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Abstract. We study the effect of time-variable normal stress perturbations on a
creeping fault which satisfies a velocity-weakening rate- and state-dependent friction
law and is slipping at constant speed. We use the spring-block model and include
the effect of inertia. To account for the variable normal stress, we use the description
introduced by Linker and Dieterich [1992], which links normal stress fluctuations
to changes of the state variable. We consider periodic perturbations of the normal
stress in time (as caused, for instance, by tides) and compare the behavior for two
commonly used friction laws (the “slip” and the “ageing” laws). Their mechanical
response is shown to be significantly different for normal stress fluctuations. It could
be used to probe these two laws during laboratory friction experiments. We show
that there is a resonance phenomenon, involving strong amplification of the shear
and velocity response of the interface, when the spring stiffness is modestly above its
critical value (or when, at a given stiffness, the normal stress is modestly below its
critical value). We show that such an amplification is also observed when periodic
fluctuations of the shear loading are considered, making the resonance phenomenon
a general feature of the response of a near-critical creeping surface to periodic
fluctuations of the external loading. Analytical solutions are based on a linear
expansion for low amplitude of normal or shear stress variations and are in very
good agreement with numerical solutions. A method to find the evolution of friction
in the case of an arbitrary perturbation of the normal stress is also presented. The
results show that a creeping fault may be destabilized and enter a stick-slip regime
owing to small normal stress oscillations. This may also account for a mechanism for
the generation of “creep bursts.” However, these phenomena require very specific
parameter ranges to excite the resonance, which may not be met very generally in
nature. This study illustrates the importance of the normal stress fluctuations on
stable sliding and suggests further friction laboratory experiments.

1. Introduction

Different approaches have been used to study the in-
stability of frictional sliding between two elastic media
using rate- and state-dependent friction laws. Models
can be divided into two classes:
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The first class consists of discrete models of the
spring-block (SB) type, where the elastic medium is
modeled as a spring loading a rigid block. The dy-
namics of this system has been studied for instance by
Rice and Ruina [1983] and Rice and Tse [1986] using
rate-and-state friction laws, and quasi-static stability
analyses have been carried out by Ruina [1983], Gu et
al. [1984], and Ranjith and Rice [1999]. By introducing
springs between blocks, the SB system can be extended
to an array as in the Burridge-Knopoff model [Burridge
and Knopoff, 1967; Carlson and Langer, 1989; Schmit-
tbuhl et al., 1996).
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The models that consider a continuum elastodynamic
description of the elastic medium are more realistic.
Examples of such models with rate-and-state laws are
given by Rice and Ruina [1983], Okubo [1989], Cochard
and Madariaga [1994, 1996], Rice and Ben-Zion [1996],
and Ben-Zion and Rice [1997].

All these works assume constant normal stress on the
fault. This assumption is correct if one considers an ac-
tive fault as a slip discontinuity distributed along an in-
finite and planar surface surrounded by a homogeneous
elastic medium. None of these conditions are verified
in nature, making normal stress variations inescapable.
Normal stress variations have been considered in a sub-
class of SB models, by Dieterich and Linker [1992] and
He et al. [1998], by inclining the loading spring with
respect to the slipping direction. This inclination of
the spring creates a coupling between the shear and the
normal stress evolution. Another type of coupling be-
tween shear and normal stress has been introduced by
Segall and Rice [1995] using the SB model; a poroelastic
interface induces an evolution of effective normal stress
o via the evolution of the pore pressure P.

For the elastodynamic models, normal stress varia-
tions have been considered when the interface subject
to friction separates different elastic materials [ Weert-
man, 1980; Adams, 1995; Martins and Simdes, 1995;
Andrews and Ben-Zion, 1997; Cochard and Rice, 2000].
In this case interaction between normal and tangential
deformation exists (due to a material contrast) so that
normal stress is no longer constant and strongly desta-
bilizes the interface response.

Normal stress can also be affected by the change of
external loading due to tectonic forces or nearby earth-
quakes. These latter effects seem to influence seismicity
[Parsons et al., 1999] as well as slip of future earth-
quakes [Perfettini et al., 1999]. Therefore a complete
description of the earthquake process should account for
variation of normal stress in space as well as in time.

To examine the effect of variable normal stress on
a sliding surface, we focus on temporal fluctuations of
the normal load. In nature, such variations may be of
a transient type, such as seismic waves, or periodic as
earth tides or cycling filling or draining of reservoirs.
This study concentrates on the later category that are
the root of permanent variations of the normal load.

For simplicity, in this first study we use the SB
model. This model has provided successful modeling of
most laboratory experiments [Dieterich, 1979a, 1979b;
Baumerger et al., 1995]. The validity of such a frame-
work for modeling frictional behavior of a real fault will
be discussed further in section 8. We focus on stable
sliding or creep and study the effect of the period of
normal or shear stress perturbations on the stability of
the fault and the magnitude of this response.

We start with a presentation of the model and fo-
cus on implications for friction laboratory experiments.
Mainly two laws have been proposed to model the dy-
namical evolution of frictional strength observed at lab-
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oratory scale. They are usually labeled as the Dieterich
“ageing” law and the Ruina “slip” law (see section 2).
As long as normal stress remains constant, differences
between them are difficult to observe. However, when
applied to model earthquakes sequences, Rice and Ben-
Zion [1996] show that the Ruina law shows less com-
plex slip sequences than the Dieterich law, which illus-
trates the importance to study the range of validity of
these two friction laws. When variations of the normal
load occur, we show that these two laws can behave
significantly differently. On the basis of numerical ex-
periments we suggest laboratory experiments to probe
friction laws.

We also examine their common features in response
to periodic normal stress variations, since they become
identical when linearized around steady state. Analyt-
ical solutions are derived and are in good agreement
with numerical results. Our model predicts the exis-
tence of a resonance on stiffness-stabilized surfaces with
velocity-weakening: shear and velocity responses of the
interface depend on the period of the external normal
load and exhibit a peak response for a period denoted
as the resonance period. The resonance is quite promi-
nent when the spring stiffness is only modestly larger
than its critical value. In Appendix B we show that
this phenomenon also exists when periodic fluctuations
of shear loading are considered, but for the sake of sim-
plicity, mainly periodic normal stress perturbations will
be discussed.

In the last part of this work, implications of our re-
sults for creeping faults are discussed. We show that
periodic variations of the normal stress can influence
the stability of creeping faults. Quasi-static stick-slip
events are observed when the Dieterich law applies and
are similar to “slow earthquakes” or creep bursts. We
also discuss a possible extension of our results to the
onset of (unstable) nucleating patches.

2. Model

The SB model consists of a rigid block (contact area
set as unity) connected to a spring of stiffness k. The
loading point is moving at constant velocity Vp (Fig-
ure 1). The stiffness & is introduced to account for the
elastic interaction of the sliding surface with the sur-
rounding medium. The block has a mass m in order to
incorporate the effect of inertia.

Frictional evolution is described by rate-and-state
constitutive laws [Dieterich, 1979a, 1979b; Ruina, 1983]
that successfully modeled a wide range of phenomena
from rock friction laboratory measurements [Dieterich,
1979a, 1979b, 1981] to earthquake afterslip [Marone et
al., 1991]. These laws propose that friction 7 can be

described as
T=F(V,¢,0), (1)

where 7 is the friction force per surface unit, o is the
effective normal stress, V = § is the velocity, where § is
the position of the center of the block, and v is the state
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Figure 1. The spring-block model. Here T is frictional
strength, o is effective normal stress, k is stiffness of the
spring, Vo is loading velocity, m is mass of the block, J is
position of the center of the block, do is position of the load-
ing point, and u = Vpt — § is relative displacement between
the loading point and the center of the block.

variable that describes the state of the sliding surface.
Ruina [1983] has proposed the following form for the
friction force 7:

7 =0 [uo + a In(V/V) + 4], ()

where po and a are experimentally determined con-
stants and V, is a normalizing velocity. Equation (2) is
not defined for V = 0 but can be regularized as by Rice
and Ben-Zion [1996) and Ben-Zion and Rice [1997] by
appeal to an activated rate process interpretation [Hes-
lot et al., 1994] of the logarithmic term, including the
effect of backward as well as forward activated steps.
When the loading speed V; is equal to the normalizing
velocity V., and there is steady sliding, ¢ vanishes and
the coeflicient of friction is equal to po. For the evolu-
tion of the state variable at constant normal stress o,
we will use dyp/dt = G(¢,V). Ruina [1983] proposed
a specific expression for this G function. In this study,
we will mainly use this expression (hereinafter referred
to as the Ruina or slip law), written as

