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Abstract

We review recent theoretical progress on the dynamics of brittle crack fronts and its rela-
tionship to the roughness of fracture surfaces. We discuss the possibility that the small scale
roughness of cracks, which is characterized by a roughness exponent �0:5, could be caused
by the generation, during local instabilities by depinning, of di7usively broadened corrugation
waves, which have recently been observed to propagate elastically along moving crack fronts.
We 8nd that the theory agrees plausibly with the orders of magnitude observed. Various con-
sequences and limitations, as well as alternative explanations, are discussed. We argue that
another mechanism, possibly related to damage cavity coalescence, is needed to account for the
observed large scale roughness of cracks that is characterized by a roughness exponent �0:8:
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1. Introduction

1.1. Experiments

Fracture surfaces are among the best characterized scale invariant objects in nature
(Mandelbrot et al. (1984) and for a review, see Bouchaud (1997)): crack pro8les have
been shown to be self-aEne objects, sometimes over 8ve decades in length scale (from
r=5 nm to 0:5 mm). The roughness exponent � that characterizes the typical deviations
�h of the surface as a function of distance r along the crack surface (parallel to the
front), as �h∼ r�, is found to be around �∼ 0:8. A typical crack pro8le is shown in
Fig. 1, as an illustration for a rough, self-aEne object.
Quite surprisingly, the value of � has been found to be to a large degree universal

(Bouchaud et al., 1990; Bouchaud, 1997; MHalHy et al., 1992), i.e. independent of both
the material (glass, metals, ceramics, etc.) and of the fracture mode (fatigue, pure
tension, stress corrosion, etc.). 1 More recent experiments, however, have suggested a
more complex scenario, with at least two di7erent roughness exponents (Bouchaud and
NavIeos, 1995; Daguier et al., 1997,1996), for a given (macroscopic) crack velocity Vm,
the roughness exponent for small length scales r ¡�c(Vm) is found to be around �=0:5,
whereas for large length scales r ¿�c(Vm), the previous value �=0:8 is observed. The
scale �c(Vm) is a crossover length which appears to diverge for Vm → 0 but becomes
irresolvably small for the large Vm that occur in spontaneous dynamic fracture. In this
interpretation, the value �∼ 0:5 corresponds to behavior associated with near threshold
crack growth, while �∼ 0:8 corresponds to ‘fast’ cracks, for which the e7ects of the
onset are negligible.
As we shall discuss in some detail, it is important to distinguish at least three dif-

ferent roughness exponents (Bouchaud, 1997): one describing the roughness in the
direction perpendicular to the crack propagation, a second the roughness in the direc-
tion of the propagation, and a third one (which we call �f ) describing the in-plane
roughness of the crack front during its propagation through the material. The expo-
nent characterizing this in-plane roughness, which does not directly a7ect the fracture
surface itself, has been measured by two groups (Daguier et al., 1995; Delaplace et al.,
1997; Schmittbuhl and MHalHy, 1997), on metallic alloys and on Plexiglas, respectively.
These experiments were performed on stationary crack fronts after some growth: a sta-
ble crack growth geometry was used in Schmittbuhl and MHalHy (1997) and Delaplace
et al. (1999), and the front was observed in situ (the sample being transparent); more
recent experiments during macroscopically slow growth measured successive crack front
positions in 0:2 s time increments (MHalHy and Schmittbuhl, 2001). In Daguier et al.
(1995), on the other hand, the fracture was stopped before complete failure of the spec-
imen, and the in-plane front morphology was observed after unloading. In both sets of
experiments, the front roughness index �f was found to be in the range 0:5–0:65, over
at least two decades.

1 More details on the experimental situations will be provided in Section 4.
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Fig. 1. Typical AFM crack pro8le, measured in a direction perpendicular to the crack propagation. The
material in this case is glass broken under stress corrosion. Horizontal and vertical scales are in nanometers.
Note that the real slopes are very small.

1.2. Line models

Despite numerous recent e7orts, there is unfortunately no satisfactory theory that
explains the values of any of these exponents. A qualitatively useful framework was
proposed in Bouchaud et al. (1993), in which the crack front was modeled as an
overdamped elastic string moving in a random ‘pinning’ environment representing the
disordered micro-structure of the material. This picture provides a natural interpretation
for the existence of roughness exponents, and also for the appearance of a velocity
dependent crossover length separating two regimes: a “critical” or “onset” regime,
appropriate to a crack front just barely able to propagate through the material, and an
“unpinned” regime, where the front sweeps through the random pinning at a substantial
velocity. But this simple elastic-string model is certainly not applicable quantitatively.
Re8ned versions of the crack front model take into account the non-local nature of

the elasticity (Gao and Rice, 1989; Rice, 1985; Schmittbuhl et al., 1995; Schmittbuhl
and Vilotte, 1999). Long-ranged elastic e7ects make the crack front much sti7er thereby
reducing its roughness (and concomitantly that of the fracture surface). If elastic waves
are ignored, this sti7ness, combined with the assumption of only short distance correla-
tions in the heterogeneities of the material properties, results in a predicted large scale
roughness of both the in-plane crack front and the fracture surface that grows only
logarithmically with length scale (i.e. � = 0) (Larralde and Ball, 1985; Ramanathan
et al., 1997). Although some experiments do indeed observe such weak logarithmic
roughness (Larralde and Ball, 1985) most fracture surfaces appear to be far rougher,
at least up to a material dependent length scale, beyond which the roughness saturates
(or grows much more slowly (Bouchaud, 1995)).
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1.3. Crack front waves

But some important physics was left out of these quasi-static calculations: the e7ects
of dynamic stress transfer along the crack front caused by elastic waves. These were
8rst studied for cracks restricted to a plane, numerically by Morrissey and Rice (2000)
and analytically by Ramanathan and Fisher (1997). It was found that in an ideal
material, planar distortions of the crack front could propagate as waves along the
crack front. Such waves would be generated continuously by local variations in the
material properties, particularly in the critical fracture energy, as the crack advances
through a disordered material. These waves, established in the framework of the full
three-dimensional vectorial elastodynamics (Willis and Movchan, 1995) suggested that
a crack front in an ideal material is even more unstable than that had been suggested
in the 8rst 3D investigations of dynamic cracking through disordered solids by Perrin
and Rice (1994) based on a scalar approximation to elastodynamics. However, these
planar waves only directly a7ect the in-plane roughness of crack fronts rather than
the (out-of-plane) shape of fracture surfaces and, in fact, are predicted to be strongly
damped whenever the fracture energy is substantially velocity dependent (Ramanathan
and Fisher, 1997).
Interestingly, another type of crack front wave that can radically change the rough-

ness of fracture surfaces was recently discovered by Ramanathan and Fisher. Crack
fronts can indeed also support waves that involve non-planar deformations of the front,
which we will call corrugation waves (see also Willis and Movchan (1997) for the
perturbative elastodynamics solution for a non-planar crack). Although it is not clear at
this point whether these waves can propagate forever in an ideally elastic material, they
can certainly propagate over long enough distances to have dramatic e7ects. Recent
observations have indeed shown (Sharon et al., 2001) that in glass, perturbations do
indeed propagate over long distances. These corrugation waves will be rePected in the
fracture surfaces. Indeed, they are probably the explanation of Wallner lines (Hull and
Beardmore, 1966; Wallner, 1939), the oft-observed grooves on the fracture surfaces of
materials that are broken dynamically.

