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[1] We examine how frictional heating drives the evolution of temperature, strength, and
fracture energy during earthquake slip. For small slip distances, heat and pore fluid are
unable to escape the shearing fault core, and the behavior is well approximated by simple
analytical models that neglect any transport. Following large slip distances, the finite
width of the shear zone is small compared to the thicknesses of the thermal and
hydrological boundary layers, and the fault behavior approaches that predicted for the
idealized case of slip on a plane. To evaluate the range in which the predictions of these
two sets of approximations are valid, we develop a model that describes how frictional
dissipation within a finite shear zone drives heat and mass transport through the
surrounding static gouge. With realistic parameter values and slips greater than a few
centimeters, the subsequent evolution of strength and fracture energy are approximated
well by the planar slip model. However, the temperature evolution is much more sensitive
to the finite shear zone thickness, and the ultimate temperature rise tends to be
intermediate between that predicted for the two simplified cases. We explore the range of
conditions necessary for melting to begin and focus in particular on the potential role of
fault zone damage in facilitating fluid transport and promoting larger temperature
increases. We discuss how the apparent scarcity of exhumed pseudotachylytes places
constraints on some of the more uncertain fault zone parameters.

Citation: Rempel, A. W., and J. R. Rice (2006), Thermal pressurization and onset of melting in fault zones, J. Geophys. Res., 111,

B09314, doi:10.1029/2006JB004314.

1. Introduction

[2] The energy radiated during earthquakes carries im-
mense destructive power. Yet this is only a single component
of the seismic energy balance. Following the high-speed
passage of the rupture front, we expect much of the energy
released during shear to be converted to heat. Such reasoning
prompted early scaling arguments which suggested that the
heat released during earthquakes should often cause large
volumes of the nearby fault rocks to melt [e.g., Jeffreys,
1942; McKenzie and Brune, 1972]. The scarcity of geologic
evidence for widespread frictional melting led Sibson [1973]
to argue that the pressurization of pore fluids housed in the
granular fault gouge could reduce fault strength during
seismic shear, thereby limiting the temperature rise. Noting
the absence of a clear temperature anomaly near the San
Andreas fault [Lachenbruch and Sass, 1980], an observation
now referred to as the ‘‘heat flow paradox,’’ Lachenbruch
[1980] developed a simple model to quantify how thermal
pressurization might operate. Subsequent model develop-
ments [Mase and Smith, 1985, 1987; Andrews, 2002; Rice,

2006; Rice and Cocco, 2006] have further demonstrated that
the relatively large thermal expansion coefficient of water in
comparison to those of the fault gouge solids can lead to
enhanced pore pressures that reduce fault strength during
seismic slip.
[3] Refinements to our understanding of fault zone be-

havior, based on recent field and laboratory results, make it
possible to reassess and better constrain the effects of
thermal pressurization. In particular, the field observations
suggest that the shear zone is much more localized than had
been commonly believed, with most of the slip occurring
within a thin shear zone, typically <1–5 mm thick, which
itself lies within a highly granulated ‘‘ultracataclasite’’ layer
that may be of order 10–100 mm broad [Chester and
Chester, 1998; Lockner et al., 2000; Chester et al., 2004;
Wibberly and Shimamoto, 2003; Sibson, 2003; Noda and
Shimamoto, 2005]. This is comparable in thickness to the
thermal and hydrological boundary layers that characterize
heat and fluid transport during shear. In fact, close exam-
ination of crystallographic preferred orientations within a
millimeter-thick shear zone along the Punchbowl fault point
to much more extreme localization; most of the slip may
actually be confined to a zone with an apparent thickness of
only 0.1–0.3 mm [Chester et al., 2003; Chester and Goldsby,
2003]. As discussed further by Rice [2006], studies of shear
banding in granular media typically find that most defor-
mation is concentrated within layers of order 10–
100 particle diameters in width. Analysis of the Punchbowl
fault ultracataclasite, which hosts the localized shear zone,
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reveals a broad distribution of particle sizes, with approx-
imately 50% by weight smaller than 1 �m in diameter
[Chester et al., 2005], so shear zone thicknesses of order
0.1 mm are consistent with expectations. Wibberley and
Shimamoto [2005] have introduced the assumption that the
entire thickness of the ultracataclastic zone undergoes
seismic shear during earthquakes, thus suggesting much
greater slip zone thicknesses of up to several tens of
millimeters based on observations of gouge from the
Median Tectonic Line (MTL) in Japan. However, their
own report of MTL fault core structures [Wibberley and
Shimamoto, 2003, Figure 11] suggests that concentrated slip
may occur within a much thinner zone, reported to have a
nominal thickness of �3 mm (C. A. Wibberley, private
communication, 2003). The assumption of a wide shear
zone enabled them to use an elementary thermal pressuri-
zation model, with effectively adiabatic and undrained
deformation on the seismic timescale, to infer slip-weakening
distances and fracture energies that are thought to be
representative of large earthquakes. Assumption of a broad
shear zone is not necessary to the result; Rice [2006] and the
present work shows that the earthquake data set for fracture
energies can be fit to predictions of a model involving slip
on a much thinner zone, even slip on a mathematical plane.
It is, nevertheless, presently uncertain whether broad zones
of ultracataclastic gouge, up to several tens of millimeters
width, participate in seismic shear, or whether extreme
localization is the rule even if such localized zones may
have in some cases evaded detection. An expanded theo-
retical discussion of the balances that determine the shear
zone thickness is contained within a manuscript currently in
preparation by J. R. Rice and J. W. Rudnicki (Stability of
spatially uniform, adiabatic, undrained shear of a fault zone,
manuscript in preparation, 2006) [see also Rice et al., 2005];
results, based on present understanding of material param-
eter choices for the ultracataclasite argue for millimeter to
submillimeter scales of shear zone thickness.
[4] Laboratory experiments are beginning to achieve both

high slip rates and long slip distances at confining stresses
that are characteristic of shallow seismogenic depths. One
clear result is the observation that the effective friction
coefficient under these conditions is much lower than that
which is more commonly manifest under less extreme
conditions (e.g., lower slip rates, low confining stress)
[Tsutsumi and Shimamoto, 1997; Tullis and Goldsby,
2003a, 2003b; Prakash, 2004; Prakash and Yuan, 2004;
V. Prakash and F. Yuan, private communication, November
2004]. In some cases weakening is associated with the
formation of silica gels that effectively lubricate the contact
zone [Goldsby and Tullis, 2002; Di Toro et al., 2004;
Roig Silva et al., 2004]. However, this mechanism cannot
explain the weakening observed in friction experiments that
use rocks with low silica contents. Instead, drawing on the
long-standing explanation for high-speed frictional behavior
in metals [e.g., Bowden and Thomas, 1954], Rice [1999]
proposed that localized heating and weakening at asperity
contacts could be responsible. This ‘‘flash-weakening’’
mechanism has since been developed further [Rice, 2006;
N. M. Beeler and T. E. Tullis, Constitutive relationships for
fault strength due to flash heating, submitted to U.S.
Geological Survey Open File Report, 2003] and we make
reference to it in choosing a nominal friction coefficient for

use in the calculations that follow. A few laboratory
studies have focused on the complex changes in frictional
behavior following the onset of bulk melting [Tsutsumi
and Shimamoto, 1997; Hirose and Shimamoto, 2005]. We
note, however, that no experimental configuration has yet
been successful at directly testing the mechanism of
thermal pressurization itself.
[5] Here, we extend the analysis of Rice [2006] to

describe the role of pore fluids in controlling the evolution
of fault strength and temperature during the distributed
shear of a thin, fluid-saturated gouge layer. We begin in
section 2 by describing an elementary kinematic model and
outlining a set of representative parameters that are used to
characterize the behavior of a mature fault zone during
seismic shear. In section 3, we describe how the fault is
expected to behave under two sets of limiting circum-
stances: one that characterizes the evolution at early times,
when the transport of heat and mass have negligible effect,
and one that characterizes late time evolution, when the
shear zone thickness is small in comparison to the thickness
of the thermal and hydrological boundary layers. Numerical
solutions for the evolution of temperature and pore pressure
during distributed shear are presented in section 4. We focus
primarily on the case where shear is uniform in a zone of
prescribed thickness h. We examine how the system evolves
between the two limiting cases discussed in section 3, then
compare how the predictions change when the shear distri-
bution is Gaussian, as proposed by Andrews [2002]. For
both distributed shear models we find that once the slip
achieves distances that characterize moderately large earth-
quakes, the fault strength and fracture energy are both well
represented by the planar slip model. However, the temper-
ature evolution is more sensitive to the effects of the finite
fault width, so we next explore the model predictions to
delineate parameter regimes under which melting can or
cannot occur at a given seismogenic depth. Before concluding,
in section 6 we examine briefly how state-dependent
changes to the physical properties affect the predicted
evolution of temperature and strength.