G, V) =—(V/L)[% + bIn(V/V,)], (3)

We may also use an alternative expression (hereinafter
referred to as the Dieterich or ageing law), written as

G, V) = (bV./L)exp(-9/b) - V/V.],  (4)

where b and L are two constants determined experimen-
tally. Defining 6 by ¢ = bIn(V.0/L), (4) becomes

dé
= =1-Vo/L (5)
T = olpo + aln(V/Vi) + bIn(V.8/L)]. (6)

This form is often used in the literature because when
the slider is at rest (V' = 0), 8 can be interpreted as time
t. This is why the state variable 6 is often interpreted
[Dieterich, 1979a, 1979b; Baumberger et al., 1995] as
the average age of the contacts.
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This system has a steady state when the slider is mov-
ing uniformly at the loading speed Vj, under constant
normal stress o, and when G(iss,Vo) = 0. Both the
Ruina and Dieterich laws lead in steady state to the
same value of the state variable: ¢,; = —bln(Vy/V4),
and the friction coefficient (1 = 7/0) is

too = thart (a = B) In(Vo/Vs). ™)
The derivative with time of the state variable 1,
G(1, V), shows that the system evolves to steady state
after it has slipped a length L which is therefore a
characteristic length of friction, and often [Dieterich,
1979a, 1979b; Baumberger et al., 1995] interpreted as
the length to renew contacts between asperities. When
b is greater than a, the steady state friction force is
velocity-weakening and the system may be unstable.
Stability analysis at constant normal stress [Rice and
Ruina, 1983; Gu et al., 1984; Heslot et al., 1994] shows
that this system exhibits a Hopf bifurcation. Infinitesi-
mal perturbations from steady state sliding leave the
system in stable slip when the stiffness k is greater
than the critical stiffness k., while when the stiffness
k is lower than the critical stiffness k., the system be-
comes unstable and stick slip is observed. Rice and
Ruina [1983] showed that the critical stiffness is k. =
ko[l + mV2/(aoL)] with kg = o(b — a)/L. When a is
greater than b, it is obvious that the system is always
stable since the critical stiffness k. is always negative.
Alternatively, when k. is replaced by a given stiffness k
of a SB system, the equation defines the critical normal
stress 0. = kL/(b—a) —mV{/(aL) below which sliding
is stable.

Quasi-static (m = 0) stability fields for finite pertur-
bations in shear stress A7 using the Ruina slip law [Gu
et al., 1984] show that if the normalized perturbation
At /oa is greater than some value v of order unity, the
system can become unstable even in the stable domain.
However Rangith and Rice [1999] showed recently that
such a result is not true for the ageing law (4). In the
stable domain (k > k) the system is always stable in-
dependently of the magnitude of the perturbation. Fig-
ure 2 shows schematically these differences.

Experimental studies of friction on rock samples
[Linker and Dieterich, 1992; Richardson and Marone,
1999] showed that the variation of the normal stress o
could be taken into account by adding a new term in
the state variable evolution law. The derivative of 9
with time becomes

ado
P ®)

Figure 3 shows the influence of the parameter o for a
step in normal stress on a stiff system which is initially
in steady sliding. An infinitesimal step in normal stress
do, applied instantaneously while V' is maintained con-
stant, would be accompanied by a step in shear strength
dtly—const = (#ss — @)do. A derivation, and general-

dyp _
:‘l? - G(d)’ V)
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Figure 2. (top) Stability diagram of the spring-slider sys-
tem for the Ruina slip law. For k > k. a finite perturbation
can bring the system from domain 2 (stable slip or creep)
to domain 1 (unstable slip or stick-slip). (bottom) Stability
diagram of the spring-slider system for the Dieterich aging
law. Note that unlike the Ruina law the system is always
stable for k > k..

ization, of the last equality can be found in Appendix A.
Since it is observed in the experiments mentioned above
that an infinitesimal increase of normal stress (do > 0)
implies also an infinitesimal increase of shear strength
(dr > 0), the parameter a should lie between 0 and
ftss- The amplitude of the response of the system to
a step in normal stress o decreases with increasing pa-
rameter . When « is equal to the coefficient of friction
in steady state pss, there is no instantaneous change in
shear strength. After this immediate response of the
system, the shear strength 7 evolves to a new steady
state value related to the new value of the normal stress
.

Experiments on friction of hard metals against a cut-
ting tool material conducted at variable normal stress
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[Prakash and Clifton, 1993; Prakash, 1998], at slip rates
of order 1 m s™! (versus of order 1 um s~! of Linker and
Dieterich [1992]), lead to a different formulation using
the rate and state framework. These observations, ob-
tained using a plate-impact shear-loading device, show
continuous variation of shear strength following a step
in normal stress, the coefficient of friction p being still
discontinuous (due to the step in o). It is not clear
if these differences are due to the experimental proce-
dures employed, the far different timescales, the nature
of the materials involved (homogeneous), or to the un-
avoidable presence of gouge in rock friction experiments.
The Linker and Dieterich [1992] experiments may have
been too slow and missed the (possible) continuity of 7.
We can reconcile these two points of view if we take «
in the Linker-Dieterich equations not as a constant but
rather set & = u(V,9) = 7/0 so that (8) transforms to

@ _ sy - V) do
S - v)-E22T ©

Then the Linker-Dieterich framework would imply no
change in shear strength 7 for a sudden (d¢t — 0) change
in the normal stress o of arbitrary magnitude with V
held constant. That is because diy = du in such cir-
cumstance, so that we have du = —udo /o, and hence
d(po) = 0. Further studies should be carried out in
order to settle these issues.

Three variables are needed to fully describe the sys-
tem: The velocity V() of the slider, the state variable
¥(t), and the relative displacement of the slider com-
pared to the loading point, which is u(t) = Vot — 4(¢),
where 6(t) is the position of the slider at time ¢. The

0.68 . | |
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a=p, /2
0.62 - e |
06 |
0.58 ‘ . |
-0.5 0.5 1.5 25

&/L

Figure 3. Effect of the o term on a step in normal stress
o. Shear stress 7/oo plotted as a function of normalized
displacement §/L for the Ruina law. The parameters used
are a = 0.005, b = 0.008, Vo = 10~° m/s, k = 10k, and
01 = 1.109, where oo and o, are the initial and final normal
stress. The instantaneous response of the system decreases
with increasing a.
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equations of motion of the spring-slider system evolving
at variable normal stress o are

du
—=W-Y, 10
" =% (10)
dp _ _ado
‘(E - G(d’, V) o dt ’ (11)
dv
mer = ku—m, (12)

where the shear strength 7 is defined in (2) and where
Vo and o(t) are specified excitations.

We now consider variations of the normal stress o
with time t. The block is in steady state, and starting
at t = 0, we apply a periodic perturbation in the normal
stress o of the form

a(t) = ao[l +€f (1)), lef(8)] € 1. (13)
To study the response, transient phases are not at first
considered. Being in the stable domain, the effects of
any perturbations of finite duration gradually vanish
when those perturbations are removed. We therefore
only consider perturbations for which the period is small
compared to the total time during which they are ap-
plied. In this case, we can consider the forcing term
f(t) as permanent. In all the numerical runs performed
here, we wait for the transient phase to disappear before
reporting results.
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The effects of periodic perturbations are studied both
numerically and analytically. The case of an arbitrary
perturbation of the normal stress is also considered
but only using analytical results. The simplest type
of periodic perturbation is f(t) = sin(2nt/T), T be-
ing the period of the perturbation. If AT,pplieq is the
time during which the perturbation is applied, the cri-
teria set in the paragraph above could be written as
AT,pplied > T. We will use normalized quantities as
often as possible. Rice and Ruina [1983] showed that
the period of the spring-mass system at critical stiff-
ness is T, = 2m\/a/(b — a)(L/Vp). Therefore T/T, will
be the normalized period of the excitation f(t).

To perform a full nonlinear analysis, we numeri-
cally integrate (10)-(12), using a Runge-Kutta algo-
rithm [Press et al., 1992] with fifth-order adaptive step-
size control. We take the normal stress as constant
within each time step so that starting at time ¢; it is
o; and at time t;41 it changes to o;41. Equation (11)
then requires that we change ¢(¢) from v¢; to

Yit1 = ¢ — aln(oiy1/0:) (14)

at time t;41, which is done before applying the Runge-
Kutta algorithm to integrate the system of equations
considering o constant. This method allows us to ac-
count for the dependence of the state variable on o in
a simple manner and to consider a finite step in normal
stress like in the experiments.