1.4. Aim of this paper

In this paper, we investigate the e7ects of these waves on the roughness of fracture
surfaces, in particular whether they might provide a natural interpretation for the value
of the intermediate length-scale roughness exponent of �∼ 0:5. An analogous e7ect
for the in-plane roughness of the crack front was suggested by Ramanathan et al.
(1997) but it was not discussed in detail. Here we will derive the related result for
non-planar crack front deformations, and consider both this, and the in-plane case,
in a broader context. We will then discuss whether this scenario is compatible with
experimental results and make some predictions about its consequences if it indeed
is. It is important to stress that the concept of crack waves only makes sense if the
crack is moving suEciently fast, at least instantaneously. This might be the case during
localized depinning events (see the recent discussion in MHalHy and Schmittbuhl, 2001),
but is perhaps never justi8ed in the case of highly ductile, plastic materials where a
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�∼ 0:5 regime is nevertheless observed. We discuss in the conclusion alternative models
that could explain this value of � in the absence of crack front waves. Finally, we will
discuss a di7erent mechanism that may be involved in the large length scale, �∼ 0:8
regime.

2. Crack front dynamics

2.1. Basic ingredients and notations

Let us describe the evolution of the shape of the crack front at time t by two
functions, f(x; t) for its position in the plane of the crack (f is for ‘front’) and h(x; t)
for its out of plane deformation (h is for ‘height’) with x denoting the coordinate in
a direction parallel to the crack front. In the following, we choose the y-axis in the
out-of-plane direction and the z-axis in the direction of the crack propagation. (Note
that these notations di7er from those used in, e.g. Morrissey and Rice (1998), where
the coordinate along the crack front is called z.)
In an ideal material with no heterogeneities, the front would be straight and would

propagate in a plane at a uniform velocity V (at least below the Yo7e speed) which
is a function of the stress intensity factor; i.e., f(x; t) ≡ Vt and h(x; t) = constant. But
in a heterogeneous medium, the instantaneous local velocity of the crack front, V (x; t)
is constant neither in space nor in time, and is a priori very di7erent from the global
macroscopic velocity Vm, because close to the threshold for crack growth, the crack
front progresses in a very jerky, intermittent manner (Ramanathan and Fisher, 1998).
We will assume a local variation of the material toughness, and therefore of the frac-

ture energy (the critical energy release rate). These heterogeneities a7ect the dynamics
of the crack front in two rather di7erent ways:

• The variations of the local fracture energy result in a perturbation in the local ve-
locity. The resulting change in the shape of the front will modify the stress intensity
factor (Morrissey and Rice, 2000; Willis and Movchan, 1995) and energy available
for fracture at other parts of the crack front thereby a7ecting the crack velocity at
these other points.

• The direction of propagation of the crack front can also be a7ected by local het-
erogeneities. Although the details of how this occurs locally will depend on the
physics in the process zone near the crack front, this should be expected on general
grounds: heterogeneities in material properties can change the local loading from
being purely tensile (as imposed macroscopically) to having a shear component that
will tend to make the crack bend in a direction that decreases or even cancels Mode
II component of the local stress intensity (Adda-Bedia et al., 1999; Cottrell and Rice,
1980; Goldstein and Salganik, 1974; Hodgdon and Sethna, 1993; Oleaga, 2001). On
a more microscopic level, the crack may change direction to go around a tougher
region that is located asymmetrically with respect to the local plane of the crack.
Any asymmetric local distortion of the crack front which results from these types
of heterogeneities will again modify the stress intensity at other points on the crack
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front, in particular by introducing Mode II (and possibly Mode III) components,
thereby causing non-planar deformations of other parts of the crack front as well.

2.2. The physical origin of crack waves

Because stresses are transferred through the medium and along the crack surface by
elastic waves—dilatational, shear and Rayleigh—the changes in stress intensity factors
caused by a local disturbance will propagate away from their source at velocities of
order the sound speed, but the details of this propagation are complicated.

2.2.1. In-plane waves
It is instructive to consider what happens to the stress intensity factor along a straight

front of a planar crack if one small part of it slows down momentarily for some reason,
such as an encounter with a locally tougher region. The initial changes in the stress
at other points along the crack front will arrive with the dilatational waves. Perhaps
surprisingly, the e7ects of these will be to increase the stress intensity factor thereby
tending to make the other parts of the crack accelerate rather than decelerate. Only
after the Rayleigh waves arrive some time later will the stress intensity factor decrease,
soon becoming less than that before the disturbance arrived and hence tending to slow
the crack down as one would have expected. The crack front waves are a result of
the competition between these two e7ects: a locally tougher region will initially cause
other parts of the crack to accelerate and then cause them to decelerate. In the absence
of dissipation, this gives rise to the existence of waves of slowing down and speeding
up which can propagate in a self-sustaining manner along the crack front at a speed,
cf (relative to their source), which is slightly less than the Rayleigh wave speed, cR.
These carry distortions of the in-plane crack front position f(x; t).

2.2.2. Corrugation waves
The out-of-plane corrugation waves have a similar origin. A local distortion of the

crack front, say in the positive h direction—‘up’—would be expected to result in some
Mode II loading at other points on the crack front with a sign which tends to make
the crack also bend up at these other points thereby keeping the crack front as straight
as possible; indeed, this is just what the static stress changes due to such a distortion
will tend to do. But the initial stress changes which arrive with the dilatational waves
will have the opposite e7ect: they carry Mode II stress intensity which tends to make
the crack bend down. As was the case for the in-plane velocity changes, this bending
e7ect is negated by the Rayleigh waves and at later times the crack will bend in the
naively expected ‘up’ direction. The competition between these e7ects of two types
of elastic waves, combined with the tendency of the crack front to bend so as to
cancel Mode II loading, give rise to propagating waves along the crack front and con-
comitant corrugations in the fracture surface. These waves move with a speed, ch, which
is again slightly slower than cR and depends weakly on the overall velocity of the crack
front.
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2.3. An equation of motion for the crack front

Since we are primarily interested in the fracture surfaces, we will focus on the
corrugation waves and their e7ects, returning in Section 5.4 to a brief discussion of
the in-plane crack front waves.
A small out-of-plane component of the crack front, h(x′; t′), will give rise to a Mode

II stress intensity factor given by (Willis and Movchan, 1997)

KII(x; t) = K0I

∫ ∞

−∞
dx′

∫ t

−∞
dt′ h(x′; t′)Q(x − x′; t − t′;V ); (1)

where the kernel Q is a homogeneous function of x− x′ and t− t′ of degree −3 which
depends on the overall unperturbed velocity of the crack, V ; and K0I is the unperturbed
stress intensity factor which we take to be purely Mode I. (Mode III component of the
stress intensity factor can be shown, from symmetry considerations, to play no role in
the linearized equations of motion that are needed for the following analysis.)
We assume that in response to this Mode II local load, the crack will tend to bend

so as to decrease Mode II component of the stress intensity factor. But, as discussed
above, the crack front will also tend to bend in response to a local asymmetry that
we parameterize by a random 8eld �(r). A natural assumption with some experimental
support is that the crack adjusts in such a way that the net Mode II stress intensity
factor is zero (Adda-Bedia et al., 1999; Cottrell and Rice, 1980; Goldstein and Salganik,
1974; Hodgdon and Sethna, 1993; Oleaga, 2001):

