 exhibits decaying
oscillations. Two solutions are shown for W/h#, = 10, to illustrate period doubling; the very periodic result

corresponds to a higher moment rate threshold.

for W/h%, less than 20 (Figure 20a). Indeed, a simulation
with a/b=0.9, E, = 3.16 x 103, and W/h%, = 50 exhibited
stable slip, with maximum slip speed on the order of 2.3 x
10”7 m/s, thus demonstrating that very long slip zones can
be stabilized by dilatancy. For a/b = 0.9, and E, = 3 x 107,
M nax/M s falls within the geodetically observed range of
10 to 100 for W/h%¥, in the range of 10 to at least 20. We
expect that for fixed E,, and W/h%,, the normalized moment
rate will increase (decrease) for lower (higher) ratios of
a/b, as shown in Rubin [2008] neglecting dilatancy.

[68] The dependence of the normalized moment rate and
the period between slow slip events is shown as a function
of £, in Figure 21 for fixed a/b = 0.9 and W/h%, = 12. Note
that without dilatancy this is roughly twice the maximum
stable fault width according to Rubin [2008, Figure 9].
Relative to the result for £, = 1073, decreasing E, increases
the normalized moment rate and the period. The latter arises
due to the larger stress drops that occur during the “fast”
phase when E), is small. For £, = 1074, M pa/M s ~ 0.3 to
1.0 x 104; that is, average slip rates are a factor of 10* above
the plate velocity, and the period increases to roughly
1.4 years. Increasing E, decreases the normalized moment
rate, such that for £, = 6 x 1074, the moment rate is a factor
of 100 over the steady state rate, and the period is slightly
less than 1 year. Increasing E, to 107* drops the normalized
moment rate close to unity and decreases the period by
roughly a factor of 2, reflecting the period doubling phe-

nomenon discussed above. Note that decreasing E, could
result from either decreasing eh, increasing the effective
normal stress, compressibility, hydraulic diffusivity, or d..

[69] These results demonstrate that, as expected, inclusion
of a more accurate diffusion model does not fundamentally
change our conclusion that modest dilatancy can stabilize
slip against inertial instability.

5. Relationship Between Membrane
and Homogeneous Diffusion

[70] We have analyzed two models for the effects of
dilatancy on fault stability that differ solely in the manner in
which pore fluid transport is approximated. The behavior is
qualitatively similar, but different in detail as membrane
diffusion depends on the two dimensionless parameters £
and U, while homogeneous diffusion depends on E,. It is
desirable to understand more quantitatively how these models
relate to one another. We first explore this issue by consid-
ering behavior in both models near neutral stability. Next we
contrast the pore pressure response to abrupt changes in slip
speed in these two models.

[71] From the definitions of E, and &

b v
V2fo

E, = (36)

Chyddc
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Figure 21. Normalized moment rate M 0/ M, and period between slow events, as a function of £, for

fixed W/h#%,.= 12, and a/b = 0.9.
Noting that ¢, = hh,/2cpq, from (15) we write

b a A\ /2
E,=——EU — . 37

In the membrane diffusion model the diffusion distance is
always the wall thickness #,,. In the homogeneous diffusion
model at neutral stability, it is the characteristic diffusion
distance during a half-period of oscillation. Comparing the
two models at neutral stability suggests equating these two
distances, that is

hw =w ChydThd (Ep) (38)

where the period at neutral stability 7, is a function of £,
and w is a constant of order unity that accounts for the
scaling in the characteristic diffusion length and the fact that
fluid flow is unidirectional during a half, rather than full,
cycle. Rearranging (36) for / in terms of E, and &, and
substituting this result, along with (38), into (37) yields

b ~ _
E, Z‘%gu[Thd(Ep)] 12

(39)
where T is the nondimensional period 7v*/d,. Equation (39)
provides the first relationship between E, and the membrane
diffusion parameters £ and U.

5.1. Large E, Limit

[72] In the limit £ > &£, and U >> 1 equation (31) gives
¥ b, =~ U, where h¥,, is the critical nucleation dimension
for membrane diffusion. Comparing to the large £, limit
for homogeneous diffusion, equation (C25) in Appendix C,

leads to
(1-9) 7 (Bke F_Tu
b N

where the latter relation makes use of equation (C21). This
shows that in dimensional terms #; ~ T},,/27; the charac-
teristic diffusion time in the membrane diffusion model
should be chosen equal to the (circular) period at neutral
stability in the homogeneous diffusion model.

[73] The nondimensional period at neutral stability for
homogeneous diffusion is given by equation (C21) and for
membrane diffusion by (34). Equating these and making use
of (40) leads to

U=~ (40)

5:2(1 7%) =26 (41)
Thus, in order to approximate homogeneous diffusion
behavior near neutral stability for large £, with the membrane
diffusion model, one chooses U/ from equation (40), and sets
&€ = 2(1 — a/b). The former specifies that the characteristic
diffusion time across the wall zone is proportional to the
period at neutral stability in the homogeneous diffusion
model, while the latter that £ exceeds &, so that the critical
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Plots of (a) In(h*/h%,. — 1), (b) keridkerit ars (€) In(T/T4. — 1), and (d) w/wg,., as functions of

In(E,fy/b), from equations (C10) and (C12), for a/b = 0.8 (black lines) and a/b = 0.9 (red). Dotted lines
in Figures 22a and 22¢ show asymptotic limits for small E, (equations (C16) and (C18)) and large E,
(equation (C21), after normalization by the drained value and equation (C25)).

nucleation length /%, becomes unbounded in the undrained
limit, as it does in the homogeneous diffusion case (Figure 22
and equation (C25)).