2. Model Description

[6] We develop a kinematic model for earthquake slip
that is designed to probe the essential balances that define
the characteristics of thermal pressurization. In future work
these will be incorporated within fully dynamic calculations
that include the effect of fault strength on slip rate. We do
not explicitly treat the short-duration dynamics that perturb
conditions as the rupture front propagates past a given point
on the planar fault surface; instead, we view these changes
only as setting the initial conditions from which the mod-
eled state subsequently evolves. We treat the shear zone and
surrounding stationary fault gouge as a fluid-saturated
porous medium and we develop conservation conditions
to describe how the temperature and pore pressure evolve in
response to the mechanical work associated with earthquake
slip. After carrying out the analysis to determine the system
behavior for this idealized case, we discuss several model
extensions that are aimed at assessing the influence of
additional physical interactions, including those that arise
from the state dependence of fault zone properties.
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2.1. Conservation Conditions

[7] Consider a shear zone of thickness h that begins to
undergo slip � at time t = 0 with an imposed overall slip rate
V � d�/dt in the x direction, as shown in Figure 1. The
conservation conditions determine how the pore pressure
and temperature evolve from their initial, uniform values P0

and Tamb, which we designate as the ‘‘reference state’’. The
normal stress �n remains constant over the duration of slip.
Consistent with the level of approximation used in the
current work, in the following the frictional resistance is
assumed to be proportional to the effective stress on the
midplane, so that

� tð Þ ¼ f tð Þ �n � P 0; tð Þ½ �; ð1Þ

where P(y, t) is the pore pressure and f(t) is the coefficient of
friction. The limitations of modeling the shear stress using a
simple Coulomb friction model such as this are discussed in
the appendix of Rice [2006]. The Lagrangian coordinate y
marks positions of the solid gouge particles, measured
perpendicular to the plane of the shear layer, in the reference
state. We assume that all the work associated with shearing
the gouge at rate _g is transformed into sensible heat. This
produces a temperature increase, which is modulated by the
effects of heat flow so that

�c
@T

@t
¼ � @qh

@y
þ � _g ; ð2Þ

where �c is the effective heat capacity per unit volume in
the reference state. The outward flow of heat qh = �K@T/@y
is treated as purely conductive and proportional to the
effective conductivity K. The expenditure of energy
required to create new surfaces as gouge particles break is
not considered here (later, we comment on how to interpret
the results if only a fraction of work is transformed, the rest
appearing, e.g., as surface energy increase by granulation).
[8] We need to specify the shear distribution before

proceeding further. To begin with we assume that the shear
is uniform so that _g = V/h, where we treat V as a constant in

the calculations that follow. Later we discuss how the results
differ if we adopt the Gaussian distribution of shear rate
proposed by Andrews [2002]. Substituting for _g, qh and � ,
and treating the thermal diffusivity �th � K/�c as a constant
for now, we write the temperature evolution in the shear
layer �h/2 
 y 
 h/2 as

_T ¼ �th

@2T

@y2
þ f �n � P 0; tð Þ½ � V

�ch
; ð3Þ

where _T � @T/@t. Heat flowing out of the shear zone is
conducted away so that the temperature for jyj � h/2
satisfies

_T ¼ �0
th

@2T

@y2
: ð4Þ

Here, �0
th is the effective thermal diffusivity of the

stationary gouge (e.g., for jyj � h/2). In the modeling that
follows we focus on the special case where �0

th = �th.
[9] Changes to the fluid mass within the shear zone are

produced by outward advective transfer at mass flux qf to
the surrounding, static gouge. The fluid mass conservation
condition is written as

@

@t
�f n
� �

¼ � @qf
@y

; ð5Þ

where �f is the fluid density, and n is the ratio of the pore
volume to the total volume in the reference state. Darcy’s
law for fluid flow with viscosity 
 through gouge with
permeability k gives qf = �(�f k/
) @P/@y, where @P/@y is
the deviation of the pressure gradient from hydrostatic
equilibrium.
[10] We would like a second relationship between the

evolution of the state variables P and T and their spatial
gradients. To proceed, we substitute Darcy’s law into
equation (5) to write

n
@�f
@t

þ �f
@n

@t
¼ � @

@y

�f k




� �
@P

@y
;

where we have also expanded the derivatives on the left
hand side. Noting that n and �f both depend on temperature
and pressure, we define the associated compressibilities and
expansivities as �n � (1/n)@n/@P, �f � (1/�f)@�f /@P, �n �
(1/n) @n/@T and �f ��(1/�f) @�f /@T [see, e.g., Segall and
Rice, 1995; Rice, 2006]. Using these definitions, we can
write @n/@t = n�n(@P/@t) + n�n(@T/@t), and a similar
expression arises for @�f /@t. Here, we assume that any
inelastic dilatant effects take place during a short transient
interval at the onset of slip and contribute to setting the
initial state from which the system evolves. Substituting
into the equation above and defining the expansion ratio L �
(�f � �n)/(�f + �n) and storage capacity � � n(�f + �n), we
find that for �h/2 
 y 
 h/2, the evolution of pore
pressure is described by

_P � L _T ¼ �hy

@2P

@y2
; ð6Þ

Figure 1. Schematic diagram of the fault zone. A layer of
uniform, water-saturated gouge with thickness h shears at
slip rate V, producing a temperature increase that causes the
pore pressure to rise. The variations in shear zone
conditions and the attendant evolution of fault shear
strength are regulated by heat and fluid transport to the
bounding, stationary gouge.
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where the hydraulic diffusivity �hy � k/(
�) determines the
rate at which fluid diffuses from the shear zone.
[11] The storage capacity � provides a measure for how

changes in state alter the mass of fluid that can be stored
within the porous gouge. Implicit in equation (6) is the
assumption that gradients in the hydraulic diffusivity and
fluid density are small in comparison to lateral variations in
the pressure gradient. Later we will generalize the analysis
to examine how the predicted behavior changes when
gradients in the properties of the gouge and fluid are
accounted for. The physical meaning of the expansion ratio
L is illuminated by considering the case in which there is no
drainage, for example when the permeability is extremely
low. In such circumstances, the right side of equation (6) is
zero and a temperature change DT produces a change in
pore pressure of DP = LDT.
[12] Outside the shear zone, for jyj � h/2, we write

_P � L _T ¼ �0
hy

@2P

@y2
; ð7Þ

where the average hydraulic diffusivity is �0
hy.

[13] To close the problem, the boundary conditions and
initial conditions are as follows. Throughout the model
domain the initial temperature is assumed constant and the
initial pressure distribution hydrostatic so that T(y, 0) = Tamb

and P(y, 0) = P0. In the far field, where heat and mass
transport are negligible, the boundary conditions are T(1, t) =
Tamb and P(1, t) = P0. When dilatancy associated with the
passing rupture front [e.g., Poliakov et al., 2002] acts to
decrease the pore pressure from the prior ambient value,
nonuniform initial and far-field pressure conditions may be
encountered. However, with no firm constraints on such
processes at present, we leave such complications to future
work. Symmetry considerations indicate that there is no heat or
mass flow across the midplane so that along y = 0 we have
@T/@y = 0 = @P/@y. The temperature and fluid pressure
must be continuous across the shear zone boundaries at y =
±h/2. In addition, the conservation of energy and mass,
with the assumed conditions of identical �c and � both
within and outside the shear zone, require (�c�th) @T/@y
and (��hy)@P/@y continuous across the shear zone boundaries.
[14] (Before continuing, we note the following: It has

been suggested that only a fraction of the work done in
shear failure actually shows up as heat, the rest being
converted into surface energy of newly formed gouge frag-
ments, or reformed fragments when partly bonded grains
separate. To interpret the calculations that follow in circum-
stances where only a fraction  
 1 of the internal energy
change is accountable as temperature rise, we could write
the total strength of the fault as � = ftot(�n � P), and define f =
 ftot so that equation (3) remains the correct expression to
calculate the temperature rise. However, the evolution of stress
as a function of slip that we calculate is actually �heating = � 
vs. slip, and the actual stress, and hence also the fracture
energy, would be larger than what we calculate by the fraction
1/ . In the following discussion we assume that  � 1, but
emphasize that the calculations are equally valid when  is
significantly smaller, as long as � and the fracture energy are
rescaled appropriately, and the reported f is viewed to represent
the scaled frictional coefficient as well. Should a value of  

other than unity be preferred, we leave it to the reader to
interpret our results accordingly.)

2.2. Representative Parameters

[15] Many of the results that follow are presented in
dimensionless form so that the model predictions can easily
be assessed for different choices of parameter values. We
note that some of these parameters are less well constrained
than others, and indeed part of the motivation in conducting
this modeling exercise is to provide understanding as to how
different parameter regimes are associated with different
limiting behavior during earthquake slip. For example, the
appearance or absence of pseudotachylytes (the quenched
glasses that are formed from frictionally generated melts)
along a given fault system places limits on the ultimate
temperature rise during seismic slip; the model predictions
can be employed to determine what combinations of physi-
cal parameters enable such temperatures to be achieved. We
also note that some of the model parameters, such as the
permeability to fluid flow, are likely to undergo considerable
natural variability from fault to fault and even along different
sections of the same fault. Our approach here is not designed
to capture the range of this variability, but rather to assign
values that derive from specific measurements of fault zone
properties that are obtained from the published literature.
Insight into the behavior expected from other model scenar-
ios can be obtained by first making the appropriate con-
versions to dimensionless form and viewing the predictions
that follow accordingly.
[16] In Table 1 we summarize the parameter choices that