KII(x; t)− K0I �(r) = 0; (2)

where � is computed at the current position of the crack front: r = (x; y = h(x; t);
z = f(x; t)). Therefore, one has, using Eq. (1)

Q ⊗ h= � (3)

everywhere on the crack front and at all times. (Here ⊗ is the convolution in x and t
that we wrote explicitly in Eq. (1).)
We can invert this to 8nd the response of the crack to a local bending heterogeneity:

h= P ⊗ �; P ≡ Q−1: (4)

The ‘propagator’ P(x− x′; t− t′) is a complicated homogeneous function of degree −1
which is only known explicitly as an integral expression; it includes the e7ects of all
of the three types of elastic waves.
The above Eq. (2) assumes that the crack front ‘follows’ perfectly the local ran-

domness. It might be interesting to generalize this equation to describe the fact that
the crack will ‘react’ to a change of stress intensity factor with a certain lag. Thus
we propose an e7ective equation of motion for the direction of the crack front of the
following form (Ramanathan et al., 1997; Ramanathan and Fisher, in preparation):

92h(x; t)
9t2 =

V 2

lr

(
−KII(x; t)

K0I
+ �(r)

)
; (5)

where lr is a microscopic ‘adaptation’ length. Intuitively, Eq. (5) means that the local
orientation angle of the surface, equal to 9h=9z changes at a rate proportional to KII=�r ,
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with �r = lr=V . Since the crack is moving at a velocity V , derivatives with respect to
z are, for a weakly perturbed crack front, simply related to time derivatives through
9z=V 9t. On length scales large compared to lr , one can set the left-hand side of Eq.
(5) to zero, and recover (2). In the following, we will assume that the length lr is
microscopic.

2.4. The corrugation waves: di@usion and dispersion

The corrugation waves of the crack front arise from a zero in the Fourier transform
of Q at a real (or almost real, see below) value of !=|q| = sh which gives rise to a
divergence of P for (x − x′) =±sh(t − t′) where

sh =
√

c2h − V 2 (6)

is the speed of the corrugation waves in the direction parallel to the moving crack front.
(Note that the total speed ch relative to the source is indeed given by c2h = s2h + V 2.)
The wave speed ch is found to depend weakly on the crack front velocity V : it

varies from 0:96cR when V�cR to cR as V → cR. The numerical solution suggests
that ch has a very small but non-zero imaginary part �(V )cR, with � of order 10−4

for small V to 2× 10−3 for V = 0:6cR (Ramanathan and Fisher, in preparation). This
means that, strictly speaking, corrugation waves will not propagate inde8nitely. Since
� is very small, it is a reasonable approximation to ignore, at least for now, its e7ects.
The behavior near to this singularity of P, dominates the long time behavior of the

crack front. The important parts have the form:

P(x; t)˙
(

Cbcs
x − sht

− Cbcs
x + sht

)
(7)

(in contrast to a sum of �-functions at x ± sht for conventional waves). Here Cb is a
velocity dependent dimensionless numerical coeEcient, and cs is the shear wave speed.
(Note that the dimension of P is [T ]−1, as it should be since � is dimensionless in
Eq. (4), and convolution brings an extra [L][T ] factor.) The primary e7ects of a per-
turbation propagate away from its source in two directions that are at an angle across
(V=ch) from the direction of propagation of the crack—i.e., almost parallel to the crack
front for a slowly advancing crack.
From Eq. (7), the shape of any disturbance would persist without broadening for

arbitrarily long times (for �=0). But this result holds only for a perfect elastic medium
with an in8nitely sharp crack and no lag in response to bending forces (i.e., lr=0). In
reality, the two sharp peaks of Eq. (7) will be broadened by various mechanisms. The
8rst one, discussed by Ramanathan and Fisher (1997), is the existence of Kelvin-like
viscoelastic e7ects, i.e. a delay time �d between stresses and strains. 2 This will lead
to a di7usive-like spreading of the peaks, with a di7usion constant of the order of

2 This e7ect was not treated correctly in Ramanathan and Fisher (1997) due to the nature of the boundary
conditions in the moving frame of the crack front. For the case of in-plane cracks discussed there, a
detailed calculation has been carried out (Fisher, unpublished) and leads to qualitatively similar results. In
principle, this could also be done for the out-of-plane dynamics although the technical details are likely to
be exceedingly cumbersome.
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Dd ∼ c2�d, whose actual value will involve many details of the relaxation processes as
embodied in the frequency dependence of the elastic moduli (Fisher, unpublished). (In
the above formula and in the rest of this paper, c denotes a typical wave propagation
speed—as far as orders of magnitude are concerned, we do not need to distinguish
between the di7erent wave speeds.)
Two other e7ects are caused by the heterogeneities in the medium in which the

elastic waves and the crack front propagate. These inhomogeneities can scatter the
(bulk or Rayleigh) elastic waves which mediate the crack front dynamics and thereby
give rise to broadening of the ideal crack front waves. But in addition, the small-scale
corrugations in the fracture surface, created by the heterogeneities and propagated by
the crack front waves themselves can act as disorder to scatter the longer wavelength
crack front waves. (This may lead to interesting non-linear feedback e7ects, see Sharon
et al., 2001). The simplest expectation is that both of these will induce di7usive-like
spreading of the peaks of Eq. (7) (see e.g. Claudin et al., 1998). If the scattering were
strong, one would expect the corresponding di7usion constant to be of order Ds = cls,
where ls is the correlation length of the relevant inhomogeneities.
These e7ects together give rise to a change of the important singular parts of the

Fourier transform of the propagator from the ideal case corresponding to Eq. (7) in
which Fourier space is

P̂(q; !)∼ Cbcs
!− sh|q| +

Cbcs
−!− sh|q| (8)

to

P̂(q; !)∼ Cbcs
!− sh|q|+ iDq2

+
Cbcs

−!− sh|q| − iDq2
; (9)

where D = Ds + Dd. The shift of the pole by iDq2 indeed corresponds to a di7usive
damping term of the form exp[− Dq2(t − t′)] in the time domain.
Physics within the process zone will also a7ect the propagation of disturbances along

the crack front. One might expect that the non-instantaneous response (i.e. lr 
=0) of
the crack growth direction embodied in the equation of motion, Eq. (5), would give rise
to similar di7usive-like broadening. But in fact, this primarily gives rise to dispersion
of the waves; this term in Eq. (5) yields, in Fourier space, −lr=V 2!2ĥ(q; !). Since
this contribution must be added to Q, one 8nds that near the poles (i.e. when Q is
small), the propagator P̂ can be written as

P̂(q; !)∼ Cbcs
!− sh|q| − Jq2 + iDq2

+
Cbcs

−!− sh|q| − Jq2 − iDq2
; (10)

which is valid when both q and one of ! ± sh|q| are small. Here, the coeEcient J
that describes dispersion e7ects is given by J = Cbcss2hlr=V

2. As will be clear below,
however, dispersion e7ects will not drastically a7ect the roughness statistics.
Fourier transforming Eq. (10) gives rise to the 8nal form of the propagator, which

is a sum of a right-moving contribution PR(x; t) that depends on !R = x − sht and a
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Fig. 2. Shape of the rescaled propagator P(!̃) as a function of the rescaled variable !̂ = (x ± sht)=2
√
Dt.