[74] We also check consistency with equation (38), which
states that the appropriate wall thickness, 4,,, is related to the
period of neutral stability in the homogeneous diffusion
case, consistent with the result in equation (40). Making use
of (40), equation (39) reduces to

(42)

From the result for 7, in equation (C21), we find that

5:2wﬁ<1 —%), (43)

which agrees with (41) for @ = 1/\/7.

5.2. Low E, Limit

[75] Note that model slow slip behavior reminiscent of
natural events occurs in the low-E, limit (see Appendix C).
For example, E, < 107 implies Efo/b 5 3 x 1072
(Appendix C and Figure 22). Because E,, is defined at a
slip speed of v*, the fault can be essentially drained as a
slow slip event nucleates, but moderately undrained for
speeds 1-2 orders of magnitude larger, as discussed further
in section 5.3. Equating the drained asymptotic results for
h* in the membrane (A5) and homogeneous diffusion
models (C18), as well as the periods at neutral stability,
equations (A6) and (C16), yields two equations in the

unknowns € and U. These can be written compactly letting
w = y/b/a — 1, the nondimensional drained frequency at
neutral stability, and E', = foE,//2b, as

WEU = Ej(w*? + w'/?)

WEU = Ejw'?. (44)
Solving for U leads to
b -1
u:(wl)lz[,/a—lﬂ (45)

Thus, in the drained limit the appropriate choice of the
nondimensional characteristic diffusion time in the mem-
brane diffusion model ?f is related to the nondimensional
drained period at neutral stability, Ty,

- 2w !
tr=|=—+1| .

7, (46)

Substituting (45) into (44) yields the estimate of £ in the
drained limit.

26 of 37



B12305

Returning to equation (39), making use of (45), and taking
the drained limit 7', for T}, (E,) leads to

_ V2nfwE, <F+ 1)
e

For both equations (47) and (48), £ is proportional to
E,, although the constants are somewhat different. In
equation (47), bE/fHE,, ranges from 4.5 to 6.6 for a/b between
0.8 and 0.9; while in equation (48), b&/fy E,, ranges from 4.2
to 5.6 for the same range in a/b and @ =7 ">, In summary,
for the low E, case, the appropriate characteristic diffusion
time in the membrane model depends on the drained period
at neutral stability, as in equation (46), while the appropriate
choice of &£ is given by (47).

5.3. Pore Pressure Change Following Velocity Steps

[76] The previous analysis describes the relationship
between the membrane diffusion and homogeneous diffusion
models near neutral stability. Also of interest is the behavior
far from neutral stability where propagating slip events are
observed in both models. In many of the simulations these
events appear as nearly step changes in slip speed (at least
on a log scale). This is observed in Figures 5, 10, and 12 for
membrane diffusion, and in Figure 15 for the homogeneous
diffusion case, although for the latter the slip speed decays
more substantially behind the slip front.

[77] In order to elucidate the difference in behavior between
the two diffusion models we examine the pore pressure
response to a step change in slip speed, v(f) = vH(¢) for both
models. The derivations are given in Appendix D. For
membrane diffusion we find (Appendix D, equation (D5))
that the fault zone pore pressure following the velocity step is
given by

md voi\ vt —s/de _ —t/s )
H=—Smn AT
(1) ( )d vy (e e

vh;\ 6 vty
In[ =2 Y -wvt/d.. 7_/:1
(&) 4

where 6; is the state variable prior to the velocity step, and
slip is 6 = vt. The pore pressure drop accumulates expo-
nentially with 6/d. and then decays, as pore fluid flows into
the fault zone, with increasing slip as 6/vtz The maximum
pore pressure change is

de
3 I AWA AN
1 _° 7 .
§ ( dc ) (dc ) 7

vty
— #1
d, 7

g
€
B (49)

viy
@71
(50)

Define T = vt/d, = (vv*)U, and the function I'(T) by
(T+1)= Tl/(l ), ; T(T = 1) = l/e. Note that in the limit
that T < 1, I'(T) — T; as T tends to zero, pore pressure
dissipates faster than it accumulates. On the other hand, for
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T > 1, I(T) — 1. Thus, the limiting forms of (50), written
in terms of £ are:

b (vt vo;
i Ja Pmax = (dc) “(dc)
bo vl;
li md — _ZEn| —
wldes P = T “(dc)

where, @ = (¢ — p™). For homogeneous diffusion, on the
other hand, the pore pressure on the fault is (Appendix D,

equation (D14))
20’E v@ 6

where D(z) is known as Dawson’s Integral

(s1)

Py =0,6)=

D(z)=e" /0 e (53)

D(z) exhibits a maximum of ~0.541 at z ~ 0.924 and then
decays slowly as pore pressure recovers (Figure 23). For large
argument Dawson’s Integral behaves as D(z > 1) ~ 1/2z. The
maximum pore pressure excursion in the homogeneous dif-
fusion case is thus
v vo;
~n(7)

Comparing to (50) the maximum pore pressure excursions in
the two models are equal when

e () ()

where the function I' is defined following equation (50). From
a fracture mechanics perspective [e.g., Rubin and Ampuero,
2005] it is likely the integral of the induced pore pressure
change with slip has a more significant effect on the propa-
gation behavior than does p.x. The effective fracture energy
G.. is defined as the integral of the shear strength as a function
of displacement

By _

v (54)

hd
Pmax ~

(55)

6*
G, = / [7(8) — 7(6%)] d6 (56)

0

[e.g., Rice, 2006], where 6* is the slip at which the strength
degrades to roughly constant level. The contribution to the
fracture energy from dilatancy (that is excluding the contri-
bution from changes in friction) is computed by inserting
—foAp for 7 in (56). For membrane diffusion employing
equation (49), this results in

ol
g \d.)