are used to estimate the key scales that characterize the
model results. Column 2 represents the nominal values,
which are calculated for the ambient pressure and temper-
ature conditions at an assumed centroidal depth of 7 km,
with initially hydrostatic pressure at 70 MPa, and a geo-
thermal gradient of 30�C/km. Recognizing that many of the
properties of the system are sensitive to changes in pressure
and temperature of the magnitude expected during a slip
event, columns 3 and 4 are used to illustrate the extent of
these changes. Column 3 contains the average parameter
values along an assumed pressure and temperature path that
is constructed to approximate how the temperature and
pressure vary between the fault plane and the ambient,
undisturbed gouge beyond the thermal and hydrological
boundary layers. For simplicity here, we follow the same
procedure as used for Table 2 of Rice [2006]. We assume a
linear relationship between pore pressure and temperature
and average over half the pore pressure rise between
hydrostatic and lithostatic, while the temperature increases
from ambient to half its maximum value. Column 4 gives
the minimum and maximum effective parameter values
along the pressure and temperature path that was used for
column 3.
[17] To give a specific illustration, the permeability begins

at an ambient value of k = 0.65 � 10�20 m2. As the pore
pressure increases, the permeability increases so that after a
finite amount of slip, k is higher on the fault plane than it is at
the still reference conditions beyond the thermal and hydro-
logic boundary layers. We use the average pressure [P(0, t) +
P0]/2 and temperature [T(0, t) + Tamb]/2 to calculate an
approximation for the overall permeability in this new state.
The effective permeability so obtained rises to k = 3.38 �
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10�20 m2 when the pore pressure on the fault plane is
lithostatic. The temperature on the fault plane at this point
is at its highest and we approximate its value here using the
ultimate temperature rise predicted using the nominal prop-
erty values, Tmax� 500�C. The range of effective perme-
abilities calculated in this manner is listed in column 4.
Clearly, no single value of permeability is representative of
conditions throughout the changes in state; however, to gain
more intuition for what changes in state are likely to occur,
we take the average of the effective permeabilities over the
range of average pressures and temperatures encountered,
and enter it, k = 1.56 � 10�20 m2, in column 3.
[18] Columns 2–4 represent our best estimates for the

physical properties assuming that the fault walls deform
elastically during rupture. Columns 5–7 represent a scenario
in which the fault zone is severely damaged by the passage
of the rupture front. As in Table 2 of Rice [2006], we
arbitrarily assign an order of magnitude increase to the
laboratory-constrained permeability, and we double the
drained compressibility used to calculate �n, as described
in the appendix of Rice [2006]. We assume the pore thermal
expansivity is equal to the thermal expansivity of the solid
grains themselves for this case. Column 7 again represents
the range of effective values along the assumed average
pressure-temperature path. Note that the parameters given in
the upper third of the table are treated as constants through-
out the simulations that follow so that no range of values is
given in columns 4 and 7. The parameters summarized in
the bottom third of the table are calculated from those
entered above.
[19] As noted earlier, detailed observations of exhumed

faults reveal that the central shear zone during seismic slip is
typically of millimeter or submillimeter scale. There is some
evidence for temporal variations in the shear zone thickness
during a single slip event, but for the current model we take a
constant nominal value of h. For each of the simplified,
limiting cases described in section 3 a different length scale
emerges that characterizes the system evolution; the thickness

h = 0.145 mm was chosen to make these length scales equal
(e.g., L* = �c) for the nominal parameter values so that the
model predictions can be more directly compared. This
thickness is within the range reported by Chester and
Goldsby [2003] for the localized shear zone within a broader
millimeter-scale layer along the Punchbowl fault. We shall
see that the ultimate temperature rise predicted for sufficiently
long slip is actually independent of h, though the amount of
slip required to approach this temperature rise does increase
with h. Later, we explore how the predictions from the
more comprehensive model change over a range of shear
thickness values. Consistent with the degree of approxima-
tion used throughout this work, we assume a constant slip
rate of V = 1 m/s, based on the average results from slip
inversions on seven crustal earthquakes by Heaton [1990].
[20] We adopt a nominal friction coefficient of f = 0.25.

This is much lower than the 0.6–0.8 range characteristic of
low-velocity sliding and described by Byerlee’s law. As
argued by Rice [2006] and consistent with recent rock
physics experiments, the effective friction coefficient during
rapid slip at seismogenic depths is expected to be reduced
considerably by the effects of flash weakening. This is
accounted for in the current models by adopting a constant,
lower value for f.
[21] For the nominal parameter values, the storage capacity

is � � 5.2 � 10�11 Pa�1, the expansion ratio is L
� 0.93 MPa/�C, and the hydraulic diffusivity is �hy �
0.86 mm2/s. Of these derived quantities, the range quoted in
column 4 makes it clear that the hydraulic diffusivity is the
most sensitive to changes in state as the system evolves.
[22] We shall see in section 3 how the system parameters

can be grouped to form the length scales L* and �c, which
are diagnostic of the overall behavior.

3. Limiting Behavior

[23] Before solving the full set of model equations, we
can build considerable insight by examining the limiting

Table 1. Representative Parameter Valuesa

Parameter
Nominal
Value

Average on
Elastic

P � T Path

Range on
Nominal
Path

Damaged
Value
Value

Average on
Damaged
P � T Path

Range on
Damaged

Path

h, mm 0.145 0.145 — 0.145 0.145 —
�c, MPa/�C 2.7 2.7 — 2.7 2.7 —
V, m/s 1.0 1.0 — 1.0 1.0 —
Tamb, �C 210 210 — 210 210 —
�n � P0, MPa 126 126 — 126 126 —
f 0.25 0.25 — 0.25 0.25 —
n 0.036 0.043 0.036–0.052 0.036 0.043 0.036–0.052
�th, mm2/s 0.70 0.66 0.61–0.70 0.70 0.54 0.43–0.70
�f, 10

�3/�C 1.12 1.21 1.12–1.42 1.12 2.30 1.12–3.10
�n, 10

�3/�C �0.22 �0.20 (�0.22)– (�0.17) 0.024 0.024 —
�f, 10

�9/Pa 0.70 0.82 0.70–1.00 0.70 5.01 0.70–7.54
�n, 10

�9/Pa 0.74 0.88 0.74–1.04 2.82 3.35 2.82–3.98

f, 10

�4Pa s 1.47 1.23 1.05–1.47 1.47 0.75 0.55–1.47
k, 10�20 m2 0.65 1.56 0.55–3.38 6.5 15.7 5.5–33.8
�, 10�10/Pa 0.52 0.55 0.52–1.06 1.26 2.97 1.26–5.78
L, MPa/�C 0.93 0.89 0.78–0.93 0.31 0.30 0.13–0.40
�hy, mm2/s 0.86 2.05 0.73–3.05 3.52 6.71 2.99–10.3
L*, mm 1.69 2.94 1.55–4.87 35.4 57.7 24.5–415
�c, mm 1.69 1.82 1.69–2.00 4.24 4.86 3.93–12.1
Tmax 500 620 — 1520 2240 —

aAs in Table 2 of Rice [2006]. Fluid properties are taken from Burnham et al. [1969], Keenan et al. [1978], and Tödheide [1972], gouge properties are
from Lachenbruch [1980], Vosteen and Schellschmidt [2003], Wibberley [2002, also private communication 2003], and Wibberley and Shimamoto [2003].
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behavior of the system under simplified conditions. In
particular, for short slip distances the effects of heat and
mass transport can be neglected, while for large slip
distances, the finite shear zone thickness is expected to
have a negligible effect on the system evolution. We briefly
describe each of these special cases in turn, using the
parameter values summarized in Table 1.

3.1. Short Slip Distances: Negligible Transport

[24] Over short slip distances, the temperature and pore
pressure within the fault zone are nearly spatially uniform
and the transport of heat and fluid can be neglected. The
solutions to equations (3) and (6) for the evolution of
temperature and pore pressure in this adiabatic, undrained
limit can be written as [Lachenbruch, 1980]

T �ð Þ ¼ Tamb þ
�n � P0

L
1� exp � �

�c

� �� �

P �ð Þ ¼ �n � �n � P0ð Þ exp � �

�c

� �
; ð8Þ

where the thermal-weakening distance �c � �ch/(Lf ) and
the slip distance is � = Vt.
[25] The maximum predicted temperature rise at long slip

distances is not sensitive to the width of the shear zone for
this model. It equals (�n � P0)/L � 136�C, for the nominal
parameter values given in column 2 of Table 1. Using the
parameters listed in columns 3, 5, and 6 would lead to
corresponding temperature increases of 142�C, 406�C, and
420�C, respectively. Substituting for the pore pressure in
equation (1), the predicted fault strength decays exponen-
tially so that � = �0exp(��/�c), where �0 = f(�n � P0) is the
initial strength. When there is no fluid transport, the pore
pressure rises to balance the normal stress and the fault

strength goes to zero. The fracture energy is defined as a
function of slip distance as

G �ð Þ ¼
Z �

0

� �̂
� 	

� � �ð Þ
h i

d�̂: ð9Þ

For the present case, since no transport is allowed, all the
energy released during earthquake slip is transformed into
sensible heat. The fracture energy defined by equation (9) is
G = �0�c = �ch (T � Tamb) � ��, which scales with the shear
zone thickness and becomes equivalent to the total energy
released when the final strength tends to zero. The
maximum fracture energy at long slip distances is approxi-
mately 53 kJ/m2 for the nominal parameter values. The
parameters in columns 3, 5, and 6 in Table 1 lead to predicted
maximum fracture energies of 57, 134, and 153 kJ/m2,
respectively. Figure 2a shows the predicted strength and
fracture energy as a function of slip distance for this adiabatic,
undrained limit. Using the nominal parameter values from
Table 1, the thermal-weakening distance is �c � 1.69 mm.

