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Abstract    

When a region of intense shear in a slope is much thinner than other relevant geometric 
lengths, this shear failure may be approximated as localized slip like in faulting, with 
strength determined by frictional properties of the sediment and effective stress normal to 
the failure surface. Peak and residual frictional strengths of submarine sediments indicate 
critical slope angles well above those of most submarine slopes—in contradiction to 
abundant failures. Because deformation of sediments is governed by effective stress, 
processes affecting pore pressures are a means of strength reduction. However, common 
methods of examining slope stability neglect dynamically variable pore pressure during 
failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive 
approximate equations governing pore pressure about a slip surface when the adjacent 
material may deform plastically. In the process we identify an elastic-plastic hydraulic 
diffusivity with an evolving permeability and plastic storage term analogous to the elastic 
term of traditional poroelasticity. We also examine their application to a dynamically 
propagating subsurface rupture and find indications of downslope directivity. 
 
Keywords: Landslide, slope stability, slip surface, friction, pore pressure, storage, 
diffusivity, poroelasticity, plasticity, dynamic rupture, finite element 

1. Introduction 

How sediments deform and pore fluid flows during the shearing process has not been 
precisely determined for the variety of styles of landslides. While some failures may occur 
at a stratigraphic discontinuity, others may occur within the sediment column. When failure 
is within the sediment, to what extent that failure is localized is uncertain. Not knowing 
when and where failure may start hampers field observations of failure initiation and 
progression. However, a failure location and time can be constrained by artificially creating 
failure conditions. For example, Cooper et al. (1998) induced slump failure in a naturally 
deposited clay slope by artificially elevating pore pressures. Excavation revealed an O(mm) 
thick intense shear zone within an O(cm) thick disturbed region.  
 
Observations of local deformation and apparent progressive failure (Bjerrum 1967, Bishop 
1971) inspired treating the shear zone as a slipping fracture and examining criteria for 
unstable rupture propagation—i.e., criteria for rupture to continue propagation without 
further loading, presumably the inception of complete slope failure. Palmer and Rice (1973) 
examined the propagation of rupture from the base of a cut within an overconsolidated clay 
slope and estimated the rupture length required to initiate unstable growth by gravitational 
loading. Puzrin and Germanovich (2004, 2005) similarly examined the case of a rupture 
paralleling the slope surface with the intention of extending the analysis of Palmer and Rice 
to the failure of slopes composed of normally consolidated clay or incohesive soil. With 
experimental observations of shear bands in such soils in mind, they postulate that slope 
failure in these soils would ultimately occur in local deformation-weakening shear zones 
similar to the failure of overconsolidated clays. Such an analysis lends itself towards 
examining effective stress controls on slope stability. This is an appealing approach for 
studying failure in the submarine environment, where slopes are often too shallow for 
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failure to be explained by infinite slope or limit equilibrium analyses. In this environment, 
processes affecting pore pressure such as local fluid flux (Dugan and Flemings 2000) or 
methane hydrate dissociation (Xu and Germanovich 2006) have been proposed as 
mechanisms for initiating failure. The works of Palmer and Rice, and Puzrin and 
Germanovich, considered the shear strength on the surface to degrade with the amount of 
slip, assumed that the length of the rupture was much greater than its depth and that the 
stress-strain relationship of the overlying sediments was linearly elastic until passive or 
active failure.  
 
The role of fluid in rupture initiation, propagation, and runout is often central in landslide 
processes. In the experiment of Cooper et al. (1998), decreases in measured pore pressure 
during early-stage slope movement indicate a stabilizing dilative suction preceding total 
slope failure. Subaerial flume studies of densely or loosely packed sandy sediment also 
show a tendency for dilatant stabilization in the case of dense sediments and transition to 
debris flow when loosely packed (Iverson et al. 2000). Monitoring shearing rates and pore 
pressures in a ring shear apparatus, Moore and Iverson (2002) observe the diffusive nature 
of such stabilization in relatively coarse- and fine-grained sediments.  
 
