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[1] We extend a model of a two-dimensional self-healing slip pulse, propagating
dynamically in steady state with slip-weakening failure criterion, to the supershear regime
in order to study the off-fault stressing induced by such a slip pulse and investigate
features unique to the supershear range. Specifically, we show that there exists a
nonattenuating stress field behind the Mach front that radiates high stresses arbitrarily far
from the fault (practically this would be limited to distances comparable to the depth of the
seismogenic zone), thus being capable of creating fresh damage or inducing Coulomb
failure in known structures at large distances away from the main fault. We allow for both
strike-slip and dip-slip failure induced by such a slip pulse. We show that off-fault damage
is controlled by the speed of the slip-pulse, scaled stress drop, and principal stress
orientation of the prestress field. We apply this model to study damage features induced
during the 2001 Kokoxili (Kunlun) event in Tibet, for which it has been suggested
that much of the rupture was supershear. We argue that an interval of simultaneous
induced normal faulting is more likely due to a slip partitioning mechanism suggested
previously than to the special features of supershear rupture. However, those features do
provide an explanation for otherwise anomalous ground cracking at several kilometers
from the main fault. We also make some estimates of fracture energy which, for a given
net slip and dynamic stress drop, is lower than for a sub-Rayleigh slip pulse because part
of the energy fed by the far-field stress is radiated back along the Mach fronts.
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1. Introduction

[2] There have been increased recent reports of super-
shear earthquake ruptures (for which the propagation speed
lies between the shear and the dilatational wave speed of the
surrounding medium). The earliest inference of supershear
was during the 1979 Imperial Valley earthquake for which
Archuleta [1984] noticed that for a better fit of near-fault
strong motion records, the rupture speed had to exceed the
shear wave speed. More recent inferences were made during
the 1999 Izmit and Düzce events [Bouchon et al., 2000,
2001], the 2001 Kokoxili (Kunlun) event [Bouchon and
Vallee, 2003], and the 2002 Denali event [Ellsworth et al.,
2004]. Laboratory verification of supershear rupture was

provided for the first time by Rosakis et al. [1999].
However, the theoretical work on these ruptures dates back
to the early 1970s when Burridge [1973] studied the growth
of a self-similar mode-II crack with a critical stress fracture
criterion. His work suggested a possible mechanism for the
transition of rupture from sub-Rayleigh to supershear
regime by formation of daughter cracks ahead of the main
crack and their subsequent coalescence. Andrews [1976,
1985] subsequently confirmed this in his numerical simu-
lations with a linear slip-weakening failure criterion.
Andrews [1976] also showed that for a sufficiently low
seismic S ratio [= (syx

0 � tr)/(tp � syx
0 ) where syx

0 , tp, and tr
are the initial shear stress, peak failure, and residual failure
strengths of the medium, respectively], supershear transition
of rupture may occur after a propagation distance which
scales with the size of the nucleation zone for that syx

0 .
Burridge et al. [1979] showed that supershear ruptures
whose speed were less than

ffiffiffi
2

p
cs (cs being the shear wave

speed of the medium), the Eshelby speed [Eshelby, 1949] at
which the shear wave contribution (also the Mach front)
vanishes, had features suggesting that steady propagation
would be unstable, although no complete stability analysis
has been done of a steady state rupture. However, the small
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set of supershear earthquakes, laboratory, and numerical
studies do seem to confirm their analysis. Bhat et al. [2004]
did find a numerical solution that appears stable at speed
<
ffiffiffi
2

p
cs, but for a supershear rupture emanating from a fault

branch that is interacting with a sub-Rayleigh crack from
the other arm of the branch.
[3] There remains still, however, much uncertainty about

the observation of supershear ruptures in large crustal earth-
quakes because of the lack of sufficient strong ground motion
records. For example, the 2002 Denali event is hypothesized
to have propagated at supershear speed for about 40 km
[Ellsworth et al., 2004] based on a single ground motion
record. Other claims of supershear rupture propagation
come mainly from trying to fit a rupture speed for inversion
of ground motion data, although, recently, Dunham and
Archuleta [2005] have identified specific features of the near-
fault waveform that indicate supershear rupture and have shown
that a record written near the Denali rupture has that form.
[4] The aim of this work is to point out some unique

features of supershear ruptures that manifest themselves as
patterns of off-fault damage which should be, in favorable
circumstances, directly observed in the field. Earlier work
by Poliakov et al. [2002] and Rice et al. [2005] for steady
sub-Rayleigh rupture speeds has revealed expected off-fault
damage patterns. Those were dependent on rupture speed
and orientation of the prestress field among other parame-
ters, and were shown to have some consistency with field
observations. We thus adopt the extension by Dunham and
Archuleta [2005] of the speed regime of Rice et al.’s solution
for a steady self-healing slip pulse (right-lateral in nature to
be consistent with Poliakov et al., Kame et al. [2003], Bhat et
al. [2004], Rice et al. [2005], and Dunham and Archuleta
[2005]) to the supershear regime, and study the off-fault
damage created during rupture propagation. Dunham and
Archuleta [2005] focused on radiated ground motions.

2. Off-Fault Stress Field due to an Elastodynamic
Slip Pulse

[5] Following the work of Poliakov et al. [2002], and
building on earlier studies of Broberg [1978, 1989, 1999],
Freund [1979], Rice [1980], and Heaton [1990], Rice et al.
[2005] calculated the stress field near an elastodynamic slip
pulse of length L propagating in steady state at the rupture
speed vr (the speed of the pulse) when vr was in the sub-
Rayleigh wave speed regime (the Rayleigh wave speed is the
limiting speed for mode-II ruptures, when the supershear
transition can be avoided). They used a nonsingular slip-
weakening model [Ida, 1972; Palmer and Rice, 1973], in a
special simplified form introduced by Palmer and Rice
[1973] in which stress is assumed to vary linearly with spatial
position. Weakening begins when shear stress on the fault, t,
first reaches a finite peak strength tp on an unslipped part of
the fault. When slip begins, t decreases with slip, approach-
ing tr at large slip, as illustrated in Figure 1; the simplified
model assumes linear degradation of strength with distance
over the slip-weakening zone length R and then a constant
strength value over the remaining part of the pulse. The
decrease of t with slip d is then not linear in d, but is
moderately different from linear, and, in the sub-Rayleigh
range, it is independent of vr for a given R/L and is only
weakly dependent on R/L [Rice et al., 2005]. We show later

here that a similar feature holds for the supershear range, but
with a small dependence on vr. The peak strength tp is
generally assumed to be proportional to the compressive
normal stress acting on the fault and is set equal to �fs(syy).
We take the static friction coefficient fs = 0.6 based on lab
values for typical rocks. The residual strength tr = �fd(syy)
is determined by the dynamic coefficient of friction fd. We
choose fd/fs = tr/tp = 0.2 as in the works of Poliakov et al.
and Rice et al., but note that this number cannot be ascer-
tained precisely. However, some results with appropriately
scaled measures of stress changes (scaled with syx