3.2. Long Slip Distances: Negligible Thickness

[26] As a second end-member, we examine the case
where the shear zone has infinitesimal thickness. The shear
acts as a line heat source so that the boundary condition on
the temperature gradient at the mid plane becomes

@T

@y

����
jyj¼0þ

¼ �f �n � P 0; tð Þ½ � V

2�c�0
th

; ð10Þ

where @T/@y is negative for y > 0 and positive for y < 0.
The temperature and pore pressure evolve according to
equations (4) and (7), and the remaining boundary
conditions are unchanged from before. Defining L* =

Figure 2. Dimensionless fault strength (solid) and fracture energy (dashed) as a function of scaled slip
distance �. The fault strength decreases with slip from its initial value �0 = f(�n � P0). The fracture energy
experiences a corresponding increase. (a) Undrained, adiabatic limit, valid for short slip distances. The
slip distance � is scaled by �c � � Ch/(Lf). The fracture energy G is scaled by �0�c. (b) Planar slip model,

valid for long slip distances. The slip distance � is scaled by L* � (2�C/fL)2(
ffiffiffiffiffiffi
�0
th

p
+

ffiffiffiffiffiffiffi
�0
hy

q
)2/V. The

fracture energy G is scaled by �0L*. The nominal parameter values were chosen so that L* = �c �
1.69 mm, and the scales on these graphs are identical for this case.
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(2�c/fL
ffiffiffiffi
V

p
)2(

ffiffiffiffiffiffiffi
�0
hy

q
+

ffiffiffiffiffiffi
�0
th

p
)2, we can write the temperature

and pressure on the midplane as [Rice, 2006]

T �ð Þ ¼ Tamb þ
ffiffiffiffiffiffiffi
�0
hy

q
þ

ffiffiffiffiffiffi
�0
th

q� 	 �n � P0

L
ffiffiffiffiffiffi
�0
th

p 1� exp
�

L*
erfc

ffiffiffiffiffiffi
�

L*

r !
;

P �ð Þ ¼ P0 þ �n � P0ð Þ 1� exp
�

L*
erfc

ffiffiffiffiffiffi
�

L*

r !
: ð11Þ

With prolonged slip the pore pressure tends toward the
normal stress for �� L* and the temperature rise approaches
the asymptotic limit DT = (1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0
hy=�

0
th

q
)(�n � P0)/L.

[27] Comparing with the adiabatic, undrained predictions
from equation (8) we see that the transport of heat and fluid
from the shear zone causes the ultimate temperature rise to
increase by a factor of 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0
hy=�

0
th

q
. This becomes partic-

ularly significant when the hydraulic diffusivity exceeds the
thermal diffusivity. For the nominal parameter values in
Table 1, �hy � 1.2 �th and the final temperature rise is
predicted to be approximately 290�C, a factor of 2.1 greater
than for the adiabatic, undrained calculation. The predicted
temperature rises for columns 3, 5, and 6 of Table 1 are
changed even more significantly to 410�C, 1310�C, and
2030�C, respectively.
[28] The fault strength for this case satisfies � =

�0exp(�/L*)erfc
ffiffiffiffiffiffiffiffiffiffi
�=L*

p
. Using equation (9), the fracture

energy is [Rice, 2006]

G �ð Þ ¼ �0L* exp
�

L*
erfc

ffiffiffiffiffiffi
�

L*

r
1� �

L*

� �
� 1þ 2

ffiffiffiffiffiffiffiffi
�

�L*

r" #
; ð12Þ

which can be written for large � as

G � �0L*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�= �L*ð Þ

p
� 1þ 3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L*= ��ð Þ

p
þ . . .

h i
: ð13Þ

The diffusion of heat and fluid from the shear zone causes
the fracture energy to increase with the square root of slip
distance for large events. At smaller slip distances,
equation (12) is consistent with the seismic estimates of
fracture energy made by Abercrombie and Rice [2005], who
found that G / �1.3 over several decades of slip less than a
few decimeters.
[29] The evolution of fault strength and fracture energy

for this planar slip model are shown in Figure 2b. The
leakage of fluid and heat from the shear zone result in a
much more gradual evolution of fault strength and fracture
energy at long slip distances than that predicted from the
adiabatic, undrained treatment shown in Figure 2a. The
nominal parameters in Table 1 yield a characteristic weak-
ening distance L* � 1.69 mm. The fracture energy increases
monotonically with slip, and has a characteristic scale of
�0L* � 53 kJ/m2 for the nominal parameter values. For
columns 3, 5, and 6, the corresponding energy scales are 93,
1120, and 1820 kJ/m2, respectively.
[30] The length scale L* will be used to plot the dimen-

sionless slip distance in several of the graphs that follow. To
display the predictions of the adiabatic, undrained model on
the same axes for comparison, even in cases where L* 6¼ �c,
we make use of the relation

ffiffiffiffiffiffiffiffiffi
L*V

p
� 2�c(

ffiffiffiffiffiffi
�th

p
+

ffiffiffiffiffiffiffi
�hy

p
)/h.

4. Distributed Shear

[31] Next we show how the results from section 3 emerge
naturally as limiting cases for the predicted state evolution
within a finite shear zone when the effects of heat and mass
transport are taken into account. We use the numerical
procedure outlined in Appendix A to solve the model
equations of section 2 for uniform shear in a zone of
thickness h.
[32] Logarithmic plots of the predicted fault strength and

fracture energy are shown as a function of slip distance in
Figure 3. The heavy solid lines give the results in dimen-
sionless form. Using the nominal parameter values from
Table 1, the results from the two simplified models in Figure 2
are displayed for comparison. As anticipated, the predicted
fault strength and fracture energy are closely approximated
by the adiabatic, undrained predictions at small slip dis-
tances, whereas at large slip distances the predictions of the
planar slip model closely resemble the numerical results.
The transition in behavior between these two limiting cases
occurs at a slip distance near � = L* � 1.69 mm for the
nominal parameter values. Closer examination reveals that
the predicted fault strength experiences a relatively abrupt
transition in behavior between the two limits. Because of its
integrated dependence on strength history, a somewhat
longer range of slip distances characterizes the change in
fracture energy from being closely approximated by the
adiabatic, undrained model to being well represented by the
planar slip model. Nevertheless, for slip distances greater
than � � 25L* � 0.04 m, the predictions for both the
fracture energy and the fault strength are virtually indistin-
guishable from those obtained by the planar slip model. In

Figure 3. Dimensionless fault strength (decreasing) and
fracture energy (increasing) as a function of scaled slip
distance �/L*. Note the logarithmic scales. The fault strength
decreases with slip from its initial value �0 = f(�n � P0). The
fracture energy experiences a corresponding increase. For
comparison, the calculations for the undrained, adiabatic
limit are shown with faint dashed lines, labeled (a) on the
right. The calculations for the planar slip model are shown
with faint dot-dashed lines, labeled (b) on the left. The
fracture energy G is scaled by �0L*. The nominal parameter
values from column 2 of Table 1 were used to place all
predictions on a common scale with L* = �c � 1.69 mm.
See the text for further discussion.
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the case shown here, �c = L*. Further calculations that are
discussed below demonstrate that the slip distance charac-
terizing the transition in fault zone behavior depends on
both �c and L*. For the purposes of calculating the fault
strength and fracture energy at slip distances much greater
than both �c and L*, it suffices to use the asymptotic
approximation for G from equation (13), while for strength
we have [Rice, 2006]

� � �0

ffiffiffiffiffiffi
L*

��

r
� 1

2
ffiffiffi
�

p L*

�

� �3=2

þ . . .

" #
: ð14Þ

At large slip distances, the diffusion of heat and fluid mass
from the shear zone causes the fracture energy to increase
with the square root of �, while the strength decreases with
1/

ffiffiffi
�

p
.

[33] Figure 4 shows the predicted change in temperature
as a function of slip distance. Recall that for the
nominal parameter values the characteristic temperature
scale is (�n � P0)/L � 136�C and the initial temperature is
210�C. Once again, the adiabatic, undrained predictions close-
ly approximate the numerical results at short slip distances, and
the planar slip model gives a better fit at long slip distances.
However, neither simplifiedmodel does a particularly good job
of representing the results over the broad intermediate range of
L* 
 � 
 103 L*, that is, from 1.69 mm to 1.69 m, a distance

that characterizes the total slip for many seismic events. This
highlights the need to consider both the transport of heat and
mass, and the finite shear zone thickness in order to obtain
accurate predictions for the temperature rise.
[34] To further illustrate the effects of the finite shear zone

thickness, in Figure 5 we show the model predictions when
h is increased by a factor of 5 to 0.725 mm, so that �c = 5L*.
All other parameters are kept at the nominal values listed in
Table 1. The behavior is still well represented by the
adiabatic, undrained predictions at short slip distances and
by the planar slip model at long slip distances. However,
with the increased shear zone thickness the transition
between the two sets of limiting behavior occurs at a much
larger slip distance. This is to be expected, as the adiabatic,
undrained predictions give a good approximation for the
more complete model behavior until � > �c.
[35] A comparison of the fault strength and fracture

energy predicted for three different shear zone thicknesses,
separated from each other by factors of 5, is shown in
Figure 6. In each case, the predicted behavior exhibits a
transition between the limiting predictions of the adiabatic,
undrained (not shown) and the planar slip models. It is
interesting to note, however, that for some ranges of slip
distance the model behavior does not experience a mono-
tonic progression as a function of h. For example, examining
the fracture energy at a slip distance of � � L* � 1.69 mm,
the value of G for �c = 5L* (h = 0.725 mm) is exceeded
by the fracture energy for the �c = 0.2 L* (h = 0.029 mm)
case, which is itself exceeded by G calculated for �c = L* (h =
0.145 mm). The apparent nonlinearity is a direct conse-
quence of changes in the amount of slip required for the
adiabatic, undrained model to lose its validity (e.g., com-
pare the point where the solid and dashed lines first deviate
in Figures 3 and 5) as the effects of heat and mass transport

