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Abstract  The source of repeating earthquakes on creeping faults is modeled as a weak

asperity at a border between much larger locked and creeping patches on the fault plane.

The x−1 2/  decrease in stress concentration with distance x from the boundary is shown to

lead directly to the observed scaling T M∝ 0
1 6/

 between the average repeat time and

average scalar moment for a repeating sequence.  The stress drop in such small events at the

border depends on the size of the large locked patch.  For a circular patch of radius R and

representative fault parameters, ∆σ = 7 6 3 5. ( / ) /m R MPa , which yields stress drops between

0.08 and 0.5 MPa (0.8 - 5 bars) for R between 2 km and 100 m.  These low stress drops are

consistent with estimates of stress drop for small earthquakes based on their seismic

spectra.  However, they are orders of magnitude smaller than stress drops calculated under

the assumption that repeating sources are isolated stuck asperities on an otherwise creeping

fault plane, whose seismic slips keep pace with the surrounding creep rate.  Linear streaks

of microearthquakes observed on creeping fault planes are trivially explained by the present

model as alignments on the boundaries between locked and creeping patches.
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Seismicity on creeping sections of the San Andreas Fault has unusual temporal and

spatial characteristics. Many events produce identical seismograms and, within observational

limits, have the same location and the same size within 0.2 magnitude units.  These events,

dubbed “repeating earthquakes”, have been observed at many locations in the creeping

sections (Ellsworth and Dietz, 1990; Vidale et al., 1994; Marone et al., 1995; Nadeau and

McEvilly, 1997;  Nadeau and Johnson, 1998). Nadeau and Johnson (1998) observed that

the period T of repeating earthquakes scales with the scalar moment M0 as

log / . log / .T Ms dyne- cm= +0 17 4 850 (1)

where the brackets indicate averages over all events in a repeating sequence. This can be

approximated as

T C M/ ( / ) /s dyne- cm= 0
1 6 (2)

where we have taken 0 17 1 6. /≈ and centered the fit in the middle of Nadeau and Johnson’s

(1998) data at M0=1020 dyne-cm which gives C = 104 92. . Spatially, hypocenters in event

clusters (not necessarily all repeaters) are sometimes organized into streaks, often linear

streaks, up to several km long (Rubin et al.,1999).

Two questions naturally arise.  First, what is the physical origin of the repeating

earthquakes, i.e., why do they repeat and what determines the period? Second, why are they

(and other events) organized into streaks on the fault plane?  One model explored by

Nadeau and Johnson (1998) and Sammis et al. (1999) is that repeating sequences occur at

stuck asperities surrounded by an otherwise creeping fault plane.  As pointed out by

Nadeau and Johnson (1998) and reviewed in the following section, this model can lead to

very large stress drops for small events that are at odds with stress drops of comparable

sized events calculated from their seismic spectrum (Abercrombie, 1995; Hardebeck and



Hauksson, 1997). While we show that it is possible to modify the assumptions in Nadeau

and Johnson’s analysis to yield low constant stress drop, such analyses do not

simultaneously predict the observed T M∝ 0
1 6/  scaling.

We develop here an alternative model for repeating earthquakes in which they

nucleate in zones of weakness at the edge of much larger locked asperities in an otherwise

creeping fault zone.  The repeat times predicted by this model agree with the observations

summarized in eqn. (2), and the stress drops are low, constant, and consistent with other

spectra-based estimates for small events.  This edge-crack model has the additional property

that it offers a simple explanation for the observed streaks of microearthquakes;  they are

localized along the edges of large locked patches.