G = (57)
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Figure 23. Comparison between pore pressure changes induced on a step increase in slip speed v for
membrane diffusion and homogeneous diffusion; see equations (49) and (52). In this example E, = 1073,
£=0.1,U =1, and the velocity jump is a factor of 10 over the plate velocity. Also, b =0.015 and f, = 0.6.

which is valid for all vt//d.. For the homogeneous diffusion
case:

hd _
GO =

Zf()EE,
v (58)

v v0;
Aoy <10 (2 1(5%/d),
()1

where
6%/d. * %
I(6*/d.) = /0 D(Vz)dz — 61)( 6). (59)

For sufficiently large argument (roughly 6*/d.> 5), the definite

integral in (59) increases as 1/6*/d.. Given the asymptotic
behavior of D(z), 1(6*/d,) scales roughly as (1/2),/6*/d.. For
0*/d,. in the range of 10 to 30, /(6*/d.) ranges between 1.6 and
2.7. In what follows we take 6*/d,. = 20, such that I(6*/d.) =
2.2. We note that [(6*/d.) is formally unbounded with
increasing 6*; however, there is no paradox with regard to the
numerical simulations because the slip velocity decreases
substantially behind the rupture tip (Figure 15) such that the
effective fracture energy is finite.

[78] We have seen in simulations (Figure 18) that prior to
the faster slip phases, the slow phase brings the fault close to
steady state friction at nearly the driving velocity. Thus, it is
reasonable in these cases to take 6, = d./v*°. Making this
assumption and normalizing the fracture energy by & d. we
have, for membrane diffusion

i = () m ()

(60)

The corresponding result for homogeneous diffusion is

GM  2fE, . v v
o = e [ (),

In the membrane diffusion case the fracture energy due to
dilatancy increases with the magnitude of the velocity jump
as v In(v), the In(v) arising from the magnitude of the pore
pressure change, the v arising from the characteristic slip
weakening scale (vZy), whereas in the homogeneous case the
fracture energy scales with /v In(v). This illustrates a fun-
damental limitation of the membrane diffusion model: the
pore pressure recovery time ¢ is independent of the mag-
nitude of the velocity step, whereas in homogeneous dif-
fusion the effective recovery time scales with d./v, and is
thus shorter for larger velocity steps. This leads to fracture
energies in the membrane diffusion approximation that
increase with v faster than for homogeneous diffusion by a
factor of \/v.

[79] A complete fracture analysis, which is beyond our
present scope, would include the balance between the fracture
energy and the energy release rate. For drained rate-state
friction behavior Rubin and Ampuero [2005] showed that
for sufficiently large v, the energy release rate scales with
L[In(v)]?, where L is the length of the active slip zone, while
G. scales with [In(v)]* for the aging law, but only with In(v)
for the slip law. Thus, for the aging law only, G, balances
the energy release rate for L less than a critical length, L.
If the interior of the crack drains to the background pore
pressure, the Rubin-Ampuero estimate of G approximately
holds. In this event there is no limiting slip zone length if
G, increases with v faster than [In(v)]?, which we note is

(61)
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true for both membrane and homogeneous diffusion. In
detail, the slow pore pressure recovery in the homogeneous
diffusion case decreases the stress drop well behind the
rupture tip, thus decreasing G and further stabilizing the
rupture relative to the membrane diffusion case which is
relatively drained in this region.

[so] Equating the apparent fracture energy in the mem-
brane and homogeneous diffusion models leads to

/b v/
B = s 4Ge)

which can be compared with equation (55). Matching both
the fracture energy and the maximum pore pressure excursion
requires T = 2[(6*/d)['(T). Since T'(T) < T, such solutions
exist only for 2/(6*/d.) > 1. For example with, [(6*/d,.) ~ 2.2,
matching the fracture energy and peak suction occur for
T ~ 2, which implies v/v”° ~ U '. While there is a rather
narrow range of parameters that match both the fracture
energy and peak suction, there appears to be a broader range
for which they are approximately equivalent, although we
have not explored this in detail.

[s1] The constant term in brackets in (62) is of the order of
1072, From this we suggest a range of E, that yields slip
rates roughly an order of magnitude greater than the plate
velocity. For example, choosing £ ~ 1 —a/b~ 0.1, and U on
the order of 1, leads to E, of roughly 2 x 107, which we
have already seen provides interesting behavior in the sense
of producing slow slip events that are roughly an order of
magnitude above plate velocity, for an appropriate range of
Wih,. Note that E, of order 107 is in the small E,, limit, for
which the critical nucleation dimension and period at neutral
stability are not that different from drained values. This is
consistent with the idea that for geophysically relevant
parameters dilatancy is not significant during transient slip
nucleation, but becomes dominant as the slip speed increases.