30.0 . T T
20.0 +
<
©o° I > Ruina
S
< o Dieterich
100 - o
00 N 1 1
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Figure 4. Normalized stress variation AT/ooa as a function of the amplitude of the perturbation e for
the Dieterich (open circle) and the Ruina (open square) friction laws. The normalized stiffness k/kc = 1.1,
the excitation period T/T. = 1, the parameter o = 0, and the rest of the parameters are taken from
Table 1. We see a step in the normalized stress drop for the Ruina law (due to the transition from stable
to unstable slip), while for the Dieterich law the normalized stress drop appears more continuous as the

perturbation e is increasing.
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Table 1. Parameters Used in This Study

Parameters Values
a 0.005
b 0.008
L, pym 1
7. 0.6
Vi, m s7! 107°
Vo, ms™! 107°
oo, Pa 108
m, kg 1.0

3. Discrepancy Between “Slip” and
“Ageing” Friction Laws

As discussed in section 2, the Dieterich and Ruina
law behave distinctly for finite velocity perturbations
at constant normal stress. For infinitesimal periodic
fluctuations of the normal load, both laws give similar
results. This is due to the fact that they both reduce to
the same set of equations (as will be shown in section 4)
when linearized around steady state. When finite per-
turbations are considered, the nonlinear terms can no
longer be neglected and differences between these laws
can be observed. The Ruina law is conditionally stable
in the stable domain (k > k.), while the Dieterich law
is always stable despite the magnitude of the perturba-
tion. When the amplitude of normal stress perturba-
tions is increased, a transition from stable to unstable
slip is observed in the case of the Ruina law and iner-
tial effects have to be taken into account; otherwise, the
problem has no solution. Stick slip is observed and the
system does not behave quasi-statically. The inertial
term mdV/dt is introduced in our numerical calcula-
tions to control the instability and limit the stress drop
to a finite value. This term has no direct analog in con-
tinuum elastodynamics but plays a role comparable to
the damping term —GV/2 (where G is the shear mod-
ulus, V is the velocity, and § is the shear wave speed)
derived from the elastodynamic theory [see, e.g., Rice,
1993; Madariaga and Cochard, 1994]. In the case of the
Dieterich law the effect of inertia can still be neglected
because unlike the slip law, it is stable to finite pertur-
bations when the stiffness of the spring is greater than
critical stiffness k..

Figure 4 displays the normalized stress drop At/oga
as a function of the amplitude of perturbation € for the
Ruina (open square) and the Dieterich (open circle) fric-
tion laws. The parameters used are taken from Table 1,
the normalized stiffness k/k. = 1.1, the normalized ex-
citation period T/T, = 1, and the parameter « is set to
zero. The results are not qualitatively different when
o varies. Note that for the stiffness k considered, the
normal stress would have to be increased to 1.10¢ to
destabilize steady sliding; the entire range of € consid-
ered in our plots is far smaller than the € = 0.1 to which
that critical level would correspond.
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The normalized stress drop exhibits a distinct step
for the Ruina law compared to the Dieterich law, owing
to its conditional stability toward finite perturbations.
The normalized stress drop, for large amplitudes of per-
turbation e, is always significantly larger in the case of
the Ruina law. Figure 4 illustrates, as the perturbation
€ becomes very small, the similar response of the Ruina
and Dieterich laws. The quasi-static approximation for
k = 1.1k, ceases to be valid for a perturbing amplitude
€ larger than 2x1073, and the two curves begin to dif-
fer. In the discussion part of the paper, we propose a
laboratory experiment based on these results that may
be useful to study how well real surfaces conform to the
predictions of these two laws.

The response in shear strength of the creeping sur-
face is not only amplitude (¢) dependent but is also
influenced by the period of the normal stress perturba-
tions as shown on Figures 5a (for the Dieterich law) and
5b (for the Ruina law). Figures 5a and 5b display the
normalized shear strength 7/(uss00) as a function of
the normalized time t/T. for various periods, namely,
T = 0.1, 1, and 10 T, the perturbation € is equal to
10~2 and the stiffness k is equal to 1.1k.. The rest of
the frictional parameters are given in Table 1. On Fig-
ures 5a and 5b, the response is clearly loading-period-
dependent. Stable quasi-static oscillations are observed
for both laws when the period is set to 0.17, or 10T,
(the response being higher for 107,). The case T = T,
is more interesting since stick slip is observed, showing
that the normal stress perturbations have destabilized
the fault. We will see in section 4 that the SB model
presents a shear resonance (or peak response). When
the stiffness is equal to 1.1k, this occurs for periods of
the normal stress perturbation close to T,. This res-
onance is responsible for the transition from creep to
stick-slip-like behavior. The stress drop associated with
the Dieterich law is much lower than for the Ruina law,
and the latter shows a periodic sequence of dynami-
cal events (i.e., where inertia is important) while the
former one presents an aperiodic distribution of quasi-
static (i.e., inertia is always negligible) events, at least
for the small V5 = 10™° m/s we consider, although they
constitute a quasiperiodic recurrence. When «a is close
to pss, the Ruina law instead gives slightly aperiodic
events. To summarize, the Dieterich law presents more
complex behavior than the Ruina one and this feature
has also been observed by Rice and Ben-Zion [1996, p.
3813] studying depth-variable crustal earthquake mod-
els, with the Ruina law “leading to periodically repeated
events” and the Dieterich one sometimes “allowing ap-
parently chaotic slip sequences of moderate and large
earthquakes.” In the light of our results, we may ex-
pect that the complexity observed by Rice and Ben-
Zion [1996] using the Dieterich law might be enhanced
if temporal fluctuations of the normal load are consid-
ered. This illustrates the need to test these two laws
since they lead to important differences in the complex-
ity of the generated events.
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Figure 5. (a) Response in normalized shear stress

71/00pss as a function of normalized time t/T, using the Di-
eterich or “ageing” law for various periods of normal stress
perturbation (T = 0.1, 1 and 107;). Here « is equal to 0, the
relative amplitude of the normal stress oscillation e is set to
1072, and k/k. is 1.1. The rest of the parameters are given
in Table 1. The 0.1 (dashed) and 107. (long dashed) curves
present quasi-static oscillations at the period imposed. The
T = T. case shows a chaotic sequence of stick-slip events.
However, the spring-slider system is behaving in a quasi-
static way for the low Vo we use, owing to the stability of
the Dieterich law in the k > k. region. (b) Same as in Fig-
ure 5a for the Ruina law. For T = T, the slip law exhibits
periodic stick-slip events, but unlike the Dieterich law, in-
ertia can not be neglected. The system shows a transition
from a quasi-static to an inertia-dominated regime due to
the conditional stability of the Ruina law. Note that the
stress drop is higher for the Ruina than for the Dieterich
friction law and that the highest value of frictional strength
is greater than its steady state value 7ss = oouss for the Di-
eterich law, while for the Ruina slip law this peak response
OCCUIS near Tss.

4. Linear Perturbation Analysis
4.1. Case of Sinusoidal Forcing

We consider first the quasi-static case (setting the
mass equal to zero: m = 0) and develop a linear pertur-
bation analysis for a system which is sliding in steady
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state but subjected to a small periodic fluctuation of
the normal stress in the form

o(t) = oo + o1 sin(wt) = g9 + Im[o; expiwt], (15)
where w = 27/T and 01 /0o = € € 1. A general deriva-
tion including periodic fluctuations of the shear loading
is given in Appendix B.

As mentioned in section 3, we ignore transients and
determine the periodic response. The transients will
decay and be unimportant when the stiffness k is greater
than the critical stiffness k. = 0o(b — a)/L. On the
other hand, if the stiffness k is lower than the critical
stiffness k., the transients have exponential growth and
there will be no (stable) steady state to perturb. We
are seeking for solutions of the linearized system (10)-
(12) together with (2). Because of the linearization,
we have to look for solutions which vary temporally
in a manner identical to the perturbation in o(t). It
is also important to note that since the perturbation
is imposed, T and therefore w are imposed and real
quantities.

