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Fault rupture between dissimilar materials:
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Abstract. Faults often separate materials with different elastic properties. Nonuniform
slip on such faults induces a change in normal stress. That suggests the possibility of
self-sustained slip pulses [ Weertman, 1980] propagating at the generalized Rayleigh wave
speed even with a Coulomb constitutive law (i.e., with a constant coefficient of friction)
and a remote driving shear stress that is arbitrarily less than the corresponding frictional
strength. Following Andrews and Ben-Zion [1997] (ABZ), we study numerically, with a
two-dimensional (2-D) plane strain geometry, the propagation of ruptures along such a
dissimilar material interface. However, this problem has been shown to be ill-posed for a
wide range of elastic material contrasts [Renardy, 1992; Martins and Simdes, 1995; Adams,
1995]. Ranjith and Rice [2000] (RR) showed that when the generalized Rayleigh speed
exists, as is the case for the material contrast studied by ABZ, the problem is ill-posed for
all values of the coefficient of friction, f, whereas when it does not exist, the problem is ill-
posed only for f greater than a critical value. We illustrate the ill-posedness by showing that
in the unstable range the numerical solutions do not converge through grid size reduction.
By contrast, convergence is achieved in the stable range but, not unexpectedly, only dying
pulses are then observed. RR showed that among other regularization procedures, use of an
experimentally based law [Prakash and Clifton, 1993; Prakash, 1998], in which the shear
strength in response to an abrupt change in normal stress evolves continuously with time or
slip toward the corresponding Coulomb strength, provides a regularization. (Classical slip
weakening or rate- and state-dependent constitutive laws having the same kind of abrupt
response as Coulomb friction also do not regularize the problem.) Convergence through
grid size reduction is then achieved in the otherwise ill-posed range. For sufficiently rapid
shear strength evolution, self-sustained pulses are observed. When the generalized Ray-
leigh wave speed exists, they propagate essentially at that velocity and, in consistence with
Weertman’s [1980] analysis, the propagation occurs only in one direction, which is that of
slip in the more compliant medium. When the generalized Rayleigh wave speed does not
exist, similar self-sustained pulses propagate at about the slower S wave speed and in the
same direction. RR also suggested that for sufficiently high coefficient of friction, another
kind of (less unstable) self-sustained pulses, propagating at a velocity close to the slower
P wave speed and in the opposite direction, could also exist. We numerically verify that
prediction.

1. Introduction
1.1. Material Contrasts in Crustal Rocks

Active faulting over geological times brings into contact
materials that were originally far separated, thus being likely
to have modestly different elastic properties. Indeed, such
elastic contrasts across various faults have been observed
by seismic reflection profiles [Feng and McEvilly, 1983]
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and by travel time tomography based on local earthquakes
le.g., Eberhart-Phillips and Michael, 1998; Magistrale and
Sanders, 1995]. Estimates of the velocity contrasts range
from a few percent to as high as ~ 30%, depending on ge-
ographical location.

In addition to these contrasts across faults, some of the
above studies were able to detect the presence, associated
with the fault, of a narrow zone (of width ranging from a few
tens of meters to a few thousands of meters) with seismic
velocities lower than those in the surrounding rocks. These
variations are thought to be due to the alteration of the ma-
terial (increased porosity, presence of fluids, etc.) by re-
peated earthquakes. These low-velocity zones are best stud-
ied by analyzing the so-called head and trapped waves that
are guided by such zones and whose features are strongly de-

25,891



25,892

pendent on the physical properties of the guide [e.g., Ben-
Zion, 1998, and references therein]; inferred velocity con-
trasts may also be of the order of a few tens of percent [e.g.,
Li et al., 1994]. Earthquakes can also occur at the interface
of sedimentary layers, or in mining environments where, for
example, rupture is expected at the interface between a dike
and its more compliant surroundings [York and Dede, 1997],
or in translatory rock bursting by unstable slip along the in-
terface between a compliant coal seam and the stiffer floor or
ceiling rock [Lippmann, 1987].