The question remains how to appropriately determine the pore pressure within a finite 
thickness shear zone approximated by a sliding surface. Specifically, contributions from 
processes within the shear zone may be lumped into the surface behavior in addition to 
contributions from material deformation beyond the shear zone. When concerned with slip-
surface pore pressures, current modeling of dynamic rupture propagation has included 
inelastic porosity changes as either a slip-proportional porosity change (Rice 1980, Suzuki 
and Yamashita 2008) or a transition to a rate-dependent steady-state porosity (Segall and 
Rice 1995, Bizzarri and Cocco 2006). Other work has examined slip propagating quasi-
statically or dynamically in a saturated poroelastic or poro-elastic-plastic media, but 
neglected the effect of pore pressure changes on the fault on shear strength (de Borst et al. 
2006, Réthore et al. 2007, Viesca et al. 2008).  
 
In addition to the inelastic processes occurring within the surface-approximated shear zone 
are those about the rupture tip. The rupture criterion set by the surface weakening behavior 
eliminates stress singularities, however there remain significant stress concentrations. It is 
well known in dynamic shear rupture that in such cases regions of inelastic deformation 
grow, with propagation, to dimensions significant in comparison to rupture length (e.g., 
Templeton and Rice 2008) and one can expect such regions of failure around the rupture tip 
in the quasi-static limit. In the following we propose a model in which pore pressure on the 
slip-surface is determined by the poro-elastic-plastic deformation and consequent fluid flux 
surrounding the slip surface. This parallels efforts to discretize the poro-mechanical 
deformation of a finite-thickness shear zone (e.g., White and Borja 2008). 

2. Determining pore pressures at a sliding interface with plastically deforming 
surroundings 

The saturated porous material deforms elastically until a yield condition is met. The 
condition is given by a function F  of the effective stress (positive in tension) = + pI , 

where  is the total stress tensor and p  is the pore fluid pressure, and potentially a 

function of other state variables, such as the void ratio or a magnitude of plastic strain. 
F( ) = 0  is the yield condition. Here the yield function is expressed in terms of the stress 

invariants tr / 3  and = s : s / 2  where s = tr I / 3  is the deviatoric part of the 
stress tensor. Figure 1 is an illustration of such a function where μ = F / (tr / 3)  is the 
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local measure of the pressure-
dependence of the criterion and b  is 
the cohesive strength. During 
continued plastic deformation, the 
stress state must satisfy either 
F / :d = 0  to move along the 

yield surface or F / :d > 0  to 
follow the outward evolution of the 
yield surface. Here, we allow the 
yield surface to evolve with plastic 
strain and define the hardening 
modulus, F / :d = hd pl  

where d pl
= 2depl :depl , and depl = d pl (tr d pl )I / 3 . A second potential H ( )  

(here, of similar form to F ) indicates the direction of plastic strain increments: 
d pl

= d pl H / . From the potentials F  and H , we define the second order tensors  

 Q =
F

=
s
2

+
μ

3
I                P =

H
=
s
2

+
3
I  (X.0) 

where = H / (tr / 3)  is the ratio tr d pl / d pl . More explicitly, we decompose the 

total strain increment into elastic and plastic components d = d el
+ d pl , and the plastic 

strain increments may be written as d pl
= P Q :d( ) / h . Increments in the Biot effective 

stress d + dpI  are determined by increments in elastic strain, 

d( + pI) = L : (d d pl ) , where L  is the elastic stiffness tensor described below. 