Thus we assume k > go(b — a)/L and solve the lin-
earized equations of the problem in the form

u = ug + Im[u; exp(iwt)], (16)
¥ = to + Im[¢h; exp(iwt)], (17)
T = 79 + Im[m; exp(iwt)], (18)
V = Vo + Im[V; exp(iwt)], (19)

where all of u;, 91, 71, and V; are small complex quan-
tities to be determined. Both the Ruina (slip) and Di-
eterich (ageing) forms of constitutive law discussed, in-
cluding the Linker-Dieterich framework for variable nor-
mal stress influence, reduce to the same linearized set
of equations so the results obtained in the rest of the
text, unless specified, are common to the Dieterich and
Ruina laws. Thus the expression for 7 in (2) reduces to

1 = pss01 + aooV1/Vo + oot (20)
whereas the two forms of the state evolution both lin-
earize to

iwpy = —(Vo/L) (1 + bV1 /o) — tawoy fae.  (21)
The equation of equilibrium (12) (when m = 0) is
71 = kuy, (22)
and the spring elongation equation (10) yields
wuy = —Vi. (23)

The iw comes from time derivatives, and we dispense
with writing the imaginary symbols Im[(...); exp(iwt)].
It is elementary to solve these four equations for u;, ¥4,
71, and V;. The result for ; is conveniently normalized
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by pss01, which would be the nominal change in shear
strength if we neglected the rate and state effects. Thus
introducing the dimensionless pulsation ¢ = wL/Vp =
21 L/VoT, we obtain

T1 1+iq(l — &/ pss) 2
= aooq? . (b—a)oo 1’ ( )
HssO1 [1- -——LkL ] +iq[l - T]
When inertia is considered (m # 0), (22) becomes
T + iwmVy = kuy, (25)
and (24) transforms to
n_ 1+4iq(1 — afpss) (26)

PssO1 1 — (—k—f%‘%i—)-f] +ig[l — (Jk%]

As already noted by Rice and Ruina [1983], including
inertia is equivalent to replace k by k — mw? in the
results obtained for m = 0 as can be seen by comparing
(24) with (26).

Equation (24) is, in fact, in the same form as that
for a harmonically forced system consisting of a mass
M, a spring of stiffness K and a damper of viscous
damping Cy on which two forces are acting: A peri-
odic force f(t) = foIm [exp (iwt)] and another force of
the type df(t)/dt. If the system position is z(t) =
zo + Im [z exp (iwt)], the “transfer function” z1/f; is
equal to (1 + iwk/fo)/(K — Mw? + iCqw). The vis-
cous damping Cj is similar to 1 — k. /k, so that the case
k > k. (as we assume here) is analogous to positive
damping and vice versa.

So far, we have considered real values of w since the
frequency of motion was imposed. If we now let w be
a complex number and o; go to zero, then our results
could be used to perform a stability analysis of a slider
under a constant normal stress, and to solve for the crit-
ical stiffness value k.. Because of (24) the values of the
dimensionless frequency ¢ that make the denominator of
(24) vanish suggest solutions of the form exp (igVpt/L).
The zeros of the denominator are given by

20009 . (b-a)o
7 = -
:i:\/ 4—-—“2"'“ T Gt 'L")""]z. (27)

Stable solutions correspond to Im (g) greater than zero.
So, when the stiffness k is greater than k. = (b—a)oo/L
(or when, for a given k, stress o is less than kL/(b—a)),
the system is stable. This confirms the well-known sta-
bility result of Ruina [1983] and Rice and Ruina [1983).
For analysis of the dynamical regime (m # 0) the stiff-
ness k is replaced by k — mw?.

We will show in section 5 that the response of the
block shows a peak response for a period that will be
denoted as the resonance period T;. Figure 6 displays
this resonance in the shear stress oscillation as a func-
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k=1.1k_ analytical
° k=1.5k, numerical
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Figure 6. Normalized modulus of the shear stress versus
normalized period of the excitation T'/T. for a = pss/2 and
k = 1.1, 1.5, and 5k.. The parameters used are given in
the set of parameters of Table 1. The sharp peak shows the
existence of a resonance. The peak response is decreasing
with increasing stiffness.

tion of the normalized period of normal stress perturba-
tions T/T, for a = 0.005, b — a = 0.003, € = 1073, and
various values of the stiffness k (k = 1.1k, 1.5k;, and
5k.). It shows that the numerical (symbols) and the an-
alytical (solid lines) values are in very good agreement.

4.2. Case of an Arbitrary Forcing (Arbitrary
f(t))

Let the perturbation in normal stress be given by

400
o1(8) = (1/27) / exp (iwt)o1 (W)dw,  (28)
—00
where ¢1(w) is the Fourier transform of o (t),
+o00
o1 (W) = / exp (—iwt)or (dw, (29

and we note that for transient response we would set
o1(t) = 0forall t < 0. In section 4.1 we considered exci-
tation in the form o) exp (iwt) and showed how to com-
pute response perturbations 7 exp (iwt), V; exp (iwt),
1y exp (iwt), and uq exp (iwt). Let us rewrite the result
of that calculation as

T1 F1 (w)
Zi exp (iwt) = g EZ; oy exp (iwt). (30)
uy Fy(w)

Equation (24) gives

Fi(w) = pas(l +i(wL/Vo)(1 = @/ pss)]/ (1)

[(1 — aoow?L/kVE) + i(wVo/L)(1 - (b — @)oo /kL)],
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equation (22) leads to

Fy(w) = Fy (w)/k, (32)
equation (23) leads to
Fy(w) = —iwF1(w)/k, (33)
and, finally, equation (21) gives
Fa(w) = OR@)/KL = afo0) (34)

iw+ Vo/L

These are for the quasi-static case and can be extended
by replacing k by k — mw? to include inertial dynam-
ics. Then, if we replace o by 61 (w)dw/27 and integrate
such solutions over all w, the response to a general per-
turbation history oy (t) is

71(t) .
1‘2%’3 = ox (35)
uy ()
Fi(w)
fjf: izgzg o1 (w) exp (iwt)dw.
Fy(w)

4.3. Quasi-Static Slip Between Deformable
Elastic Continua

The development here is for the single degree of free-
dom SB system. However, the quasi-static (m = 0)
form of our equations also has an interpretation for
sliding on a planar surface between two identical de-
formable elastic continuum layers, extending infinitely
in the z direction, provided that we focus on pertur-
bations of a given spatial wavenumber ¢ [see, e.g., Rice
and Ruina, 1983]. That is, letting x be the coordinate
along the interface which is either parallel (in-plane slip
case) or perpendicular (antiplane slip) to the slip direc-
tion, we may consider a perturbation of a steady sliding
state by a space-time perturbation of normal stress in

the form
o(z,t) = oo + Im[o; exp(i€z) exp(iwt)]  (36)

analogous to (15). The response of the system can be
written similarly to (16)-(19),

u(z,t) 0
s | =[] @
Viz,t) Vo
u
Im[ il exp(i€z) exp(iwt)],
i

where —u(z,t) is now the slip along the interface, in
addition to the uniform slip Vpt, due to perturbation
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of the sliding state. These quantities satisfy the same
system of (20) to (23), except that the parameter k
must be regarded as the elastic-stiffness at wavenumber
€ named as K¢q(€). For two elastic half-spaces (i.e.,
when & times the layer thicknesses is much less than 1),
Keq(€) = G|€]/2(1 - v) for in-plane slip and K. () =
G|¢|/2 for antiplane slip, where G is the elastic shear
modulus and v the Poisson ratio. Expressions for k for
sliding elastic layers of finite thickness are given by Rice
and Ruina [1983] and Horowitz and Ruina [1989).

Using the appropriate expression for k, results for
the quasi-static SB (equations (24) and (35)) hold
for perturbations at wavelength ¢ but arbitrary time-
dependent normal stress perturbations of two sliding
half-spaces or layers. Thus, to describe perturbation in
a single wavenumber mode between elastic half-spaces,
we can simply reinterpret k/k. in our plots, for quasi-
static linearized perturbation results, as |¢|/|¢.| where
&c is the critical wavelength defined, e.g., in antiplane
strain, by G|&|/2 = k.. The half wavelength 7/¢, can
be interpreted roughly as the nucleation length [see,
e.g., Rice, 1993] and represents the minimum size above
which slip becomes unstable.

There is no clear fault interpretation for sliding con-
tinua of the SB analysis with inertia (m > 0); such
cases must be examined on the basis of solutions to the
elastodynamic wave equations like done, for instance,
by Rice and Ruina [1983] for the antiplane case.

5. Shear Stress Resonance

The denominator of (24) vanishes for a stiffness k =
k. and ¢ = g. = \/(b — a)/a leading to an excitation pe-
riod T =T, = 2m+/a/(b— a)L/Vy, the period at insta-
bility identified by Rice and Ruina [1983] when k = k..
The ratio 71 /15501 is unbounded at that frequency. The
system at critical stiffness shows a variation of its re-
sponse amplitude in shear strength as the period of ex-
citation varies and presents a maximum (and infinite
response) for T' = T,. We recognize such a behavior as
a resonance phenomenon.

Similarly, when the stiffness k is greater than the crit-
ical stiffness k., there is an amplified response, but the
resonance is bounded.