Strong Asperities on a Creeping Fault Plane

We begin with a brief review of Nadeau and Johnson’s (1998) analysis in which

they assume repeating earthquakes occur at isolated stuck asperities on an otherwise

creeping fault plane.  They used their basic observation (eqn. (1)) to find the moment

release rate for each repeating sequence as

˙ ˙M
M

T
G A d0

0= = (3)

where A is the area of the repeating source, G is the shear modulus and d  is the

displacement (averaged over the slip area) of one of the repeating events. They assumed that

the displacement rate on each asperity is the same (independent of M0) and is equal to the

displacement rate ̇dobs  ( . )≈ 2 3 cm/ yr  observed at the surface.  Equation (3) can then be

solved for the average area of the events in each sequence



A
M

G T dobs
= 0

˙  . (4)

Area was found to scale with moment as

log / . log / .A Mcm dyne- cm2 = −0 83 9 120  , (5)

Having estimated A  and d d Tobs= ˙ , Nadeau and Johnson (1998) used the elastic

solution for a circular dislocation to estimate the average stress drop ∆σ  for each

sequence

∆σ π= 7
16

3 2

1 2

/

/G
d

A
(6)

which they found to scale with M0 as

log / . log / .∆σ 0.1 MPa dyne- cm= − +0 25 8 190M  . (7)

This result is surprising for two reasons.  First, it implies that the stress-drop is

higher for small events.  This result is at odds with estimates based on seismic spectra that

find constant stress drop consistent with established scaling relations for large earthquakes.

Spectral estimates even find apparent stress drop to decrease for small events (Abercrombie,

1995; Richardson and Jordan, 2000).  Second, and even more surprising, the stress levels

given by (10) reach 2 Gpa (20 kbar, more than 10 times laboratory strength) for the smallest



events.  Although Sammis et al. (1999) argued that such high stresses can not be ruled out

on physical grounds, they require perfect healing (no microscopic flaws) at the smallest

asperities.  This is an extraordinary result that demands a close scrutiny of the assumptions

in the Nadeau and Johnson (1998) analysis.

Two points in the Nadeau and Johnson (1998) analysis can be questioned: a) the

use of the crack equation (9) to analyze stress on an asperity, and b) the basic assumption

that the displacement rate on individual asperities is equal to that observed at the surface.

Beginning with point (a), Das and Kostrov (1986) analyzed the fracture mechanics

of the annular crack a<r<b shown in Fig. 1a.  The region r<a is the asperity and the region

a<r<b is the stress-free creeping region.  They found

σ
σ

a

remote

b

a
= 0 8. (8)

where σa  is the average shear stress on the asperity when the remote stress is σremote .  The

stress intensity factor for the asperity (at r=a) is, for b>>a, (Tada et al. 1983)

K
a

bremote≈ 





σ
π

4
3 2/  . (9)

The asperity fails when K equals the critical stress intensity factor KC (a material property)

and eqn. (9) may be combined with eqn. (8) to yield the failure stress σ a
*

σ a
cK

a
* .= 1 1 (10)



where the outer radius of the annular crack b has dropped out of the equation. The average

displacement on the asperity when it fails, d
*
, is approximately that at the center of a

stress-free crack of radius b in a stress field σ remote  which, from equations (6) and (9) is

d
K

G
ac*

= 4
7
π

(11)

Note that σ a d a* *
∝  as required.

Equations (10) and (11) show that the scaling behavior of the stress-drop and

displacement on a hard asperity depends on the scaling properties of the critical stress

intensity factor in shear ( KIIc  and/or KIIIc  depending on loading). If KIIc  and KIIIc  are

scale independent constants (as is generally assumed for KIc  in tensile loading) then the

stress-drop scales as a−1 2/  and eqn. (10) shows that small events are expected to have

larger stress drops. For Kc = constant, eqn. (11) gives d a∝  which, for constant

loading rate, leads to T d a M∝ ∝ ∝ 0
1 6/  as observed. However, shear failure under

compressive loading is a complex process involving the nucleation, growth, and interaction

of a myriad of smaller tensile fractures in a process zone near the crack tip (Ashby and

Sammis, 1990). Scholz et al. (1993) argue that the energy release rate for shear propagation,

� � �
 or 

� � � �
, increases linearly with fracture dimension a. Since 

�
 is related to the stress

intensity factor as

� �
 ∝ ∝K

E
ac

2

(12)

where E is the appropriate elastic modulus for the loading mode, it follows that K ac ∝ 1 2/ .

