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[1] We consider the nucleation of instability on a slip-weakening fault subjected to a
heterogeneous, locally peaked ‘‘loading’’ stress. That stress is assumed not only to
gradually increase due to tectonic loading but also to retain its peaked character. The
case of a linear stress versus slip law is considered in the framework of two-
dimensional quasi-static elasticity for a planar fault. Slip initiates when the peak of the
loading stress first reaches the strength level of the fault to start slip weakening. Then
the size of the slipping region grows under increased loading stress until finally a
critical nucleation length is reached, at which no further quasi-static solution exists for
additional increase of the loading. That marks the onset of a dynamically controlled
instability. We prove that the nucleation length is independent of the shape of the
loading stress distribution. Its universal value is proportional to an elastic modulus and
inversely proportional to the slip-weakening rate, and it is given by the solution to an
eigenvalue problem. That is the same eigenvalue problem introduced by Campillo,
Ionescu, and collaborators for dynamic slip nucleation under spatially uniform prestress
on a fault segment of fixed length; the critical length that we derive is the same as in
their case. To illustrate the nucleation process, and its universal feature, in specific
examples, we consider cases for which the loading stress is peaked symmetrically or
nonsymmetrically, and we employ a numerical approach based on a Chebyshev
polynomial representation. Laboratory-derived and earthquake-inferred data are used to
evaluate the nucleation size. INDEX TERMS: 3210 Mathematical Geophysics: Modeling; 7209

Seismology: Earthquake dynamics and mechanics; 7215 Seismology: Earthquake parameters; 7230
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1. Introduction

[2] Understanding the earthquake nucleation process is of
fundamental importance for earthquake physics and has
practical implications. The purpose of this study is to
identify the factors that control the nucleation of two-
dimensional in-plane or antiplane slip-weakening instabil-
ities, and to evaluate the nucleation length that is relevant to
fault instabilities and earthquake rupture. We consider a
planar fault that is under a locally peaked heterogeneous
‘‘loading’’ stress. This loading stress is assumed to gradually
increase due to tectonic loading but to retain its peaked
character. The case of a linear slip-weakening constitutive
law is considered in the framework of two-dimensional
quasi-static elasticity. The size of the slipping region on the
fault grows under increased loading stress until finally a
critical nucleation length is reached at which no further
quasi-static solution exists. That marks the onset of a
dynamically controlled instability.

[3] Analytically as well as numerically, models based on
slip-weakening or rate- and state-dependent constitutive
laws have been developed and used to investigate the
initiation process of earthquakes and especially the transi-
tion from stable quasi-static growth of the size of the slip-
rupturing zone to unstable high speed rupture propagation
[e.g., Tse and Rice, 1986; Okubo, 1989; Dieterich, 1992;
Rice and Ben-Zion, 1996; Shibazaki and Matsu’ura, 1998;
Ohnaka, 2000]. Numerically, this type of problem has had
difficulties, because the conventional quasi-static methods,
used for simulating slow deformational processes of long
duration, fail as instabilities develop. Recently, however,
Lapusta et al. [2000] developed an efficient numerical
procedure, in the context of rate and state friction, for
calculating the elastodynamic response of a fault subjected
to slow tectonic loading processes of long duration within
which there are episodes of rapid earthquake failure; that
has recently been applied (N. Lapusta and J. R. Rice,
Nucleation and early seismic propagation of small and large
events in a crustal earthquake model, submitted to Journal
of Geophysical Research, 2002, hereinafter referred to as
Lapusta and Rice, submitted manuscript, 2002) to study of
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nucleation under the spatially nonuniform stresses which
develop in simulations of sequences of events.
[4] Analytically, based on the potential energy principle in

quasi-static elasticity and the assumption of a linear dis-
placement-softening law (analogous to slip-weakening for
shear rupture), Li and Liang [1993] have introduced a
boundary eigenvalue problem for a cohesive crack model.
They have indicated that under a critical condition associ-
ated with the smallest eigenvalue, the corresponding eigen-
function represents the nonunique part of the displacement
solution and the critical load can be determined via the
eigenfunction. By variational analysis, Bazant and Li [1995a,
1995b] have obtained the condition of stability loss of an
elastic structure with a growing cohesive crack in which the
cohesive stress is a specified decreasing function of the
crack opening displacement, and transformed it into an
eigenvalue problem for a homogeneous Fredholm integral
equation, with the structure size as the eigenvalue. Under the
assumption of a linear displacement-softening relation for
the cohesive crack, they have solved for the maximum load
as well as the maximum deflection that is carried by the
structure, explicitly in terms of the eigenfunction associated
with the integral equation.
[5] By means of a spectral analysis, Campillo and Ionescu

[1997] have investigated the initiation of dynamic antiplane
slip instabilities of a slip-weakening fault in a homogeneous
linear elastic medium that is prestressed uniformly up to the
frictional threshold. In the analysis, an analytical expression
of the slip, which can be interpreted using an eingenvalue
analysis, has been given and divided into two parts: the
solution associated with positive eigenvalues (‘‘dominant
part’’) and negative eigenvalues (‘‘wave part’’). It has been
shown that the dominant part, characterized by an exponen-
tial growth with time, controls the development of the
instability and the wave part becomes rapidly negligible
when the instability develops. The effect of slip-weakening
rate on the duration of the nucleation phase and the critical
fault length has been evaluated [Campillo and Ionescu, 1997;
Ionescu and Campillo, 1999]. The analysis has been further
extended to in-plane shear instabilities [Favreau et al., 1999]
and to instabilities of a finite fault of (a priori) fixed length
[Dascalu et al., 2000]. However, no explanation regarding
the physical meaning of the (a priori) fixed fault length and
uniform loading has been given in these analyses, and
rigorous numerical treatments of the complete earthquake
cycle [Lapusta et al., 2000; Lapusta and Rice, submitted
manuscript, 2002] show clearly that a region of initially
aseismic slip grows in size in a quasi-static manner before
dynamic breakout of the rupture.
[6] In the following, based on the quasi-static elastic

equilibrium condition and the linear slip-weakening friction
law, we show that the problem of slip-weakening instabilities
can be reduced to an eigenvalue problem. The analysis
indicates that the nucleation length relevant to the instabil-
ities is universal. It depends only on elastic modulus of the
medium and the slip-weakening rate, and it is not influenced
by the (slow) rate of increase of loading stress, or by the
functional form of dependence of the decrease of loading
stress, away from its peak value, on position along the fault.
The critical increment of the peak loading stress, above the
peak stress at which slip-weakening initiates, is given in a
simple, mathematical expression in terms of the associated

eigenvalues and eigenfunctions. Then, by means of a Cheby-
shev polynomial representation, we numerically investigate
the slip development on the slip-weakening fault for some
specific loading distributions, and confirm the analytical
results. Although the problem considered here is quite
simplified, it still retains the fundamental features that are
believed to play a crucial role during the nucleation process.
This universal length of the slip-weakening zone size at
instability is valid only for linear slip weakening, that is, is
valid so long as the maximum slip on the fault at instability is
small enough to allow use of a law with linear decrease of
strength with slip. Further, we emphasize that slip-weaken-
ing must be regarded as an approximation to more precise
descriptions of friction in the rate and state framework. We
adopt a slip-weakening model here, particularly in linear
form, because it has been used widely in earlier studies and
because we have been able to derive the remarkable result of
a universal nucleation length for that case, under arbitrarily
variable prestress, which suggests new connections with,
and interpretations of, some of that earlier work.