Figure 4. Dimensionless temperature change L(T� Tamb)/
(�n�P0) as a function of scaled slip distance �/L*. Note the
logarithmic scales, with the x axis shifted one decade from
that used in Figure 3. For comparison, the calculations for
the undrained, adiabatic limit are shown with a faint dashed
line, labeled (a) on the right. The calculations for the planar
slip model are shown with a faint dot-dashed line, labeled
(b) on the left. For the nominal parameter values from
Table 1, the temperature scale (�n � P0)/L � 136�C.
Assuming that melting begins at 750�C and the initial
temperature is 210�C, melting would be expected to begin
at a dimensionless temperature of 3.97, as labeled with the
horizontal dotted line. A 1000�C melting temperature
would correspond to a dimensionless temperature of 5.81.
Melting conditions are not achieved for these parameter
values.

Figure 5. Dimensionless fault strength (decreasing) and
fracture energy (increasing) as a function of scaled slip
distance �/L*, as in Figure 3 but with �c = 5L*. For
comparison, the calculations for the undrained, adiabatic
limit are shown with faint dashed lines, labeled (a) on the
right. The calculations for the planar slip model are shown
with faint dot-dashed lines, labeled (b) on the left. The
fracture energy G is scaled by �0L*. The length scale L* �
1.69 mm, and the length scale �c � 5L* � 8.45 mm.
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gain in importance. A thicker shear zone retains most of its
heat and fluid for a longer slip duration before the gradients
that drive significant flow are established; at intermediate
slip distances the dependences of fracture energy and
strength on shear thickness need not be monotonic.

4.1. Comparison With Gaussian Shear

[36] In the present work, we have made no attempt at
modeling how the shear is expected to be distributed, but
rather have made an a priori assumption for the form of _g(y, t).
The previous calculations have been made for the case
where _g = V/h, so that the shear rate is uniform throughout
the layer. This particular choice of shear distributions is
symmetric about the midplane, and has the virtue of
simplicity, but it is also admittedly ad hoc. An alternative
assumption, proposed by Andrews [2002], is that the shear
rate takes a Gaussian distribution of the form

_g ¼ V tð Þffiffiffiffiffiffi
2�

p
w

exp
�y2

2w2

� �
; ð15Þ

where w measures the effective thickness of the shearing
zone and V(t) is the net slip rate, as before. This formulation
allows for more rapid shear closer to the midplane where the
pore pressure is most significantly elevated. In Figure 7 we
compare the predictions generated by the Gaussian shear
distribution with those of the uniform shear case discussed
earlier. (Details of the calculations are presented in
Appendices A and B.) At large slip distances, the predicted
behavior of the two models coincides. As we have already
demonstrated for the case of uniform shear, when the width
of the thermal and hydrological boundary layers greatly
exceeds the shear zone thickness, corresponding to condi-

tions where � � L* and � � �c, the behavior is well
approximated by the simplified model for slip on a plane.
As could be anticipated, here we see that the same is true
when the shear has a Gaussian distribution, and indeed we
expect this to be a general feature of all shear distributions
that are symmetric about the midplane. At low slip
distances, the behavior is more sensitive to the precise
distribution of shear. Some of these differences are related
to the particular choices for w and h. For the solid lines we
have taken w = h, but in fact this means that along the
midplane the shear rate predicted for the Gaussian
distribution is a factor of

ffiffiffiffiffiffi
2�

p
slower than that for the

case of uniform shear. The dotted line shows that for short
slip distances, the predictions of the uniform shear model
are more closely aligned with the Gaussian model
predictions when the effective width is reduced by a factor
of

ffiffiffiffiffiffi
2�

p
.

4.2. Conditions for Melt Onset

[37] It has been suggested that the geologic evidence for
melting in mature fault zones (e.g., faults that are marked by
thick gouge layers and that have accommodated many large
earthquakes) is relatively rare [e.g., Sibson and Toy, 2006].
It is still debated whether the preservation of melt products,
principally pseudotachylytes, might explain the scarcity of
such observations or whether they may actually be taken to
imply a rarity of melting conditions. We note in passing that
impressive deposits of melt products have indeed been
found [e.g., Rowe et al., 2005]. In either case, it is
instructive to consider what conditions are required to
achieve melting conditions. If the absence of evidence for
such conditions along exhumed fault segments can be
interpreted as evidence for the absence of such heating
events, then the model predictions can be inferred to set

Figure 6. Dimensionless fault strength and fracture energy
as a function of scaled slip distance �/L* for three different
shear zone thicknesses: h = 0.029 mm (�c = 0.2L*, dotted),
h = 0.145 mm (�c = L*, solid) and h = 0.725 mm (�c = 5L*,
dashed). The calculations for the planar slip model are
shown with faint dot-dashed lines, which are largely
obscured by the dotted lines for the calculation with h =
0.029 mm. The fracture energy G is scaled by �0L*. The
length scale L* � 1.69 mm.

Figure 7. Dimensionless fault strength and fracture energy
as a function of scaled slip distance �/L* for two distributed
shear models. The dashed lines show the predicted
evolution when the shear is uniform through a layer of
thickness h � 0.145 mm, so that �c = L*. The solid lines
shows the predicted behavior when the shear has the
Gaussian distribution proposed by Andrews [2002], with
characteristic width w � 0.145 mm. The dotted lines show
the predictions when w is reduced by a factor of

ffiffiffiffiffiffi
2�

p
.
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bounds on the allowable range of some of the less well
constrained physical parameters in the system.
[38] The dotted lines in Figure 4 show temperatures of

750�C and 1000�C, which are values typical of the onset of
melting. Melting does not occur when the nominal para-
meter values are used. By contrast, for example, the highly
damaged fault zone represented by the parameters in
column 5 of Table 1 would be expected to begin melting
with large enough slip, ultimately leading to a temperature
rise of 1310�C, as noted in section 3. We should emphasize
that additional physical interactions become important once
melting actually begins and the current model is not
formulated to treat the subsequent evolution of the system.
[39] Regime diagrams can be constructed to distinguish

between parameter choices for which melting will or will
not occur. An example is shown in Figure 8, with the
permeability required to achieve melting conditions plotted
as a function of the initial effective stress for the different
parameter choices summarized in Table 1. The uppermost
pair of curves represent a temperature rise of 790�C, from

210�C to 1000�C using the parameter values from columns
2 and 3 of Table 1. The next pair repeat the calculations for
a temperature rise of 540�C, from 210�C to 750�C. The
corresponding results for the data listed in columns 5 and
6 of Table 1 are shown with the lower two pairs of curves.
Calculations were performed using the long-term limit from
the planar slip model DT = (�n � P0)/L(1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hy=�th

p
),

which also corresponds to the asymptotic temperature rise
for both distributed shear models. The onset of melting is
facilitated by the more efficient fluid escape associated with
higher permeabilities and by the larger increase in pore
pressure possible with higher initial values of the effective
stress. Enhanced pore expansivity also acts to promote the
onset of melting, as evidenced by the differences between
the damaged and elastic results.
[40] Figure 9 shows how the slip distance �m required for

the onset of melting varies with the permeability at the fixed
nominal value �n � P0 = 126 MPa for the initial effective
stress. The dotted horizontal line corresponds to the point
labeled by the circle on the uppermost solid curve in Figure 8,
that is, the permeability and effective stress required for
melting to begin at 1000�C with an unbounded amount of
slip, using the nominal parameter values in column 1 of
Table 1. The solid curves in Figure 9 show the slip distance
required for melting to begin at 7 km depth at different,
labeled values of the shear zone thickness h. Of particular
note are the slip deficits between the dashed line that shows
the predictions of the h = 0 planar slip limit, and the curves

Figure 8. Regime diagram showing the permeability as a
function of initial effective stress required for melting
conditions to be reached. The upper two pairs of curves
were calculated assuming elastic behavior with the para-
meters summarized in columns 2 (upper) and 3 (lower) in
Table 1. The solid and dashed curves are for an assumed
melt onset of 1000�C, the dot-dashed and dotted curves are
for a melt onset of 750�C. The lower two pairs of curves
show the corresponding calculations assuming damaged
fault walls and the parameter values summarized in
columns 5 and 6 of Table 1. For each case, the initial
temperature was taken as Tamb = 210�C. Calculations are
valid in the limit of long slip for distributed shear. We note
that for the lowermost dotted curve, calculated using the
parameters from column 6 of Table 1, the undrained
adiabatic model indicates that a temperature of 750�C is
reached at �n � P0 � 147 MPa; at higher effective stresses
and with long enough slip, this melt onset temperature is
reached no matter how low the permeability. Similarly,
for the lowermost dot-dashed curve, calculated using the
column 5 parameters, the undrained adiabatic model pre-
dicts that a temperature of 750�C is reached with long
enough slip when �n � P0 � 168 MPa.