In this case, equations (10) and (11) give constant stress drop and displacement



proportional to a. However, d a∝  implies T M∝ 0
1 3/  contrary to observation. Hence,

given the observation T M∝ 0
1 6/ , there is no fundamental difference between the scaling

properties of the crack and the asperity model  The use of an asperity model in place of the

crack model used by Nadeau and Johnson (1998) does not solve the high stress drop

problem.

The situation may be summarized by the following 3 simple statements: 1) constant

stress drop requires d M∝ 0
1 3/  for either the crack or the asperity model, 2) If the

displacement-rate on all asperities is the same (ie. ˙ ( ) ( )d d M T M= =0 0 constant), then

T M∝ 0
1 3/ , and 3) Nadeau and Johnson (1998) observe a much weaker dependence of T on

M0 more like T M∝ 0
1 6/ . If we accept the observed dependence of repeat time on moment,

then there are only two possibilities: either 1) is false and the stress drop is not constant

(Naduau and Johnson’s 1998 conclusion), or 2) is false and the seismic displacement-rate

associated with the repeating events depends on moment. However, the total displacement

rate must be the same on all asperities over time to assure continuity of slip on the fault

surface.  Hence the second possibiltiy can be restated; the seismic displacement-rate

associated with repeating events on an asperity must be less that its total long-term

displacement rate. There are at least two ways for this to happen: 1) a smaller asperity

experience significant displacement during the rupture of a larger neighboring asperity, or

2) an asperity experience significant aseismic creep between repeating events.

The first possibility was suggested by Anooshehpoor and Brune (1998).  They used

a foam rubber fault simulator (Brune et al., 1993; Anooshehpoor and Brune, 1994) to

explore the geometry in Fig. 1.  The stress-free annulus in the region a<r<b was produced

by inserting a smooth plastic semi-annulus annulus between the foam blocks as indicated in

Fig. 1b.  The asperity was observed to fail many times for each slip event on the larger fault

plane.  In this experiment the observed surface displacement rate is dominated by the larger



system-wide events.  To assign this surface rate to the smaller events on the asperity leads to

a gross overestimate of their stress drop.  One could imagine a generalization of this model

in which a hierarchy of larger asperities shields smaller ones.  The key characteristic of this

model is that the asperities are not isolated in the sense that larger events produce slip on

smaller asperities.  Hence, a repeating sequence only represents a small fraction of the total

displacement on an asperity over time.

The shielded asperity model can give a low constant stress drop, but can it also

produce the observed T M∝ 0
1 6/  scaling of repeat time?  If T M∝ 0

1 6/ , and the stress drop

is constant (d a M∝ ∝ 0
1 3/ ), then T d∝ , or equivalently, T a∝ . The only way to get

this dependence in a constant stress-drop model is for the loading rate on an asperity to

scale as ̇ /σ ∝ −a 1 2. From equation (10), the loading rate on an asperity is

˙ . ( / ) ˙σ σ= 0 8 b a remote. For constant remote stressing rate, ˙ /σ ∝ −a 1 2 requires b a∝ .

While it is thus possible for the hard asperity model to satisfy the observed repeat time

scaling with constant stress drop, we can think of no reason for the clustering geometry

implied by b a∝ . We will show in the next section that this requisite scaling of the

loading rate occurs naturally for soft asperities at the edge of a much larger hard asperities.