2. Problem Statement

[7] We consider fault rupture in an infinite, homogene-
ous elastic space subjected to a locally peaked loading
stress, to = to(x, t). The fault plane coincides with the x-z
plane (y = 0) of a Cartesian coordinate system xyz. The only
nonzero displacement is uz(x, y, t) for antiplane (mode III)
shearing, or ux(x, y, t) for in-plane (mode II) shearing, or
uy(x, y, t) for tensile (mode I) loading, where t is time (t� 0).
We define slip d(x, t) on the fault plane as the displacement
discontinuity d(x, t) = uz(x, 0

+, t) � uz(x, 0
�, t) for mode III,

or ux(x, 0
+, t)� ux(x, 0

�, t) formode II, and understand d as the
tensile opening uy(x, 0

+, t) � uy(x, 0
�, t) for mode I. The

relevant shear (or tensile) stress on the fault plane is denoted
by t(x, t) and coincideswithsyz(x, 0, t) formode III,sxy(x, 0, t)
for mode II, and sy(x, 0, t) for mode I. Figure 1 shows the
situation for a shearing mode.

Figure 1. A displacement field associated with antiplane
shear (mode III) rupture in an infinite, homogeneous, linear
elastic space. The loading shear stress to(x, t) is locally
peaked in space and increases gradually with time, at rate R.
Similarly, we can define the problem for in-plane shear
(mode II), or for tensile (mode I) rupture.
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[8] By considering the quasi-static elastic equilibrium, we
can express the stress on the fault plane t(x, t) only in terms
of the slip d(x, t) as [e.g., Bilby and Eshelby, 1968]

t x; tð Þ ¼ to x; tð Þ � m*
2p

Z aþ tð Þ

a� tð Þ

@d x; tð Þ=@x
x� x

dx; ð1Þ

where m* = m (shear modulus) for mode III and m/(1 � n) for
modes I and II, with n being Poisson’s ratio. The slipping
region a�(t) < x < a+(t) is slowly expanding, and the quasi-
statically increasing loading stress to(x, t), which is locally
peaked at x = xp, is the stress that would act if the fault was
constrained against any slip (or opening). It is assumed that
to(x, t) takes the form

to x; tð Þ ¼ tp þ Rt � q xð Þ: ð2Þ

Here, tp is the shear (for modes II and III) or tensile (for
mode I) strength of the fault, and R (>0) is the loading rate
of the increasing stress. The function q(x) satisfies q(x) > 0
for x 6¼ xp and q(xp) = 0. Thus t = 0 is the time when the
peak value of loading stress, at xp, first reaches tp so that
slip initiates at that point. Figure 1 shows a typical
symmetric distribution of the loading stress to(x, t) for the
antiplane shearing case.
[9] In most of this study, as a constitutive law inside the

slipping region, we employ the slip-weakening friction law

t x; tð Þ ¼ tp �Wd x; tð Þ; ð3Þ

where tp is the peak strength (i.e., the friction threshold for
the shear modes), and we consider sufficiently small slip d
so that a linear slip-weakening law with constant weakening
rate W (W > 0) applies at least approximately for the range
of slips which occur prior to instability. Figure 2 shows
schematically this friction law (3). In the figure, the ordinate
denotes the stress t and the abscissa corresponds to the slip
d. Slip can occur if the local shear stress reaches the peak

shear strength tp. (In a mode I interpretation, fracture
opening can occur if tensile stress reaches tp.) The stress
inside the slipping region of the fault drops according to the
linear relation (3). From the elastic equilibrium condition (1)
and the slip-weakening friction law (3), together with
equation (2), we obtain

�W d x; tð Þ ¼ Rt � q xð Þ � m*
2p

Z aþ tð Þ

a� tð Þ

@d x; tð Þ=@x
x� x

dx; ð4Þ

when d > 0, that is, for a�(t) < x < a+(t).
[10] Figure 3 shows schematically the development of the

slipping region by the increasing loading stress. (The first
diagram) pertains to the situation at time t = 0, where the
loading stress to(x, 0) reaches the strength of the fault, tp, to
start slip weakening. Prior to this stage, no slip has occurred.
The function q(x) can be identified as the difference between
the straight horizontal line t = tp and the curve t = to(x, 0).
At t > 0 (middle diagram), part of the fault slips and the
stress inside the slipping region drops according to the slip-
weakening friction law (3). Note that the extremities of the
quasi-static slipping region where d > 0 (i.e., the support of
the slip distribution) are not specified a priori and will
automatically be chosen so that the quasi-statically calcu-
lated t(x, t) = tp is satisfied at those extremities, x = a±(t). At
least that will hold so long as a quasi-static solution actually
exists. We would like to know when it just fails to exist; this
situation gives the nucleation length of earthquake rupture.
The last diagram shows such a situation. At a late stage, a
critical nucleation length hn is reached at which no further
quasi-static solution exists for additional increase of the
loading. That marks the onset of a dynamically controlled
instability. In the following, we will prove that for the linear
displacement-weakening law, the nucleation length is inde-
pendent of the shape of the loading stress distribution, that
is, it is independent of the mathematical form of q(x). Its
universal value is proportional to an elastic modulus and
inversely proportional to the displacement-weakening rate,
and is given by the solution to an eigenvalue problem. To
illustrate the nucleation process, and its universal feature, in
specific examples, we consider cases for which the loading
stress is peaked symmetrically or nonsymmetrically, and
employ a numerical approach based on a Chebyshev poly-
nomial representation. Laboratory-derived and earthquake-
inferred data are used to evaluate the nucleation size.

3. Universal Nucleation Length Under
Locally Peaked Loading

3.1. Dimensional Analysis; Comparison of Linear
and Nonlinear Slip-Weakening Laws

[11] First, we give a dimensional analysis of the problem
which already hints at a universal nucleation length in the
linearly weakening case like in Figure 2, by showing that for
a specific one-parameter form of q(x), the nucleation length
is independent of that parameter. This analysis also shows
that a universal nucleation length is not to be expected when
weakening on the fault cannot be described by a linear law.
[12] We perform dimensional analysis of the nucleation

problem for the quadratic form of the loading function,
q(x) = kx2/2. Here k is a positive constant corresponding to
the curvature of q(x), with the dimension of Pa/m2. Letting
m*d be the slip-like variable in equation (4), the independent

Figure 2. The (initially) linear slip-weakening constitutive
law. The stress inside the slipping region of the fault obeys
the linear relation t = tp � Wd, at least when the strength
drop is less than �t. The slip-weakening rate W is a
constant (W > 0).
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parameters of the problem are the ratio of slip-weakening
rate to the shear modulus W/m* [1/m] and the curvature k
[Pa/m2]. Each stage of the dimensional analysis is listed in
Table 1.
[13] Originally we have two dependent variables, the

nucleation length hn [m] and the critical stress increment
Rtc [Pa], and two independent ones,W/m* [1/m] and k [Pa/m2]
(see the first row of Table 1). When we remove the dimension

of length [m] from the variables, we have new variables hnW/
m* [dimensionless] and km*2/W2 [Pa] (second row). We
further eliminate the dimension of stress [Pa] and finally
have two dimensionless dependent variables, hnW/m* and
RtcW

2/(km*2) (bottom row), and no remaining independent
variables. This result shows that

hnW=m* ¼ constant; and RtcW
2= km*2
� �

¼ constant: ð5Þ

Equation (5) shows that hnW/m* is universal, i.e., independ-
ent of the curvature, k, and also Rtc/(khn

2) is a constant. Note
that if we added additional parameters, necessarily of length
dimensions, in the definition of q(x), then it would not be
obvious from dimensional analysis that hn is universal, a
result proven below.
[14] In the case of the nonlinear power-type slip-weak-

ening law

t ¼ tp � Adn; ð6Þ

with A and n being positive constants, dimensional analysis
suggests that there is no universal nucleation length when
n 6¼ 1, even for the case q(x) = kx2/2. In that case, if there
exists a nucleation length hn, both hn and the critical stress
increment Rtc depend on the curvature k and they are given
by

hn ¼ f nð Þk
1�nð Þ= 3n�2ð Þm*n= 3n�2ð Þ

A1= 3n�2ð Þ and Rtc ¼ g nð Þkh2n; ð7Þ

where f (n) and g(n) are presently undetermined functions
of n.
[15] Our preliminary analytical calculations using an

energy approach [Rice and Uenishi, 2002] show that for
n < 2/3, the system described by this mathematical repre-
sentation is unstable as soon as the loading stress reaches tp
at a single point (dt/da < 0 near a = 0+). However, as we
discuss below, the seismic [Abercrombie and Rice, 2001]
and laboratory [Chambon et al., 2002] evidence suggesting
a slip-weakening law approximately in that form, with n in
the range n < 2/3, is for slips that are already much larger
than those inferred, from laboratory studies, to lead to
nucleation. So there is no inconsistency, in that the highly
unstable power law describes response after nucleation.
This is somewhat like the assumption of two weakening
scales [Shaw and Rice, 2000], i.e., a large slip-weakening
rate W for small slip d at which nucleation occurs, and
further weakening, possibly due to a thermal effect, with
smallerW for much larger d developing during unstable slip.