[s2] We conducted a limited number of tests to investigate
whether (62) provides guidance for relating the maximum
slip speeds in the two diffusion models. In the first example
E,=3x 1073, a/b=0.9, and W/h%, = 16; for this simulation
log10(Vimax) = —6.3. For these parameters equation (62)
predicts equivalent behavior for £U/ =~ 0.06. A membrane
diffusion simulation with & = 0.2 and & = 0.3 yielded
1og19(Vinax) = —6.45. On the other hand, for £ =2 and U =
0.03 we found log;o(Vimax) = —7.4. For a second comparison
we took E, = 3 X 104, a/b = 0.9 and Wih¥, = 12,
which yielded logio(Vimnax) = —4.0. Equation (62) suggests
equivalent slip speeds for £ = 0.2, and U/ = 0.005. A mem-
brane diffusion simulation with these parameters yielded
log10(Vimax) = —4.4. In summary, these comparisons are
somewhat encouraging and indicate that a more compre-
hensive fracture mechanics based analysis could lead to an
improved analytical understanding of the simulated slow
slip events.

(62)

6. Discussion

6.1.

[83] Because this study did not consider depth-dependent
material properties and stresses, including a transition to

Comparison to Observations
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steady state velocity strengthening friction with depth, it is
premature to associate particular parameters with field
observations. Nevertheless, it is encouraging that there are
parameters consistent with laboratory data that yield geo-
physically interesting behavior. Consider the observations
detailed in the introduction. We have seen that simulations
with a/b = 0.9, 107 < E, < 107, and 12 < W/h%, < 20,
yield moment rates M ,../M, of 10 to 100 and repeat
periods of roughly 1 year. For these simulations the length
of the slow slip zones are between 30 and 50 km, roughly
consistent with downdip dimensions in subduction zones.
Note that for @ of the order of 1 MPa and d.. of order 10 to
100 microns, A%, is on the order of 0.4 to 4 km. With
dilatancy, W/h%, can be of the order 20 to 50 if not more.
Low background effective stresses and dilatancy thus
permit slow slip over appropriate spatial scales.

[84] For the parameters listed above the maximum slip in
the simulations is on the order of 0.01 m and stress drops are
on the order of 0.01 MPa, both consistent with geodetic
observations. Along-strike propagation speeds of ~10 km/d
have been observed geodetically. For the parameters stated
above we observe updip propagation speeds of ~2 to
~9 km/d and downdip speeds of ~9 to ~15 km/d, similar to
observations. However, comparison of along-strike propa-
gation speeds with updip two-dimensional model speeds
should be viewed with caution. Once slip has extended the
full updip width and begins propagating along strike, the
minimum rupture zone dimension is fixed and the extending
slip zone becomes highly elongate. This will decrease the
energy release rate relative to a two-dimensional model,
with consequent effects on the propagation speed. This may
in fact help explain why slow slip does not accelerate as it
propagates along strike. Details await fully three-dimensional
calculations.

[85] In summary, while it is somewhat premature to iden-
tify particular parameter ranges with observations, it does
appear that plausible material parameters, combined with
very low background effective stresses can yield observed
downdip slip zone dimensions, average slip amplitude, stress
drop, average slip speeds, and recurrence times. Model
propagation velocities in the dip direction are in the same
range as observed along-strike; however, a full comparison
awaits either observational determination of the updip
velocity of slow slip events and three-dimensional model
calculations.

6.2. Summary of Evidence for High Pore Pressures

[s6] Observational evidence for high fluid pressures
include high v,/v, ratios inferred from tomographic [e.g.,
Kodaira et al., 2004; Shelly et al., 2006] and receiver
function [Audet et al., 2009] studies. Audet et al. [2009] find
that the subducted Juan de Fuca crust in the area where slow
slip events are inferred to take place has Poisson’s ratios in
excess of 0.4. This has been interpreted as indicating near
lithostatic pore pressures, although the lack of appropriate
laboratory data make it difficult to quantify this precisely.
High fluid pressures are widely believed to result from
dehydration reactions as the subducted slab passes through
the stability field of a number of hydrous phases stable at
low pressure and temperature conditions [e.g., Peacock
et al., 2002; Liu and Rice, 2007]. If the overlying rocks
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have sufficiently low permeability, the source of fluid pro-
vided by dehydration reactions presumably maintains high
ambient pore pressures. The low stress drops associated with
slow slip events are also consistent with, but may not demand,
low effective normal stresses.

[87] Modeling studies provide two additional arguments
suggesting high ambient pore pressures. The first is that the
critical nucleation dimension /#* is inversely proportional to
effective stress. Low effective stresses increase 4* and thus
help to rationalize the large dimensions of the stable slipping
zones. Furthermore, we have shown that the efficacy of
dilatant strengthening relative to frictional weakening, as
measured by & and £, in the membrane and homogeneous
models, respectively, increases with decreasing effective
stress. Finally, we have shown that importance of dilatant
strengthening relative to thermal pressurization weakening
also scales inversely with effective normal stress. Thus,
dilatancy is more likely to stabilize slip in areas with high
ambient pore pressures and low effective normal stress.