Here we have set Cbcs=2
√
" = 1.

similar left-moving contribution PL(x; t) that depends on !L = x + sht. We 8nd

PR(!R)≈Cbcs

∫ ∞

0

dq
"
sin(q!R + Jq2t)e−Dq2t

≈ Cbcs
2
√
"Dt

I[exp(−!̃2R) erfc(−i!̃R)]; with !̃R ≡ !R
2
√
(D + iJ )t

: (11)

In the above equation, erfc is the complementary error function, and I denotes the
imaginary part. The above result holds for |!R|�sht since we have used the expression
of the propagator, Eq. (10), which is only valid close to the pole.
For J�D, (12) is an antisymmetric function of !R which decays as 1=!R for

!R�
√
Dt (in agreement with Eq. (7) above), vanishes linearly for !R�

√
Dt, and

has a peak (trough) for !∼ ± √
Dt. This function is plotted in Fig. 2. Interestingly,

this shape is similar to what has been observed in Sharon et al. (2001).

3. Corrugation wave mediated roughening

3.1. Quantities of interest

The dependence of the random local bending tendency, � (see Eq. (5)), on h does not
play an important role, and we assume a simple form for its random dependence on x
(the direction along the crack front) and z (the direction parallel to crack propagation):
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Gaussian with mean zero and covariance given by

〈�(x; z)�(x′; z′)〉= #2G
(
(x − x′)2 + (z − z′)2

�20

)
(12)

with #, the dimensionless root mean-square amplitude of the random bending, G a
certain short-range function and �0 the correlation length of this randomness. In a
disordered material, there are a priori many di7erent length scales associated to dif-
ferent types of heterogeneities: size of precipitates, micro-cavities, metallurgical grains,
quenched in stresses, etc. The relevant heterogeneities will actually depend on the
observation scale. In the following, for simplicity, we will assume that we are only
interested in length scales large compared to �0, and replace the function G by a (two
dimensional) �-function. This might, however, not always be justi8ed (see Section 5.4
and Schmittbuhl and Vilotte, 1999).
The existence of crack front waves means that a local variation of the material

properties that is anisotropic or located just o7 the plane of the crack, say near (x0; z0)=
(x0; Vt0), will result in a perturbation h(x; t) of the deviation of the crack from planar
which propagates, relative to (x0; z0), at a velocity ch. Using the results of the previous
section, the perturbation induced by a variation �(x0; z0) can be written as (Morrissey
and Rice, 1998, 2000)

h(x; t) =
∫ +∞

−∞
dx0

∫ t

0
dt0[PR + PL](x − x0; t − t0) �(x0; z0 = Vt0); (13)

where t=0 is the time at which the front penetrates into the disordered region. Again,
we have assumed that the perturbation from a straight front is small in order to replace
z0 by Vt0.
From this expression, one can compute the correlation function of the fracture surface

heights from the function:

B(rx; rz) = 〈[h(x + rx; z + rz)− h(x; z)]2〉 (14)

that is often measured experimentally. The brackets refer to an average over the point
(x; z), which—provided the measurements are taken in a region suEciently far from
where the crack front enters the random heterogeneities and starts to roughen, and
suEciently small so that the crack does not accelerate—can be replaced by an average
over the randomness. The roughness exponent �, is de8ned by [B(r)]1=2∼ |r|�, and may
in general depend on the direction of r. The roughness of the fracture surface rePects
the temporal history of the non-planar deformations of the crack front.

3.2. Roughness correlation function

It is instructive to consider how a given ‘asperity’ (i.e. a given local variation of the
material properties)—located at (x0; z0)—contributes to the roughness correlations. The
dominant e7ects of this asperity will be carried by the left and right-moving corrugation
waves, with a di7usive-like spreading of these waves in time. Points outside of these
spreading waves will not be a7ected appreciably. If the two points of interest r; r′ are
both a7ected by the waves, the resulting deformations of the crack front at the two
points are highly correlated and do not contribute much to B(r) unless:
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x

z

Fig. 3. The contribution to the di7erence of roughness between two given points comes from asperities within
parabolas opening backwards along the wave propagation direction, but not from their common intersection
(hatched region).

• either their separation in time, |rz=V |, is comparable or greater than the time, (z −
z0)=V , since the waves left the asperity;

• or their separation perpendicular to the direction of propagation, |rx − shrz=V | for
the right-moving waves, is comparable to or greater than the di7usive spreading,√

Drz=V .

Thus the dominant contributions to the mean-square height di7erences will be from
asperities which are within a parabola opening backward from one of the points with
its axis along the wave direction, but not within the similar parabola opening backward
along the same wave direction from the other point (see Fig. 3).
The mean-square roughness is approximately given by a sum of two terms, one

from the right-moving and the other from the left-moving waves. The e7ects of the
cross-terms between the right- and left-moving waves are small, because they carry
signals that come from uncorrelated asperities. We 8nd that

B(r) ≈ 4C2b#
2�20c

2
s

V
[F(|rx − shrz=V |; rz) +F(|rx + shrz=V |; rz)] (15)

where the function F has the following asymptotic behavior:

F(|!|; rz) ≈ |!|
2D

(16)

for |!|�√
Drz=V and

F(|!|; rz) ≈
√

rz
"VD

cos %=2
cos2 %

; (17)

where tan %= J=D, for |!|�√
Drz=V .
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Let us comment these results. First, consider the roughness measured perpendicularly
to the direction of crack propagation, i.e. along the x direction, which corresponds to
rz = 0. We 8nd that the roughness is given by

�h(rx)∼ #�0cs

√
rx
DV

: (18)

Note that if the distance traveled by the crack since it entered the disordered region is
8nite and equal to L (=Vt), the above result is only valid if rx��L, with �L=

√
DL=V .

For longer distances, the roughness saturates in this regime.
In the direction parallel to the crack propagation—i.e. perpendicular to the crack

front, rx = 0—the roughness is given by

�h(rz)∼
√

sh
V

#�0cs

√
rz
DV

; (19)

i.e. the roughness is reduced by a factor of order ∼√
c=V compared to that in the

x direction. This di7erence in the amplitudes in the two directions should be very
pronounced at low crack growth velocities.
Another notable e7ect of roughness due to corrugation waves is that along the di-

rection of propagation of the crack front waves, i.e. for rx = shrz=V , one expects to
observe ridges and grooves oriented in these directions. The long-distance roughness
is somewhat suppressed in the wave directions where one 8nds:

�h∼ #�0cs
( rz
V 3D

)1=4
; (20)

which is a factor (VD=c2rz)1=4 smaller than in the direction parallel to the crack prop-
agation, where it is already reduced compared to that in the x direction. Interestingly,
if such a reduced roughness direction is observed it could be used to determine the
local velocity V at which the crack was propagating (Sharon et al., 2001).
Note that the above results for the roughness exponents obtained here (�= 1