3.2. Universal Nucleation Length

[16] Returning to the linear case, at each loading stress
increment, the extremities of the quasi-static slipping
region get chosen precisely to remove the singularity at the

Table 1. Independent and Dependent Variables and Their

Dimensions

Dependent Independent

hn [m] Rtc [Pa] W/m* [1/m] k [Pa/m2]
hnW/m* [0] Rtc [Pa] km*2/W 2 [Pa]
hnW/m* [0] RtcW

2/(km*2) [0]

Figure 3. Development of the slipping region induced by
the increasing loading stress. (top) At time t = 0, the peak of
the stress distribution reaches the peak strength of the fault,
tp. Prior to this stage, no slip has occurred; (middle) At t >
0, part of the fault slips and the stress inside the slipping
region drops according to the slip-weakening friction law;
and (bottom) At a later stage, when the length of the
slipping region reaches a critical value, hn, the fault system
becomes unstable and the slipping region will expand even
without any increase of the loading stress. We will show
that hn is independent of R and q(x).
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ends [x = a±(t)]. The condition that we have no singularity of
stress at these ends implies (see Appendix A for details)

@d x; tð Þ=@x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	 a	 tð Þ � x½ �

p
for x near a	 tð Þ; ð8Þ

where here the � symbol means ‘‘is of the order of’’ as the
right side approaches zero. This relation justifies that, in
taking the time derivative of equation (4), the differentiation
can be taken inside the integral and operate on the term
@d(x, t)/@x. Thus we differentiate equation (4) with respect
to time and obtain

�W V x; tð Þ ¼ R� m*
2p

Z aþ tð Þ

a� tð Þ

@V x; tð Þ=@x
x� x

dx

for a� tð Þ < x < aþ tð Þ: ð9Þ

Here, V(x, t) is slip rate V(x, t) � @d(x, t)/@t. From equation
(8), for x near a±(t), V x; tð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	 a	 tð Þ � x½ �

p
da	 tð Þ=dt:

Therefore V(x, t) is bounded at the ends of the slipping
region if da±(t)/dt is bounded, but V(x, t) of the quasi-static
analysis becomes unbounded at the nucleation point when
at least one of da±(t)/dt approaches infinity.
[17] By introducing a(t)� [a+(t)� a�(t)]/2, b(t)� [a+(t) +

a�(t)]/2, X� [x� b(t)]/a(t) and v X ; tð Þ � V x; tð Þ=
ffiffiffi
2

p
Vrms tð Þ

� �
;

where Vrms(t) is the rootmean square slip rate

Vrms tð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

aþ tð Þ � a� tð Þ

Z aþ tð Þ

a� tð Þ
V 2 x; tð Þdx

s
; ð10Þ

we can normalize equation (9). Thus, suppressing explicit
reference to the time-dependence of a(t), Vrms(t) and v(X, t),

�aW

m*
v Xð Þ ¼ affiffiffi

2
p

m*
R

Vrms

� 1

2p

Z þ1

�1

v0 sð Þ
X � s

ds for � 1 < X < þ1;

ð11Þ

where 0 denotes the first derivative of a function. Note that
v(X) always satisfies

R
�1
+1 v2(X )dX = 1. The slipping region

keeps growing in time but since Vrms/(aR/m*) diverges as the
nucleation condition is approached, at the critical length,
aR/(m*Vrms) becomes zero. That length is the nucleation
length that we seek. At that length the above integral
equation for v(X ) becomes

aW

m*
v Xð Þ ¼ 1

2p

Z þ1

�1

v 0 sð Þ
X � s

ds for � 1 < X < þ1: ð12Þ

The critical length is thus given as the length such that the
eigen equation (12) has a nontrivial solution for v(X).
Equation (12), together with the specific features of the
eigenfunctions summarized in Appendices B and D3,
indicates that a solution is given when a(t)W/m* reaches
the smallest eigenvalue acW/m* = l0 � 0.579 and v(X, tc) is
equal to the associated eigenfunction v0(X). Thus, the critical
length hn is given by

hn ¼ 2ac � 1:158 m*=W : ð13Þ

Note that, the critical length depends only on the shear
modulus m* and the slip-weakening rate W and is
independent of the rate and the shape of the loading, that

is, of R and q(x). However, the critical tectonic stress
increment Rtc during which there is quasi-static fault slip,
and at the end of which the fault becomes unstable, is
dependent on the loading distribution. In Appendix C, we
show that Rtc is given by

Rtc ¼ Q0 ac; bcð Þ=b0; ð14Þ

where b0 and Q0(a, b) are defined by b0 �
R
�1
+1 v0(X)dX and

Q0(a, b) �
R
�1
+1 q(aX + b)v0(X )dX, respectively. (We show

further that @Q0(a, b)/@b = 0 at a = ac, b = bc.) Note that in the
case of a symmetrically peaked loading, q(x) = q(�x), b = 0
and equation (14) gives an explicit solution once the
eigenfunction, which is independent of q(x), is known. We
evaluate v0(X ) numerically in Appendix D3, showing there
that b0 � 1.332 and expressing v0(X), adequately for all
practical purposes, as the first three terms of an infinite
series. Using that result, we find for all symmetrically peaked
loadings that

Rtc � 1:502

Z 1

0

q acXð Þ 0:925� 0:308X 2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X 2
p

dX : ð15Þ

Note that the more nonuniform the loading stress is over the
characteristic length ac, i.e., the greater is q(acX ), the greater
is the increment Rtc of tectonic loading over which quasi-
static slip-weakening occurs. Conversely, if q(acX ) is small
for all X on 0 � X � 1, so is Rtc.
[18] The above eigen equation (12) takes the same form

as that found by Dascalu et al. [2000] for dynamic slip
nucleation under spatially uniform prestress on a fault
segment of (a priori) fixed length; the critical length we
derive, equation (13) is the same as in their case. (A more
precise value of the smallest eigenvalue is suggested by
them to be l0 = 0.57888694.) In our analysis, however, the
extremities of the slipping region are not specified a priori
and the slowly increasing loading stress takes an arbitrary
form except for the condition that it is locally peaked. It is
plausible that our nucleation length, in the case of a very
gently peaked loading stress, that is almost uniform, might
coincide with their critical length. However, we find a much
stronger result; the length always coincides, no matter how
peaked is the loading stress or of what functional form, so
long as we are in the linear range of the slip-weakening law.