0 � tr or
tp � tr) do not depend on tr/tp.
[6] The complete solution for the stress and particle

velocity fields associated with the extension of the model
to supershear has been derived in the work by Dunham and
Archuleta [2005].
[7] Let the total stress tensor during the propagation of

the slip-pulse be given by sij = sij
0 +Dsij where sij

0 andDsij
are the tensors of prestress and perturbation of stress,
respectively. The perturbation of the stress field in a
homogeneous, isotropic, elastic medium due to a slip pulse
propagating at supershear speeds (under plane strain con-
ditions in an unbounded solid) must have a form in terms of
a single analytic function S(z) [Freund, 1990], such that the
stress perturbations are given by

Dsxx ¼
1þ â2

s þ 2a2
d

2ad

=SðzdÞ þ
â2
s � 1

2ad

=SðzsÞ

Dsxy ¼ <SðzdÞ þ
ðâ2

s � 1Þ2

4adâs

=SðzsÞ

Dsyy ¼
â2
s � 1

2ad

=½SðzdÞ � SðzsÞ


Dszz ¼ nðDsxx þDsyyÞ ð1Þ

where âs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r =c

2
s � 1

p
; ad =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r =c

2
d

q
; zs = x � vrt +

âs|y| and zd = x � vrt + iad y; i =
ffiffiffiffiffiffiffi
�1

p
; we show results here

at time t = 0. v is the Poisson ratio for the medium and is
chosen later to be 0.25 so that cd =

ffiffiffi
3

p
cs, in our numerical

evaluations. cd and cs are the P (dilatational) and S (shear)
wave speeds of the medium, respectively. S(z), with dif-
ferent arguments, expresses the contributions of the P (dila-
tational) and the S (shear) waves propagating through the
medium; it must be chosen so that the stresses follow the
linear strength degradation boundary conditions like in
Figure 1. <S(z) and =S(z) are the real and imaginary parts
of S(z), respectively, and following the development of
Dunham and Archuleta [2005], S(z) is given by

SðzÞ ¼ � sinðpqÞ
p

z1�qðzþ LÞq �
Z 0

�L

ðtðxÞ � s0
yxÞ

ð�xÞ1�qðx þ LÞqðx � zÞ
dx

ð2Þ

Here

qðvrÞ ¼
1

p
tan�1 4 âsad

â2
s � 1

� �2
" #

ð0 � q � 1=2Þ ð3Þ

tðxÞ ¼ tr þ 1þ x
R

� �
ðtp � trÞ for � R < x < 0

tr for � L < x < �R

	
ð4Þ
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and syx
0 is the initial shear stress (pre-stress) in the medium.

A condition for such a solution to exist, giving bounded
stresses at the leading and trailing edges of the pulse, is that
S(z)! 0 as |z|!1 [Muskhelishvili, 1953]. This results in a
constraint equation on the shear prestress level which is
consistent with a given R/L and vr. That can be determined
as follows. Define

sdrop ¼
s0
yx � tr
tp � tr

ð5Þ

Then

sdrop ¼
I1

I2
ð6Þ

where

I1 ¼
Z 1

0

1� tð Þdt
ðtÞ1�qðL=R� tÞq

; I2 ¼
Z 1

0

dt

ðtÞ1�qð1� tÞq

in nondimensionalized form. Note that since q = q(vr) is
involved, the scaled dynamic stress drop (syx

0 � tr)/(tp � tr)
depends on both R/L and vr/cs (Figure 2), unlike for its sub-
Rayleigh analogue in which case the dependence was only on
R/L [Rice et al., 2005]. Similarly S(z) can be nondimensio-
nalized as follows

SðẑÞ
s0
yx � tr

¼ � sinðpqÞ
p

ẑ1�q ẑþ L

R


 �q

� R

L
I3 �

tp � tr
s0
yx � tr

 !
I4

" #
ð7Þ

where

I3 ¼
Z 1

0

dt

ðtÞ1�q
1� tð Þq t þ ẑ R

L

� � ;
I4 ¼

Z 1

0

ð1� tÞdt
ðtÞ1�q L

R
� t

� �qðt þ ẑÞ
and ẑ ¼ z

R

3. Nondimensional Parameters in the Model

[8] We now have the perturbationDsij from the pre-stress
field, if normalized by the dynamic stress drop syx

0 � tr or
by the strength drop tp � tr, expressed in terms of non-
dimensionalized parameters, namely, z/R, R/L, and vr/cs.
Refer to section 7 for estimates of the physical size of R.
The in-plane prestress is characterized by a nondimensional
parameter sxx

0 /syy
0 which is a proxy for the angle of incli-

nation of the maximum in-plane principal stress (compres-
sive) with the slip-pulse Y measured clockwise from the top
of the slip pulse (Figure 1). The in-plane stress components
are then given by

s0
yy

s0
yx � tr

¼ �1=fs
sdropð1� fd=fsÞ

s0
yx

s0
yx � tr

¼ 1þ fd=fs
sdropð1� fd=fsÞ

ð8Þ

[9] To examine out-of-plane failure modes (reverse or
normal faults), we must also assign a value for szz

0 /syy
0 . We

choose various values for szz
0 lying between, or equal to one

of, the maximum (s3) and minimum (s1) in-plane compres-
sive principal stresses, determined from the initial in-plane
stresses. That is, we consider pre-stress states which are at
least as favorable to strike-slip as to normal or to thrust
failure (refer to Appendix A1).

Figure 2. Variation of scaled dynamic stress drop (syx
0 � tr)/

(tp� tr) with rupture speed vr and R/Lwhere R and L are the
size of the slip-weakening zone and the length of the slip
pulse, respectively. tp and tr are the peak and residual
strengths, respectively, and syx

0 is the initial shear stress.

Figure 1. Supershear slip pulse of length L propagating at
steady state in a two-dimensional homogeneous elastic
medium under plane strain conditions. vr is the rupture speed
limited between the shear wave speed (cs) and the P wave
speed (cp =

ffiffiffi
3

p
cs for Poisson ratio, n = 0.25) of the medium.

The shear strength of the pulse degrades linearly, with
distance, from a peak value tp to a residual value tr over a
distance R, the size of the slip-weakening zone. sij

0 is the
prestress in the medium. s1 and s3 are the minimum and
maximum principal compressive stresses, respectively, of the
prestress field, in the medium, and Y is the angle of
inclination of s3 with the slip pulse [Rice et al., 2005].
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[10] Thus the model has six nondimensional parameters
that need to be declared a priori (if the total stress tensor is
to be evaluated), namely, vr/cs, R/L, fs, fd/fs, sxx

0 /syy
0 , and szz

0 /
syy
0 . On this list, sdrop can replace R/L (Figure 2).