6.3. Consistency With Small Earthquakes

[s8] It is worthwhile considering whether or not the
occurrence of very small earthquakes, at shallow depth, and
thus modest normal stress, are in any way inconsistent with
our inference that slow slip is favored by low effective
stress. For example, consider small events at roughly 2 km
depth near Parkfield, CA on the San Andreas fault. Stress
measurements in the SAFOD pilot hole adjacent to the fault
at 2 km depth show relatively high maximum compressive
stress ~120 MPa at high angle 70° to the fault [Hickman and
Zoback, 2004], and hydrostatic pore pressures. From this we
compute an effective normal stress of order 80 MPa.
Assuming a=0.015,a/b=0.8,d.=50 um, and = 10* MPa,
h*,, from equation (1) is of the order of 1.3 m. According
to (30) for fast slip to occur the membrane diffusion
model, £ must be less than 0.2, and thus fye/8b < 17 MPa.
Taking fo = 0.6 and 3 ~ 8 X 107" 1/Pa, this requires € < 4 x
107°. The actual bound on € is greater than this, because this
analysis ignores thermal weakening. If the slip speeds get
sufficiently high, thermal weakening may promote dynamic
instability with parameters for which the isothermal analysis
predicts that the undrained behavior is stable.

[s9] For homogeneous diffusion we note from Figure 21
that for £, < 10* the max average slip speeds are more
than 4 orders of magnitude over the plate speed, at which
point we suggest that thermal weakening effects dominate
fault strength [Schmitt et al., 2007; Scmitt and Segall, 2008].
Using the same parameters, including & = 80 MPa, and
assuming ¢;,; ~ 107° m*/s and v ~ 10~° m/s, we find E, <
10~* requires ek < 10~® m. This easily encompasses range of
10° to 107" m estimated previously. Note also from
equation (C18) that for E, < 10~* dilatancy increases 4* by
only about 1%, so that the predictions are consistent with
very small earthquake nucleation zones.

[90] Our inference is that effective stress is substantially
lower in slow slip regions. We infer from Figure 21 that for
E,> 1072 the behavior is stable for a wide range of W/h%,.
This would be consistent with decreasing the effective
normal stress by a factor of 10 to order 8 MPa. In conclusion
there is no inconsistency between nucleating very small
earthquakes at 2 km depth on the San Andreas fault and for
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dilatancy to stabilize slow slip events at much greater depth
in subduction zones if the effective stress there is of the
order of a few megapascals.

7. Summary

[o1] 1. With steady state velocity weakening friction (a < b)
on sufficiently long slip zones (relative to /*), frictional
weakening allows localized slip to nucleate. However, as
slip accelerates it eventually becomes undrained and at this
point dilatancy may act to suppress dynamic slip.

[92] 2. In the membrane diffusion approximation, when &£
exceeds &.,;, =1 — a/b a linearized stability analysis predicts
that the critical nucleation length becomes infinite in the
undrained limit. For £ > £_,;, numerical simulations show
that slip remains quasi-static over a very broad range of fault
dimensions. In contrast, if £ < &, slip reaches radiation
damping limits when the rupture dimension exceeds a critical
value that is close to the predicted 2* for membrane diffusion.

[93] 3. We have developed efficient numerical methods
for coupling rate-state friction and dilatancy with elasticity
and diffusion of pore fluid normal to the fault. This permits
simulation of multiple episodic slow slip events, enabling
conclusions to be drawn from simulations that minimize the
dependence on arbitrary initial conditions.

[94] 4. We have developed equations for translating
quantitatively between the membrane diffusion parameters £
and U and the single isothermal homogeneous diffusion
parameter £, both at neutral stability and (more approxi-
mately) at the fronts of propagating slow slip events. The
membrane diffusion calculations are computationally more
efficient, but because the equivalences near and far from
steady state are not identical, a single set of membrane
diffusion parameters seems unlikely to capture all aspects of
the more time consuming homogeneous diffusion calculations.

[95] 5. For pore fluid diffusion into surroundings with
homogeneous permeability, the ratio of dilatant strength-
ening to thermal weakening scales with eh/d., pc/A, and
1/fo8 (o — p), where h is the shear zone thickness, and
A is the ratio of thermal expansivity to compressibility. High
pore pressure thus mitigates against frictional and thermal
weakening and favors slow slip, consistent with seismic
observations of anomalous v,/v,. Whether slip is ultimately
slow or fast may depend on whether dilatancy prevents slip
speeds from reaching rates at which thermal pressurization
dominates.

[96] 6. In isothermal calculations with a/b = 0.9 and
10732 < E, < 107, for 12 < W/h¥, < 20, and perhaps
longer, average transient slip rates are on the order of 10 to
100 times plate velocity, and repeat times are on the order
of 1 year, comparable to that observed in Cascadia. For
these parameters maximum slip is ~0.01 m and stress drops
are ~0.01 MPa, both consistent with geodetic observations.
Model propagation speeds in the dip direction are in the same
range as observed along-strike. It is possible that similar
behavior can be obtained for a somewhat broader range of
parameters, but we have not explored this fully.

[97] 7. For abroad range of parameters simulations exhibit
slow phases driven by the downdip, constant velocity
boundary condition, and faster (but quasi-static) phases that
relax the accumulated stress. The faster phases are assumed
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to model geodetically observable slow slip events, while the
slow phases may help to explain tremor observed between
strong ETS events.

[98] 8. Slow slip accommodates only a fraction of the net
relative plate motion, implying that the remaining deficit is
made up during coseismic or rapid postseismic slip.