If we write the normalized change in shear strength
71 /15501 in (24) as

T1 /[1,330‘1 = pr €Xp ("i’Y‘r)a (38)
it can be easily derived that
1+ ¢*(1 - o/pss)®
= 39
pr \/ A= an/RDE + (1 —RfhE )
1— ke) — (1 — a202®y(1 — )
tany, = q( -~ )2 ( - L A bl (40)
1-=%+g¢ (1——,—:)(1—“7
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The modulus of the normalized shear stress change p,
is useful to illustrate this resonance as the period T
varies. When the resonance exists, pr(T) has a maxi-
mum for a period T = T called the resonance period.
This has been illustrated in Figure 6. When the period
of excitation T goes to zero (g — 00), the normalized
change in shear stress goes to zero. T is too short for
significant changes in spring extension to accumulate
over a single period, and 7 is then equal to 79 = 7.
When the period of excitation T becomes very large
compared to the characteristic time of the evolution of
friction L/Vp (i.e. ¢ — 0), the modulus of the normal-
ized change in shear strength goes to unity: The system
responds as if it was at “constant” normal stress (i.e.,
variations of the normal stress are slow); it has time
to adapt to the evolution of the normal stress. Between
these two asymptotic values of the modulus of the shear
stress changes, a maximum and therefore a resonance
may exist. The resonance leads to a peak response up
to 15 times larger than its value at steady state when
k = 1.1k. and o = pss/2 (see Figure 6).

Examination of (39) shows that the magnitude of the
shear stress response decreases with increasing . This
illustrates again the stabilizing effect of this term to
normal stress perturbations.

The boundary between creep and stick slip behavior
is highly influenced by the existence of the resonance:
When at shear resonance, initially creeping fault will ex-
hibit stick slip for lower amplitudes of the normal stress
fluctuations than for any other periods (see section 3).

6. Phase Lag Between Shear Stress
and Normal Stress

Let us now consider the phase lag v, between the
fluctuations of the shear and normal stresses. Using
(38) together with (18), we obtain

T = pss0o[1 + €pr sin (wt — ;)] (41)
When the period of excitation T' becomes very long
compared to the characteristic time of the evolution
of friction L/V, (i.e., when ¢ — 0), then 4, ~ 0 (see
(40)) and the system responds in phase to the external
excitation of the normal stress o (t).

When the period of excitation T goes to zero (¢ —
00), two cases have to be considered. If a differs from
the value of the coefficient of friction in steady state
Uss, then «; ~ w/2, but when the parameter « is equal
to ptss, we find that v, ~ w. For very low periods of
excitation and a = ps, the shear stress is directly out
of phase with the normal stress.

Another property of the system when the normal
stress fluctuates at frequency g. is that the phase lag
of the shear stress does not depend on the stiffness of
the spring (see (40) at ¢ = ¢.). In other words, the
elastic properties of the surrounding medium do not in-
fluence the phase lag between the normal and the shear
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Figure 7. (a) Normalized phase lag 27, /m between shear
and normal stress oscillations versus normalized period of
the excitation T /T for k = 1.1k. and @ = 0, pss/2, and
1ss- The parameters used are given by the set of parameter
in Table 1. (b) same as in Figure 7a for a set to pss/2 and
various stiffness (k = 1.1, 1.5, and 5k).

stress. Nevertheless, elastic properties still influence the
magnitude of the response.

The same kind of analysis can be carried out to study
the influence of the a parameter. As expected, the
phase lag is always increasing with increasing a. This
is an illustration of the stabilizing effect of the Linker-
Dieterich a parameter which acts against the variation
of normal stress.

Figures 7a and 7b display the phase lag as a function
of the normalized period of excitation T'/T, for various
values of the normalized stiffness k/k. (1.1, 1.5, and 5)
and a (0, puss/2 and pgs) when a = 0.005, b—a = 0.003.
As mentioned above, the k = 1.1, 1.5 and 5k, curves
intersects at T' = T, for all . When a = p,, (see Figure
7a), the phase lag is always positive and never reaches
0. The shear stress is never in phase with the normal
stress due to the counter reaction of the a parameter
toward perturbations of the normal load.
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For stiffnesses close to the critical stiffness (k = 1.1
and 1.5k, curves of Figure 7b), the phase lag shows
an abrupt variation as T/T. crosses unity (this drop
is equal to m when a = p,). This is similar to the
spring (stiffness K)-mass (M) system in the absence of
frictional effects and subject to a periodic variations of
the driving force of the form Fpexp (iwt).

7. Velocity Resonance

It is also of interest to look at variations of the slider
velocity during creep with oscillations of the normal
load by studying the fluctuations of speed V;(t). It can

be easily seen from (22) and (23) that V; = —iwmn /k.
Therefore, if we write
Vi/Vo = pv exp (—iw), (42)

the magnitude py and the phase lag vy with respect to
the normal stress fluctuations are related to shear stress
magnitude p, and phase lag v, as
_ QUssO1Pr

P vV = k L )
which shows that the shear stress and velocity do not
exhibit their highest response for the same period of
normal stress fluctuations (since py ~ gp.).

(43)

W=7 +7/2 (44)
So shear 7 fluctuations of the slider are extremal when
the velocity V' fluctuations vanish, and vice versa, and
the speed of the slider can be written as
TssPreVoq
kL
When the period of excitation T is much greater

V(t)=Vo+ cos (wt — 7,). (45)

15 T T T T
—— k=1.1k,
~ k=15k,
10
>
om
=
>
]
5
0
0 1 2 3 4 5
T,
Figure 8. Normalized modulus of the velocity

kLpv [pss01 Vo as a function of the normalized period of the
excitation T'/T, for various stiffnesses (k = 1.1, 1.5, and 5kc)
and a = p. /2 fixed. The peak velocity response decreases
for increasing stiffness.
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than the characteristic time L/V; of evolution of fric-
tion (¢ — 0), then the speed magnitude pPv goes to 0.
The system is sliding at constant steady state velocity
V5.

When T is small compared to L/V; (¢ = o), py ap-
proaches Vpe(pss —a)/a. Figure 8 shows the normalized
velocity magnitude kLpy /(usso1Vo) = qp, for various
values of the normalized stiffness k/k. (1.1, 1.5 and 5)
and a = pss/2 when a = 0.005, b — a = 0.003 (see
Table 1).

As for the case of the shear stress response, the mag-
nitude of the velocity response decreases with increas-
ing o (see (43) together with (39)) showing again the
stabilizing effect of the a parameter for normal stress
variations. We also verified that at resonance, the ve-
locity was a decreasing function of the stiffness and that
the higher the parameter a, the lower is the response of
the velocity.

8. Implications for Faults
8.1. Three Characteristic Parameters

Three main parameters characterize the resonance
phenomenon: (1) The critical stiffness k. = go(b—a)/L.
(2) The period of the SB system at critical stiffness
Tc=2m\/a/(b—a)(L/Vp). (3) The critical magnitude
of the normal stress perturbations e, for destabilization.

A rough estimate of the latter can be made by finding
the e which would predict so large a |V;| that it equals
the unperturbed velocity V. That is clearly outside the
range of the linearized analysis but predicts a value in
reasonable accord with our simulations. Thus setting
pv = 1 when T = T, and setting k = k. everywhere
except in the term 1 — k./k, we estimate that a value
of e sufficient to destabilize steady sliding at the peak
resonance is

b—a 1—ko/k
Bss /14 (1 —afus)?(b—a)/a

This gives €. ~ 0.04 to 0.05(1 — k/k.) for the parame-
ter values in Table 1, with the range corresponding to
choice of & = 0 to a@ = pgs. Thus e, ~ 0.004 for the
cases we studied in Figures 4 and 5, with k¥ = 1.1k,
which is in reasonable agreement with what we find by
simulations.

Estimates of these parameters k., T., €, require the
knowledge of the frictional parameters a, b, and L, the
value of the mean normal stress o9, the loading velocity
Vo and, for e, the stiffness k.