4. Off-Fault Stressing due to a Supershear
Slip Pulse

[11] Supershear ruptures differ from their sub-Rayleigh
analogues in many different ways. The stressing due to the
P and the S waves in the medium is almost decoupled. The
S wavefield stresses the region only behind the Mach front
emanating from the rupture front. In case of a slip pulse, as
studied here, two Mach fronts develop at the leading and the
trailing edge of the slip pulse, and the band between these
fronts defines the S wave stressing region (Figure 1). Within
the band, the stress field is nonattenuating with distance and
is constant (neglecting the modest, attenuating, contribu-
tions of the P wavefield) along lines parallel to the leading
Mach front. The nonattenuation feature in the band is a
unique signature of supershear pulses which could poten-
tially lead to damage at distances far away from the slip
pulse. The three-dimensional nature of the actual problem
presumably restricts this distance to be of the order of the
depth of the seismogenic zone (once the rupture saturates
in depth, the dominant length scale in the problem is related
to this depth and three-dimensional effects can no longer
be ignored), usually around 10–15 km. However, this dis-
tance is still substantial and of the order of a few tens of
kilometers.
[12] Outside the Mach band, the stressing is only due to

the P waves and attenuates with distance. However, as the
rupture speed approaches the upper limiting speed, i.e., the
P wave speed of the surrounding medium, the Lorentz-like
contraction of the stressing region in the fault parallel
direction (with a corresponding extension in the fault
normal direction) also increases significantly leading to a
greater extent of the P wave stressing region in the medium

hosting the slip pulse. Once again, we notice a greater
spatial influence by supershear ruptures compared to sub-
Rayleigh ruptures. Figure 3 showing the perturbation in
Dsxx illustrates the nonattenuating and Lorentz-like con-
traction features of supershear ruptures.
[13] To characterize the off-fault stressing induced by a

supershear slip pulse, we look at the change of Coulomb
stress (CS) on fault structures with assumed orientations,
and also on structures which are optimally oriented for
Coulomb failure based on the total stress tensor. Note that
in calculating dynamic Coulomb stress changes on opti-
mally oriented structures and in the evaluation of off-fault
failure, all the six nondimensional parameters are to be spec-
ified. However, when evaluating the change in the dynamic
Coulomb stress on fault structures with assumed orientations,
only three nondimensional parameters need to be specified
(if stresses are normalized by the dynamic stress drop) a
priori, namely, vr/cs, R/L, and fs.
[14] We evaluate the change in the Coulomb stressDCS =

Dt + fsDs (here Dt > 0 in the direction of possible slip and
Ds > 0 for tension) on faults, both optimally oriented and the
ones with assumed orientations, at each grid point, and only
the region where failure is encouraged is contoured, i.e., the
region where DCS > 0. The optimal orientation was deter-
mined from the final stress state. We also evaluate Coulomb
stress changes for structures slipping out of the plane, i.e.,
normal and reverse faults. Refer to Appendix A for more
details.

5. The 2001Mw 8.1Kokoxili (Kunlun) Earthquake

[15] The Kokoxili surface rupture (Figure 4) has been
studied by a number of workers (Xu et al. [2002], Lin et al.
[2002, 2003], Lasserre et al. [2005], and Klinger et al.
[2006], among others) and mapped in detail using Ikonos
satellite images and supporting fieldwork by Klinger et al.
[2005]. Particular attention was paid to the slip-partitioned
section, which is also discussed by King et al. [2005].

Figure 3. Perturbation in fault parallel stress, Dsxx/(syx
0 � tr) normalized by dynamic stress drop

because of a supershear slip pulse propagating steadily at various rupture speeds vr. All results are for R/L =
0.1 where R and L are the size of the slip-weakening zone and the length of the slip pulse, respectively, and
sdrop = (syx

0 � tr)/(tp � tr).
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Kikuchi and Yamanaka [2001], Lin et al. [2003], Bouchon
and Vallee [2003], Antolik et al. [2004], Tocheport et al.
[2006], and Robinson et al. [2006] did seismological studies
of the rupture process associated with the Kokoxili event.
The field team noted other interesting features, but unfor-
tunately could not study them in detail so that we do not
have careful field documentation. Thus although the obser-
vations may be consistent with rupture propagation at
supershear speeds, the correlation should be treated with
caution.
[16] North of the fault, bridge abutments crossing minor

drainages on the Kunlun Pass to Golmud road were dam-
aged. Since fragile walls and poorly constructed buildings
were undamaged even closer to the fault and such bridges
are not normally sensitive to shaking, a likely explanation is
that the damage resulted from large ground strains probably
in extension. The damage did not appear to be due to
compression, although, without more careful examination,
it cannot be excluded.
[17] South of the fault, on the road between the Kunlun

Pass and Kusai Hu, extensive ground cracking occurred
(Figure 5) oriented at approximately fault parallel as shown

in Figure 4a. The cracking was not mapped since the cracks
were too small to appear on Ikonos images. Direct mapping
of a large region would have required an extended period at
an altitude of nearly 4000 m which was not possible. The
extent of the region of cracking (shown in Figure 4) parallel
to the strike of the fault is likely to be correct, but the extent
perpendicular to it is simply not determined, and it is only
sure that the cracking extended to the horizon on both sides of
the road. Whether or not the map is accurate, the cracks were
substantial distributed features that did not have the character
of primary fault ruptures. The field team did not constrain the
orientation of these features relative to the main Kokoxili
rupture trace. However, the road track shown in Figure 5
is roughly oriented in the west-north-west direction (the
absence of the Kunlunshan mountain range at the horizon
of Figure 5 supports this conclusion). That means that the
cracks are oriented at shallow angles to the main rupture
trace. Our estimates of the far-field stresses (Appendix B)
show that, for a left-lateral supershear rupture as the
Kokoxili event, the region where the cracks were observed
suffered from large fault normal extensional stress perturba-
tion (Dsyy � 5–15 MPa for a 3-MPa dynamic stress drop,

Figure 4. (a) Simplified map of the surface rupture (red line) for the 2002 Kokoxili earthquake (adapted
from Klinger et al. [2005]). Epicenter is indicated by a red triangle so that rupture propagated mainly to
the east. The slip-partitioned section extends from the Hong Shui river to north of the middle of Kusai Hu
(lake). Extensive cracking was observed (with approximate crack orientations drawn by authors) from
east of the Kusai Hu to about halfway to the Kunlun Pass. North of the pass (where the road to Golmud is
outlined in blue) bridge abutments were damaged. The extent of the region of cracking parallel to the
strike of the fault is likely to be correct, but the extent perpendicular to it is simply not determined, and it
is only sure that the cracking extended to the horizon on both sides of the road. (b) Perturbation in fault
normal stress Dsyy/(syx

0 � tr) normalized by dynamic stress drop because of a ‘‘left-lateral’’ supershear
slip pulse propagating steadily at various rupture speeds vr (all other figures in this paper are drawn for
right-lateral slip). The results are for R/L = 0.1 where R and L are the size of the slip-weakening zone and
the length of the slip pulse, respectively, and sdrop = (syx

0 � tr)/(tp � tr).
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on the pulse, consistent with the average stress drop inferred
by Rice et al. [2005] for other large, sub-Rayleigh ruptures)
leading to the formation of tensile cracks oriented roughly
parallel to the main rupture trace [Figure 4b].
[18] Because there is only the limited constraint men-

tioned of the cracking direction, it is instructive to examine
other possibilities. If these extensional features were ori-
ented at some near-perpendicular angle to the main rupture
trace, then this could mean that the extensional features
observed were created by the unloading phase following the
traversal of a large compressional loading pulse. For such
orientation, it would be possible that the brittle near-surface
material (frozen soil sediments) could yield in compaction
when the Mach front traversed through the material, and
then unloaded as tensile cracks when the compressional
strain was removed in the wake of the Mach front. Our
estimates of far-field stresses (see Appendix B) show that at
Kunlun rupture speeds, the fault parallel stress perturbation
(Dsxx) is compressional and quite large (�5–15 MPa) for a
3-MPa dynamic stress drop on the pulse [Figures 3 and 6].
Thus there is a plausible mechanism for any angle of the
tensile cracks with respect to the main fault trace, except for
angles in the vicinity of ±45�, in which case the normal
stress on these features (whether tensile or compressive) is
small in magnitude.
[19] We also checked for the possibility of normal and thrust

structures, striking perpendicular to the slip pulse, being
activated because of the supershear slip pulse. Figure 7 shows
the change in the dynamic Coulomb stress on such structures.