 
The increments of elastic-plastic total stress and pore fluid mass m  (with fluid density ) 

may be written in terms of those of strain and pore pressure  (e.g., Rudnicki 2001) 

 d = L
L :P( ) Q :L( )
h +Q :L :P

:d I +
(1 ) trQ P :L( )
h +Q :L :P

dp  (X.1) 

 
dm

=
(1 B)

KB
+
(1 )2 trP trQ
h +Q :L :P

dp + I +
(1 ) trP P :L( )
h +Q :L :P

:d  (X.2) 

In all bracketed terms preceding dp  and d , the first term corresponds to the elastic 

response and the second to the contribution of plastic deformation. The elastic coefficients 
are L , the fourth-order linear-elastic stiffness tensor (i.e., for isotropic elasticity and a 
second-order symmetric tensor A , L :A = A :L = KI trA + 2G devA , where K  and G  
are the bulk and shear moduli), and B , the poroelastic Skempton coefficient.  
 
Taking the boundary-layer approximation and considering gradients parallel to the slip 
surface to be much smaller than the normal gradients, the conservation of fluid mass near 
the surface requires q / y = m / t , where q  is the pore fluid mass flux given by 

Darcy’s law q = ( k / ) p / y , k  being the permeability and  the permeating fluid 

viscosity. Combining fluid conservation and Darcy’s law 

 
k 2 p

y2
=

m

t
 (X.3) 

In calculating the rate of the fluid mass, we consider the region around the slip surface as 
consisting of material that may differ in mechanical behavior (e.g., elastic stiffness, 
dilation, and internal friction) from the typical response of the sediment further away from 
the slip surface (i.e., a disturbed region about the slip surface). The adjoining materials are 

− tr /σσ 3

μ

μ

elastic domain

1

τ

0

b

f tr /σσ( ) = −3

 F f tr f b( ) / ( ) ,σσ σσ= − ( ) =τ 3 0 where  ‘

 
Figure 1: Illustration of pressure-dependent yield criterion F.
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coupled by the continuity of certain components of stress c  ( yx , yy , yz ) and strain 

c  ( xx , zz , xz ), the remaining free components of stress and strain are designated as 

f  ( xx , zz , xz ) and f  ( xy , yy , yz ). With this in mind, we rearrange (X.1) and 

(X.2) into vector and matrix notation where  

 d{ } = d
c{ }

f{ }
 and d{ } = d

c{ }

f{ }
 (X.4) 

such that 

 

 

d c{ } = N11[ ] d c{ } + N12[ ] d f{ } + U1{ }dp

d f{ } = N21[ ] d c{ } + N22[ ] d f{ } + U2{ }dp

dm
= Cdp + M1{ }

T d c{ } + M2{ }
T d f{ }

 (X.5–7) 

[N], {M}, {U}, C are the matrix, vector, and scalar coefficients whose components are 
determined by the constitutive relationships (X.1) and (X.2). For example, in xy plane strain  

 U1{ }T = +
(1 )μ Gsxy /( )
h +G + μ K

(1 )μ K +Gsyy /( )
h +G + μ K

 (X.8) 

Expressing d f{ }  in terms of d c{ } , d c{ } , and dp , (X.9) reduces to 

 
dm

= stordp + {R}
T d c{ } + {S}T d c{ }  (X.9) 

where stor = C M2{ }
T N12[ ]

1 U1{ } , R{ }T = M1{ }
T M2{ }

T N12[ ]
1 N11[ ] ,  and 

S{ }T = M2{ }
T N12[ ]

1
.  

 
During elastic response, stor  is the poroelastic storage coefficient under one-dimensional 

consolidation ( d xx = d zz = 0 ), stor = stor
el

= Ku + 4G / 3( ) / K + 4G / 3( ) / BKu , 

where Ku = K / (1 B)  is the 

undrained bulk modulus. 
During plastic deformation, 

stor = stor
pl  is a plastic 

storage coefficient for one-
dimensional straining that 
reflects a compressibility 
increase with yielding. We see 
from (X.1–2b) that during 
plastic loading the components 
depend not only on the elastic-
plastic material parameters, but 
also on the scaled deviatoric 
stress components. For plane 
conditions ( sxz = syz = 0 ) and 