4. Some Examples

[19] Here, slip development and the critical condition will
be examined by assuming three specific loading distributions
of q(x). The problem is considered in terms of a Chebyshev
polynomial representation described in Appendix D. This
appendix shows that we can obtain the slip distribution at
each time by solving the following simultaneous equations

bm ¼
X1
n¼1

Amnun tð Þ; ð16Þ

where xo = a(t)cosw and d xo; tð Þ ¼ P1
n¼1

un tð Þ sin nwð Þ (0 < w <
p) with xo � x � b(t). The components of the matrix A and
the vector b are given in Appendix D2.

4.1. Symmetrically Peaked Loading

[20] Suppose that the loading stress is symmetrically
peaked at x = 0, i.e., q(x) = q(�x), q(x) > 0 for x 6¼ 0 and

UENISHI AND RICE: UNIVERSAL NUCLEATION LENGTH ESE 17 - 5



q(0) = 0. In this case, the center of the slipping region, b(t)
� [a+(t) + a�(t)]/2, is always located at b(t) = 0, with the
ends situated at a+(t) = �a�(t) = a(t).
[21] First, assume that q(x) is in a quadratic form q(x) =

kx2/2. Here k (>0) is a constant that corresponds to the
curvature of the function q(x) and has the dimension of
Pa/m2. Figures 4 and 5 show the development of the half-
length of the slipping region, a(t)W/m*, and W3dcent/(km*

2),
respectively, where dcent is the slip at the center of the
slipping region (x = 0). Note that our analysis is valid only
when the slip-weakening law can be modeled as linear for
slips that are at least as large as dcent, evaluated at tc. The
abscissa in the figures denotes the normalized stress incre-
ment, RtW2/(km*2) which is also expressible as 1.341Rt/
(khn

2). The maximum loading of the quasi-static range is at
RtcW

2/(km*2) � 0.038. Both figures indicate that from time
t = 0, slip develops stably as the loading stress increases
but, above a critical point [given mathematically by equa-
tions (13) and (14)], we would have to decrease the loading
stress in order for there to be quasi-static solutions with
slipping length longer than hn. This situation is similar to
buckling of a structural component, and in Figure 4, the
condition given by equation (13) in the previous section has
been confirmed numerically. Figure 6 shows the develop-
ment of the slip distribution, d(x, t), for the same loading.
The figure indicates that the slip d is always nonnegative
and the condition assumed in equation (4), d > 0, is always
satisfied.
[22] Next, consider the same problem for a different

loading function q xð Þ ¼ kx20 1� e� x=x0ð Þ2
h i

=2: Here x0 (>0) is

a constant that represents a reference length, and can be
normalized as x0W/m*. The development of the half-length
aW/m* and the evolution of slip at the center W3dcent/(km*

2)
are shown in Figures 4 and 5, respectively. The dimension-
less constant x0W/m* is set to x0W/m* = 1/3. The figures,
again, indicate that the slip development has a critical point,
where no further quasi-static solution exists for additional

Figure 4. The development of the slipping region half-
length a for three different loading distributions of q(x). The
parameter x0W/m* = 1/3 for q xð Þ ¼ kx20 1� e� x=x0ð Þ2

h i
=2 and for

the nonsymmetric loading case. Only the lower branches of
the curves are physically meaningful if the loading stress is
monotonically increasing in time. Instability occurs when
the slope becomes unbounded (right extremities of the
curves; da(t)/dt ! 1) all of which correspond to the same
nucleation size.

Figure 5. The development of the normalized slip at the
center (x = 0), W 3dcent/(km*

2), for two different symmetric
loading distributions of q(x). The normalized parameter
x0W/m* = 1/3 for q xð Þ ¼ kx20 1� e� x=x0ð Þ2

h i
=2.

Figure 6. The development of the normalized slip
distribution, W3d/(km*2), for loading with q(x) = kx2/2.
The heavy line is the unstable limit to the range of existence
of quasi-static solutions under monotonic increase of the
loading stress.
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increase of the loading. However, comparison of the results
obtained for the two distinct loading functions, q(x), suggests
that the critical stress increment Rtc, which will render an
unstable state, can differ according to the shape of the
loading function, but, as forecast by the previous analysis,
the critical length remains the same as given in equation (13),
regardless of the shape of the function q(x). Note that there is
the necessity for dcent to be small enough for a linear slip-
weakening range Wdcent < �t (maximum strength drop for
linear range; see Figure 2), which will pose a restriction on
k/�t. For example, forq(x) =kx2/2,W3dcent/(km*

2)�0.111 at
the critical state (see Figure 5). This implies 0.111�W3dcent/
(km*2) < �t W2/(km*2), or k/�t < 9.009W2/m*2 = 12.08/hn

2,
for q(x) = kx2/2. Similarly, there is a restriction k/�t <
27.47W2/m*2 = 36.84/hn

2 for qðxÞ ¼ kx20½1� e�ðx=x0Þ2 �=2 with
x0W/m* = 1/3.
[23] To summarize some dimensionless stress ratios, for

the case q(x) = kx2/2, we find that Rtc/q(ac) � 0.227, Wdcent/
Rtc � 2.921, and Wdcent/q(ac) � 0.662 at the critical state.
Here q(ac) measures the nonuniformity of the loading stress,
Wdcent gives the maximum preinstability strength loss by
slip-weakening (which must be checked to be in the linear
range on Figure 2, i.e.,Wdcent <�t), and Rtc is the increment
of tectonic stressing over which preinstability slip occurs.

4.2. Nonsymmetrically Peaked Loading

[24] In the case for which the loading stress is not sym-
metrically peaked, the center of the slipping region, b(t),
moves, and the analysis becomes more complicated.
Assume that q(x) is nonsymmetric and described as a
combination of the above two loading functions q(x) =
kx2/2 for x � 0, and qðxÞ ¼ kx20½1� e�ðx=x0Þ2 �=2 for x > 0.

Note the continuity at x = 0, q(0) = q0(0) = 0. The
development of the half-length of the slipping region,
aW/m*, is shown in Figure 4. The dimensionless constant
x0W/m* is set to x0W/m* = 1/3. In the figure, again, the
critical length can be identified clearly and verified to be
universal, as we have proven, regardless of the shape of the
loading function q(x). In Figure 7, the development of the
slip distribution d(x, t) for the same loading condition is
shown. The figure indicates the nonsymmetric evolution of
the slip distribution.

5. Discussion

[25] One of the major questions in the study of earth-
quake nucleation is whether the nucleation process and the
eventual size of the ensuing earthquake are related to each
other or not. Some researchers suggest that the nucleation
size is related to the ultimate size of the resulting earth-
quake [e.g., Ellsworth and Beroza, 1995; Ohnaka, 2000]
while others support the idea that the nucleation size is
unrelated to the final size of an earthquake [Mori and
Kanamori, 1996; Kilb and Gomberg, 1999]. Very recently,
Lapusta et al. [2000] and Lapusta and Rice (submitted
manuscript, 2002) have demonstrated, in numerical simu-
lations of crustal earthquake sequences with depth-variable
rate and state friction, that the nucleation process, in the
sense of transition from initially aseismic slippage to the
onset of a dynamic breakout, is virtually identical for large
and small events, supporting the view that large earth-
quakes are small earthquakes that run away due to favor-
able conditions on the fault. Therefore, the nucleation
length given by equation (13) may be of the same order
both for laboratory experiments and for real earthquakes,
small as well as large.
[26] In this section, based on equation (13), we will

consider nucleation sizes associated with laboratory-derived
and earthquake-inferred data sets, and also discuss the

Figure 7. The development of the normalized slip distribu-
tion, W3d/(km*2), for the nonsymmetric loading distribution.
(The normalized parameter x0W/m* = 1/3.) The fine line
indicates the center of the slipping region, bW/m*, and the slip
at that position. The heavy line is the unstable limit to quasi-
static solutions under monotonic increase of the loading
stress.