Note that the southern side of Kunlun (left lateral) is the y > 0
domain in our model (right lateral). (Also, in the interpreta-
tion for left-lateral faulting, in our figures, we are not looking
down onto Earth’s surface from space, but rather up to the

Figure 6. Far-field perturbation in fault parallel stress
Dsxx as a function of rupture velocity calculated using the
maximum slip velocities at the corresponding rupture veloc-
ities and for different values of R/L. We assume dynamic
stress drop to be 3 MPa, shear modulus to be 30 GPa, and
S-wave speed of 3 km/s in these calculations.

Figure 5. Cracks along the road from Kusai Hai to the Kunlun pass. At this point, the road is several
kilometers from the fault. The cracks were not mapped and their orientation was not specifically
measured, but was close to the orientation shown in Figure 4. The cracking is consistent either with
extension or with compression and inelastic yielding followed by tensional failure when the compression
was relaxed.
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surface from the interior.) The figure clearly shows that thrust
faulting structures (striking perpendicular to the slip pulse)
could be activated in the southern side of Kunlun at large
distances. In fact, the region of highest positive change in the
dynamic Coulomb stress lies along the leading Mach front
which extends to distances comparable to the seismogenic
depths in our two-dimensional model.
[20] At sub-Rayleigh speeds (0.7–0.9cs) at a distance of

5 km (using Rice et al.’s [2005] estimates of R0* (size of the
slip-weakening zone for a static semi-infinite crack), an
average value of 30 m used here, and factoring in the
Lorentz-like contraction of R, this would correspond to
approximately 250–1000R), the stresses are quite negligi-
ble, at around 0.1% of dynamic stress drop. Thus a sub-
Rayleigh rupture could not have created features discussed
above.
[21] Klinger et al. [2005] have mapped in detail that a

normal fault strand, about 70 km long, striking parallel to
the Kunlun fault at a distance of approximately 1–2.5 km to

the north of Kunlun slipped during the 2001 event (see the
slip-partitioned section in Figure 4). The rupture speed is
constrained by the inversion studies of Bouchon and Vallee
[2003] to be between 1.5 and 1.6cs. King et al. [2005] have
related the activation of this normal strand during the event
to slip partitioning at depth where the normal and strike-slip
structures are connected. We look for direct Coulomb stress
changes on the normal fault strand due to a supershear
rupture on an adjacent fault to see if supershear ruptures
could activate such features and possibly provide a com-
plementary mechanism. Figure 8 shows this change in
Coulomb stress for normal faulting structures striking
parallel to the main slip pulse and dipping at 60�. Since
Kunlun is a left-laterally slipping fault and our calculations
are for a slip pulse slipping right laterally, the northern side
of Kunlun represents y < 0 domain in our figure (looking
toward the Earth’s surface from beneath). Normal faulting,
in the y < 0 domain, is discouraged (negative change in
Coulomb stress) in the nonattenuating part of the field when

Figure 7. Contours of positive change in Coulomb stress (scaled by dynamic stress drop), due to a
supershear rupture, on normal and thrust faults striking perpendicular to the slip pulse and dipping at 60�
and 30�, respectively. Open circle represents normal faults and shaded circle represents thrust faults with
their strike shown by the bisecting line.
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a supershear slip pulse propagates on the main fault at
speeds like those inferred, vr >

ffiffiffi
2

p
cs.

[22] Though normal faulting is favored in the attenuating
part of the stress field (corresponding to the P wavefield) at
higher speeds, the extent of this field, corresponding to 20%
of dynamic stress drop, is only up to 200–300 m (taking
R0* = 30 m and referring to Figure 15). There is a positive
change at speeds vr <

ffiffiffi
2

p
cs, but these speeds, especially in

the range 1.2–1.3cs at which the effects become numeri-
cally significant, are thought unlikely.
[23] Since Coulomb stress changes are significant at short

distances for all rupture velocities considered here, a super-
shear slip pulse might have nucleated the normal faulting
event at, or near, its junction with the strike-slip strand.
[24] We note that the above-mentioned mechanism of

nucleating normal faulting event is, however, not unique
to the supershear regime as discussed below. Similar calcu-
lation in the sub-Rayleigh speed regime shows that the

positive change in the Coulomb stress is quite low (around
1% of the dynamic stress drop) at a distance of about 20R
from the main fault. Using the data of Rice et al. [2005] on
R0* and factoring in the Lorentz-like contraction of R, the
above distance would be roughly between 100 and 400 m.
[25] Thus it seems most unlikely that a sub-Rayleigh

rupture could have activated the normal fault structure.
We thus find that at the rupture speeds for the Kunlun
event, normal fault activation by positive changes in
Coulomb stress on the same is unlikely to happen, and no
viable alternative is provided to the hypothesis that the
normal faulting resulted from slip partitioning at depth
[King et al., 2005].
[26] The value of Y [defined earlier (Figure 1) and

bearing in mind that the fault is left-lateral] about 200 km
to the east of the Kunlun-Xidatan junction was estimated to
be between 30� and 45� from orientations of active faults in
the region. It was noted for Denali fault in Alaska, which

Figure 8. Contours of positive change in Coulomb stress (scaled by dynamic stress drop), due to a
supershear rupture, on normal faults striking parallel to the slip pulse and dipping at 60�. Open circle
represents normal faults with their strike shown by the bisecting line.
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has similar tectonic features as Kunlun, by Ratchkovski
[2003] that the orientation of the maximum principal stress
rotated about the normal to the strike as one traversed along
the strike of the fault. This might be the case with Kokoxili,
but no similar stress direction estimate exists for the region
to the east as of now. The orientation of the cracks and the
existence of both normal and strike-slip structures gives us
an additional constraint on Y. First, if the cracks were
created by the unloading phase following the traversal of
a large compressional loading pulse, then the orientation of
the cracks might give us some constraint on the direction
of the maximum in-plane compressive stress Y. The average
orientation of the cracks seem to be between 50� and 55�
(no precise measurements were made in the field) with
respect to the fault, and these features are expected to form

perpendicular to the maximum in-plane compressive stress
direction, provided that the stress perturbation added to that
compression. This suggests that Y should be roughly
between 35� and 40�. The simultaneous existence of normal
and strike-slip faulting, if interpreted (too strictly) to mean
that the t/s were the same on both the structures, that szz, the
maximum principal compressive stress, and the remaining
principal stresses be compressive and not greater than szz,
puts Y in the range of 16� to 27� (for t/s between 0.3 and
0.6). The direction YDs of the principal compression in the
perturbation far field lies between 0� and 10�when vr >

ffiffiffi
2

p
cs,

specifically between 3� and 6� when 1.5cs < vr < 1.6 cs. In
fact, in the far field, YDs = 0.5 tan�1(�cot 2b) where sin b =
cs/vr. For the far-field compressive stress along the principal
direction to become yet more compressive, we must have Y