1.2. Bimaterials, Alteration of Normal Stress,
and Slip Pulses

It is thus important to understand how such variations
in material properties influence the dynamics of earthquake
rupture. The simplest situation one can think of is that of a
rupture along a planar bimaterial interface. It has long been
recognized that the lack of symmetry in this case results, for
the in-plane slip mode, in the normal stress being coupled
to slip, which means that spatially nonuniform slip across a
point causes a variation of normal stress at that same point.
That is contrary to what happens, at least within the scope of
linear elasticity, at the interface of two identical half-spaces.
As it will turn out, this property alone leads to the emergence
of a much richer phenomenology than rupture along a plane
in a homogeneous continuum, not even to mention the mul-
tiple reflections on multiple boundaries that one would have
to consider when dealing with more than two materials.

When the two materials on each side of a planar fault are
identical, unstable slip is impossible if the interface is gov-
erned by the classical Coulomb law (i.e., with a single, con-
stant coefficient of friction); it requires more elaborate fric-
tion laws for which, under constant normal stress, the fric-
tion stress at some point decreases as the slip displacement
or slip velocity increases. By contrast, Weertman [1980] has
shown analytically that the above mentioned coupling be-
tween slip and normal stress can lead to unstable slip. He
thus suggested the possibility of a self-sustained propaga-
tion of a self-healing slip pulse along the frictional inter-
face, even when the remote shear stress is less than the fric-
tional strength. His pulse was shown to be promoted in one
direction only. The situation Weertman considered occurs
when the mismatch between the two materials is not too high,
more precisely when the seismic properties of the two solids
are such that the so-called generalized Rayleigh wave is de-
fined. The velocity of propagation of the slip pulse is then
the generalized Rayleigh wave speed. This particular type
of wave, which has been first identified by Weertman [1963]
and Achenbach and Epstein [1967], is a mode that propa-
gates along the interface of two dissimilar materials, when
these are assumed to slip freely (no friction) without open-
ing; its amplitude decays with distance from the interface,
much like for a Rayleigh or Stoneley wave. Like the ordi-
nary Rayleigh wave, an interfacial wave propagating at the
generalized Rayleigh wave speed leaves the shear stress un-
changed at the interface; further, when the two materials are
identical, the mode velocity reduces to the Rayleigh wave
speed of that material. The generalized Rayleigh wave speed
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lies between the individual Rayleigh wave speed of each ma-
terial and is slower than the slower S speed.

Weertman [1980] did not work out the exact solution of
such a steady state traveling pulse but, independently, Adams
[1998] fully derived the solution, and Adams’ solution can be
deduced easily from Weertman’s developments [Rice, 1997].
It consists of any number of slipping zones, each one hav-
ing an undetermined length along the fault (correspondingly,
one may say that the risetime at a point is undetermined) all
slipping at the same, well-defined sliding velocity and, as
already mentioned, propagating at the generalized Rayleigh
wave speed in a single direction. In particular, a very short
risetime slip pulse is a solution.

This type of response reinforces the interest of bimate-
rial studies in seismology since it now seems well estab-
lished that many earthquakes have risetimes much shorter
than would be expected from classical crack models [Heaton,
1990].  Further, processes like the one just discussed,
which allow earthquake rupture to propagate at overall shear
stresses which are low compared to the friction threshold,
provide a possible explanation of the apparent lack of ob-
served heat flow from some major faults [Lachenbruch and
Sass, 1980] as well as of the unexpectedly steep angle be-
tween the maximum principal compressive stress direction
and the fault trace in some tectonic regions [Zoback et al.,
1987]. See the introduction of Ben-Zion and Andrews [1998]
for a discussion of other unresolved problems that might be
related to ruptures along bimaterial interfaces.

It is worth noting that there are other possible causes of
alteration of normal stress across a fault zone during rup-
ture, whose effects would add to those of material contrasts.
Let us mention the influence of wave reflections from the
free surface [Oglesby et al., 1998] or the influence of nonpla-
nar fault surfaces with step overs [Harris and Day, 1993] or
kinks [Bouchon and Streiff, 1997]. Possibly more important
is what might be a scaled down version of the above, namely,
the effects of roughness at various scales [e.g., Mora and
Place, 1994; Lomnitz-Adler, 1991]. Also, as will be elabo-
rated further in section 5.4, it seems plausible that the unsym-
metric state of stress generated by an in-plane rupture around
a fault (compressional on one side, extensional on the other
one), combined with a nonlinear response, may sometimes
result in a homogeneous material mimicking bimaterial re-
sponse. This could be the basis for the pulse-like ruptures,
with local normal stress reduction and even fault opening,
observed for fault propagation between foam rubber blocks
by Brune et al. [1993] (see the introduction of Andrews and
Ben-Zion [1997, and references therein] for a fuller discus-
sion of the experiments by J. N. Brune and coworkers).