Figure 8. The linear slip-weakening constitutive law and
the characteristic slip-weakening distance Dc. The slip-
weakening rate W is given in terms of Dc and the strength
drop �t, by W = �t/Dc.
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validity of the widely inferred large characteristic slip-
weakening distance, Dc, for the latter (see Figure 8).

5.1. Laboratory-Derived Data Sets and the
Nucleation Length

[27] In our formula for the universal nucleation length
(13), the slip-weakening rate W plays a crucial part. This
parameter in the linear weakening friction law (3) is given
by W = �t/Dc if one assumes linear weakening for slips d <
Dc, and no further weakening for d > Dc.
[28] First, consider the slip-weakening process in the

postfailure stage of laboratory tests of initially intact sam-
ples. Rice [1980] and Wong [1986] have evaluated the slip-
weakening relation and shear fracture energy associated with
the laboratory testing of shear fracture of initially intact
Fichtelbirge granite specimens [Rummel et al., 1978] at
different confining pressures (7.5 to 300 MPa) in a stiff,
servo-controlled triaxial apparatus. Their results suggest that
m = 30 GPa and n = 0.25 (i.e., m* = 40 GPa), and the slip-
weakening process is approximately linear (see figures in
Rice [1980]), except for the initial and final stages. In the
relatively low range of the fault-normal compressive stress,
60 MPa < sn < 120 MPa, the slip-weakening distance is
approximately Dc = 440 mm and the strength drop �t = 20
MPa. In this case, the slip-weakening rate W = �t/Dc � 50
GPa/m and the nucleation length is hn � 0.9 m. For sn = 140
MPa, the slip-weakening distance is about Dc = 460 mm and
the strength drop is found to be�t = 30 MPa. We haveW �
70 GPa/m and hn � 0.7 m in this instance.
[29] Under relatively high fault-normal compression 250

MPa < sn < 600 MPa, Dc is some 800 mm and the strength
drop scales with sn, �t = 0.04sn + 50 MPa [Wong, 1986].
Therefore, in this range of sn, �t � 60 to 75 MPa and the
slip-weakening rate is W � 75 to 90 GPa/m. Hence we have
hn � 0.5 to 0.6 m.
[30] Next, assume an established fault surface, described

by a laboratory-derived rate- and state-dependent friction
law with the Dieterich-Ruina-type slowness (or ageing)
state evolution [Ruina, 1983], written as

t ¼ �s fo þ a ln V=Voð Þ þ b ln Voq=Lð Þ½ �; dq=dt ¼ 1� V q=L:
ð17Þ

Here, �s, V, q and L are effective normal stress, slip rate, state
variable and characteristic slip distance for evolution of
frictional strength, respectively, a and b are frictional
parameters, and fo is the friction coefficient at the reference
rate Vo. In the case for which the state variable q is initially
large (i.e., a fault which has not recently ruptured), if slip
rates are large enough to make Vq/L � 1, then the second
equation of (17) becomes dq/q = �Vdt/L, and, upon
integration, we have ln(Voq/L) = �d/L + C. Here, d is slip
and C is a constant. By substituting this relation into the first
equation of (17), we obtain

t ¼ �s fo þ a ln V=Voð Þ þ bC � bd=L½ �: ð18Þ

This relation (18) suggests that if the effective normal stress
�s is constant and the slip rate V varies by less than a few
powers of 10 (since a � 0.01 and fo � 0.6), we can rewrite it
approximately as in the slip-weakening law (3) with the
slip-weakening rate W ¼ b�s=L: It has not yet been

established that a full treatment of the rate and state
expressions would actually reduce to rate-independent slip-
weakening in that way, at least in some special parameter
range, and preliminary work by N. Lapusta (private
communication, 2001) suggests that parameter a of the
friction law will have to be unreasonably small to make
nucleation in that context coincide closely with slip-
weakening predictions. However, accepting it as an
approximation, from equation (13) we have

hn � 1:158m*L= b�sð Þ: ð19Þ

If typical data, m* = 40 GPa, �s ¼ 140 MPa; b = 0.015 and
L = 5 to 100 mm [see, e.g., Marone, 1998], are employed,
then W � 20 to 420 GPa/m and the critical length is
calculated to be hn � 0.1 to 2.3 m. We notice that the results
W � 70 GPa/m and hn � 0.7 m for �s ¼ 140 MPa; b = 0.015
and L = 30 mm compare well with the one obtained from the
laboratory triaxial tests of initially intact Fichtelbirge granite
samples (Dc = 460 mm and �t = 30 MPa for sn = 140
MPa), with a ratio Dc/L � 15. An initially intact
Fichtelbirge granite specimen under triaxial loading condi-
tions may thus be regarded as a fault that has not fractured
recently, with the state variable q being initially large.
[31] Adopting the rate- and state-dependent constitutive

law (17), Cocco and Bizzarri [2002] have studied the
dynamic traction behavior within the cohesive zone during
their simulations of propagating earthquake ruptures and
have shown that an equivalent slip-weakening distance Dc,
displayed in the resulting slip-weakening curve, is related to
the parameter L in the friction law (17), roughly by Dc/L �
15 also in their case. This relation indicates that if we employ
laboratory-derived value of L of the order of 5 to 100 mm,
then Dc at the tip of a propagating dynamic rupture is
roughly of the order of 75 mm to 1.5 mm, but there is no
proof that such a scaling applies to nucleation under quasi-
static loading.

5.2. Earthquake-Inferred Data Sets and the
Length of Nucleation

[32] Much larger values of Dc (of order of one meter) are
widely inferred in seismic inversions, using numerical
calculations that simulate fault rupture, and implicitly
assuming that the entire slip-weakening process is described
by a linear relation like in Figure 8, but typically with the
total strength drop �t, or WDc, assumed and not directly
constrained from data. For example, from inversion of
strong ground motion data associated with the 1995
Hyogo-ken Nanbu (Kobe), Japan, earthquake with the
band-pass filter of frequency range 0.025 to 0.5 Hz, Ide
and Takeo [1997] reported a strength drop �t of about 5
MPa and the slip-weakening distance Dc of some 1 m or
more for the shallow part of the fault, and estimated an
upper limit of 0.5 m for Dc on the deeper region of the fault.
Olsen et al. [1997] gave �t = 12 MPa and Dc = 0.8 m for
the 1992 Landers, California, earthquake by the dynamic
simulation of the previously obtained kinematic models of
the Landers event [Guatteri and Spudich, 2000].
[33] However, our result, equation (13), suggests that if

we assume a relatively large value of Dc, for example, Dc =
0.1 to 1 m, and low strength drop �t = 5 to 15 MPa, which
are typically adopted in numerical simulations [e.g., Harris
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et al., 1991; Ide and Takeo, 1997; Olsen et al., 1997], with
m* = 40 GPa, then the associated nucleation length is
already hn � 0.3 to 9 km. This size is, apparently, incom-
patible with existence of small-magnitude earthquakes.
[34] For these results to be accepted, it would seem that

the slip-weakening process to which they refer would have
to be taking place at much larger slips than control at
initiation, so that the model with a single slip-weakening
process is incomplete. For instance, a laboratory-like weak-
ening at small slips may control nucleation, but further
weakening (e.g., due to shear heating) may take place at
slips that are much larger [Shaw and Rice, 2000], and it is
possible that these are being sensed by the seismic inver-
sions. In that connection, Abercrombie and Rice [2001]
explained how the slip-weakening during the postnucleation
phase could be extracted from data on the scaling of
radiated energy, stress drop and slip with earthquake size.
This is possible with the assumptions, not directly testable,
that all dissipation occurs in slip on a single fault plane, and
that the final static stress at each point on the fault equals the
stress there in the last increment of dynamic slip. Data thus
analyzed for small to moderate earthquakes (slips 1–500
mm) were shown to be roughly fit by a power law like in
equation (6) with n about 0.2 to 0.4 (range from their oral
report, slightly higher than 0.1 to 0.2 given in the abstract).
This implies a weakening rate that is large at small slips but
that diminishes continuously with increasing slip in such a
way that no meaningful Dc can be defined. That same
feature is seen in laboratory characterization of weakening
at slips from the mm to m range in dense sand [Chambon et
al., 2002] and quartz rocks [Goldsby and Tullis, 2002].
Thus the linear law may not provide a good description of
the postnucleation phase of seismic slip.
[35] However, even assuming the linear law, there are