2 or
1
4 in a

particular direction) are, largely coincidentally, identical to that for an overdamped elas-
tic line driven through random impurities (the so-called Edwards–Wilkinson model—for
an introduction, see Barabasi and Stanley (1995)). This is in spite of the fact that the
the elasticity of a crack front is non-local (i.e., it is described by a |q| wave-vector
dependence of the energy, rather than the q2 dependence of the oversimpli8ed string
model). This non-local elasticity is in a sense responsible for the existence of crack
waves; however, the di7usive spreading of these waves is eventually the dominant
factor that determines the statistics of the crack roughness; this is the cause for the
equivalence of the roughness exponents to that of the elastic string with di7usive dy-
namics.
So far, we have ignored the e7ects of the small imaginary part �(V )cR of the cor-

rugation wave velocity. At suEciently long times, this will damp the waves more
rapidly than di7usively. The decay of the e7ects of a localized perturbation will even-
tually change from the 1=

√
Dt decay of the peaks in h (see Eq. (10)) to 1=�(V )ct at

longer times. But the crossover time will be of order t� ∼D=�2c2. In directions parallel
to the crack front the roughness will thus only be reduced on length scales larger than
�� ∼D=c�2 which is macroscopic even if D=c is nanometric. Perpendicular to the crack
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front, the reduction of the roughness will occur on scales smaller by a factor V=c.
On asymptotically long length scales, the predicted roughness would be reduced to its
logarithmic form found in the absence of crack front waves but with an amplitude
increased by a factor 1=�(V ).

4. Comparison with experiments

In this section, we will compare the above predictions with several experimental
observations on materials as di7erent as glass, inter-metallic-based or metallic-based
alloys, fractured in stress corrosion, fatigue or pure tension. Our main prediction
(Eq. (18)) concerns the amplitude and form of the roughness correlations in the regime
in which crack wave dynamics dominate. In two of the experiments described below,
it was found that in the regime where �∼ 0:5, the roughness amplitude is approximately
independent of the macroscopic average crack velocity Vm (Daguier et al., 1997). Only
the crossover scale �c, which is the upper limit of this regime, is found to depend on
Vm. This suggests that the local crack velocity V that enters Eq. (18) may actually
be roughly constant during localized depinning events and we will assume V to be a
signi8cant fraction of the Rayleigh velocity cR.
Assuming that the viscoelastic broadening is the dominant e7ect (compared to the

scattering of the crack waves), one can write D∼ c2�d, such that Eq. (18) 8nally reads
(for V ∼ c):

�h∼ �0

√
rx
c�d

; (21)

assuming strongly disordered materials, for which #=O(1). It is reasonable to estimate
the value of �d (which measures the viscoelastic lag between stresses and strains)
as a typical vibrational time �d ∼ a=c where a is an atomic distance. This leads to
�d ∼ 10−12 s.

4.1. Stress corrosion of glass

Four point bending experiments on soda-lime silica glass leading to stress corrosion
fracture were performed in a controlled humidity environment. Typical values of the
macroscopic average crack velocity Vm are Vm ∼ 10−9 − 10−5 m=s. The regime where
�=0:5 is found to extend between 1 nm and tens of nanometers for the lowest velocities
Vm. It is reasonable to assume that in this material �0 is of the order of the size of
3–6 silica tetrahedra, i.e. �0∼ 1 nm, corresponding to the smallest scale of density
Puctuations (Van Brutzel, 1999). Taking c∼ 2 × 103 m=s and �d ∼ 10−12 s, Eq. (18)
leads to �h∼ 2 nm for rx = 10 nm, which corresponds well to observations in atomic
force microscopy (AFM) (see Daguier et al., 1997 and Fig. 1).
The corresponding value of the crossover length �L above which the e7ects of the

macroscopic geometry dominate, is larger than 10 �m for a typical sample size of L=1
cm. Since this is much larger than the crossover scale �c(Vm) separating the � = 0:5
from the �=0:8 regime in this material, the 8nite sample size e7ects should not matter.
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4.2. Fatigue of a Ti3Al-based alloy

Fatigue experiments were carried out on compact tension specimens of a Ti3Al-based
alloy at a frequency of 30 Hz with a constant R-ratio of 0:1. Varying the maximum load
allowed us to vary the average crack velocity again between Vm =10−9 and 10−5 m=s.
This alloy contains faggots of needle shaped precipitates (of size 20=1 �m) of the

brittle +2 phase in the more ductile , phase. The fracture mode was observed in situ
using scanning electron microscopy (SEM). Cleavage cracks open in the +2 precipitates,
blunt when extending into the , matrix and 8nally coalesce together and with the main
crack.
The �=0:5 regime is in this case observed at least down to r∼ 10−2 �m and up to

�c = 10 �m for the lowest velocities Vm. It is reasonable to think that �0 corresponds
to the size of heterogeneities contained within a needle, and hence signi8cantly smaller
than 1 �m. Taking for �0 the lower limit of the scaling region 10−2 �m, one 8nds (with
c = 5 × 103 m=s and �d = 10−12 s) �h∼ 0:5 �m for rx ∼ 10 �m, which again concurs
with experimental 8ndings (Daguier et al., 1997) for which both AFM and SEM were
used. Similar orders of magnitude are found in the case of pure tension fracture for
which Vm is expected to be much larger (Daguier et al., 1998).
The scale �L is again found to be tens of microns for L = 1 cm, which is of the

same order of magnitude as the observed crossover scale �c(Vm) only for the smallest
Vm studied in (Daguier et al., 1997) but much larger otherwise.

4.3. Fracture of ductile aluminium alloys

Compact tension specimens of a ductile commercial aluminium alloy, 7010, were
broken in fatigue at a frequency of 10 Hz and a constant R-ratio 0.1. Measured average
crack velocities Vm were ranging between 2×10−9 and 10−5 m=s. The largest value of
the crossover length �c(Vm) did not exceed 0:1 �m in this case. Note that the values
of �c(Vm) are in this case always much smaller than the plastic zone size.
Taking again for �0 the lower limit of the scaling region, i.e. 0:01 �m and

still �d ∼ 10−12 s, one 8nds �h∼ 0:02 �m for rx ∼ 0:1 �m whereas SEM observations
(Bouchaud and Hinojosa, 1998) lead to �h∼ 0:06 �m for the same rx. The agreement is
in this case more surprising since in this alloy the growth of damage cavities should be
dominated by plastic Pow rather than crack front motion and hence a longer �d might
be more reasonable. However, a recent direct study of these cavities using AFM (Paun
and Bouchaud, 2001) has revealed a clearly anisotropic morphology, where roughness
amplitudes, in the direction where the exponent 0.5 is observed, are indeed similar to
the ones measured at small length scales on fracture surfaces. Furthermore, the pre-
dicted orders of magnitude are also compatible with the results found on a rapidly
quenched aluminium alloy of a di7erent composition, in which the local porosity re-
sulting from the elaboration process might play an important role in the nucleation of
damage cavities.
It would obviously be interesting to obtain more direct estimates of D (or equiv-

alently �d) and �0 to check whether the above order of magnitudes in the di7erent
materials are consistent. However, overall, the scenario in which the small length scale
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exponent of 0:5 is due to the existence of di7usively broadened crack front waves
in localized depinning events appears to be reasonable, at least in the more brittle
samples.