Appendix A: Frequency of Oscillations at Neutral
Stability for Membrane Diffusion

[99] From Segall and Rice [1995, equation (AS)] we
deduce that the frequency of oscillations at neutral stability
for the isothermal membrane diffusion model is given by

v F
w=—

0 T (Al)
where F' = F(E, U, a/b) is given by (27). The period of
oscillation, 7, normalized by d./v* is thus

Tv> s 1-F
= = 27U\ ———.
g F

(4 c

(A2)

€Ul D>

Here, 6, = Tv” is the slip per period at neutral stability. In
the drained limit 24 — 0, F tends to [(b — a)/b]U?, such that
for drained deformation é,,/d. = 27+\/a/(b — a) [Ruina,
1983].

[100] In order to determine the asymptotic behavior in the
undrained limit, take Taylor series expansions for A and ~
(from equation (27)) in the limit 1/{ — 0. There are three
cases of interest, corresponding to £ > 1 —a/b, £ =1 — a/b,
and € <1 — a/b. The results are

> [E— (1 —a/b) a
a =2l “—ab) 5>175

(A3)

Notice that for £ > &, that the period increases linearly
with U, whereas for £ = £,,,, the period increases with v/,
and for &£ less than critical the period asymptotes to a con-
stant value, independent of U/.

[101] In the drained limit &/ — 0, v — 0 and we find that

EU?
a

L{5+E

kmdzl—

~l— 5u29, (A4)
a

the latter accurate if £U < a/b. This leads to a critical
nucleation dimension

*
hna et
a

i, (A3)
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Similarly the dimensionless period in the drained limit is

Ta b
~\/[1+-EU
Td, +a

T 1b
—1l=--&U.
Tdr 2a

(A6)

Appendix B: Finite Difference Procedure

[102] The system of equations to be solved for the homo-
geneous diffusion problem are (16), (3), and (11).

v(x, 1) = f (v(x,2), 0(x,2), 0(x, 1), p(x, 0, 1), p(x, 0, 1))

ony=0 (B1)
O(x,1) = h(v(x,1),0(x,1)) ony=0 (B2)
p(x,p,t) = ewa p(x,p,1),, ony>0 (B3)

where p,, indicates the second spatial derivative of p. The
boundary conditions on pore pressure are

p(x,0, t)y = g(0(x,1),0(x,1)) ony=0 (B4)
Jlim p(x,,) = peo. (B5)

In this work we differentiate the momentum balance on the
fault (B1), so the problem is cast as a system of differential
equations. Integrating over long periods of time inevitably
lead to numerical error such that the original momentum
balance (6) will no longer be satisfied. However, for the si-
mulations reported here, the differential equation formulation
is sufficiently accurate.

[103] The first two equations are not involved in the finite
difference calculation, therefore for notational simplicity we
write 6 and v together as a single variable u = [v, 6, 8], such
that (B1) and (B4) become:

u(x, 1) = f(u(x,8),p(x,0,¢),p(x,0,¢)) ony=0 (B6)

p(x,0, t)y = g(u(x,1)) ony=0 (B7)

B1.

[104] We make the domain [0, y.,] sufficiently large that
Ps) = po. Thus, we approximate (B5) by p(x, Voo, 1) = Do
Near the fault it is important that the discretization be
sufficiently fine to capture the steep gradient in p. To
achieve this we make the following change of coordinate
between y and z:

2() = In(c +)

This change of coordinate has the effect of making the mesh
dense near y = 0 and sparse near y = y,.. We have found

Discretization in the y Direction

or, equivalently, y(z) = —c+e€°.
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that ¢ = 1072 yields good results. Following the change of
coordinate, the system of equations is

iw=f(u,p,p) ony=0 (B8)
p=cipae(e7p:), ony>0 (B9)
e p. = g(u) ony=0  (Bl10)
P =D ony=ysx. (Bll)

We discretize the PDE (B9) and boundary conditions (B10)
and (B11) in space, letting § = Az/2:

—e @ (pp —pry) + e (g — py)
Az2

D = Chydeiz" X (

(B12)

e*Z()p —P-1

g (B13)

and PK = P
fork=0, 1,..., K. The discretization (B12) is a second-order-
accurate conservative discretization of the gradient of the
flux function e “p. in (BY). The discretization of the Neumann
boundary condition (B13) is a second-order-accurate
approximation centered around k£ = 0. Note that the ghost
variable p_, is eliminated when (B13) is introduced into (B12).

B2.

[105] We next consider the method for time stepping the
system of equations. Let pj,, be the value of p at the kth
point in the y direction and the mth point in the x direction,
at the nth time step. For simplicity, we illustrate the
approach with the first-order in time Euler’s method; how-
ever, the actual code uses higher-order time stepping for the
nondiffusion variables. Also for simplicity in presentation
we illustrate the time stepping procedure for the spatially
uniform, rather than log discretization. Equations (B7),
(B6), and (B3) are discretized in time as:

+1 -1
u:ln _unm :f U pn pgm_pgm
At mPom Ry

n +1 _ +1 n+1
kaI _pzm c (p?kl)m 2pZm +p(1k+l)m>
— A, —Cma

Implicit-Explicit Time Stepping

At Ay?