reasons why we must be cautious regarding such large values
ofDc as are often inferred. First, from the observational point
of view, Guatteri and Spudich [2000] have shown that
estimates of slip-weakening distance Dc inferred from kine-
matic inversion models of earthquakes are likely to be biased
large due to the effects of spatial and temporal smoothing
constraints applied in such inverse problem formulations.
Short periods are filtered out of the instrumental records
because of contamination by scattering. Guatteri and Spu-
dich [2000] have indicated that Dc is not uniquely given by
seismic inversions; In order to constrain Dc, it is necessary to
model ground motion spectra at frequencies higher than
those at which waveform modeling is currently possible.
[36] Second, from the forward modeling point of view, Dc

tends to be large due to the difficulty of simulating earth-
quakes. One has to simulate a fault region which is at least
tens to hundreds of kilometers while resolving properly slip
and rapid stress change at the tips of propagating ruptures
[Lapusta et al., 2000]. For example, for a laboratory-derived
value of the slip-weakening distance Dc = 800 mm, the size
of rapid slip accumulation zone at the rupture front is �1 m
[Rice, 1980; Wong, 1986], requiring 1000 times more grid
points than to resolve Dc = 0.8 m. Thus one tends to use
larger values of Dc in conventional numerical simulations.
This indicates that if forward calculations with computa-
tionally feasible grid size are matched to seismic data, there
may be a bias toward the large Dc/�t (i.e., smallW) that can
be resolved with such grid size because numerical artifacts

will contaminate any calculations with much smaller, but
possibly realistic Dc/�t (i.e., with much larger W ).

6. Conclusions

[37] The purpose of this study was to show the
universal critical length that is relevant to slip-weakening
fault instabilities, in circumstances for which linear slip
weakening is assumed. By considering the quasi-static
elastic equilibrium condition together with the linear slip-
weakening friction law, we have investigated the nuclea-
tion of slip-weakening instability under a locally peaked,
increasing stress field. The problem has been reduced to
an eigenvalue problem and it has been indicated that the
critical length relevant to instabilities of a slip-weakening
fault can be expressed in terms of the smallest eigen-
value, the elastic modulus and the slip-weakening rate
only. The critical loading increment, above the loading
when slip initiates, has also been obtained in a simple,
analytical form in terms of the eigenfunction and the
loading stress. It has been shown that the fundamental
nature of slip instabilities remains the same even when
the type (mode I, II, or III) and the shape of the loading
change. It should be noted that in this quasi-static case,
the loading rate R can be a variable as long as the peak
of the tectonic stress increases monotonically. Typical
examples have given an insight into the actual length
of such instability, and it has been pointed out that the
widely inferred large characteristic slip-weakening dis-
tance might be biased high due to the technical con-
straints employed in seismic inversions and numerical
simulations. Although the problem investigated in this
contribution is quite simplified, it still retains the essential
characteristics that are believed to play an important part
during the earthquake nucleation process.

Appendix A: Finiteness Condition and
Slip Distribution Near the Ends

[38] The inverse form of equation (1) [see. e.g.. Muskhe-
lishvili, 1946, 1953; Bilby and Eshelby, 1968; Rice, 1968,
1980] indicates, very near the ends of the slipping region
[x = a±(t)],

@d x; tð Þ
@x

¼ � 2

pm*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ tð Þ � a� tð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	 a	 tð Þ � x½ �

p
�
Z aþ tð Þ

a� tð Þ

t x; tð Þ � to x; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� tð Þ þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ tð Þ � x

p a� tð Þ � x½ �dx; ðA1Þ

holds. Since the stress (and, related to it, @d/@x) must be
finite at the ends, all acceptable solutions must satisfy

Z aþ tð Þ

a� tð Þ

t x; tð Þ � to x; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� tð Þ þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ tð Þ � x

p dx ¼ 0 and

Z aþ tð Þ

a� tð Þ

t x; tð Þ � to x; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� tð Þ þ x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ tð Þ � x

p xdx ¼ 0; ðA2Þ

which implies that @d x; tð Þ=@x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	 a	 tð Þ � x½ �

p
or that

d(x, t) � (±[a±(t) � x])3/2 for x near a±(t). Note, if the
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loading stress to(x, t) is symmetric with respect to x = 0,
then t(x, t) is also symmetric with respect to x = 0 and the
second equation of (A2) is automatically satisfied.

Appendix B: The Eigen Equation and the
Eigenfunctions

B1. Orthogonality of the Eigenfunctions

[39] Consider the eigen equation related to equation (12)

1

2p

Z þ1

�1

v0k sð Þ
X � s

ds ¼ lkvk Xð Þ for � 1 < X < þ1; ðB1Þ

where lk and vk(X ) are the k-th eigenvalue and eigenfunc-
tion related to the equation, respectively (k = 0, 1, 2, . . .).
Letting A represent the operator in equation (B1) and
performing the change of order of integration, we notice that
the operator is self-adjoint, (Au, v) = (u, Av), with u and v
vanishing at the ends, relative to the inner product (u, v) =R
�1
+1 u(X )v(X )dX. That leads to

lk � llð Þ
Z þ1

�1

vk Xð Þvl Xð ÞdX ¼ 0; ðB2Þ

implying that all eigenvalues are real and if lk 6¼ ll, (vk, vl)
= 0. Operator A is also positive-definite, which follows
because (Au, u) is proportional to the elastic strain energy
induced by enforcing slip u along a cut in an otherwise
unstressed solid, and therefore, we can arrange those
eigenvalues in order so that 0 < l0 < l1 < l2 < . . . holds.
[40] Figures B1 and B2 show the eigenvalues lk and

eigenfunctions vk(X ) that are obtained numerically by
employing the simplest discretization method with piece-
wise constant slip in cells of uniform size: equation (B1) is
discretized as Kijvk( j�x) = lkvk(i�x) (�1/�x < i, j < + 1/�x;
summation convention is used) and solved. Here �x is grid

spacing and Kij =�1/{2p�x [(i� j)2� 0.25]}. We used 163
grid points to obtain Figures B1 and B2. As indicated in
section D3, the numerical difference between this discretiza-
tion method and the Chebyshev polynomial approach is
practically negligible. Figure B1 indicates that eigenvalues
increase almost linearly with increasing number k while
Figure B2 shows that the eigenfunctions are either symmet-
ric (for even k) or anti-symmetric (for odd k) [If vk(X ) is an
eigenfunction, then so is vk(�X ). Therefore, if only one
eigenfunction exists per eigenvalue, vk(�X ) = ±vk(X )]. Each
eigenfunction takes the value zero at the ends of the slipping
region, i.e., vk(X = ±1) = 0, and is normalized so

Z þ1

�1

v2k Xð ÞdX ¼ 1: ðB3Þ

B2. Some Characteristics of the Eigenfunctions

[41] Similarly to the derivation of (A1), the inverse form
of equation (B1) is given by

v0k Xð Þ ¼ � 2

p
lkffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X 2
p

Z þ1

�1

vk sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p

X � s
ds: ðB4Þ

This shows that the v0k(X ) are singular at the ends, in
proportion to 	1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jX j

p
; suggesting that at those ends,

analogous to the corresponding results in elastic crack
theory, we can define ‘‘stress intensity factors’’ associated
with the k-th eigenfunction vk(X ) (see also Appendix C2).
[42] Using equation (B4) and performing some mathe-

matical manipulations of integrals, we can show that the
following relations associated with the eigenfunctions hold

Z þ1

�1

vk Xð Þv0l Xð ÞdX

¼
0; if both modes are odd or both even; including k ¼ l

�
ffiffiffiffiffiffiffi
lkll

p

lk�ll
; if one mode is odd and the other is even

(

ðB5Þ

Figure B2. Eigenfunctions vk(X ) related to equation (B1).