5. Physical discussion

We have found that a model of di7usively damped crack front waves naturally leads
to a steady state roughening of fracture surfaces induced by the presence of random
local heterogeneities, with a roughness exponent �=0:5, that could be the explanation
for part of the experimental data. However, there are many limitations to this result
and complications that we expect on theoretical grounds. These we now discuss.

5.1. The low velocity limit

As is apparent from the linearized analysis discussed in this paper, the e7ects of the
randomness become larger and larger at low velocities: see Eq. (18). In addition, as
shown by Eq. (19), lower velocities give rise to more and more anisotropy. Thus at
some velocity, the linearized analysis will almost certainly breakdown. It is just such an
apparent divergence in a linearized analysis that signals entry into the “critical” regime
in which the motion of the crack front changes qualitatively and becomes intermittent.
The non-linearities inherent in the dependence of the heterogeneities on the crack front
position through the random function �[x; Vt + f(x; t)] in Eq. (5) will then become
important.
It is instructive in this context to 8rst consider the case that is best understood

theoretically: the in-plane deformation of a crack front in the absence of elastic waves
(Rice, 1985; Ramanathan and Fisher, 1998). In this case, a moving crack front has only
logarithmic roughness at long scales, as mentioned earlier. But at low crack velocities,
this result obtains only for length scales longer than a correlation length �(V ) that
diverges as a power of V . On smaller length scales, the physics is quite di7erent,
being dominated by the irregular start-stop motion characteristic of the non-equilibrium
dynamic critical point at which the crack starts to advance. At the critical point, and
for an advancing crack on length scales smaller than �(V ), the roughness of the crack
front is determined by the avalanche-like processes by which the crack starts growing.
The important non-linearities in this regime are those in the random dependence of the
local fracture energy on the position of the crack front. These give rise to a critical
crack front roughness exponent predicted to be �f ¿ 1=3, larger than that in the moving
“phase” (�f = 0) (for a recent discussion of this point, see (Chauve et al., 2001; Rosso
and Krauth, 2001). At this point, the e7ects of elastic waves on the onset of advance
of planar cracks in randomly heterogeneous media are not understood, although some
indications suggest that the critical behavior may be similar to that in the absence of
elastic waves (Schwarz and Fisher, in preparation).
Similarly, in the case of primary interest to us, non-planar crack front deformations,

the whole concept of perturbing around a uniformly growing crack front is likely to
lose its meaning at low velocities. This is because any given portion of the crack
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front is likely, as in the absence of crack waves, to spend most of its time essentially
stationary, only occasionally advancing in a very jerky manner. This type of irregular
local crack growth may well be incompatible with the propagation of corrugation waves.
Nevertheless, another type of wave may well play an important role in the onset of
crack growth and the roughness fracture surfaces at low (Ramanathan and Fisher, 1998)
velocities. As discussed in Ramanathan and Fisher (1998) there are circumstances in
which one might have shock waves of starting or stopping propagating along the crack
front. If these involve a substantial non-planar component, then they would certainly
a7ect the fracture surfaces.
A last problem is suggested by geometry: the fact that the angle of propagation of

the corrugation waves—if they do in fact still propagate at low crack velocities—will
be almost parallel to the crack front. As the crack progresses, they and the sound and
Rayleigh waves associated with them will be rePected o7 the surfaces of the sample
further complicating their e7ects.
Since experiments report a � = 0:5 regime for rather small average crack velocities

(see Section 4), with an amplitude that is, as mentioned above, found to be independent
of the velocity (Daguier et al., 1997), one could argue that even though the macroscopic
velocity Vm is small, the instantaneous velocity during an ‘avalanche’ in a strongly
heterogeneous medium is a substantial fraction of the Rayleigh speed so that the present
analysis might be (at least qualitatively) applicable.

5.2. Non-linearities for rapidly advancing cracks

As noted above, the corrugation wave induced roughness discussed here is similar to
that for an overdamped elastic line driven through random impurities. For elastic lines,
it is known that certain non-linearities can qualitatively change the behavior, includ-
ing the roughness exponent (Bouchaud et al., 1993). It would thus be interesting to
study in the context of fracture surfaces the e7ects of possible non-linearities. Prelim-
inary indications are that for di7usively broadened crack corrugation waves traveling
through a random medium, non-linearities that arise from deformations of the crack are
marginal in the sense that one needs to go beyond a leading order perturbative analysis
in the non-linearities to see whether they will alter the value of the roughness expo-
nent �. 3 It is thus plausible that these non-linearities could give rise to the apparently
universal exponent for fracture surface roughness. But whether or not this is the case,
the marginality suggests that whatever the correct asymptotic behavior, one expects on
general grounds that one could observe the linear roughness exponent � = 1=2 over a
substantial range of length scales before possibly crossing over to a di7erent value,
perhaps � = 0:8 on longer scales. [The crossover length is expected to be a function
of the amplitude of the non-linearity (a priori of order unity but there could be small

3 Because of the homogeneity of the elastodynamics equations, the non-linearities associated with defor-
mations of the crack front will be of order h3=-3 for wavelengths of order of -. Non-linearities of the
Kardar–Parisi–Zhang type (9xh)2 or (9zh)3 are known to become marginal in d = 2 dimensions (Barabasi
and Stanley, 1995) whereas the front is a d = 1 dimensional object. However, in the presence of di7u-
sively damped linear propagating waves, one can readily show that the ‘lower critical dimension’ where the
non-linearity is marginal is shifted from d = 2 to 1.
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factors such as �(V )), the strength of the disorder #, and the front velocity V .] It
would be interesting (although a real technical challenge) to work out the theory in
detail and to decide whether or not the seductive scenario, where the exponent �=0:8
is produced by the non-linear interaction of corrugation waves, is plausible. As argued
below, however, perhaps a more physically likely scenario for this crossover involves
damage cavities and their coalescence.
Recent experiments on dynamic fracture of glass by Sharon et al. (2001) have ob-

served crack front deformations caused by surface imperfections that propagate for
long distances. These involve both small amplitude corrugations—with a shape quali-
tatively similar to Fig. 2—and much larger modulations of the crack velocity and the
concomitant in-plane deformation of the crack front. Surprisingly, these pulses seem to
propagate without appreciable attenuation and have a shape of the corrugations that is
scale independent over more than an order of magnitude in length scale. The authors
indicate that these and other features of their experiments suggest that the pulses have a
soliton-like character indicative of the importance of non-linearities in spite of the small
amplitude of the corrugations. Non-linear e7ects will in general involve both in-plane
and out-of-plane deformations. Via the existence of small dimensionless numbers such
as �(V ) and (cf − ch)=cR, where cf is the speed analogous to cR for in-plane waves
(Ramanathan and Fisher, 1997; Morrissey and Rice, 2000), these could perhaps give
rise to appreciable non-linear e7ects even with small amplitude corrugations. In any
case, the observations provide clear evidence for the existence of crack front waves
and suggest that non-linear interactions between them may be important at least in
some regimes.