The frictional parameters a and b of a fault vary along
depth due for instance to temperature variations. Using
data on temperature dependence of a —b for granite un-
der hydrothermal conditions, Blanpied et al. [1991] con-
verted them to variations of a—b with depth as based on
a Lachenbruch-Sass San Andreas fault geotherm. They
found that for depth between 0 and —2 km, a > b
(velocity strengthening regime), and b > a (velocity-

€c

(46)
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weakening regime) for depth between —2 km and —14
km, with b — a ~ 4 x 1073, similar to what we use
in Table 1. Below —14 km the fault is again velocity
strengthening. Blanpied et al. [1991] did not report
the value of a, but if we choose a over the velocity-
weakening range as roughly 0.005 to 0.015 (values con-
sistent with other laboratory experiments on friction),
the \/a/(b— a) factor varies from 1.1 to 1.9, which is
not significantly different from 1.3 based on Table 1.
Smaller values of b — a should, of course, be expected
near the transition between the velocity-strengthening
and weakening regime, that is, for depths of —2 km or
—14 km where b — a crosses zero in changing sign. Lat-
eral variations of fault friction may also be considered
as by Boatwright and Cocco [1996]. They propose that
faulting behavior is divided into four categories: Strong
and weak seismic fields and compliant as well as vis-
cous fields. The two latter involve a velocity strength-
ening regime (b < a) and so only the first two categories
should apply to our model. Strong and weak seismic
fields are velocity-weakening (b > a) regions. The weak
areas are close to velocity neutral (b ~ a), while the
strong portions of the fault exhibit significant velocity-
weakening. Boatwright and Cocco [1996] discussed the
presence of microearthquakes on the creeping section
of the San Andreas fault suggesting that this area is a
mosaic of velocity-weakening and strengthening regions
whose b — a values highly fluctuate. This raises the
possibility that faults may be composed of many parts
showing different frictional behavior.

Concerning the parameter L, typical laboratory val-
ues of the order of 1 um. However, these values
might possibly not be appropriate to describe earth-
quake faults. Marone and Kilgore [1993] found a scaling
between L and the thickness w of the zone of localized
shear strain which led them, based on field estimate of w
for the San Andreas fault, to estimate values of L of the
order of 1 mm. Nevertheless, for the velocity-weakening
faults of concern here, shear is expected to be highly lo-
calized rather than occupying the entire thickness w,
and such scaling is uncertain. Higher L (even of the
order of a meter) has been suggested by waveform in-
version but may be biased by the inversion method as
pointed out by Guatteri and Spudich [2000].

It is normally assumed that the effective stress oo
increases linearly with depth. At a given depth, normal
stress may vary due, for instance, to geometric changes
of the fault surface, or to the presence of fluids at higher
than hydrostatic pore pressure. For such regions the
effective normal stress may be much reduced from the
standard estimate based on lithostatic pressure minus
hydrostatic pore pressure.

In extending the results to natural faults the SB
model is not directly applicable, and we have to de-
scribe the problem in terms of nonuniform slippage on
a surface in an elastic continuum. That lies beyond
our present scope, but, approximately, we may discuss
results in terms of an equivalent stiffness K., for a
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wavenumber ¢ (see section 4.3). We identify the length
h of a slipping fault segment as a half wavelength, so
that k = Keq(m/h) = ©G/2h.

8.2. Resonance Phenomenon on Faults

Our results have clear implications for laboratory
study of friction and tests of proposed constitutive re-
lations. Here we examine the possibility that the res-
onance phenomenon, and associated destabilization of
what would otherwise be stiffness-stabilized slip, could
be relevant to natural earthquakes. We have three re-
quirements for estimating the influence on faults of the
resonance phenomenon:

First, the excitation period T must be close to the
critical period T. = 2mw+/a/(b — a)(L/Vp), which con-
strains Vg (to the value given later in (48)) for fixed
frictional parameters a, b, and L and imposed period
T. Any fault segment which appears to be “locked”
between seismic events must ultimately slide in such a
speed range on its way towards the next instability. If it
resides close to that velocity for enough periods, there
is the possibility of resonance. Of course, the range of
slip rate V; is influenced by the choice of the value of
the frictional parameters, and we discuss estimates be-
low. The requirement T' = T, can also be achieved by
a random loading (e.g., by stress changes from nearby
earthquakes in an aftershock sequence) if it has suffi-
cient spectral strength at the period T.

The second requirement is that the stiffness k must
not be too far above (or normal stress too far below)
the critical value. That is, k ~ k., while k > k.. At
critical stiffness k. the length h. of the slipping patch
approximately satisfies k; = Keq(7/hc). This leads to
he = mGL/2(b— a)op, which is like the parameter h* of
Rice [1993]. The slipping area should exhibit stable slip,
which gives a constraint h < k. on the size of the patch,
but to meet the second requirement for resonance, h
must be close to that upper limit h,. Taking b—~a =
0.003, as in Table 1, G = 30 GPa, and L =1 to 10 pm,
we get h, = 0.15 to 1.5 m when o9 = 100 MPa. This
range for h, increases when the effective stress is lower;
for example, it is 1.5 to 15 m when oo = 10 MPa and
15 to 150 m in the extreme case, perhaps unrealistic,
when 09 = 1 MPa. The scaling of h. is with L/(b —
a) at a given o, and unfortunately, those parameters
for tectonic faults, and thus h. too, are only weakly
constrained at present.

We can imagine three scenarios in which there might
be such stiffness-stabilized fault patches, which could
slip for a long time at nearly constant rate:

1. The creeping patch is surrounded by velocity-
strengthening regions which show stable slip. (This is
the case of small velocity-weakening regions on a creep-
ing fault. In that case, the average slip velocity is easy
to estimate and is consistent with the nearby creep ve-
locity (say, Vo of the order of 10 mm/yr).)

2. The patch is a finite fault segment (with unrup-
tured ends) of sufficiently small length.
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3. The patch is a region of locally low oy along a
velocity-weakening fault, which is presently loaded to a
level of overall shear stress so that only that region slips
while its surroundings, at higher gy, are still locked.

The last two scenarios involve a small creeping region
of size h < h. surrounded by nonslipping, or at least
currently locked, areas. We may note that the slip rate
under a remotely applied shear stressing rate dr/dt is
then of order h(dr/dt)/G. Since h must be near the
nucleation length h. = #GL/2(b — a)oo for resonant
destabilization, this yields a slip rate

Vo = he(dr/dt)/G = nL(dr/dt)/2(b - a)oo.  (47)

To meet the first requirement (T near T), the loading
velocity must also satisfy

Vo =2mv/a/(b—a)L/T,

which directly arises from the definition of T,. For the
first and second requirements to be compatible with one
another, (47) and (48) lead to

T(dr/dt) = 4v/a(b — a)oy.

Note that L has canceled out of this condition. Assum-
ing, as above, that a lies in the range from 0.005 to
0.015, while in the velocity-weakening regime, typical
values of b — a range from 0.002 to 0.004, (49) becomes
T(dr/dt) ~ 0.020¢. The factor 0.02 is the midpoint of
a range from 0.01 (when a = 0.005 and b — a = 0.002)
to 0.03 (when a = 0.015 and b — a = 0.004).

In areas of active tectonics near plate margins we may
assume that, roughly, dr/dt ~ 6.062 — 0.02 MPa yr—!,
which is consistent with having a major earthquake of 3
MPa average stress drop every 150 to 1500 years. Thus
the first two requirements for resonance will be consis-
tent only if the excitation period and normal stress are
related by

(48)

(49)

T ~ (1 to 10)aoyr/MPa. (50)

Knowing the period of the normal stress variations, (50)
can be used to obtain a reasonable range of the mean
normal stress oy that would allow resonance. We shall
see in section 8.3 that it precludes the possibility that
resonance could occur in scenarios 2 and 3 above in
essentially any tectonic setting.

The third requirement for estimating the influence
of the resonance phenomenon concerns destabilization.
If the magnitude of the perturbation e is large enough
€ > €, the system exceeds the stability boundary if the
Ruina friction law holds. In the case of the Dieterich
law this condition insures that at least quasi-static stick
slip should occur (see also sections 8.4 and 8.6).

8.3. Tidal Normal Stress Fluctuations on
Faults: Reservoir Effects

We consider two well-known sources of normal (and
shear) stress fluctuations on faults: (1) Earth tides
which have a period Tiiges of 12 hours and involve mod-
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ulations of the loading stress due to the gravitational
interactions between the Earth, the Moon and the Sun.
(2) Reservoir effects which results in yearly (T’ = 1 year)
fluctuations of the loading stress due to annual water
depth changes.

The third requirement for resonant destabilization is
that the stress fluctuations be of sufficient amplitude.
The peak normal stress in tidal loading is expected to
be of the order of o; = 10% Pa. Therefore ¢, the ratio
between the normal stress perturbation o; and the total
normal stress og, will be of order € = 105 for o¢ = 100
MPa, representing overburden minus hydrostatic pore
pressure at ~ 5 km depth. Such e could destabilize slip
only for k very, very close to k.. It is possible, however,
that much of the background seismicity, and of after-
shock sequences, nucleates at locations of anomalously
low effective stress; weak regions should fail most read-
ily. Such anomalies are not well constrained but could
be due to locally elevated pore pressure or to very low
local normal stress associated with geometric irregulari-
ties along a fault trace (scenario 3). Nevertheless, these
would have to be extreme, reducing o9 to 1 MPa, to
bring the associated € up to 1073. Even at € = 1073,
we could expect destabilization, by equation (46), only
for fault segments with a stiffness which is ~ 5 % above
k.. The situation is even less likely for reservoir fluctu-
ations which involve smaller fluctuations than the tidal
01, at least outside the vicinity near the reservoir.