Figure 9. Effect of rupture velocity on positive Coulomb stress changes (maximum of the two on
optimally oriented structures) induced by an intersonic slip pulse on optimally oriented structures. Here
Y = 45� and sdrop = (syx

0 � tr)/(tp � tr). szz
0 is chosen such that the prestress field favors pure strike-slip

faulting. Dumbbell-shaped lines represent optimal right-lateral strike-slip structures, and simple lines
represent left-lateral strike-slip structures.

B06301 BHAT ET AL.: OFF-FAULT DAMAGE PATTERNS DUE TO SUPERSHEAR RUPTURES

9 of 19

B06301



�YDs < p/4 which implies thatY < p/4� 0.5 tan�1(cot 2b) =
39� to 42�when 1.5cs < vr < 1.6 cs. Thus the above constraints
on prestress direction make it plausible that stresses in the far
field caused the ground cracking.

6. Effect of Various Model Parameters on the
Change in Dynamic Coulomb Stress

[27] Since the perturbation in the elastic field due to
S-wave radiation from a supershear slip pulse extends to
infinity in our two-dimensional model (practically this would
be limited to the depth of the seismogenic zone), we expect
significant effects at larger distances from the supershear slip
pulse than its sub-Rayleigh analogue. Below we will explore
the influence of various nondimensional model parameters,
outlined earlier, on off-fault damage. This is done generically

without specific application to the Kokoxili event. All the
figures have the maximum positive change in Coulomb
stress, due to a supershear pulse, contoured for an optimally
oriented structure at each grid point.

6.1. Effects of vr and R/L

[28] The effects of rupture velocity and R/L on the off-
fault stress field (for optimally oriented structures) are
shown in Figures 9 and 10. These results were obtained
for sxx

0 /syy
0 = 1.0 (Y = 450), R/L = 0.1, and szz

0 chosen
such that prestress favors strike-slip faulting, i.e., szz

0 = 0.5
(s1 + s3). With increasing rupture velocity and decreasing
R/L, the off-fault stressing, in a medium hosting a super-
shear slip pulse, increases. Both cases show significant far-
field effects on the extensional side of the fault and
increasing near field effects (outside the Mach front) with

Figure 10. Effect of the size of the slip-weakening zone relative (R) to the length of the slip pulse (L) on
Coulomb stress changes (maximum of the two on optimally oriented structures) induced by an intersonic
slip pulse on optimally oriented structures. Here Y = 45�. szz

0 is chosen such that the prestress field favors
pure strike-slip faulting. Refer to Figure 7 for explanation of symbols.
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increasing rupture velocity. Increasing R/L results in a
reduction in the stress concentration ahead of the rupture
tip resulting in reduced off-fault stressing.

6.2. Effect of Y
6.2.1. Prestress Favors Pure Strike-Slip Faulting
[szz

0 = 0.5(s1 + s3)]
[29] We consider two different sxx

0 /syy
0 ratios, 2.0 and 0.8,

for whichY = 10�–11� and 58�–59�, respectively. The slight
variation in Y is due to the fact that sxy

0 varies with rupture
velocity. We consider the effects of the above parameters for
vr = 1.3, 1.5, and 1.6cs. As seen in Figure 11, switching from
low value of Y to a higher value results in the shift of the

domain of positive Coulomb stress change from mainly on
the compressional side to mainly on the extensional side.
6.2.2. Prestress Equally Favors Both Thrust and
Strike-Slip Faulting (szz

0 = s1)
[30] As in the previous subsection, the regionwhere there is a

positive change in Coulomb stress switches from being pre-
dominantly on the compressional side to the extensional side as
Y is increased. The region of maximum increase Coulomb
stress change also increases with rupture velocity (Figure 12).
6.2.3. Prestress Equally Favors Both Normal and
Strike-Slip Faulting (szz

0 = s3)
[31] Referring to Figure 13, we see that the same general

features outlined earlier stand out. The main difference

Figure 11. Effect of Y on positive Coulomb stress changes (maximum of the two on optimally oriented
structures) induced by an intersonic slip pulse on optimally oriented structures. szz

0 is chosen such that the
prestress field favors pure strike-slip faulting. Refer to Figures 6 and 7 for explanation of symbols.
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between the three cases discussed is the nature of faulting
which follows again the choice of prestress parameters.

7. Energy Balance and Estimates

[32] As explained in the work of Dunham and Archuleta
[2005], the proper energy balance for a supershear slip pulse
is given by syx

0 d = trd + Gfrac + Grad, where syx
0 is the far-

field shear stress, tr is the residual strength of the fault, and
d is the locked-in slip left in the wake of the slip pulse. Here
trd is the dissipation at the residual strength level, Gfrac is
the dissipation at stresses excess of the residual which
defines the fracture energy, and Grad is the energy flow
away from the slip pulse associated with the S waves.

[33] The locked-in slip d is given by the expression,

d
R
¼ 1

vr

Z L=R

0

V ðxÞdx ð9Þ

where V is the slip velocity distribution which depends on
R/L and vr/cs and is given by V(x) = �2vr[(acirc;s

2 + 1)/
4mad]=S(x) when approaching the fault from y > 0 and x
denotes x/R. Gfrac is given by

mGfrac

ðtp � trÞ2R
¼
Z 1

0

V*ðxÞð1� xÞdx ð10Þ

where V*(x) = mV(x)/[(tp � tr)vr] = �2{(acirc;s
2 + 1)/

[4ad(tp � tr)]}=S(x). Grad is then evaluated from the

Figure 12. Same as Figure 11 except szz
0 is chosen such that the prestress field favors equally both

strike-slip and thrust faulting. Refer to Figures 6 and 7 for explanation of symbols.
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energy balance equation. The energy flux associated with
Grad extends all the way to infinity and vanishes when the
rupture velocity is

ffiffiffi
2

p
cs. We nondimensionalize energy in

our model, following Rice et al. [2005], with seismically
observable parameters, as Ĝ = pLG/md2 = F(vr/cs, R/L)
where m is the shear modulus of the medium hosting the slip
pulse. The nondimensional function F cannot be reduced to
a simple analytical expression, as in the sub-Rayleigh case,
but has to be numerically determined. Also, unlike the sub-
Rayleigh case, the dependence of F on rupture speed and R/L
is no longer separable. Figure 14 shows the variation of Gfrac

and Grad with rupture velocity for a fixed ratio of dynamic
stress drop to strength drop, (syx