5.3. Long-range correlated heterogeneities

Another e7ect that could change the roughness exponent of fracture surfaces is
long-range correlations in the randomness that we have not considered so far. As dis-
cussed in Ramanathan et al. (1997), correlations in the residual stresses in a material
can a7ect the roughness of fracture surfaces by inducing random Mode II loading on
the crack front as the crack grows and relieves the residual stresses. If these frozen-in
stresses have correlations that decay as a suEciently small power law of distance, they
will cause the surface to be rougher than it would otherwise have been. SuEciently
long-range correlations will cause a positive � in the quasi-static case and a �¿ 1=2 in
the presence of elastic waves. Whether long-range correlated residual stresses could by
themselves cause the observed ��0:8 is not clear, but, if this were indeed the correct
cause, one would be left with the problem of understanding why similar power-law
stress correlations are so ubiquitous.

5.4. In-plane crack front roughness

It is tempting to attribute the observed crack front in-plane roughness exponent
�f of about 0:5 to planar crack front waves interacting with random impurities in a
manner analogous to that analyzed in this paper for the corrugation waves. Evidence
for propagation by localized depinning has been obtained for fracture of a weakened
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interface between Plexiglas plates (MHalHy and Schmittbuhl, 2001), although the average
speed of events between the recordings of crack front position, at 0:2 s intervals, is
less than about 50 mm=s, and we cannot be sure that the events are actually dynamic
in the sense of being inertially controlled. The problem with the dynamic depinning
interpretation for in-plane roughening is the e7ect of velocity dependent fracture energy
on the crack front waves. Since the in-plane crack front waves change the local velocity
of the front (at variance with the out-of-plane waves), any velocity dependence of
the fracture energy will feed back into the dynamics of these waves. As shown in
Ramanathan and Fisher (1997), velocity strengthening damps the planar front-waves—
essentially by making their velocity complex—while velocity weakening drives the
crack front unstable at 8nite wavelengths. Thus, unless the velocity strengthening is,
fortuitously, extremely small (as is probably the case for glass (Sharon et al., 2001)),
or the crack somehow adjusts its velocity to a point of marginal stability, in a real
material planar crack front waves are unlikely to exist over a wide enough range
of length scales to appreciably increase the roughness from the logarithmic behavior
predicted for a moving crack with quasi-static dynamics.
Since experiments that have measured crack front roughness have either been on

stopped cracks or on—at least apparently—very slowly advancing cracks (Daguier
et al., 1995; Delaplace et al., 1999; Schmittbuhl and MHalHy, 1997), one would guess
that the critical crack front roughness discussed in Section 5.1 would be what is ob-
served. It is somewhat puzzling, therefore, that the experiments have consistently ob-
served front roughness exponents of order 0.5–0.65 rather than 1=3 (or even �f ≈
0:39, as suggested by recent analytical (Chauve et al., 2001) and numerical (Rosso
and Krauth, 2001) calculations.) Note that a similar value has been found for the
roughness of a slowly advancing contact line (Guthmann et al., 1998), a problem
that is expected to be in the same universality class as that of crack fronts since
the quasi-static, linearized versions of the two problems are the same. A possibility,
discussed in Schmittbuhl and Vilotte (1999), is that the correlation length of the het-
erogeneities is substantial. In the slowly moving regime, this could lead to a short
length scale exponent of �f = 1=2 that crosses-over to �f = 1=3 for large distances (see
also Hazareesing and MIezard, 1999).

6. From corrugation waves to coalescence of damage cavities ?

As discussed above, the analysis we have done only makes sense when the moving
crack front can support corrugation waves. We have already raised some concerns about
whether this will be the case at low velocities. But even in high velocity regimes in
which these considerations do not play a role, one must certainly require that the very
concept of a single crack front makes sense. Various observations suggest that, in
many materials, this may only be true at small enough length scales as the growth
of cracks in many complex materials (possibly including amorphous glassy materials)
appears to occur by the nucleation, growth and coalescence of damage cavities in the
region surrounding the main crack front (see the discussion in Ravi-Chandar and Yang
(1997)). In such materials, the notion of a well de8ned moving crack front only makes
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sense locally. One thus might expect that inside a growing cavity one would observe
a roughness exponent close to 0:5 (Paun and Bouchaud, 2001). This 0:5 exponent
could be due to the mechanism discussed here which would be plausible if the local
growth speed of the crack within a cavity were always fast, or of a di7erent origin,
as discussed further in the conclusion. But in any case, on length scales larger than
the typical size of the cavities when they coalesce, one should observe a crossover to
a new regime, dominated by inter-cavity correlations (Pineau et al., 1995). A natural
supposition is that it is the physics of the formation and coalescence of the cavities
which is responsible for the observed roughness exponent of ��0:8 for which there
is no theory at present. This scenario was proposed in Paun and Bouchaud (2001),
based on the observation of the roughness of growing cavities before coalescence in
an aluminum alloys. Qualitatively, similar ideas can also be found in Ravi-Chandar
and Yang (1997). 4

If one assumes that there is a nucleation rate / per unit time and unit length of new
cavities ahead of the crack front, the typical coalescence time of the cavities, tc, is
given by:

/(Vctc)tc∼ 1; (22)

where Vc is the speed at which the cavities grow. The above equation means that
on the length scale Vctc and time scale tc one cavity will typically encounter another
one; Vtc will be the size of the coalescing cavities and thus the crossover length �c.
Therefore,

�c∼
√

Vc
/
: (23)

Since / is expected to grow rapidly with the external stress, and therefore with the
macroscopic crack velocity Vm, this scenario could be compatible with the observed
decrease of �c with increasing Vm.
In summary, we have argued that a crack-wave induced roughness exponent �=0:5

could hold over a range of length scales r, limited above by r ¡�c, the scale of
cavity coalescence. For very low macroscopic crack velocities �c may well exceed the
maximum lengths observed, while for larger crack velocities, the crossover length �c
would decrease into the observable range.
Needless to say, a statistical model based on the idea of cavity coalescence that

would reproduce the correct large scale value of �= 0:8 is yet to be constructed.

7. Conclusion

In this paper, we have reviewed some recent results concerning crack front waves.
We have argued that out-of-plane corrugation waves should strongly inPuence the

4 On the issue of the crossover from a small scale exponent close to 0:5 and a large scale exponent close
to 0:8, we received in the 8nal stages of this work the interesting preprint of Barra et al., 2001. The authors
solve the LamIe equations in a Mode III geometry and obtain quasi-static branched cracks where such a
crossover is observed. The crossover length is the distance between branching points.
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roughness of fracture surfaces. The di7usive damping of these waves give rise to
roughness exponents that are similar to those obtained in the Edwards–Wilkinson
model, although the underlying physics is very di7erent. Our central prediction is
that the roughness exponent is—assuming short range correlations in the disorder—
�=1=2, except along two particular directions (those corresponding to the propagation
of the crack front waves) where it is 1=4. Furthermore, the roughness is predicted to
be strongly anisotropic for cracks with instantaneous velocity much smaller than the
Rayleigh speed. Although orders of magnitude on existing pro8les are compatible with
this scenario, a direct experimental examination of these predictions would be very
instructive.
We have discussed various limitations and complications that could obscure or even

modify these results. We have speculated on the role of damage cavity coalescence, and
the corresponding breakdown of the very concept of a single crack front, to explain
the still mysterious universal value � = 0:8 value of the roughness exponent at large
length scales.
Finally, we should mention that a value of � close to 0:5 for fracture surfaces has also

been found for minimal energy surfaces (see the discussion in Hansen
et al., 1991; Batrouni and Hansen, 1998; Ra[\s[anen et al., 1998a,b), quasi-static scalar
plasticity (discrete (Ra[\s[anen et al., 1998a,b) or continuous (Ramanathan et al., 1997))
models and quasi-static vectorial discrete models (Parisi et al., 2000), where the con-
cept of crack front waves is irrelevant. These models might be more relevant to explain
the exponent �∼ 0:5 found on fracture surfaces (or cavity surfaces) of highly ductile,
plastic materials where the instantaneous velocity is probably always small. The frac-
ture surfaces obtained in these models are expected to be isotropic, at variance with
the above prediction based on corrugation waves. This feature should allow the two
mechanisms to be distinguished.