2Ay

n+1
and pi

=8 (u;r;rl ) = Poo-

where m = 1,..., M and k = 1,..., K. Note that the first
equation for u,, is explicit, whereas the equations for p are
implicit in that pore pressure at time step #» + 1 depends on
P, and 1. An important feature is that for each position
along the fault (indexed by m), the pore pressure along the
fault normal profile depends only on the quantities at index m.
Thus, the pore pressures on the fault are only coupled through
the friction/elasticity equations (first set of equations above).
Thus, the finite difference computations in y decouple, such
that M small systems of equations (with K elements) are solved
at each time step, rather than one very large system of equa-
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tions. This is vastly more efficient that solving the full implicit
equations.

[106] Our code integrates in time using the explicit Runge-
Kutta (2,3) scheme implemented in Matlab’s ode23.

Appendix C: Linearized Stability Analysis
for Homogeneous Diffusion

[107] Our approach follows Segall and Rice [1995] with
homogeneous diffusion replacing membrane diffusion.
Adopting the normalization in section 2.1, the linearized
equations perturbed around steady state [Segall and Rice,
1995, equations (23a)—(23e)] become

foAp

a . - ~ ~ a ~

ZAV_—AHJrT—k(l—B)Av (1)
A= —A§— AV (C2)
A = Ad + eAV. (C3)

In the following we drop the tildes with the understanding
that all variables are dimensionless, unless otherwise speci-
fied. The normalized diffusion equation is given by (13).
Linearizing 6 around steady state, 0 = 0, + Af =1+ A#d, the
boundary condition in (13) becomes

o

= —E,Ad.
ay v

y=0

(C4)

We seek solutions to the linearized equations of the form
AO = Oe”, Av = Ve, A¢ = ®e”. For solutions of this
form (C4) becomes

op

o = —E,s0e".

(C5)

y=0

The solution to the diffusion equation with boundary
condition (C5) and the constraint that p = p™ at y = oo is

p= Epsl/z@e”e*ﬁy + p™. (Co)

The rate of pore pressure change on the fault is thus

Plymo = Eps?/?0e". (C7)
Thus, the appropriate linearized form of Ap in (Cl) is
given by (C7). Combining with (C1)~(C3) and Af = Oe*,
Av = Ve leads to the following equation for s

gsz +’%s3/2 + (k- 1)(1 —%)s + k(l —%) =0. (C8)

Whether slip is stable or not depends on the real part of s.
We first establish that in the limit £ — oo, R [s] < 0. Note
that if s is of order £, then in the limit s = —k(b/a — 1),
whereas if s is of order unity, then in the limit s = —1.
Thus, for a sufficiently stiff system, k& — oo, small per-
turbations decay. Also note that for nonzero k there is no
solution at s = 0. We thus assume that as k decreases the
first root to cross to the positive real half plane does so at
s = iw, implying purely harmonic oscillations at k = k.

32 of 37



B12305

Substituting s = iw into (C8) and separating real and
imaginary parts leads to

aw? JoEp S

kcrit:(b_a)+\/i(b_a) (C9)
o SE p
ki = 1 Ao g (C10)

In the drained limit, £, = 0, equation (C10) becomes k,;,= 1,
whereas (C9) leads to w = (b/a — 1)!?, recovering the fully
drained limit. Equating (C9) and (C10),

a o, JoBp p (19 =
5 e et ) (1 b) =0 (C11)
a quartic equation for w'?. Rearranging,
_ 2

=

For a specified a/b and w one can compute the corresponding
value of foE,/b. This and the assumed w can be combined
with (C10) to give the departure of k,;, from its drained
value. The variation in k.,;, and w as a function of fo£,/b is
given in Figure 22.

w2 (w+1)

C1.

[108] We can obtain useful asymptotic results in the limits
of small and large E,,. For small E,, write

1/4
wl/zz(é—l) + A,

Limiting Behavior for Small E,

- (C13)

where A represents the deviation from the drained, £, = 0,
result. Substituting this into (C11) and retaining only the
lowest-order terms in A and £, leads to

foEy (bJa—1)"7 41

Vb dafb)bja— 1) (9
b 3/4 b 1/4
——1) +(=-1
LIV L (" ) S“ ) ; (C15)

2v/2b

Wy 1 — —

b

where we have made use of w,, = (b/a — 1)""?. The period of
oscillations at neutral stability is inversely proportional to
the frequency, 7/7,, = (w/wdr)_1

b 3/4 b 1/4
-—1 +(--1
i_lr\,foEP a a

Tar 2V2b <1 _E>

(C16)

Substituting (C13) and (C14) into (C10) and neglecting the

E,A term,
1/4
E)
~1 _ﬁ)Ep a ‘

A

kcriz‘
kcritJlr

(C17)
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The critical nucleation dimension is inversely proportional
to the critical stiffness, such that

(C18)

The limiting behavior for small E,, (C16) and (C18), are
compared to the complete results in Figure 22.

C2.