0 � tr)/(tp � tr) = 0.3. The
total energy Gfrac + Grad decreases monotonically with

increasing fracture energy. Since this ratio is dependent on
both the rupture speed and the size of the process zone with
respect to the length of the slip pulse, we have to vary R/L
with rupture velocity to obtain the energy values at fixed
stress drop.
[34] One can also use the energy balance equation to

evaluate how the size of the slip-weakening zone R varies
with R/L and vr/cs. We scale this value of R with the size of
the process zone at static limit for a semi-infinite crack R0*

as in the work of Rice et al. [2005] where

R0* ¼ 9p
16ð1� nÞ

mGfrac

ðtp � trÞ2
ð11Þ

Figure 13. Same as Figure 11 except szz
0 is chosen such that the prestress field favors equally both

strike-slip and normal faulting. Refer to Figures 6 and 7 for explanation of symbols.
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Here v is the Poisson ratio of the medium, set at 0.25 in our
model, and Gfrac is the fracture energy release rate. Using
this with equation (11), we get R/R0*.
[35] Figure 15 shows the variation of R/R0* for the com-

plete range of admissible speeds for a dynamic shear crack.
The expression for R/R0* for the sub-Rayleigh range was
obtained from the study of Rice et al. [2005, equation 14].
R/R0* undergoes Lorentz-like contraction in the sub- Ray-
leigh regime, diminishing to zero at the Rayleigh wave
speed cR. The speed range between cR and cs, the S wave
speed, is inadmissible on energetic grounds for a steady
shear crack. Beyond cs, R/R0* monotonically diminishes to
zero again as the rupture speed approaches the P wave
speed. For the supershear speed range inferred from various
earthquakes, between 1.5 and 1.7cs, R/R0* lies between 0.3
and 0.6. Estimates of R0* by Rice et al. [2005], for the event
set of Heaton [1990], vary between 1.3 and 36 m (with an
uncertainty of factor of 2 since this value depended on R/L).
This was obtained under the assumption of high peak
strength and low residual strength implying (tp � tr) �
tp = fs�n where fs = 0.6 and smacr;n is the effective normal
pressure calculated at median depth for each of the earth-
quakes in the set. For low strength drop case, their estimates
of R0* varied between 73 m and 3.3 km.
[36] We evaluate the spatial slip distribution Du(x) on

the fault by numerically integrating the expression for slip
velocity, V = @Du/@t = �vr@Du/@x. This spatial distribu-
tion of slip is then used along with the spatially linear
failure criterion used in our model to determine the slip-
weakening law implied by our model. Figure 16 shows this
slip-weakening behavior. There is little deviation from the
linear slip-weakening law that is often (but somewhat
arbitrarily) assumed in numerical simulations of dynamic
shear ruptures, regardless of the choice of R/L. There is
also some sensitivity to rupture velocity in the slip-weak-
ening curves unlike the sub-Rayleigh case, but that too is
modest.

8. Summary and Conclusions

[37] We have studied here the off-fault stressing induced
by a two-dimensional steady slip pulse propagating at super-
shear speeds in a homogeneous isotropic elastic medium

with a linear strength degradation boundary condition like
in Figure 1. This work is an extension of the model of Rice
et al. [2005] which looked at the sub-Rayleigh speed re-
gime. Unlike its sub-Rayleigh analogue, the dependence on
rupture velocity, as vr/cs, and the relative size of the slip-
weakening zone, as R/L, for the elastic field of a supershear
slip pulse are inseparable.
[38] Because of the supershear nature of the pulse, Mach

fronts develop at the two ends of the slip pulse and, because
our model is two-dimensional and at steady state, the elastic
field within this band of Mach fronts does not attenuate with
distance (practically up to distances comparable to the
seismogenic zone depth) leading to a unique feature of
the supershear slip pulse. We expect significant effects of
the supershear slip pulse to be observed as damage at large
distances. Bernard and Baumont [2005] also show, in their
analytic and numerical model for kinematic ruptures, that
the ground acceleration due to a supershear rupture is
unusually high at distances of the order of few tens of

Figure 14. Scaled fracture energy release rate (Gfrac), energy radiated by S wave (Grad), and the total
energy as a function of rupture speed (vr) for (syx

0 � tr)/(tp � tr) = 0.3.

Figure 15. Variation in the scaled size of the process zone
R/R0* with rupture velocity vr. R0* is the size of the process
zone at static limit for a semi-infinite shear crack. cR, cs,
and cp are the Rayleigh and S- and P-wave speeds of the
medium, respectively.
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kilometers. We observe that this feature is consistent with
extension-like failure features observed a few kilometers
away from the Kunlun fault during the 2001 Kokoxili event,
thus lending support to the suggestion that its rupture speed
was supershear in that region. We used our slip pulse model
to also examine the simultaneous normal faulting observed
during the 2001 Kokoxili event. However, that strand, lying
parallel to the main strike-slip fault on the extensional side,
does not experience positive change in Coulomb stress, so
the specific features of supershear rupture do not provide an
alternative to the slip partitioning explanation of that feature
[King et al., 2005].
[39] We also evaluated the change in Coulomb stress, in

the medium hosting the slip pulse, on optimally oriented
structures allowing for out-of-plane failure too. Failure is
encouraged (DCS > 0) mainly on the extensional side of
the fault and increases in extent with increasing rupture
velocity (vr) and decreasing R/L. Increasing angle of orien-
tation of the maximum in-plane principal compressive
stress (Y) with the slip pulse results in the switching of
the zone of DCS > 0 from the compressional to the
extensional side of the slip pulse.

[40] We also evaluated the radiated seismic energy and
fracture energy due to a supershear slip pulse for a fixed
dynamic stress drop (scaled by the strength drop), (syx

0 � tr)/
(tp � tr) = 0.3, and showed that the total of radiated and
fracture energy decreases monotonically with increasing
rupture velocity. Using those results, we also showed that
the size of the slip-weakening zone decreases monoton-
ically too with increasing rupture velocity in the super-
shear regime. We also showed that our spatially linear
failure criterion deviates very little from the linear slip-
weakening behavior regardless of the choice of R/L.

Appendix A: Determination of Coulomb Stress
(CS) on a Given Plane

[41] Consider a fault plane S lying in a three-dimensional
space (Figure A1). Let x, y, and z form a right-handed
coordinate system where the surface of the Earth is in the
x-y plane and the z axis points vertically upwards from the
Earth’s surface. The strike direction ~s is chosen along
the surface trace of the fault plane such that the dip, defined
below, is �90�. Let ~s make an angle of f with the x axis
(measured positive for counterclockwise rotation about z),
and let g be the dip of the faulting plane, measured positive
for right-handed rotation about the strike direction (i.e., angle
from the Earth’s surface at right of the strike direction to the
fault plane). The positive strike direction is always chosen
such that 0 < g � 90�. Let S+ and S� be the positive and the
negative side of the fault plane, respectively (Figure A1a);
S� is the footwall (or is assigned arbitrarily if g = 90�).

Figure 16. Slip-weakening law implied by our analysis
compared with the linear slip-weakening law for R/L = 0.05
and 1.00.