Acknowledgements

J.P.B. wants to thank Harvard University for hospitality during the period when this
work was completed. Interesting discussions with J. Sethna are gratefully acknowl-
edged. DSF thanks the National Science Foundation for support via DMR-9630064
and DMR-9809334. JRR thanks the OEce of Naval Research for support via grant
N00014-96-10777.

References

Adda-Bedia, M., Arias, R., Ben Amar, M., Lund, F., 1999. Generalized GriEth criterion for dynamic fracture
and the stability of crack motion at high velocities. Phys. Rev. E 60, 2366.

Barabasi, A.L., Stanley, H.E., 1995. Fractal Concepts in Surface Growth. Cambridge University Press,
Cambridge.

Barra, F., Hentschel, H.G.E., Levermann, A., Procaccia, I., 2001. Quasi-static fractures in disordered media
and iterated conformal maps. e-print cond-mat=0110089.

Batrouni, G., Hansen, A., 1998. Fracture in three-dimensional fuse networks. Phys. Rev. Lett. 80, 325.



1724 E. Bouchaud et al. / J. Mech. Phys. Solids 50 (2002) 1703–1725

Bouchaud, E., Lapasset, G., Plan]es, J., 1990. Fractal dimension of fracture surfaces: a universal value?.
Europhys. Lett. 13, 73.

Bouchaud, J.-P., Bouchaud, E., Lapasset, G., Plan]es, J., 1993. Models of fractal cracks. Phys. Rev. Lett. 71,
2240.

Bouchaud, E., NavIeos, S., 1995. From quasi-static to rapid fracture. J. Phys. I France 5, 547.
Bouchaud, E., 1997. Scaling properties of cracks. J. Phys. Condens. Mater. 9, 4319.
Bouchaud, E., Hinojosa, M., 1998. Morphology of fatigue fracture surfaces in aluminium alloys, unpublished.
Chauve, P., Le Doussal, P., Wiese, K., 2001. Renormalization of pinned elastic systems: how does it work
beyond one loop?. Phys. Rev. Lett. 86, 1785.

Claudin, P., Bouchaud, J.P., Cates, M.E., Wittmer, J., 1998. Models of stress propagation in granular media.
Phys. Rev. E 57, 4441.

Cottrell, B., Rice, J.R., 1980. Slightly curved or kinked cracks. Int. J. Fract. 16, 155.
Daguier, P., Bouchaud, E., Lapasset, G., 1995. Roughness of a crack front pinned by microstructural
obstacles. Europhys. Lett. 31, 367.

Daguier, P., HIenaux, S., Bouchaud, E., Creuzet, F., 1996. Quantitative analysis of a fracture surface by
Atomic Force Microscopy. Phys. Rev. E 53, 5637.

Daguier, P., Nghiem, B., Bouchaud, E., Creuzet, F., 1997. Pinning and depinning of crack fronts in
heterogeneous materials. Phys. Rev. Lett. 78, 1062.

Delaplace, A., Schmittbuhl, J., MHalHy, K.J., 1999. High resolution description of a crack front in a
heterogeneous Plexiglas block. Phys. Rev. E 60, 1337.

Fisher, D.S. On planar crack wave damping from viscoelasticity. Unpublished.
Gao, H., Rice, J.R., 1989. A 8rst-order perturbation analysis of crack trapping by arrays of obstacles.
J. Appl. Mech. 56, 828.

Goldstein, R.V., Salganik, R.L., 1974. Brittle-fracture of solids with arbitrary cracks. Int. J. Fract. 10, 507.
Guthmann, C., Gombrowicz, R., Repain, V., Rolley, E., 1998. Roughness of the contact line on a disordered
substrate. Phys. Rev. Lett. 80, 2865.

Hansen, A., Hinrichsen, E.L., Roux, S., 1991. Roughness of crack interfaces. Phys. Rev. Lett. 66, 2476.
Hazareesing, A., MIezard, M., 1999. Wandering of a contact line at thermal equilibrium. Phys. Rev. E 60,
1269.

Hodgdon, J., Sethna, J.P., 1993. Derivation of a general three-dimensional crack-propagation law: a
generalization of the principle of local symmetry. Phys. Rev. B 47, 4831.

Hull, D., Beardmore, P., 1966. Velocity of propagation of cleavage cracks in tungsten. Int. J. Fract. 2, 468.
Larralde, H., Ball, R., 1985. The shape of slowly growing cracks. Europhys. Lett. 30, 287.
MHalHy, K.J., Hansen, A., Hinrichsen, E.L., Roux, S., 1992. Experimental measurements of the roughness of
brittle cracks. Phys. Rev. Lett. 68, 213.

MHalHy, K., Schmittbuhl, J., 2001. Dynamical events during slow crack propagation. Phys. Rev. Lett.,
in press.

Mandelbrot, B.B., Passoja, D.E., Paullay, A.J., 1984. Fractal character of fracture surfaces of metals. Nature
(London) 308, 721.

Morrissey, J.W., Rice, J.R., 1998. Crack front waves. J. Mech. Phys. Solids 46, 467.
Morrissey, J.W., Rice, J.R., 2000. Perturbative simulations of crack front waves. J. Mech. Phys.
Solids 48, 122.

Oleaga, G.E., 2001. Remarks on a basic law for dynamic crack propagation. J. Mech. Phys. Solids 49, 2273.
Parisi, A., Caldarelli, G., Pietronero, L., 2000. Roughness of fracture surfaces. e-print cond-mat=0004374.
Paun, F., Bouchaud, E., 2001. Morphology of damage cavities. Phys. Rev. E, submitted for publication.
Perrin, G., Rice, J.R., 1994. Disordering of a dynamic planar crack front in a model elastic medium of
randomly variable toughness. J. Mech. Phys. Solids 42, 1047.

Pineau, A., Francois, D., Zaoui, A., 1995. Comportement mIecanique des matIeriaux. Hermes, Paris.
Ra[\s[anen, V.I., Sepp[al[a, E.T., Alava, M.J., Duxbury, P.M., 1998a. Quasi-static cracks and minimal energy
surfaces. Phys. Rev. Lett. 80, 329.

Ra[\s[anen, V.I., Sepp[al[a, E.T., Alava, M.J., Duxbury, P.M., 1998b. Fracture of three-dimensional fuse networks
with disorder. Phys. Rev. B 58, 14288.

Ramanathan, S., Fisher, D.S., 1997. Dynamics and instabilities of planar tensile cracks in heterogeneous
media. Phys. Rev. Lett. 79, 877.



E. Bouchaud et al. / J. Mech. Phys. Solids 50 (2002) 1703–1725 1725
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