Recall that for scenarios 2 and 3, the linkage (50) be-
tween the mean normal stress o9 and the period T of
normal stress variations must hold if we are to simul-
taneously meet the first (T ~ T;) and second (h ~ h.)
requirements for resonance for representative values of
a, b — a, and tectonic stressing rates. For tidal loading,
T = 12 hours = yr/730, leading from (50) to oo = 10~*
to 1072 MPa. These values are irrelevantly small stress
levels and shows that there is no possibility that scenar-
ios 2 and 3 could ever be consistent with tidal resonance.
Yearly reservoir fluctuations for which T' = 1 year re-
quire og = 0.1 to 1 MPa for resonance. These are still
very small stress levels. They might be approached by
the effective stress only at very shallow depth (5 to 50
m range) under a reservoir. That is an highly restricted
case. For it, we could at least be sure that the ¢, corre-
sponding to stress changes due to annual water depth
changes of a couple meters or so, would be large enough.

So the basic conclusion is that scenarios 2 and 3
would, for all practical purposes, not be consistent with
resonant triggering on seismically active fault systems.
No uncertainties in choice of L, which canceled out en-
route to (50), can change that conclusion and neither
can variations of a and b — a over a very wide range.

Scenario 1, when the velocity-weakening fault patch
is bordered by creeping material, is, however, a viable
candidate for allowing regions of size less than h. to
slip at a speed Vp compatible with T = T.. That is
because, unlike for the last two scenarios, the fault sur-
roundings are not locked but slip at the average creep
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rate. Using a and b values like in Table 1, the con-
dition Tiige = Te requires that the slip rate must be
in the range of Vo = 0.2 x 107° m s™! (6 mm yr™')
when L = 1 pum, to Vp = 2 x 107° m s~! (60 mm yr~?)
when L = 10 um. These values are in the range of plate
velocities and surface creep rates. Thus it is plausi-
ble that some fraction of velocity strengthening patches
on an otherwise creeping fault could be susceptible to
resonance, at least if their size is near h. and if their
effective stress oo is quite low (of order 1 MPa or less)
so as to make € large enough. However, if the value of
L for such natural fault patches is substantially larger
than 1 to 10 pm, then from (48) we see that the Vg re-
quired for resonance would be well above the plausible
range of creep slippage rates on faults in the Earth, and
resonance conditions could not be met. For example,
with L = 1 mm and other parameters like in Table 1,
Vo =2x 1077 ms~! (6 m yr~!). For annual fluctu-
ations of reservoir levels, using a and b values like in
Table 1, and L = 1 to 10 um, the corresponding range
is Vg ~ 1075 t0 107* m yr~! to make T =T..

Assuming that some fault patches in scenario 1 do
exist that are susceptible to resonant destabilization,
there is the remaining difficulty that we do not have a
way of estimating, from our considerations here, when
ruptures of those velocity-weakening zones might break
out onto velocity-strengthening parts of the fault and
cause an earthquake over a region of spatial extent that
is considerably larger than the rather meager size ex-
pected for h,.

6

1 0 T T T T
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8.4. “Aseismic” Stick Slip

In Figures 5a and 5b we have seen a change from creep
to stick slip due ta an increase of the normal stress per-
turbation e. This transition occurs for very low € (of the
order of €.) when close to resonance. Figure 9 shows the
normalized velocity V/V, as a function of normalized
time ¢/7T, using the Dieterich or ageing law for the same
parameters as in Figure 5a. The velocity shows alterna-
tions between periods of locking (V ~ 10~°V},) to peri-
ods of rapid increase (up to V =~ 10%V;), which is char-
acteristic of stick-slip behavior. Unlike the Ruina law,
the Dieterich law is stable to all perturbations for stiff-
ness greater than k.. These “earthquake”-like events
are quasi-static ones (i.e., inertia can be neglected in
the calculation if V; is small enough, similar to the 109
m s~! used here). The average displacement observed
during these events is small and of the order of 20L.
These results suggest, assuming that the Dieterich law
applies for real faults, that such earthquakes would be
very difficult to detect and may belong to the category
of the so-called creep burst. This feature should be con-
firmed using full continuum elastodynamics modeling.
These slow, aseismic stick-slip events have no equiva-
lent in the Ruina law framework where inertia can not
be neglected. This again emphasizes the need to probe
the differences in predictions of these two laws.

8.5. Nucleating Earthquakes

In general, it is expected that when earthquakes nu-
cleate in a modestly nonuniform stress field, increasing

Dieterich law, a=0, e=10, k=1.1k,
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Figure 9. Normalized velocity V/Vj as a function of normalized time ¢ /T using the Dieterich or ageing
law for & = 0, k = 1.1k., and T = T.. The rest of the parameters are given in Table 1. The related shear
streng.th is given in Figure 5a. The velocity shows alternations between periods of locking (V = 107%Vh)
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slowly in time on a fault of uniform velocity-weakening
properties, aseismic slip (at rates above some exponen-
tially small level corresponding to “locking”) will begin
in the place of highest stress. The aseismically slip-
ping zone then slowly grows in size until it reaches a
size that is comparable to h., or at least a size that
scales with h. but may be a few times it [Lapusta et al.,
2000]. At that point, there is a rapid break-out into a
seismically propagating rupture. Several calculated ex-
amples of nucleation phases, dynamic ruptures and the
transitions between these two modes of deformation are
given, for example, by Rice and Ben-Zion [1996], Ben-
Zion and Rice [1997) and Lapusta et al. [2000]. This
creeping area may be significant in size when the prod-
uct oo (b — a) is very low due for example to high pore
pressure.

Our results were obtained in the stable regime assum-
ing that the equivalent stiffness (Keq(€)) of the sliding
surface and the driving velocity do not vary with time.
They may be extended to slowly growing patches of di-
mension less than the nucleation size h. (so that K,
is greater than the critical stiffness k) if their rate of
growth is much smaller than the period of the normal
stress variations and if they spend sufficiently long time
(compared to T) at the range of V' which matches T' to
T.. That range of V is, from (48), 6 to 60 mm yr~!
for L = 1 to 10um and for a and b as in Table 1,
and certainly, fault segments pass through such a ve-
locity range on their way to instability. However, the
issue is whether their residence time in that range is
long enough relative to T for resonance to take place
(assuming also that o is low enough to make € > e.).

It is not clear if nucleating patches preceding the
earthquake instability verify that condition. Dieterich
[1992] found, using a plane strain fault model with rate-
and-state friction laws, that the duration of the nucle-
ation phase can be as long as the interseismic time if
the initial stress is close to its steady state value. Nev-
ertheless, V' can change appreciably over slips of order
L during what ultimately becomes a self-driven creep
process leading to instability.

The analysis based on the SB model does not provide
a suitable way of evaluating normal stress perturbations
on a patch in the late stage of nucleation (h ~ h.), when
growth of the region cannot be neglected. That must
be studied using a continuum elastostatic or, better,
elastodynamic framework and is left for future work.
It may also be important to dynamic triggering of one
earthquake by another due to seismic stress oscillations

8.6. Earthquake on Creeping Faults

The generation of small earthquakes on creeping
faults is generally interpreted as arising from the ex-
istence of unstable patches which are of small size (but
nevertheless of a size greater than h., so that events
can nucleate within them), surrounded by larger stable
regions that creep [see Rubin et al., 1999]. Our con-
siderations, subject to the major caveats for scenario
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1 resonance in section 8.3, give an alternative explana-
tion, which might be kept in mind. In it, the presence
of velocity-weakening regions whose size is large enough
to make them unstable is not required, although they
would have to closely approach such size.

9. Discussion and Conclusion

In the stable domain (k > k.) we found a resonance
phenomenon when a temporally periodic perturbation
(of period T') of the normal stress is applied. This reso-
nance depends on the stiffness k as well as on the Linker-
Dieterich a parameter.