szz = 0  ( sxx = syy ), 

= sxx
2

+ sxy
2 . Deviatoric stress 

states can then be characterized 
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Figure 2: Plot of factor of increase in storage coefficients 
(compressibilities) with onset of ideally plastic ( h = 0 ) yielding for 
compacting sediment (dashed) and dilating rock (solid) over a range 
of stress states for which szz = 0 , sxy / = sin , and 

sxx / = syy / = cos . 
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by an angle  ( sxx = syy = cos , sxy = sin ), and the expression for stor
pl  is 

reduced to a dependence on  and material parameters. Considering poro-elastic-plastic 

parameters representative of a low-porosity rock (e.g., Rudnicki and Rice 1975, Rice and 
Cleary 1976), for which yielding will occur on the dilative side of the yield surface 
( μ > > 0 ) for most stress states, the storage may increase threefold (Figure 2). For 

sediment with pore fluid and component particles much stiffer than the matrix as a whole 
(i.e., = B = 1 ) yielding on the compacting side of the yield surface (right side of Figure 
1), we find the plastic storage may increase sixfold.  
 
Setting dm = 0  in (X.9) defines the undrained pore pressure increment dpu  adjacent to the 

slip surface. (X.9) can be rewritten dm / = stord p pu( )  and (X.5) reduces to  

 
k

stor f

2 p

y2
=

t
p pu( )  (X.10) 

In the poroelastic case, dpu = [2G(d xx + d zz ) + d yy ]B(1+ u ) / 3(1 u )  where the 

increments in these stresses and strains can be considered explicitly as functions of time 
(i.e, within the boundary layer of the disturbed region there is no y-dependence of these 
increments, which are determined by the coupling to the bulk). Consequently, (X.10) can be 
rewritten such that the pressure difference from the undrained value satisfies 

 hy

2

y2
p pu( ) =

t
p pu( )   (X.11) 

where k / stor
el  is the hydraulic diffusivity hy . Keeping fluid flux and pore pressures 

continuous across the slip surface, the pore pressure across the surface can be determined. 
Rudnicki and Rice (2006) found an analytical solution for the surface pressure based on the 
undrained pressures and hydraulic properties above (+) and below (–) the surface 

 dps =
+dpu

+
+ dpu

±
=

k stor
el( )

±

k stor
el( ) + k stor

el( )
+

  (X.12) 

 
In mode-II shear rupture, one side of the ruptured surface undergoes compression 
(pressurization) and the other extension (suction). The influence of each side on the surface 
pressure is determined by the hydraulic property contrast in the weighting (X.12). Dunham 
and Rice (2008) modeled plane-strain bilateral dynamic ruptures with the above solution 
and found preferences in rupture direction for hydraulic property contrasts thought to be 
typical of faults. 
 
However, this solution breaks down once the material begins to yield. Most notable is the 
expected change in permeability with plastic deformation. For some fine-grained sediment, 
moderate changes in void ratio (0.1–0.2) can produce 1–2 order of magnitude changes in 
permeability (Lambe and Whitman 1969). For low-porosity rock, monitoring of 
permeability and inelastic deformation during triaxial tests of intact granodiorite and granite 
shows 1–2 orders of magnitude increases in permeability for axial inelastic strains of the 
order 0.1% (e.g., Mitchell and Faulkner 2008). This effect on its own introduces a time-
dependence to the hydraulic diffusivity not accounted for in (X.12). More subtle effects 
may result when considering changes in pore pressure across the slip surface. One such 
effect may be that these changes result in some slip surface adjacent material moving away 
from yield (i.e., some material within each boundary layer deforms plastically, and some 



 
Final submission, 14 April 2009, for publication in Proceedings,  

4th International Symposium on Submarine Mass Movements and Their Consequences, 
Austin, TX, 8-11 November 2009  

 

  6

elastically). An even more subtle effect with plastic deformation is the effect that the 
changes in pressure have in determining deviatoric stress components. The poroelastic 
expression for dpu  could explicitly be written as a function of time  (i.e., no y-dependence) 

and as a result the diffusion equation could be reached. This is generally not the case during 
plastic deformation. In the expression for dpu  there is a dependence on the components of 

s / , which will vary with the changes in pressure across the slip surface introducing a y-
dependence of dpu .  