There are alternative explanations for short risetime slip
pulses along a planar fault within a homogeneous medium.
One of these requires more elaborate friction laws with
a velocity-weakening component, as suggested by Heaton
[1990] [Cochard and Madariaga, 1994; Perrin et al., 1995,
Beeler and Tullis, 1996; Cochard and Madariaga, 1996;
Zheng and Rice, 1998]. Another explanation appeals to
strong heterogeneities on the fault plane, which act as lo-
cal barriers and generate arrest waves [Day, 1982; Johnson,
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1990, 1992]. Beroza and Mikumo [1996] found such a het-
erogeneous numerical model, with nonuniform distribution
of a (grid size dependent) stress excess to initiate slip and
stress drop during slip, that could at the same time exhibit
a very short risetime and reproduce the gross features of the
seismograms generated by the 1984 Morgan Hill earthquake,
which was the event in Heaton’s [1990] compilation with the
shortest risetime. Olsen et al. [1997] constructed a similar,
strongly heterogeneous model for short risetimes in the Lan-
ders 1992 earthquake.

1.3. Previous Numerical VYork and Resolution Problems

Recently, using two-dimensional (2-D) in-plane strain fi-
nite difference simulations, Andrews and Ben-Zion [1997]
(hereinafter referred to as ABZ) numerically addressed the
problem of dynamic rupture along a planar material inter-
face. They used a 20% material contrast in both seismic ve-
locities and densities and a pure Coulomb law with constant
coefficient of friction. As predicted by Weertman [1980],
they found that self-healing slip pulses can propagate in a sin-
gle direction, the direction of sliding in the softer medium, in
a self-sustained way, when the initial shear stress is less than
the initial strength (i.e., initial normal stress times the fric-
tion coefficient). The rupture velocity of this pulse is, within
numerical uncertainties, in good agreement with the theoret-
ical generalized Rayleigh wave speed. ABZ report numeri-
cal difficulties in resolving sharp features of the solution and
discuss only the features that are common to the simulations
obtained with two different resolutions. In particular, they
find that the above so-called “Weertman” pulse splits into
two pulses.

Subsequently, Harris and Day [1997] numerically stud-
ied, also with a finite difference method, a broader range of
situations with material contrasts (still for a 2-D in-plane slip
mode) in an attempt to better approach the observed natural
diversity. They use a friction coefficient that includes slip de-
pendence at the beginning of slip (slip weakening). In addi-
tion to the simpler case of a planar bimaterial interface, they
simulated a low-velocity zone (LVZ) with parallel planar in-
terfaces with a higher-velocity country rock. In that second
case, the (planar) fault was chosen either in the middle of the
LVZ (in which case, it is a plane of symmetry; hence no al-
teration of normal stress is expected) or at the interface be-
tween the LVZ and the country rock. They focus their at-
tention on the rupture velocity, the shape of the slip func-
tion, and the normal stress variations. In no case did they
find pulse-like ruptures nor unidirectional propagation. It is
difficult to know why these findings differ from ABZ’s since
the physical situations that are simulated are never exactly
identical to each other. The crack-versus-pulse discrepancy,
however, is likely to originate in the nucleation procedure it-
self: in ABZ it consists of a pulse of increased then decreased
pore fluid pressure (see details below), while it consists of a
more classical kinematically imposed growing crack in the
work of Harris and Day [1997]. One could think that the dis-
crepancy could come from the different friction law used in
the two studies. However, some tests were performed with
slip weakening (the law Harris and Day [1997] used) and
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the ABZ nucleation process, and pulses were observed. By
contrast, other tests done with the law used by ABZ (in a
modified version of it so as to avoid ill-posedness, see sec-
tion 1.4) and a different nucleation process, closer to the one
used by Harris and Day [1997] (namely, an increased but not
decreased pore fluid pressure) produced cracks. Of greater
relevance here is the Harris and Day [1997] observation that,
in particular in the case of the bimaterial simulations, they
find unavoidable grid size dependence effects, no matter how
refined their grid was. Like ABZ, though, they argue that fea-
tures that are robust through grid refinements, like rupture ve-
locities or crack-like characteristic of the rupture, are valid
features of the solution.