Figure B1. Eigenvalues lk associated with equation (B1).
The lk increase in a manner that is almost, but not precisely,
linear in k. The increment between successive value is,
numerically, very close to p/4.
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and

Z þ1

�1

Xvk Xð Þv0l Xð ÞdX

¼
�1

2
; if both are the same mode; i:e k ¼ l

0; if one mode is odd and the other is even

�
ffiffiffiffiffiffiffi
lkll

p

lk�ll
; if the modes are distinct k 6¼ lð Þ

and either both odd or both even:

8>>>><
>>>>:

ðB6Þ

The above two equations imply the eigen-expansions

v0l Xð Þ ¼ �
X1
k¼0

ffiffiffiffiffiffiffiffiffi
lkll

p

lk � ll

vk Xð Þ;

l even and k odd; or l odd and k evenð Þ ðB7Þ

and

Xv0l Xð Þ ¼ �1

2
vl Xð Þ �

X1
k¼0
k 6¼l

ffiffiffiffiffiffiffiffiffi
lkll

p

lk � ll

vk Xð Þ;

l; k both even or both oddð Þ
ðB8Þ

respectively.

Appendix C: Critical Stress Increment Rtc
C1. The Problem in Terms of the Eigenfunctions

[43] By decomposing the slip distribution d(x, t) in terms
of the eigenfunctions vk(X ) as

d x; tð Þ ¼
X1
k¼0

Akvk Xð Þ; ðC1Þ

we can rewrite equation (4) as

�W
X1
k¼0

Akvk Xð Þ ¼ Rt � q a tð ÞX þ b tð Þð Þ � m*
a tð Þ

X1
k¼0

lkAkvk Xð Þ:

ðC2Þ

Multiplying vk(X ), integrating from �1 to +1 and using
equation (B3), we obtain

Ak ¼
a tð Þ bkRt � Qk a tð Þ; b tð Þð Þ½ �

W ak � a tð Þ½ � : ðC3Þ

Here, Qk(a(t), b(t)), ak and bk are defined by Qk(a, b) �R
�1
+1 q(aX + b)vk (X )dX, ak � lkm*/W and bk �

R
�1
+1 vk (X )dX,

respectively. Note that due to antisymmetric nature of the
odd mode eigenfunctions, bk = 0 for odd k. In the following,
the finiteness condition will be considered in terms of Ak

and then equation (C3) will be used in order to obtain the
critical condition associated with the quasi-static slip-
weakening problem.

C2. Finiteness Condition

[44] In order to have no singularity of stress at the ends of
the slipping region [x = a±(t), or X = ±1], from a fracture

mechanics point of view, it is necessary that the following
condition be satisfied

X1
k¼0

Ak KRð Þk¼ 0 and
X1
k¼0

Ak KLð Þk¼ 0: ðC4Þ

Here, (KR)k and (KL)k are the ‘‘stress intensity factors,’’
associated with k-th eigenfunction vk(X ), at the right (x = a+,
or X = + 1) and left (x = a�, or X = �1) end of the slipping
region, respectively. These are defined, in analogy to the
corresponding results in elastic crack theory, by KR;L

� �
k
¼

lim
X!	1

�m*
ffiffiffiffiffiffiffiffiffiffiffi
pa=2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jX j

p
v0k Xð Þ

h i
: Utilizing this near tip slip-

stress intensity factor relation and equations (B4), (B5), and
(B6), and after some mathematical calculations, we notice
(KR)k

2 = (KL)k
2 = m*2a(t)lk/2 holds. This relation indicates

the (anti) symmetric nature of the eigenfunctions. Adopting
a convention KR is always positive and KL may be positive
(even mode) or negative (odd mode), the finiteness
condition (C4) reads

X1
k¼0

Ak

ffiffiffiffiffi
lk

p
¼ 0 and

X1
k¼0

Ak �1ð Þk
ffiffiffiffiffi
lk

p
¼ 0: ðC5Þ

Using equation (C3) and noting that lk is proportional to ak
(� lkm*/W ) and bk = 0 for odd k, we can rewrite this
condition (C5) as

X1
k¼0;2;4;���

ffiffiffiffiffi
ak

p
bkRt � Qk a tð Þ; b tð Þð Þ½ �

ak � a tð Þ ¼ 0 and

X1
k¼1;3;5;���

ffiffiffiffiffi
ak

p
Qk a tð Þ; b tð Þð Þ
ak � a tð Þ ¼ 0: ðC6Þ

C3. Nucleation Length and Critical Stress Increment

[45] Consider the derivatives of Ql(a, b) �
R
�1
+1 q(aX + b)

vl(X )dX. From equation (B8), the following relation holds

a
@Ql a; bð Þ

@a
¼�Ql a; bð Þ �

Z þ1

�1

q aX þ bð ÞXv0l Xð ÞdX ¼

�1

2
Ql a; bð Þ þ

X1
k¼0
k 6¼l

ffiffiffiffiffiffiffiffiffi
akal

p

ak � al
Qk a; bð Þ: ðl; k both even or both oddÞ

ðC7Þ

Applying the above equation (C7) to the case q(x) = 1 and
noting that bl = bk = 0 if l and k are odd, we have Ql (a, b) =
bl, Qk(a, b) = bk, @Ql(a, b)/@a = 0, and

X1
k¼0
k 6¼l

ffiffiffiffiffiffiffiffiffi
akal

p

ak � al

bk
bl

¼ 1

2
: l; k both evenð Þ ðC8Þ

Similarly, from equation (B7),

a
@Ql a; bð Þ

@b
¼ �

Z þ1

�1

q aX þ bð Þv0l Xð ÞdX

¼
X1
k¼0

ffiffiffiffiffiffiffiffiffi
akal

p

ak � al
Qk a; bð Þ: l even and k odd; or l odd and k evenð Þ

ðC9Þ

[46] Let us now consider the first finiteness condition of
(C6), which gives Rt as a function of a and b. Near a = al
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and blRt = Ql(al, b) where l is even (both the numerator and
denominator in the first of (C6) must vanish when a = al),

blRt al ; bð Þ � Ql al; bð Þ

¼ bl
@Rt a; bð Þ

@a

� �
a¼al

� @Ql a; bð Þ
@a

� �
a¼al

" #
a� alð Þ:

ðC10Þ

That first finiteness condition can then be expressed as

albl
@Rt a; bð Þ

@a

� �
a¼al

¼ al
@Ql a; bð Þ

@a

� �
a¼al

þ Ql al; bð Þ
X1
k¼0
k 6¼l

ffiffiffiffiffiffiffiffiffi
akal

p

ak � al

bk
bl

�
X1
k¼0
k 6¼l

ffiffiffiffiffiffiffiffiffi
akal

p

ak � al
Qk al; bð Þ: l; k both evenð Þ ðC11Þ

From equations (C7) and (C8), we obtain

albl
@Rt a; bð Þ

@a

� �
a¼al

¼ al
@Ql a; bð Þ

@a

� �
a¼al

þ 1

2
Ql al; bð Þ� al

@Ql a; bð Þ
@a

� �
a¼al

þ 1

2
Ql al; bð Þ

" #
¼ 0: l evenð Þ

ðC12Þ

The conditions @[Rt(a, b)]/@a = 0 at a = al and blRt(al, b) =
Ql(al, b) follow from the first of (C6) for even l no matter
what value is read in for the center location b of the slipping
zone. However, the second of (C6) expresses b in terms of
a, thus giving the bl corresponding to any al when l is even,
and that relation is