[109] In the limit that £, — o we find by inspection
of (C11) that w tends to zero and

Limiting Behavior for Large E,

fEp 12 a
: 1 ——; 1
Al Ty (C19)

(- ()

[110] The reciprocal of (C20) leads to the large E, period
at neutral stability
_gﬂﬁ@y
b V2b)

Substituting (C19) into (C10) shows only that k;, — 0 as
E, — . To proceed further we write

2= (1-9) (%)+A

where A now represents the deviation from the limiting
behavior in (C19). Substituting (C22) into (C11) and retain-
ing only the lowest-order terms in A and 1/E, leads to

(C20)

Tz27r(1 (C21)

(C22)

~ a3 (JoEp B
A~ —<1 - Z> (ﬁ) . (C23)
Substituting (C22) and (C23) into (C10), we obtain
keri aZﬂ@)z
~(1l—-— C24
kcrit,dr ( b> (\/Eb ( )
such that
h* N B f -2 ﬁ)Ep 2
s (1 b) <—\/§b) . (C25)

The limiting behavior for high E,, (C21) and (C25), are
compared to the complete results in Figure 22.

Appendix D: Analytical Solutions for Pore
Pressure Change

[111] We consider here analytical results for the pore
pressure response to a step change in slip speed for both the
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membrane diffusion and homogeneous diffusion models.

For a step change in slip speed v(f) = vH(?), the slip law (3)
can be integrated exactly to yield

) exp(—6/d)
’=b (@)

where ¢ = vt is the accumulated slip, and 6; and 8= d./v are
the initial and final states, respectively. Thus,

vO vl;
1 —1In —6/d.
(d) (d)

Also, for the slip law
0_ v (¥
0 d. \d.)

Membrane Diffusion

(D1)

(D2)

D1.

[112] Combining the membrane diffusion equation (15)
with the constitutive law for dilatancy (5) and the slip law
(3Db) yields

dAp Ap ed

dt Ty B (D4)
where Ap is the difference in pore pressure relative to the
far-field value. The differential equation (D4) is solved for a
step in slip speed is at time ¢ = 0, by use of an integrating
factor exp(#/t;), which yields

vo; Vi B B 7
A _ ¢t vtjd. _ ~t/ty\. VS
wl) = 51 4 )d.—w (e e ); 27!
iy
vl; 7v vt
:—El (d)de v h= (D5)
D2. Homogeneous Diffusion

[113] For this imposed slip history, the isothermal diffu-
sion equation (11) can be solved exactly. The governing
equation is

ap Pp
o i =0, (D6)
with boundary conditions
op ho eh 0
— = = - D7
W, o~ 2Bema  2Bema 0 (B7)

The initial conditions are that the pore pressure is every-
where zero. We seek a solution for a step change invat¢z=0
with associated change in ¢. Combining equations (D7),
(D3), and the result (D2) for a step change in slip speed,
yields the modified boundary condition

op _ ¢h v v0; _—
ay y=0 - 2ﬁchyd (dc) ln(dc >e '

(D8)
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Take the Laplace transform of the differential equation (D6)
and boundary condition (D8), which yields

5 Cnadh
s dy? ’
op T(v)
i D9
Ay - STt v/d, (D9)

where s is the transform variable, " indicates a transformed

variable, and

eh v vo;
\II(V) = 2/6Chyd (Z) In (Z) . (DIO)
The solutions to the differential equation (D9) are
p = AeVTem, (D11)

We retain only the decaying solution. The constant 4 =
p(0, s) gives the pore pressure on the fault. From the
boundary condition in (D9)

—U(v)-~ Chya/$

Py =0,5) =4 = e (D12)

Note that the inverse transform of 1/\/s is 1/y/nt, while
the inverse transform of 1/(s + v/d,) is exp(—vt/d.). Thus,
from the convolution theorem we have

Py =0,1) ,/C’” / \/?e*ff ) (D13)
A change of variables z* = vt'/d, leads to
_ _ chyddc é
p(y=0,¢) = =2U(v) — D( a )
2E, 0; o
_%(g p ),/v 1n(26)0( d_c>’ (D14)

where D(z) is known as Dawson’s Integral, see equation (53).

Notation

a, b Rate-state friction coefficients.
¢ Specific heat capacity.
¢y, Thermal diffusivity.
Cpyq Hydraulic diffusivity.
d. Critical slip weakening distance.
& Nondimensional dilatancy, membrane diff.
equation (22).
E.ri Critical &, equation (30).
E, Nondimensional dilatancy efficiency, equation (13).
E7 Nondimensional shear-heating efficiency,
equation (12).
f Coefficient of friction, f; nominal value.
G, Fracture energy.
h Thickness of shear zone.
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h,, Thickness of wall zone.
h* Critical nucleation dimension.
h¥, Drained critical nucleation dimension, equation (1).
keriy Critical spring stiffness.
K., Nondimensional critical spring stiffness.
p Pore pressure.
p” Remote pore pressure.
t Time.
ty Characteristic time for fluid diffusion.
7T Temperature.
T Period of oscillations at neutral stability.
T}, Period at neutral stability, homogeneous diffusion.
U Nondimensional drainage time, membrane
diff. equation (23).
v Fault slip speed.
ves Steady state slip speed.
v” Rate of plate motion.
v, Shear wave velocity.
W Width of velocity weakening fault in x direction.
Fault parallel distance.
Fault perpendicular distance.
Compressibility, fluid plus pore.
Fault slip.
Effective slip weakening distance.
Dilatancy parameter.
Shear strain.
Permeability.
Thermal pressurization factor.
Porosity.
Shear modulus.
Poisson’s ratio.
Pore fluid viscosity.
Rock mass density.
Fault normal stress.
Effective normal stress.
Shear stress.
Friction state variable.
; State variable prior to velocity step.
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