Figure A1. (a) S� side of the fault plane, taken as the
footwall for the dipping fault, and chosen arbitrarily if the
fault is vertical. f is the angle measured from the x axis to
the surface trace of the fault corresponding with strike
direction ~s, counterclockwise about z. g is the angle from
the x-y plane, at the right of the strike direction, to the fault
plane. s, d and n are the strike, updip, and outward normal
vectors, respectively, to the S� surface. (b) Various angles
between the (s, d, n) and (x, y, z) coordinate systems.
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[42] Let ~n be the unit normal to the fault plane directed
from S� to S+. This will imply that any traction calculated
with respect to this vector represents the action on the S�

plane due to the S+ plane.
[43] Looking at Figure A1b, the z axis component of~n is

cos g. The component of ~n on the x-y plane is then sin g.
Since this component is perpendicular to~s, the strike vector,
the projections of ~n on the x and y axes are sin8sing and
�cos8sing, respectively. Thus

~n ¼ ðsinf sin gÞ̂iþ ð� cosf sin gÞ̂jþ ðcos gÞk̂ ðA1Þ

The unit vector acting along the strike direction is then
given by (Figure A1b)

~s ¼ ðcosfÞ̂iþ ðsinfÞ̂jþ ð0Þk̂ ðA2Þ

Then the vector acting along the updip direction is simply
given by ~d ¼~n�~s which is

~d ¼ ð� sinf cos gÞ̂iþ ðcosf cos gÞ̂jþ ðsin gÞk̂ ðA3Þ

[44] The traction acting on the fault plane is then given by
Ti = sjinj where sij are the components of the stress tensor
(tensile positive) in the original x-y-z coordinate system.
The normal stress on the fault plane is then given by s =
Tini.
[45] The maximum shear stress acting on the plane is

given by tmax =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2s þ t2d

q
where ts (= Tisi) and td (= Tidi)

are the shear stresses acting along the strike and the updip
directions, respectively. Define rake angle (l) as the angle
between the unit slip vector ~x (slip vector d ~u is defined =
~uþ �~u� where ~u is the displacement vector) and ~s mea-
sured positive from the strike direction to that of ~x for
counterclockwise rotation about the ~n direction.
[46] In terms of the rake angle (l), the unit slip vector~x is

given by~x =~scosl + ~dsinl and the shear stress in the slip
direction is given by t = Tixi.
[47] It is then clear that a rake angle of 0 or p would result

in pure left or right lateral faulting, respectively, and a rake
angle of �p/2 or p/2 would result in pure normal or thrust
faulting, respectively.
[48] The CS is now given by CS = t + fss where fs is the

static friction coefficient of the fault plane. t is positive
when slip occurs in the direction of the unit slip vector, and
s is positive when the fault is unclamped.
[49] The above methodology may be used in circum-

stances for which the fault plane is given and the geological
sense of motion along it is known and is assumed to be
active after stress change.

A1. CS on Optimal Mohr-Coulomb Planes

[50] From Mohr-Coulomb failure theory, it is known
that for optimally oriented planes for failure (planes on
which CS is maximum), the unit normals make angles of
b = ± (p/4 + 8/2) (where tan 8 = fs) with the maximum
compressive stress direction, and their line of intersection
aligns with the intermediate principal stress direction. The
slip vectors of the conjugate planes are in the plane
comprising the maximum and minimum compressive
stress directions (Figure A2).

[51] The shear and normal stresses on these planes are
then given by

t ¼ ðs1 � s3Þ
2

sin 2b

s ¼ ðs1 þ s3Þ
2

þ ðs1 � s3Þ
2

cos 2b
ðA4Þ

where s1 � s2 � s3 are the principal stresses and (like s)
are positive if tensile.
[52] Application to plane strain in the x-y plane aligned

with the Earth’s surface
[53] Case 1. s1 = szz (least compressive stress normal to

the surface). This case results in pure thrust faulting, and
both the conjugate planes are thrust faults. The strike of the
two planes are along ±~v2 where ~v2 is the eigenvector
corresponding to the intermediate principal stress s2. The
dip is p/2.
[54] Case 2. s2 = szz. This case results in strike-slip

faulting, and the conjugate planes strike left laterally and
right laterally. The strike of the two planes makes an angle
of ± (p/2) with the maximum compressive stress (s3)
direction. The dip is p/2.
[55] Case 3. s3 = szz (most compressive stress normal to

the surface). This case results in pure normal faulting, and
both the conjugate planes are normal faults. The strike of
the two planes are given by ±~v2 where~v2 is the eigenvector
corresponding to the intermediate principal stress s2. The
dip is p/4 + 8/2.

A2. Determination of the Change in Coulomb Stress
(DCS) due to an Earthquake Rupture

[56] Case when fault plane and candidate direction of slip
is known: Let sij

0 be the initial stress state (in the x-y-z sys-
tem) and Dsij be the perturbation to the stress-field due to
an earthquake rupture. Then DCS is given by DCS = Dt
+ fsDs where Dt and Ds are given by Dt = Dsijnixj and
Ds = Dsijninj. The vectors ~n and~x are defined in the first
section.
[57] Case when fault planes are optimally oriented: We

first begin by determining the conjugate failure planes for
the total stress state, i.e., for si j = sij

0 + Dsij. Let~v1 and~v3
be the eigenvectors associated with the minimum and
maximum principal stresses, respectively, of the total stress
state. The failure plane normals are then obtained by
rotating ~v3 about ~v2 by an angle of ±(p/4� + �8/2). Let ~n1
and~n2 be the outward unit normals to the conjugate planes
and~x1 and~x2 be the unit vectors in the direction of slip on
the s1/2

+ planes, respectively (Figure A2). Then

~x1 ¼~n3 cosðp=4� 8=2Þ þ~n1 sinðp=4� 8=2Þ ðA5Þ

~n1 ¼ �~n3 cos ðp=4þ 8=2Þ þ~n1 sinðp=4þ 8=2Þ ðA6Þ

~x2 ¼~n3 cosðp=4� 8=2Þ �~n1 sinðp=4� 8=2Þ ðA7Þ

~n2 ¼ �~n3 cosðp=4þ 8=2Þ �~n1 sinðp=4þ 8=2Þ ðA8Þ

DCS is then calculated for each of the optimal planes byDCS=
Dt + fsDs where Dt and Ds are given by Dt = Dsijnixj
and Ds = Dsijninj. ni, xi are the components of the unit nor-
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mal and unit slip vectors, respectively, for each of the optimal
planes. The maximum of the two DCS values is then some-
times identified as the plane more likely to slip because of an
earthquake rupture, although we see no firm basis for that.
However, this is not the only way the change in Coulomb stress
on optimal planes can be identified. The different conjugate
fault plane orientations can be determined for stress states both
before (sij

0) and after the rupture (sij), and then the Coulomb
stress changes can be evaluated as DCS = (CS)optimal

s0 + Ds �
(CS)soptimal

0 . Thiswould give a unique value ofDCS regardless
of the optimal plane chosen in each of the stress states. Our
contour plots here use the first method.