The second possibility, where significant aseismic deformation occurs

between repeating events, was proposed by Beeler (2000) who developed a strain-hardening

model. His model is motivated by laboratory experiments on serpentinite gouge in which

significant aseismic creep precedes each stick-slip event in a repeating sequence. Beeler

captures this behavior with a simple analog spring slider system having a critical stress

threshold for slip and a linear displacement-hardening slip function. When this hardening is

small, the fault creeps at some creep strength τ0, well below the critical slip stress τs . When

the hardening coefficient is large, very little aseismic creep occurs and the system behaves

like a simple relaxation oscillator cycling between τ0 and τs . When the loading stiffness



and hardening coefficient are comparable, stick slip oscillations are preceded by significant

aseismic creep – as in the experiments. By thus allowing the displacement associated with

the repeating events to be well below the surface slip rate, this model also allows for

reasonable stress drops. In Beeler’s model the weak dependence observed between repeat

time and seismic moment is associated with a transition from aseismic creep to stick slip

behavior. However, this is a progressive transition which does not give T M∝ 0
1 6/  scaling

over a very wide range of moments.

In the next section we develop a model similar to that studied by Anooshehpoor and

Brune (1998), but without the hard asperity.  We will show that a weak spot at the edge of a

generally stronger large asperity can produce a realistic model for repeating earthquakes

with low stress drops and T M∝ 0
1 6/  scaling.

Weak Asperities at the Border between Locked and Creeping Fault Patches

The challenge, as discussed above, is to find a model for the repeating earthquakes

in which the loading rate on the asperities scales as ˙ /σ ∝ −a 1 2. In that case, a constant

stress-drop model will have the observed T M∝ 0
1 6/  scaling. This ̇ /σ ∝ −a 1 2 scaling is

precisely what would be expected if the repeating events are failures of small weak patches

located at the edges of larger, and generally stronger, asperities as illustrated in Fig. 2.  The

stress field at the boundary of a large locked asperity is proportional to x−1 2/  where x is the

distance from the boundary.  Hence the average stress across a weak spot of radius a

located at the boundary (as in Fig. 1a) is proportional to a−1 2/ , and hence the repeat time

will be proportional to a  as observed.



We can take this analysis one step further and estimate the stressing rate σ̇  for the

case where the large asperity is circular as illustrated in Fig. 2b.  In this case the stress

distribution on the large asperity of radius R is (Das and Kostrov, 1986)

σ ρ
π ρ

( ) =
−

8
7 2 2

Gd

R
(13)

where 0 ≤ ≤ρ R .  If a is the radius of a small weak patch at the border and 0≤α≤a as in

Fig. 1b, then for α<<R,  R R2 2 2− ≈ρ α  and eqn. (13) may be written

σ α
π α

( ) = 8
7 2

1Gd

R
 . (14)

The average stressing rate on the small patch, with a<<R, is then approximately

˙ ˙
˙

σ σ α α
π

≈ ( ) =∫1
2

8
7 2

1

0
a

d
Gd

R a

a

(15)

Here ḋ  is the average displacement rate on the large asperity which is assumed to equal the

observed rate over the long term.  We can also write

˙
/

/

/

/
/

σ σ σ σ= =
−( )

=

−






∆
∆

∆ ∆
T C M

C a0
1 6

5 6

1 6
1 216

7

dyne cm s

dyne cm
s

(16)



where we have used eqn. (6) for the stress drop on a circular dislocation of radius

a A= / π  and the defintion of moment to write ∆σ = 7 160
3M a/ . Equating (15) and (16)

gives a relation between the stress drop to the size of the large asperity R

∆σ
π

= 













 −







16
7 2 2

7 5 6 5
6 1 5/ / /˙CGd

R

s
dyne cm

. (17)

We observe that the stress drop predicted by this model is independent of the size a

of a small region failing at the border of the larger locked patch.  Hence, for a given large

locked asperity size R, the stress drop is constant, independent of the small event size.