Figure 9. Regime diagram showing the permeability as a
function of slip distance required for melting conditions to be
reached, for the labeled shear zone thickness h in millimeters,
and the nominal parameter values from column 2 of Table 1.
The initial temperature was taken as Tamb = 210�C, with
melting assumed to begin at Tm = 1000�C. The model
predicts that melting begins to occur for a given perme-
ability and shear zone thickness when the slip reaches the
corresponding solid line. The dashed line shows the
calculations for the planar slip model, which underpredicts
the slip required for melt onset in a finite shear zone. In the
region below the horizontal dotted line, melting will not
occur no matter how long the slip.
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that correspond to the predictions of the numerical model for
finite shear zone thickness. Even for moderately large slip
distances of 1 m or more, there is a significant range of
parameter values for which the planar slip model would
predict the onset of melting, whereas the more complete,
distributed shear model indicates that the temperature has
not yet reached the melt threshold. As expected, the differ-
ence becomes increasingly prominent for greater shear zone
thicknesses.
[41] Figure 10 illustrates how the slip distance �m required

for the onset of melting varies with the initial effective stress
at a fixed value of the permeability k = 6.5� 10�19 m2 that is
taken as representative of damaged fault walls. The dotted
horizontal line corresponds to the point labeled with the
asterisk on the lower solid curve in Figure 8, calculated using
the parameter values in column 5 of Table 1. As for Figure 9,
the different curves correspond to predictions for the labeled
shear zone thicknesses.
[42] The parameters chosen for the preceding calculations

were taken as representative of conditions at a depth of 7 km
with ambient hydrostatic pore pressure and lithostatic
normal stress. To predict how the temperature change is
expected to vary with depth, we performed a series of
calculations in which the fault zone properties were adjusted
to represent the effects of an assumed geothermal gradient
of 30�C/km, with ambient hydrostatic (10 MPa/km) and
lithostatic (28 MPa/km) gradients for the pore pressure and
normal stress. As was the case for the values summarized in

Table 1, the fluid expansivities and compressibilities were
determined as a function of pore pressure and temperature
from the ninth-order polynomial fit to density data reported
by Burnham et al. [1969]. The fluid viscosities were
obtained from spline fits to the data of Tödheide [1972].
The formula for the thermal conductivity reported by
Vosteen and Schellschmidt [2003] was used to calculate
how the thermal diffusivity changes as a function of the
ambient temperature, keeping the heat capacity constant
throughout, and consistent with the value reported by
Lachenbruch [1980] used in Table 1. The properties of the
gouge were derived from the data ofWibberley [2002, private
communication 2003], and Wibberley and Shimamoto
[2003]. In particular, exponential fits to the void fraction
n and the difference between the drained and solid com-
pressibities summarized in Table 1 of Rice [2006], were
used to calculate �n and �n using the formulation described
in the appendix of Rice [2006]. For the case of elastic fault
walls, we used spline fits to the permeability data shown
with filled solid circles in Figure 8ii(b) of Wibberley and
Shimamoto [2003], which were obtained on loading gouge
samples from the central slip zone of the Median Tectonic
Line fault over a range of effective stress from 10 to 180MPa.
In calculations performed to represent the effects of fault
zone damage, we increased the permeability by an order of
magnitude and set �n equal to the expansivity of the gouge
grains and �n equal to twice the drained compressibility, as
discussed further by Rice [2006] and consistent with the
values reported in column 5 of Table 1.
[43] Figure 11 shows the predicted temperature on the

symmetry plane as a function of depth for the different
labeled slip distances. Through most of the range, the
predicted temperature increases monotonically with depth.

Figure 10. Regime diagram showing the initial effective
stress as a function of slip distance required for melting
conditions to be reached, for the labeled shear zone
thickness h in millimeters, and the damaged parameter
values from column 5 of Table 1. The initial temperature
was taken as Tamb = 210�C, with melting assumed to begin
at Tm = 1000�C. The model predicts that melting begins to
occur for a given initial effective stress and shear zone
thickness when the slip reaches the corresponding solid line.
The dashed line shows the calculations for the planar slip
model, which underpredicts the slip required for melt onset
in a finite shear zone. In the region below the horizontal
dotted line, melting will not occur no matter how long the
slip.

Figure 11. Maximum shear zone temperature as a function
of depth for the different labeled amounts of slip, assuming
uniform shear with h = 0.145 mm and elastic fault walls.
The dotted line on the left represents the ambient
temperature for a geothermal gradient of 30�C/km. The
dashed line on the right shows the asymptotic temperature
rise for unbounded slip. Model calculations were performed
using parameters derived from the ambient property values,
which were interpolated as described in the text.
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However, with sufficiently large slip at shallow depths there
is a slight decrease in the predicted temperature with depth.
The source of this behavior is illuminated by examining the
profiles of the length scales L* and �c shown in Figure 12.
The change in expansion ratio L with depth is reflected in
the variation of �c, which is quite modest over the depth
range shown. Recall that the ultimate temperature rise with
unbounded slip is proportional to the initial effective stress,
which increases linearly with depth, and inversely propor-
tional to the expansion ratio L, which as we have seen
changes only slightly. However, the temperature rise and L*
are both also sensitive to the ratio of the hydraulic and
thermal diffusivities. It is the marked increase in permeabil-
ity nearer to the ground surface that both causes the rapid
increase in L* toward shallower depths and also over-
whelms the effective stress dependence to produce the
decrease in predicted temperature with depth with pro-
longed slip that is shown near the top of Figure 11. For
the particular set of parameters chosen, we do not predict
the onset of melting over this depth range.
[44] We note that the evolution of strength and fracture

energy at any particular location along this depth range can
be easily extracted from the information given in Figures 12
and 6. For example at 4 km depth �c � 0.2 L*, where L* =
7.5 mm, so the dotted lines in Figure 6 track the predicted
behavior, where the initial strength is �0 � 18 MPa when
the effective friction coefficient is 0.25. At 10 km depth,
Figure 12 indicates that �c � 1.35 L* and L* � 1.1 mm.
[45] Figure 13 again shows the predicted temperature

profile following different amounts of slip, but this time
treating the case of highly damaged fault walls by increasing
the permeability and adjusting the values of �n and �n, as
discussed above. As expected, the predicted temperature
rise is much greater than that for the case of elastic fault
walls shown in Figure 11. Over the entire depth range,
melting is expected with slips greater than approximately
0.1 m. At larger slip distances, the effects of the increased
permeability nearer the surface become increasingly prom-
inent. The maximum temperature for this selection of
parameter values actually occurs nearest the surface for

unbounded slip. This somewhat surprising prediction fur-
ther highlights the importance of obtaining better constraints
on the fluid transport properties and particularly the manner
in which they are influenced by damage. We emphasize that
while we have made every attempt to faithfully represent
the effects of damage in our choice of parameters for these
calculations, the factor of ten used to augment the perme-
ability and the choices made for �n and �n are poorly
constrained. Given the relative scarcity of evidence for
melts generated at shallow seismogenic depths along mature
faults, the modeling results presented here suggest that the
effects of damage do not normally produce the combination
of high permeabilities and altered elastic parameters �n and
�n used to obtain the profile shown in Figure 13.

5. Influence of State-Dependent Property
Variations

[46] The previous results have all been produced from
calculations that used constant values for the properties
throughout time. The predicted changes in state are significant,
however, and as illustrated in Table 1, are expected to cause
correspondingly large changes to the controlling properties.
As we have seen, the ratios of parameters that combine to
produce the length scales L* and �c determine the predicted
behavior when the uniform shear model is evaluated with
constant parameter values. However, column 4 of Table 1
indicates that the characteristic scale L* changes by roughly

Figure 12. Depth profiles for the length scales L* and �c
used in the calculations for Figure 11.

Figure 13. Maximum shear zone temperature as a function
of depth for the different labeled amounts of slip, assuming
uniform shear with h = 0.145 mm and highly damaged fault
walls. The dotted line on the left represents the ambient
temperature for a geothermal gradient of 30�C/km. The
dashed line on the right shows the asymptotic temperature
rise for unbounded slip. Damage was simulated by
increasing the permeability by an order of magnitude from
that used for Figure 11, assuming �n equals twice the
drained compressibility, and assuming that �n is equal to the
thermal expansivity of the solid gouge grains. As discussed
further in the text, at 7 km depth these choices are consistent
with those used in column 5 of Table 1. All other properties
were the same as those used for Figure 11.
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a factor of 3 when it is evaluated at the average pressure and
temperature near the shear zone for the case where the fault
zone behaves elastically; there is an 18% change in the
corresponding value of �c. When the fault zone is highly
damaged, column 7 of Table 1 notes changes in L* by a
factor of 17 and changes in �c by a factor of 3. For the case
of elastic behavior, the changes in permeability with effec-

tive stress are by far the most significant variations. Perme-
ability changes are also considerable for the case of the
damaged fault zone, but in addition there is a larger
predicted temperature range and this produces more signif-
icant variations in the fluid properties.
[47] The solution procedure used for the distributed shear

models in section 4 is ideal for tracking the predicted
behavior over a broad range of slip distances. However, it
is not amenable to exploring the nonlinear effects produced
by gradients in fault zone properties. Instead, a semidiscre-
tized finite difference code was implemented to examine the
sensitivity of the predicted state evolution to property
variations. Details of the calculations are provided in
Appendix C.
[48] Figure 14 shows a comparison between the fault

strength predicted using the constant, nominal parameter
values, evaluated in the ambient state, with the predictions
for the case where the effects of gradients in the system
properties are taken into account. The predictions coincide
at slip distance that are short in comparison with L*, which
is initially 1.69 mm for both calculations. At longer slip
distances the strength predicted by the variable property
model exceeds slightly that predicted for the ambient
property calculations. The comparison of predicted pore
pressure profiles shown in Figure 15 hints at the cause of
this difference. The zone of elevated pore pressures pre-
dicted by the variable property calculation is much broader
than that predicted by the ambient property calculation.
The increase in permeability with pore pressure promotes
enhanced fluid transport from the shear zone and a
reduction in pore pressure gradients nearest the symmetry
plane. The higher fault strength that results produces more
rapid shear heating, as shown in Figure 16. After 2 m of
slip the predicted temperature rise from the variable prop-
erty calculation exceeds that of the ambient property