X1
k¼1

ffiffiffiffiffi
ak

p
Qk al; blð Þ
ak � al

¼ 0: l even and k oddð Þ ðC13Þ

Using equation (C9), we can rewrite this condition as

@Ql a; bð Þ
@b

� �
a¼al ;b¼bl

¼ 0: l evenð Þ ðC14Þ

Therefore, the critical condition is given for even l by a = al
� llm*/W, b = bl [where @Ql a; bð Þ=@bð Þa¼al ;b¼bl

¼ 0] and Rt
= Ql(al, bl)/bl. Further, by a derivation like in (C11) and
(C12) for the total derivative d(Rt)/da = @(Rt)/@a + [@(Rt)/
@b] db/da, with db/da constrained by the second of (C6),
one readily derives on the basis of (C14) that d(Rt)/da = 0 at
a = al and b = bl.
[47] In reality, as the slipping region develops, the

critical length associated with the smallest eigenvalue is
first reached. Since d(Rt)/da first decreases to 0 then, it
is the instability length. Therefore, the condition ac = a0
� l0m*/W, bc = b0 [@Q0(a, b)/@b = 0 at a = ac, b = bc]
and Rtc = Q0(ac, bc)/b0 (equation (14)) is of practical
importance. Note that the expressions for ac, bc and the
critical load increment Rtc apply also for general time-
variable loading so long as quasi-static conditions prevail
up to just before instability. The principal results shown
in this appendix can also be obtained, if not necessarily
at greater economy, by using the path-independent M

integral approach in fracture mechanics [Knowles and
Sternberg, 1972; Budiansky and Rice, 1973].

Appendix D: Chebyshev Polynomial
Representation of the Problem

[48] In Appendix D, the equilibrium condition (4) and the
finiteness condition (A2) are considered in terms of a
Chebyshev polynomial representation.

D1. Finiteness Condition

[49] We define a(t) � [a+(t) � a�(t)]/2, b(t) � [a+(t) +
a�(t)]/2 and xo � x � b(t). Introducing xo = a(t)cosw (0 < w
< p) and the slip distribution of the form

d xo; tð Þ ¼
X1
n¼1

un tð Þ sin nwð Þ; 0 < w < pð Þ ðD1Þ

and using the integral formula
R p
0

cos nqð Þ
cos q�cosw dq ¼ p sin nwð Þ

sinw ; we
can rewrite equation (1) as

t xo; tð Þ � to xo; tð Þ ¼ �m*
2p

Z þa tð Þ

�a tð Þ

@d h; tð Þ=@h
xo � h

dh

¼ � m*
2a tð Þ

X1
n¼1

nun tð Þsin nwð Þ
sinw

: 0 < w < pð Þ ðD2Þ

From this relation and the finiteness condition (A2), it is
necessary that

Z þa tð Þ

�a tð Þ

t h; tð Þ � to h; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 tð Þ � h2

p dh ¼

� m*
2a tð Þ

X1
n¼1

nun tð Þ
Z p

0

sin nqð Þ
sin q

dq ¼ 0; and

ðD3ÞZ þa tð Þ

�a tð Þ

t h; tð Þ � to h; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 tð Þ � h2

p hdh ¼

�m*
2

X1
n¼1

nun tð Þ
Z p

0

sin nqð Þ
sin q

cos qdq ¼ 0:

Noting that
R p
0

sin nqð Þ
sin q dq ¼ p for odd n and 0 for even n, andR p

0
sin nqð Þ
sin q cos qdq ¼ p for even n (n > 1) and 0 otherwise, we

can express the condition (D3) as

X1
n¼1;3;5;���

nun tð Þ ¼ 0 and
X1

n¼2;4;6;���
nun tð Þ ¼ 0: ðD4Þ

If the coefficients un(t) satisfy the above finiteness condition
(D4), we have no stress singularity at the ends of the
slipping region. Related expressions are given by Erdogan
and Gupta [1972] in presenting a method for numerical
solution of singular integral equations, and by Dascalu et al.
[2000] in discussing the initial dynamic motion of a
uniformly, and critically, stressed fault segment.

D2. Elastic Equilibrium

[50] From the equilibrium condition (4) and equation
(D2), we have
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Rt � q a tð Þ coswþ b tð Þð Þ

¼
X1
n¼1

nm*
2a tð Þ sinw�W

� �
un tð Þ sin nwð Þ: 0 < w < pð Þ ðD5Þ

Multiplying sin(mw) and then integrating from 0 to p, we
obtain

Z p

0

Rt � q a tð Þ coswþ b tð Þð Þ½ � sin mwð Þdw

¼
X1
n¼1

nm*
2a tð Þ

Z p

0

sin mwð Þ sin nwð Þ
sinw

dw
�

� W

Z p

0

sin mwð Þ sin nwð Þdw
�
un tð Þ: ðD6Þ

Noting that
R
0
p sin(mw)sin(nw)dw = p/2 if m = n and 0 if m

6¼ n, we can rewrite this equation (D6) as

bm ¼
X1
n¼1

Amnun tð Þ; ðD7Þ

where the matrix A

Amn ¼
nm*
2a tð Þ I m; nð Þ �W

p
2
dm;n; ðD8Þ

I m; nð Þ �
R p
0

sin mwð Þ sin nwð Þ
sinw dw; dm,n is 1 if m = n and 0 if m 6¼

n, and the vector b

bm ¼ Rt

m
1� �1ð Þm½ � �

Z p

0

q a tð Þ coswþ b tð Þð Þ sin mwð Þdw: ðD9Þ

For numerical evaluation of equation (D7) we retain the first
N terms in the series so that we have (N + 2) simultaneous
equations, (D4) and (D7), for (N + 2) unknown variables,
un(t), a(t) and b(t). Then we can numerically solve the
simultaneous equations under different values of stress
increment, Rt. Note that for a symmetric form of q(x), b(t) =
0, un(t) = 0 for even n, and I(m, n) = 0 if either m or n (not
both of them) is even. In producing Figures 4–7, the first N
= 5 terms in the series of equation (D7) are used. Any
increase of N does not change the overall result.

D3. Expression for the First Eigenfunction

[51] The results in Figures B1 and B2 were obtained by
numerically discretizing equation (B1). Alternatively, the
same Chebyshev polynomial representation can be used to
obtain the eigenvalues (for which derivatives are not subject
to the finiteness condition at the ends). In view of equation
(14), v0(X ) is of primary interest. It is found to be given, to
sufficient accuracy, by

v0 Xð Þ � v01 sinwþ v02 sin 2wþ v03 sin 3w ¼ 0:848 sinw

� 0:077 sin 3w ¼ 0:925� 0:308X 2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X 2
p

; ðD10Þ

where X = cosw, �1 < X < + 1 and 0 < w < p. From that
result, we obtain b0 = (p/2) v01 � 1.332. Comparison of

the numerical values obtained by two different methods,
one by discretization described in Appendix B1 and the
other by equation (D10), shows that the difference
between those two methods is practically negligible:
0.16% for v0(0) and 0.06% for b0. For the symmetric
loading q(x) = kx2/2, from equation (14), we have Q0(a, 0)
= (p/16) ka2 (v01 + v03) � 0.151 ka2 and the critical stress
increment Rtc = Q0(ac, 0)/b0 = kac

2 (v01 + v03)/(8v01) �
0.038 km*2/W2. This result, which can also be obtained
using equation (15), is consistent with the ones shown in
section 4.1 and Figures 4–6.
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