Appendix B: Far-Field (Nonattenuating Part of)
Stresses in Band Between Mach Fronts

[58] In their study of a supershear slip pulse, propagating at
steady state in a two-dimensional homogeneous isotropic
medium under plane strain conditions,Dunham and Archuleta
[2005] have shown that the off-fault velocity fields trace out
the exact slip velocity during the passsage of the S wavefront.
This means that a nonattenuating field, caused by the passage

of the Swavefront, is traced out in the medium, through which
the slip pulse passes, and extends, theoretically, to infinity.
Nevertheless, this observation points out that significant
effects of the supershear slip pulse can be observed at large
distances away from it unlike its sub-Rayleigh analogue where
both the P wave and the S wave stress fields attenuate as 1/r
with distance from the source r. In the following section, we re-
express the far-field stress distribution in terms of the slip
velocity distribution on the fault. Let V(x) be the slip rate along
the rupture and Du the slip, i.e.,

V ðxÞ ¼ @ux=@tð Þþ� @ux=@tð Þ�

¼ �vr @ux=@xð Þþ� @ux=@xð Þ�
� �

¼ �2vr @ux=@xð Þþ¼ �2vr�
fault
xx

¼ �2vr
1� n
2m

sfault
xx

� �
¼ � vr â2

s þ 1
� �

= 2madð Þ
� �

=S zsð Þ ðB1Þ

using v� = �0.25 and equation (1). S(zs) is given by equation
(2) in section 2, and zs = x + i0+, the limit as we approach
the fault from y > 0, in order to get the sign of =S(zs)
correct. Solving for =S(zs) and using this in equation (1)
(ignoring the P wave contribution) with zs = x + as|y|, the
far-field stress changes are

Dsfar
xx ¼ �mðv2r � 2c2s ÞV ðzsÞsignðyÞ=v3r

Dsfar
yx ¼ �mðv2r � 2c2s Þ

2
V ðzsÞ=ð2v3r c2s âsÞ

Dsfar
yy ¼ �Dsxx

Dsfar
zz ¼ 0 ðB2Þ

[59] Because V(x) is always positive in our cases, Dsxx
far

andDsyy
far change signs as vr increases past

ffiffiffi
2

p
cs, butDsyx

far is
negative for all vr, except for

ffiffiffi
2

p
cs at which all the Dskl

far

vanish. The expressions predict that when vr >
ffiffiffi
2

p
cs, the sign

of the far-field Dsxx
far is the same as that along the rupture

surface on the corresponding side of the fault, but that
the sign is reversed when vr <

ffiffiffi
2

p
cs. It can also be quite

easily shown that the far-field stress perturbation Dsxx
far =

Figure A2. Optimally oriented conjugate planes (S1 and
S2) for failure.~n1 and~n3 are the eigenvectors corresponding
to the minimum and maximum principal compressive
stresses, respectively. ~n1;~x1, and ~n2;~x2 are the unit normal
and unit slip vectors, respectively, to the conjugate planes.
tan 8 = fs where fs is the coefficient of friction for the planes.

Figure B1. Stresses acting on an element aligned with the Mach fronts and in the Cartesian system.
Dt is the shear stress acting on the element in that orientation and Ds is the normal stress (=0). b is the
inclination of the Mach front with respect to the slip pulse. Dsxy

far and Dsyy
far are the shear and normal

stress in the far field measured with respect to the x-y coordinates. For the Mohr’s circle, we use tensile
positive convention. Note that Dt > 0 when vr <

ffiffiffi
2

p
cs and changes sign at higher speeds crossing zero at

vr =
ffiffiffi
2

p
cs.
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0.75(1�2sin2 b)Dsxx
on-fault, where b is theMach angle, sin b =

cs/vr. Thus at velocities close to
ffiffiffi
2

p
cs, the far-field stress

perturbation is still a significant percentage of the same on the
fault.
[60] We note that an alternative way to derive the ratio of

far-field shear to normal stresses is to employ Mohr’s circle
concepts. We know that for an element of material, in the
medium in which a steady state supershear rupture is
propagating, one of whose faces is aligned with the Mach
front (in y > 0 say), the stress component that jumps in value
as the Mach front is crossed is the shear stress acting on it.
The shear and normal stresses in the Cartesian coordinate
system for this element is then obtained by rotating it about
the center by an angle b. This translates to a rotation in the
Mohr’s circle plane by an angle of 2b. Thus if Dt is the
shear stress acting on the element aligned with the Mach
front, then Dsyy

far = Dtsin(2b) and Dsyx
far = �Dtcos(2b).

Thus Dsyx
far/Dsyy

far = �cot(2b) (Figure B1). Using the
results above, we can now make some estimates on far-
field stress perturbations left in the wake of a supershear
slip pulse. Some assumptions need to be made before
making estimates of the far-field stress values. First, we
shall use the maximum slip velocities obtained from our
model for small (R/L = 0.05) and large (R/L = 1.0) values
of the process zone (R) with respect to the length of the slip
pulse (L) (Figure 6). Slip velocity V in our model is
nondimensionalized as mV/[(syx

0 � tr)cs], where m is the
shear modulus of the medium, (syx

0 � tr) is the dynamic
stress drop, and cs is the shear wave speed of the medium.
We assume that m = 30 GPa, (syx

0 � tr) = 3 MPa, and cs =
3 km/s. This gives us maximum slip velocity values vary-
ing from 0.5 to 10.5 m/s and increasing with increasing
rupture velocity.
[61] Using the above values of slip velocity, one can now

make reasonable estimates of far-field stresses (Figure 6).
This provides some interesting results. First, the perturba-
tion in the shear stress field Dsxy

far is always negative in the
far field as expected earlier. Dsxx

far changes sign from being
extensional (Dsxx

far > 0) to compressional as one crosses theffiffiffi
2

p
cs rupture velocity value. The magnitude of the stress

perturbation is also quite high, varying between �17 and
8 MPa (using the maximum value of slip velocity). Also,
the changes in the far-field stresses seem to be very sensitive
to the rupture velocity. For example, Dsxx

far increases from 1
to 3 MPa as the rupture velocity changes from 1.45cs to
1.5cs. Of course, the slip velocity also changes here as the
rupture velocity changes. Hence it is useful to know the
change in the stress field for fixed value of peak slip
velocity and slightly different values of rupture velocity.
Taking V = 5 m/s as representative of the faster slip
velocities, we get the rough estimates for vr = 1.51cs to
1.61cs (on the compressional side of the fault),

Dsfar
xx ¼ �ð4:0 to 7:0 MPaÞsignðyÞ

Dsfar
yx ¼ �ð0:4 to 1:5 MPaÞ

Dsfar
yy ¼ þð4:0 to 7:0 MPaÞsignðyÞ ðB3Þ

[62] Those are large normal stress changes, 40 bars at
1.51cs, and 70 bars at 1.61cs, especially given that they do
not attenuate with distance until three-dimensional effects

enter the model. For vr = 1.21 to 1.31cs, the normal stress
changes have the same magnitude range but reverse sign
from those above. The estimates are peak stress values;
average stress changes, if Vaverage is about 1 m/s, would be a
fifth as large, but still significant at about 10 bars.
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