 
Solving for the pore pressure at the slip surface requires addressing these deviations from 
the poroelastic diffusion equation. However, such a solution is nontrivial and we seek to 
make it more tractable. One such simplification is to assume that permeability changes are 
uniform within each boundary layer. Consistent with this is to neglect switching between 
elastic or plastic deformation within each boundary layer (i.e., the boundary layer 
undergoes either elastic or plastic deformation). Lastly, we neglect surface-normal 

variations in s /  such that dpu  and stor
pl  are determined by the coupled stress 

components (i.e., depend explicitly on time alone). With these assumptions, (X.10) 
becomes  

 hy
pl (t)

2

y2
p pu( ) =

t
p pu( )  (X.13) 

where hy
pl (t) = k(t) / stor

pl (t)  is an elastic-plastic diffusivity.  

3. Finite element model of a dynamic subsurface rupture  

We use the finite element method (with ABAQUS/Explicit) to examine the dynamic 
propagation of a subsurface shear rupture. Dynamic rupture propagation (i.e., where inertial 
effects are in the equation of motion and shear rupture speeds are of the order of the shear 
wave speed cs ), while not typically considered for slope stability, is actively investigated 

in the earthquake rupture community. We use such an approach here to gain insights into 
influential processes at the rupture front. The treatment of the model domain is similar to 
that described in Templeton and Rice (2008) and Viesca et al. (2008), who examined 
rupture in an unbounded medium. 4-noded plane-strain, reduced-integration elements 
compose the bulk and a predefined split-node interface represents a likely failure plane. The 
surface corresponds to the slope surface, and absorbing elements (“infinite elements” in 
ABAQUS) are applied downslope and upslope, and at a slope-perpendicular depth to 
simulate infinite slope conditions and minimize reflections other than from the free surface. 
 
The shear strength  at the slip surface is effective-stress dependent, = f = f ( ps )  

where the scalar total and effective surface-normal stresses (  and ) are positive in 
compression. The friction at the slip surface follows a slip-weakening description and drops 
from static fs  to dynamic fd  linearly over a characteristic slip Dc : 

fsw = fs ( fs fd )min{ ,Dc} / Dc . In addition to the depth of the slip surface H , the 

friction law sets a second model length scale proportional to 
 
GDc / o ( fs fd ) R . 

Rupture is nucleated by the Andrews (1985) forced expansion of slip as described by 
Dunham and Rice (2008), fe(x, t) = max fd + A x vet( ), fd{ }  where 

 
A = ( fs fd ) / R  

and ve = 0.144cs . The imposed friction coefficient is f = min fsw , fe{ }  such that the 

friction coefficient is determined by fsw  beyond nucleation. Furthermore, the slip-surface 
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strength is time-regularized to follow d / dt = [ f ( p)] / t  where t  is the 

associated timescale, here small in comparison to a physical slip-surface timescale 
 
R / cs .  

 
The initial state of stress is uniform, consistent with the components of stress of a material 
element in a submerged infinite slope at a depth H  (consistent shear and normal tractions 
are applied at the surface to maintain the initial state). A nonuniform stress state of depth-
dependent stresses would not affect slope-parallel rupture if the surroundings deform 
elastically. The material away from the slip surface may deform elastically or elastic-
plastically. The material yield strength model is based on a heavily overconsolidated clay 
assuming changes of stress occur in the dilative region of the yield surface where strength is 
approximated by a linear dependence on effective pressure (i.e., constant μ) and neglecting 
drained cohesion (i.e., b = 0 ). Under dynamic rupture the rapid deformation leaves little 
time for fluid flux and undrained conditions are assumed away from the surface. To 
calculate the pore pressure change on the surface, in the elastic regime we use (X.12), and 
during elastic-plastic deformation (localized at the rupture tip), we approximate the surface 

pressure with a similar weighting, replacing stor
el  with stor

pl  given at the onset of yielding 

and neglect changes in permeability. We calculate the undrained pore pressure increment 
used in that expression as that resulting from (X.10) with dm = 0 . Near surface (disturbed 
region) material parameters are consistent with far-field parameters, except for a twofold 
reduction of the shear modulus near the slip surface. Model poroelastic parameters and 
stress state are summarized in the caption of Figure 3. 
 