Figure 14. Scaled fault strength as a function of slip
distance � for the uniform shear model. The dashed line
shows the results calculated using constant physical
properties evaluated under the ambient conditions. The
solid line incorporates the effects of variations in properties
produced by the changing pressure and temperature state.

Figure 15. Predicted pore pressure P as a function of
distance y normal to the fault midplane for the uniform
shear model with h = 0.145 mm after a slip distance of � =
2.0 m. The dashed line shows the results calculated using
constant physical properties evaluated under the ambient
conditions. The solid line incorporates the effects of
variations in properties produced by the changing pressure
and temperature state.

Figure 16. Predicted temperature T as a function of slip
distance � for the uniform shear model. The dashed line
shows the results calculated using constant physical
properties evaluated under the ambient conditions. The
solid line incorporates the effects of variations in properties
produced by the changing pressure and temperature state.

B09314 REMPEL AND RICE: THERMAL PRESSURIZATION

13 of 18

B09314



calculation by 50%. The combined influence of tempera-
ture and pore pressure on the fluid density and viscosity
lead to the complex dependence of L* on y that is seen in
Figure 17. In particular, since the thermal diffusivity is
smaller than the hydraulic diffusivity, the temperature
remains nearly constant at the ambient level for distances
greater than a few millimeters from the symmetry plane. In
contrast, the pore pressure does not have appreciable lateral
variations in the vicinity of the symmetry plane, but
experiences large gradients beyond the thermal boundary
layer and so influences the fluid properties at distances
where thermal effects are negligible. Since the temperature
increase is greater than that predicted from the constant,
ambient property calculations, the range in L* and �c is
larger than indicated in column 4 of Table 1.

6. Conclusions

[49] By exploring the effects of thermal pressurization
during the distributed shear of a thin gouge layer, we have
shown that the evolution of strength and fracture energy are
represented well by the idealized planar slip model [Rice,
2006] once the slip distance � is large in comparison to the
length scales L* and �c. The thermal evolution is also
closely approximated by the predictions of the planar slip
model once the slip is sufficiently large. During typical
seismic events, however, the accumulated displacement is
not extensive enough to reach this limit and the planar slip
approximation significantly overestimates the temperature
rise. This highlights the critical role of the shear layer
thickness in determining the ultimate temperature rise and
whether or not melting conditions are achieved. Within the
gouge layer, the shear distribution itself does not exert a
strong control on the system evolution. However, the
behavior of the fault walls, and in particular the potential
for damage-enhanced fluid transport and pore compressibility,

are extremely important. Better constraints on these effects
are needed for improved quantitative predictions. In the
elastic limit, where damage is negligible, melt onset is
expected to be relatively rare. Accounting for the influence
of lateral gradients in the fluid transport properties does lead
to higher predicted temperatures, but still insufficient for
melt onset at moderate seismogenic depths (e.g., 7 km for
the set of parameters used for Figure 16), even for relatively
long slips. When the fault walls are highly damaged, fluid
can escape more efficiently from the pressurized shear zone,
so the fault strength decreases more slowly and the onset of
melting is promoted.

Appendix A: Uniform Shear, _g = V/h

[50] We solve equations (3), (4), (6) and (7) using Laplace
transforms, making the usual definitions

~f sð Þ ¼
Z 1

0

exp �stð Þf tð Þdt

f tð Þ ¼ 1

2�i

Z gþi1

g�i1
exp stð Þ~f sð Þ ds

so that in the transform domain we have

s~P � P0 � L s~T � Tamb

� �
¼ �hy

d2~P

dy2
jyj < h

2

s~T � Tamb � V �n � ~P 0; sð Þ
� �

¼ �th

d2~T

dy2

s~P � P0 � L s~T � Tamb

� �
¼ �0

hy

d2~P

dy2
jyj > h

2

s~T � Tamb ¼ �0
th

d2~T

dy2
: ðA1Þ

In addition, the boundary conditions discussed earlier
require that the temperature and pressure gradients vanish
at y = 0, the temperature and pressure remain finite at large
y, and the temperature, pressure, heat flux and mass flux
stay continuous across the shear zone boundary. For the

Figure 17. Values of the length scales L* (solid) and �c
(dashed) as a function of distance y normal to the fault
midplane for the uniform shear model with h = 0.145 mm
after a slip distance of � = 2.0 m. Physical properties were
adjusted for the local pressure and temperature conditions,
as described in the text.

Figure A1. Contour integral for Laplace inversion (see
description in text).
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special case in which �th = �
0
th and �hy = �

0
hy the solutions

in the transform domain are

~P ¼P0

s
þ LC þ LC

�hy � �th

��hy exp � h

2

ffiffiffiffiffiffiffi
s

�hy

r� �
cosh y

ffiffiffiffiffiffiffi
s

�hy

r� ��

þ�th exp � h

2

ffiffiffiffiffiffi
s

�th

r� �
cosh y

ffiffiffiffiffiffi
s

�th

r� ��
jyj < h

2

~T ¼ Tamb

s
þ C � C exp � h

2

ffiffiffiffiffiffi
s

�th

r� �
cosh y

ffiffiffiffiffiffi
s

�th

r� �

~P ¼ P0

s
þ LC
�hy � �th

"
�hy exp �jyj

ffiffiffiffiffiffiffi
s

�hy

r� �
sinh

h

2

ffiffiffiffiffiffiffi
s

�hy

r� �

� �th exp �jyj
ffiffiffiffiffiffi
s

�th

r� �
sinh

h

2

ffiffiffiffiffiffi
s

�th

r� �#
jyj > h

2

~T ¼ Tamb

s
þ C exp �jyj

ffiffiffiffiffiffi
s

�th

r� �
sinh

h

2

ffiffiffiffiffiffi
s

�th

r� �

where

C ¼
V �n � ~P 0; sð Þ
� �

s

¼
V �n �

P0

s

� �

sþ LV 1� �hy

�hy � �th

exp � h

2

ffiffiffiffiffiffiffi
s

�hy

r� �
þ �th

�hy � �th

exp � h

2

ffiffiffiffiffiffi
s

�th

r� �� � :

As we are mainly interested in the evolution of conditions
on the midplane, we set y = 0 and write

P 0; tð Þ ¼ 1

2�i

Z gþi1

g�i1
exp stð Þ~P 0; sð Þds;

T 0; tð Þ ¼ 1

2�i

Z gþi1

g�i1
exp stð Þ~T 0; sð Þds;

where

~P 0; sð Þ ¼ �n

�
s �n � P0

s

� �
sþ LV 1� �hy

�hy��th
exp � h

2

ffiffiffiffiffi
s
�hy

q� �
þ �th

�hy��th
exp � h

2

ffiffiffiffiffi
s
�th

q� �� � ;

and

~T 0; sð Þ ¼ Tamb

s

þ
V �n � P0

s

� �
1� exp � h

2

ffiffiffiffiffi
s
�th

q� �� �

sþ LV 1� �hy

�hy��th
exp � h

2

ffiffiffiffiffi
s
�hy

q� �
þ �th

�hy��th
exp � h

2

ffiffiffiffiffi
s
�th

q� �� � :

ðA2Þ

We evaluate these integrals numerically and use the results
to determine the evolution of strength, fracture energy and
temperature.
[51] Figure A1 shows a schematic diagram of the contour

integral we must perform. The vertical arrows show the path

along which the Laplace inversion is defined from s = g �
i1 to g + i1. The functions ~P(0,s) and ~T (0, s) are analytic
in the negative real half plane, except along the branch cut
that traces the negative real axis, and possibly at one or
more pairs of off-axis poles (not shown). To evaluate
equation (A2) for P(0, t) and T(0, t), we choose a contour
that starts at s = g � i1 and traverses clockwise to s = �1;
along this segment the integrands vanish. The contour then
continues along the negative side of the branch cut, circles
the branch point at zero (counterclockwise), and then
extends back along the positive side of the branch cut to
s = �1; numerical integrations are performed along these
segments. The contour then circles clockwise around to s =
g +i 1, with the integrands vanishing again along this
segment. The difference between the integrals over this
contour and those defined by equation (A2) is then simply
equal to minus the sum of the residues at any off-axis poles.
There are no poles at the nominal film thickness, however
at larger film thickness poles do appear, first in a single pair
and then with multiple pairs, as thickness increases further.