Substituting in G=30GPa=3x1010 Nm-2, ˙ . .d = = × −2 3 7 3 10 10 cm/ yr m/s, and

C = 104 92.  gives that stress drop as

∆σ = 7 6 3 5. ( / ) /m R MPa . (18)

For large asperities with radii in the range 100 m– 2 km the stress drop ranges from about

0.5MPa to 0.08 MPa (5 to 0.8 bars).  It is interesting that this is at the lower limit of the

range of stress drops found by Abercrombie (1995) using spectral corner frequency

methods for small earthquakes in Southern California. On the other hand, quite low stress

drops are consistent with repeated ruptures of weak edge regions before the rest of the

“strong” asperity fails in a larger event.  The dependence of stress drop on the size of the

larger locked asperity may explain some of the scatter in these data which typically exceeds

an order of magnitude in stress drop for a given seismic moment.



Discussion

The stress drop calculated for repeating microearthquakes is very sensitive to the

assumed source model.  Starting with the same observed scaling of repeat time with

moment, as in equation (2), the isolated stuck asperity model yields stress drops on the

order of 2 GPa (20 kbar) while the weak border crack model yields 0.1-1.0 MPa (1-10

bars).  The former assumes that each asperity tracks the surface displacement rate, which

means that displacement of each event is proportional to repeat time.  Substituting d T∝

into the basic observation T M∝ 0
1 6/  yields d A∝ 1 4/ .  Since constant stress drop

requires d A∝ 1 2/ , the isolated stuck asperity model yields a stress drop dependent on

moment and leads to very high stress drops for small events.  The weak border crack model,

on the other hand, implies uniform stress drop at a given border and hence d A∝ 1 2/ which,

when substituted into the observed T M∝ 0
1 6/ , yields T d a∝ ∝  where a is the

source radius.  This model uses the x−1 2/  stress concentration at the edge of a larger hard

asperity to achieve the required scaling of T with a.  The low stress drops in this latter

model are a consequence of the fact that the short-term displacement-rate on the weak

asperities does not equal the displacement-rate observed at the surface.  The vast majority of

displacement on these edge asperities occurs when the larger strong asperity fails, just as in

Anooshehpoor and Brune’s (1998) related (but different) foam rubber model. This

conclusion is not at odds with recent evidence from Nadeau and McEvilly (1999) that

changes in T correlate with changes in the surface creep rate. The asperities can track the

surface rate without being equal to it. The two rates are equal in Nadeau and McEvilly’s

analysis precisely because that is the basic assumption in Nadeau and Johnson (1998).

The border, or edge, crack model is supported by several observations.  First,

seismicity at Parkfield is limited to the depth range between 2 and 11 km with rather linear



upper and lower boundaries (Fig. 2) Modeling of geodetic surface displacements by Tse et

al. (1985) suggest that these may be the upper and lower bounds of the locked asperity.

Repeating earthquakes tend to cluster near these boundaries.  Finally, hypocenters of small

earthquakes in the creeping sections of the San Andreas fault tend to form horizontal lines.

In their discussion of these observations, Rubin et al. (1999) raised the question of whether

the quiet areas between streaks have no earthquakes because they are creeping or because

they are locked.  They logically concluded that they are probably creeping since creep is

required to reload asperities to produce repeating sequences and the rates of repeating

earthquakes were observed to increase in response to the Loma Prieta earthquake.  We raise

the possibility here that some quiet patches are creeping and some are locked with repeating

earthquakes occurring at the boundary between them.
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Figure Captions

Figure 1.  The strong asperity model.  a) shows the asperity of radius a surrounded by the

stress free annulus of radius b.  b) is a sketch of the foam rubber block experiment

used by Anooshehpoor and Brune (1998) to simulate repeating earthquakes.

Figure 2.  The weak border asperity model.  a) shows a weak asperity of radius a at the

boundary between a locked and creeping patch of the fault plane.  The stress

concentration in the locked portion decreases as x−1 2/  with distance x from the

boundary.  b) shows a weak circular asperity at the boundary of a larger circular

locked patch.  The radius of the locked patch is ρ where 0<ρ<R while the radius of

the weak asperity is α where 0<α<a.
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