As can be expected, in Appendix B we show that
a resonance is also found for periodic variations of the
loading shear stress. This phenomenon is quite different
from the resonance in normal stress when one looks in
details at the influence of the parameter o or stiffness
k, but analytical derivations given in Appendix B show
that close to critical stiffness, the resonance occurs for
T = T,, the response of the system being unbounded
to a first-order approximation. The change from creep
to stick-slip behavior is also observed for high enough
amplitudes (of the order of €.). Therefore most of the
results obtained in this paper on the stability of the slid-
ing regime (namely, transition from creep to stick slip)
can be extended to the case of periodic perturbations
of the shear stress and more generally to any type of
periodic fluctuations of the external loading acting on
a creeping surface.

The sensitivity to normal stress a has been derived
from friction experiments [see Linker and Dieterich,
1992; Richardson and Marone, 1999 ] on rocks at vari-
able normal stress. Rock friction always implies the ex-
istence of a gouge, and it is not clear if this parameter
comes from the presence of this gouge or is a general
feature of any friction experiment conducted at vari-
able normal stress. Indeed, the Prakash [1998] results
on friction of metals against a cutting tool material at
variable normal stress differ significantly from the ones
mentioned above. This discrepancy is not yet explained,
even though we can reconcile the two points of view if we
consider that a is equal to the coefficient of friction pu.
However, Linker and Dieterich [1992] and Richardson
and Marone [1999] found values of a that are different
from the steady state coefficient of friction so setting
a to p would only be acceptable at timescales much
shorter than the ones accessible to Linker and Dieterich
[1992] and Richardson and Marone [1999], e.g., possibly
during unstable dynamic slip. When the parameter o
is equal to 0, a resonance peak in shear stress is always
observed, while for a different from 0 this resonance
disappears for a large enough stiffness. This is an illus-
tration of the stabilizing effect of the o parameter. This
feature is also illustrated by the fact that the higher o,
the lower the maximal stress drop of the system. How-
ever, this stabilizing effect is limited since o can only
vary from 0 to p, where p is the coefficient of friction.
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The Dieterich and Ruina laws both roughly fit the
data inferred from laboratory friction experiments on
rocks. When using the Ruina law, slip is necessary for
friction to evolve, while for the Dieterich law, friction
can evolve without displacement (growth of the static
(V = 0) coefficient of friction with time). Both laws
have shortcomings, as discussed by Beeler et al. [1994]
and Marone [1998]. The Dieterich law seems to be more
suitable to the description of frictional behavior during
slide-hold-slide tests, whereas the Ruina law is favored
in representing behavior around steady state. To our
knowledge, neither of them could be preferred as long
as the normal stress is constant. However, Richardson
and Marone [1999] showed that the Ruina law seems to
fit the data at variable normal stress better than the
Dieterich one which, for instance, overshoots the final
steady state shear stress in normal stress step experi-
ments. They also show different response to finite per-
turbations, since the Ruina law is conditionally stable
for a stiffness greater than the critical stiffness k. while
the Dieterich one is not. This difference is also observed
when finite normal stress perturbations are considered
(see section 3). The transition from creep to stick-slip
behavior results in the generation of quasi-static aperi-
odic events when the ageing law is considered, while for
the case of the slip law the observed sequence of events
is periodic (as long as « is different from pss) and in-
ertia has to be considered (due to the crossing of the
stability boundary).

Possible applications of our results to laboratory ex-
periments exist. First, we have to estimate the magni-
tude of the resonance periods. The resonance period T’
is of order T, = 2m+/a/(b—a)L/V,. Since b is some-
times of order 2a in friction experiments on rocks, we
can roughly write that T is of order 2rL/Vp. The char-
acteristic length of evolution of friction L is usually of
order 10 um on rough surfaces. Using a loading speed
Vp of order 10 pm s~ would then give a period of reso-
nance of the order of 1 s (i.e., a frequency of 1 Hz) and
should be observable in laboratory experiments. For
choosing between these two friction laws we also sug-
gest applying an oscillating perturbation in the normal
stress close to the stability boundary (k = k. + 0k, with
6k > 0 and 6k < k;) and then adjusting the period
of the oscillation to the resonance period. Equivalently,
for a given stiffness the normal stress may be set slightly
below its critical value. Once at resonance, the pertur-
bation € should be slowly raised from very small (10~4)
to large (1072) (see section 5 and Figures 5a and 5b).
Figures 5a and 5b illustrate the potential experimental
difficulty to discriminate one law from the other since
they both show stick slip events. A study of the stress
drop evolution with respect to the perturbation ampli-
tude € might provide a useful tool in this case (as shown
in Figure 4). A discontinuous stress drop evolution as
stick slip appears will be consistent with the Ruina law.
We emphasize that one should not expect either one
of these two laws to fully apply. What we propose are
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new type of experiments which may help experimental-
ists to obtain the appropriate framework to describe the
evolution of friction at variable normal stress.

Preliminary estimates made here raise doubts that
the resonance phenomena could contribute to tidal in-
teractions with earthquakes, except in the case when the
events nucleate on veldcity-weakening fault patches that
are small enough to be stiffness-stabilized, and which re-
side within velocity-strengthening fault planes that are
creeping (scenario 1), as suggested by Boatwright and
Cocco [1996]. For some subset of such zones the creep
rate could be matched to the rate (~ 6 to 60 mm yr—1)
required for resonant driving. Then, if the effective nor-
mal stress was exceptionally low, we think as low as 1
MPa, the amplitude of tidal stressing could be large
enough to cause the resonant destabilization on, say,
those stiffness-stabilized fault patches which are within
~ 5% of critical size. There remains the issue that
the subsequent earthquake rupture area would be small
unless the velocity-strengthening outside those patches
was very weak [Boatwright and Cocco, 1996).

Direct triggering due to earth tides has been studied
by Vidale et al. [1998] by looking at the possible cor-
relations between the rate of earthquake production at
peak tidal stress and stress rate. A correlation is ob-
served but is too small to be statistically significant. We
suspect that tidal triggering of earthquakes on creeping
faults, if not necessarily the resonance phenomenon dis-
cussed here, may exist even though its detection seems
to be a complex problem, the response of the fault being
highly nonlinear. As shown by Gomberg et al. [1998]
using a SB model, the advance (or delay) in failure time
of earthquakes due to static and transient changes of the
shear stress highly depends on the initial state of stress
and is not constant as in the classic Coulomb friction
(constant ). Ongoing studies [Perfettini and Schmit-
tbuhl, 2001] focus on the implications of our analysis on
tidal triggering of earthquakes including description of
the measurement biases resulting from phase lag scat-
tering on fault heterogeneities.

Appendix A: Evolution of Friction Due
to an Instantaneous Step in Normal
Stress

When a fault undergoes a change in conditions, the
change in shear stress is

dr = odp + pdo. (A1)
When the fault is sliding at constant V,
dily =const = AV, ¥)|lv—const = d¥- (A2)

Also, when there is an instantaneous (dt — 0) step
change in normal stress,

d|gt—0 = —ado /0. (A3)
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Combining (A2) and (A3), for an instantaneous step do
while the slip rate is maintained constant,

dply—const, at—o = —do/0, (A4)
and inserting that into (A1) gives
drly_const, dt—0 = (1 — a)do. (A5)

So, if a = u(V,1), there is no instantaneous change
in friction following an instantaneous change in normal
stress. Integrating (A3) for an instantaneous finite step
in normal stress, one gets

Ylat—0 = Yo — aln(a/00), (A6)
where 1y and o are the values of 9 and ¢ prior to the
step in normal stress. It follows that p is a function of
the fixed velocity V' and of the normal stress o during
any such instantaneous step (and so will be a if we
assume that @ = p)

Appendix B: Case of Periodic Variations
in Shear and Normal Loading Stress
When periodic perturbations in an externally applied

shear stress loading of the block 7.(t) = 7sin(wt) are
considered, (12) transforms to

dv
m— =ku — 7+ 7 (t), (B1)
dt
so that when m = 0 (22) becomes
7 = kup + 7, (B2)

and (20), (21), and (23) remained unchanged. This

leads to a change in frictional shear stress 7; given by
- k

= lomss = F( () +

c

1

O1Mss

ia(or (uss — ) = 7(E))/ (B3)

+ig(l - 2o,

CLO’()q2

==z

and a velocity change V;

q q[al (/‘ss - a) - '7-] - i[allliss - ﬂ
Vi/Vo = (35) - ; . (B4)
BLT 1o gl - ]

The denominator of 7; and V; still vanishes when ¢ = g,
and k = k., leading to an unbounded response of the
system. As can be verified using (B3) or (B4), the reso-
nance phenomenon is also observed in presence of peri-
odic variations in shear stress and is therefore a general
feature of periodic changes in the loading stress.
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