The effects of the slope surface on the slip surface become significant when the lengths 

become comparable. For  H / R  the solution approaches that of a crack in an 

unbounded medium under uniform initial loading, the case typically considered in 

earthquake source physics. In that limit, there is no effective normal stress change and no 

preferred rupture direction for a poroelastic medium when there is no contrast in material 

properties across the surface. For the poroelastic case when H  and  R  are comparable, 

total normal stress changes on the fault induce corresponding pore pressure changes and the 
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Figure 3: a) Schematic of portion of model domain (actual downdip length  100R ), initial stresses, and subsequent 
behavior. b) Snapshots of effective normal stress along the slip surface at intervals of 3.75

 
R / cs for a subsurface 

rupture at a depth  H = 1.5R  in a saturated poroelastic body. Rupture shows preferred downslope propagation and 
significant normal stress changes. Model initial stress state is defined as yy

o
= ( b w )H cos , 

xy
o

= ( b w )H sin , xx
o

= Ko yy
o , and zz

o
= ( xx

o
+ yy

o ) / 2 , where b = 1.75 w , = 15.75° , and 

Ko = 1 . Surface frictional parameters are fp = 0.45 , fr = 0.2 , and 
 
t* = 0.015R / cs . Bulk poroelastic 

parameters are G = 600 yy
o , = 0.35 , u = 0.483 , and B = 0.94 . 
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net effective stress change induces a downslope preference for rupture (Figure 3b). Here, 

rupture propagation is below the Rayleigh wave speed cr  (for u = 0.483 , cr 0.95cs ) 

until about the last time step plotted in Figure 3b where the rupture begins a transition to 

rupture propagation beyond the shear wave speed (so-called supershear rupture), first in the 

downslope direction and shortly followed by a transition in the upslope direction (not 

shown). These transitions are remarkable since in an unbounded elastic medium this would 

normally occur for initial slip-surface shear stress states satisfying 

 
r = ( xy

o / yy
o fr ) / ( fp fr ) 0.36  (Andrews 1976) and here r = 0.32  (note 

r = 1 / (1+ S)  where S  is a similar measure commonly used in earthquake rupture studies).  

 
With the introduction of plasticity, we find the preference for downslope rupture 
propagation is enhanced when pressure changes at the slip surface are included compared to 
when they are not. For initial simplicity, we maintain the conditions as in Figure 3 and take 
μ = 0.42,  = 0.3, and b = 0 . Neglecting surface pore pressure changes (Figure 4a) results 

in a preference to upslope rupture, which reaches supershear propagation speeds first, while 
the downslope rupture continues at subshear speeds. In the case considering surface pore 
pressure change (Figure 4b) there is longer delay to the supershear transition and a slight 
downslope preference with an initial transition to supershear occurring in the downslope 
direction, followed shortly by an upslope transition. 

4. Conclusions 

We considered a slip surface within a saturated, porous elastic-plastic medium and derived 
an approximate equation governing the pore pressure around that surface. That equation 
takes the form of a diffusion equation with a plastic hydraulic diffusivity, which, in addition 
to an evolving permeability, also includes a plastic storage coefficient. The storage 
coefficient may be several times larger than the original elastic storage, which decreases the 
diffusivity for fixed permeability. We applied this consideration to the dynamic propagation 
of a slope-parallel subsurface shear rupture. We found that considerable surface effects, 
most notably normal stress changes, provide a downslope directionality.  
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