[52] A MATLAB code was used to calculate the pore
pressure and temperature from the expressions in equation
(A2). The QUAD integration routine was used to evaluate
the integrals over the different components of the integration
path described above. Along the negative real axis the
integrals were split into separate large and small jsj compo-
nents, with the division chosen at a value of s such that
sh2/�th � 1. The integrands in (A2) were approximated to
first order in sh2/�th for both the small jsj integrals on the
negative real axis, and the integrals around the branch point
at zero. The fault strength and fracture energy were deter-
mined subsequently, with the latter calculated from the
results for pore pressure as a function of slip distance, using
a compound trapezoid rule at logarithmically spaced points
to evaluate equation (9).
[53] The same procedure can be followed for the general

case in which the thermal and hydraulic diffusivities change
discontinuously at the shear boundary. The required steps
are straightforward. However, the resulting formulas are
cumbersome and we do not present them here.

Appendix B: Gaussian Shear Distribution

[54] Here the formulation is given of the integral equa-
tion, and the Laplace transform of its solution, for shear rate
in the form of the Andrews [2002] Gaussian distribution, as
given in equation (15). Further, the approximation is made
that although the entire layer shears, the constitutive relation
is based on the highest pore pressure, presumed to be at the
layer center y = 0, which, as remarked by Rice [2006], is not
consistent with having distributed shear. Thus its thickness
scale w will be regarded as some microstructurally
demanded thickness, in recognition that slip on a mathe-
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matical plane is not a physical possibility in a granular
aggregate. Thus, using equation (1) to describe the strength
as �(t) = f(t)[�n � P(0, t)], the integral equation analogous to
that given by Rice [2006] for deriving the result presented in
section 3.2 for slip on a plane, is

P 0; tð Þ ¼ P0 þ
Lffiffiffiffiffiffi

2�
p

�hy � �th

� �
�c

Z t

0

� �hy� t0ð ÞV t0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2�hy t � t0ð Þ

p � �th� t0ð ÞV t0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2�th t � t0ð Þ

p
" #

dt0:

The temperature rise at the center of the shearing layer is

T 0; tð Þ ¼ Tamb þ
1ffiffiffiffiffiffi
2�

p
�c

Z t

0

� t0ð ÞV t0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2�th t � t0ð Þ

p dt0:

[55] Consider now the special case of f and V that are
constant in time. Having discovered the utility of L*, the
resulting strength is written � = �(D) where D = �/L* = Vt/
L*. Then defining Why = w/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hyL*=V

p
and Wth = w/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�thL*=V
p

, and now defining the Laplace transform by
�̂(S) =

R1
0
�(D)exp(�SD) dD, the integral equation trans-

forms to

f �n � P0ð Þ
S

� �̂ Sð Þ ¼ �̂ Sð ÞQ Sð Þffiffiffi
S

p ;

where

Q Sð Þ ¼ffiffiffiffiffiffiffi
�hy

p
exp W 2

hyS
� 	

erfc Why

ffiffiffi
S

p� �
� ffiffiffiffiffiffi

�th
p

exp W 2
thS

� �
erfc Wth

ffiffiffi
S

p� �
ffiffiffiffiffiffiffi
�hy

p � ffiffiffiffiffiffi
�th

p ;

and it has been recognized that exp(W2S)erfc (W
ffiffiffi
S

p
)
ffiffiffiffiffiffiffiffi
�=S

p
is the transform of 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ D

p
. Thus the transform of the

solution � = �(D) is

�̂ Sð Þ ¼ f �n � P0ð Þ
Q Sð Þ þ

ffiffiffi
S

p� � ffiffiffi
S

p :

[56] This agrees with the result for slip on a plane, as it
should, when w = 0 (! Why = Wth = 0). The inversion
integral can be set up like for that case of slip on a plane,
assuming as is valid in that case, that we can distort the
inversion integration contour without crossing singularities
so that it wraps around the entire negative S axis. Writing
S = u2exp(±i�) (with u real and �0) to denote points on
the two sides of that axis, and noting that

exp W 2u2e�i�
� �

erfc Wue�i�=2
� 	

¼ exp �W 2u2
� �

� 2iWffiffiffi
�

p
Z u

0

� exp �W 2 u2 � v2
� �� �

dv;

there results

� �ð Þ ¼ 2

�
f �n � P0ð Þ

Z 1

0

A uð Þ exp �u2�=L*ð Þ
A2 uð Þ þ B2 uð Þ du ;

where

A uð Þ ¼
ffiffiffiffiffiffiffi
�hy

p
exp �W 2

hyu
2

� 	
� ffiffiffiffiffiffi

�th
p

exp �W 2
thu

2
� �

ffiffiffiffiffiffiffi
�hy

p � ffiffiffiffiffiffi
�th

p ;

and

B uð Þ ¼ u� 2=
ffiffiffi
�

p
ffiffiffiffiffiffiffi
�hy

p � ffiffiffiffiffiffi
�th

p Why

ffiffiffiffi
�

p
hy

Z u

0

exp �W 2
hy u2 � v2
� �� 	

dv

�

�Wth

ffiffiffiffiffiffi
�th

p Z u

0

exp �W 2
th u2 � v2
� �

dv
� �

:

Also, the fracture energy associated with this formulation is

G �ð Þ ¼ 2

�
f �n � P0ð ÞL*

�
Z 1

0

A uð Þ 1� 1þ u2�=L*ð Þ exp �u2�=L*ð Þ½ �
A2 uð Þ þ B2 uð Þ½ �u2 du:

It can be seen at this point that the complete symmetry of
the dependence of the slip-weakening relation on the
diffusivities is retained in this model as well.
[57] The temperature rise at y = 0 can be determined too,

but it has no simple relation to the pressure rise and strength
drop like for the model of slip on a plane. Writing DT(D) =
T(0, t) � Tamb, transforming the expression above for
DT(D), gives

DT̂ Sð Þ ¼ 1

2
ffiffiffi
S

p
�c

ffiffiffiffiffiffiffiffi
VL*

�th

s
�̂ Sð Þ exp W 2

thS
� �

erfc Wth

ffiffiffi
S

p� 	
;

¼ f

2

ffiffiffiffiffiffiffiffi
VL*

�th

s
�n � P0

�c

exp W 2
thS

� �
erfc Wth

ffiffiffi
S

p� �
Q Sð Þ þ

ffiffiffi
S

p� �
S

;

which must be inverted in a manner similar to what is done
above for the strength versus slip relation. We note that the
possible maximum temperature rise predicted by this model
is

Tmax � Tamb ¼ lim
D!1

DT Dð Þ ¼ lim
S!1

SDT̂ Sð Þ
� �

¼ f

2

ffiffiffiffiffiffiffiffi
VL*

�th

s
�n � P0

�c
:

[58] That is the very same result as for the case of slip on
a plane although we must generally expect the temperature
rise at any finite amount of slip to be lower than for that
planar case. The limit is for unbounded slip, which requires
unbounded time, and hence assures that diffusion penetra-
tion distances like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2�t

p
have become arbitrarily large

compared to any fixed w.

Appendix C: State-Dependent Property
Formulation

[59] To account for the dependence of fault zone proper-
ties on the pressure and temperature state, a term of the form

1

�c

@T

@y

@

@y
�c�thð Þ
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was added to the right sides of equations (3) and (4), and a
term of the form

1

�

@P

@y

@

@y
��hy

� �
was added to the right sides of equations (6) and (7). The
resulting system of equations was solved using the method
of lines with a second-order finite difference spatial
discretization and constant step size. The MATLAB stiff
ordinary differential equation packages were used subse-
quently to solve for the state evolution. Far-field zero flux
boundary conditions were implemented.
[60] Property values were updated at each time step using

the same scheme of interpolations, extrapolations, and curve
fits described for the depth-dependent calculations shown in
Figures 11 to 13. The exception is the permeability values,
which are still based on data from Wibberley [2002, also
private communication, 2003], as well as Wibberley and
Shimamoto [2003], however for this set of calculations the
measurements made on unloading the laboratory samples
are considered more appropriate. In particular, we per-
formed an exponential fit to the subset of data reported in
Table 1 of Rice [2006] and used that formula in the
numerical scheme described above. This procedure served
as the basis for obtaining the values reported in columns 3,
4, 6, and 7 of Table 1.
[61] The calculations shown in Figures 14–17 were

performed at 601 equally spaced nodes, 5 of which were
within the shear zone.
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Typographical corrections to “Thermal pressurization and onset of
melting in fault zones”, by Alan W. Rempel and James R. Rice (2006),

J. Geophys. Res., 111, B09314, doi:10.1029/2006JB004314

note by Nicolas Brantut, University College London, UK.
16 November 2011

The Appendix A of the paper includes some typographical errors. The correct
equations should read as follows.

The second equation in A1 should be:

sT̃ − Tamb − V
[
σn/s− P̃ (0, s)

]
= αth

d2T̃

dy2
. (1)

Consequently, the function C should be

C =
V
[
σn/s− p̃(0, s)

]
s

(2)

=
V
s

(σn − P0)

s+ ΛV

[
1− αhy
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exp

(
−h

2
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αhy
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2

√
s
αth

)] , (3)

and the transform of the pore pressure and temperature on the fault plane are then

P̃ (0, s) =
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s

+
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