However, as we will now discuss, at least part of the grid
size dependence problems met by ABZ and Harris and Day
[1997], and maybe also the difference between both studies,
is likely to be due to the intrinsic ill-posed nature of the phys-
ical problem studied.

1.4. Ill-Posedness and Regularization

Previously, Renardy [1992] and Martins and Simdes
[1995] for the particular case of an elastic solid sliding
against arigid body and Adams [1995] for the general case of
two elastic bodies have shown that sliding at a planar bimate-
rial interface under Coulomb friction is often not well-posed,
that is, it does not possess any solution, as detailed in sec-
tion 3.1. Ranjith and Rice [2000] have shown a connection
between the existence of the generalized Rayleigh wave and
the ill-posed nature of the problem. When the material pair
is such that the generalized Rayleigh wave speed is defined,
the problem is ill-posed for any value of the friction coeffi-
cient, whereas, when it is not defined, the problem remains
ill-posed for values of the friction coefficient larger than a
critical value f.

In an extension of the ABZ study, in which they exam-
ined the influence of material contrasts, friction coefficients,
and spatial heterogeneities on wrinkle-like propagation, Ben-
Zion and Andrews [1998] suspected Adams [1995] instabil-
ity to be responsible for the numerical problems that they
had encountered. Indeed, we think that is exactly what hap-
pens, since the case studied by ABZ and at least some of the
cases studied by Harris and Day [1997] and Ben-Zion and
Andrews [1998] fall in the range (of seismological interest)
in which the generalized Rayleigh wave speed is defined and
are thus certainly ill-posed.

So we have to regularize the problem. We use an experi-
mentally based friction law [ Prakash and Clifton, 1993; Pra-
kash, 1998] that smoothes into a continuous transition with
time or slip the otherwise instantaneous variation of shear
strength that would follow from an instantaneous variation in
normal stress if the Coulomb law was used (see section 4.2).
This law has been shown to provide a regularization by Ran-
Jith and Rice [2000], who also note one other regularization
approach [Martins and Simdes, 1995; Simdes and Martins,
1998]. Once regularized, the physical problem studied is of
course no longer exactly the same as it was originally when
the Coulomb law was used, so the natural question arises
of which of the previously observed features remain at least
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qualitatively valid. Addressing that is the main purpose of
this paper. For example, it turns out that rupture still occurs
as self-healing pulses but that the splitting of the pulse re-
ported by ABZ does not survive the regularization, at least
over time scales for which we have been able to do simula-
tions.

2. Model Geometry

Following the work of ABZ, we study the elastodynamic
propagation of ruptures along a fault that separates two semi-
infinite elastic half-spaces of different material properties in
the two-dimensional (2-D) plane strain geometry (Figure 1)
with in-plane slip. We use and briefly outline here the spec-
tral formulation of a boundary integral equation method de-
veloped by Geubelle and Rice [1995] and extended to dis-
similar materials by Breitenfeld and Geubelle [1998].

The elastodynamic interactions between the fault surface
and its elastic surroundings require that on the fault surface
the traction components of stress 7, (21,1) = dan (o = 1, 2),
which are necessarily continuous on 5 = 0 (here o, is the
stress tensor), and the resulting displacements u along 2o =
0 be related by
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for which material properties in 2 > 0 (respectively x5 <
0) are denoted by a plus (respectively minus) superscript, and
where ¢, and ¢, are the shear and dilatational wave speed,

/

Nucleation zone

Figure 1. Two-dimensional in-plane slip model, in which
ruptures are simulated along along the planar interface that
separates two semi-infinite half-spaces of different elastic
properties. Owing to material dissimilarity, instability may
develop in this model even with the Coulomb friction law.
Following Andrews and Ben-Zion [1997], ruptures are nucle-
ated by an artificial localized spatiotemporal distribution of
elevated pore pressure.
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respectively (see Figure 1). The 72(x1,¢) are the externally
applied stresses that would act in the absence of any slip or
opening. The terms proportional to duZ /8¢, often called the
radiation damping terms, show the instantaneous variation
of slip velocities due to change in stresses. The function-
als ¢ represent the wave-mediated stress contributions from
the rest of the fault due to prior displacement history along
the interface. Further details about the functionals and the
numerical procedure are described in Appendix A.

Following ABZ, the simulations are done as follows: we
start with uniform normal and shear stresses distributions
such that the media would remain at rest, i.e., |7{| < f|7J|
(r9 < 0), where f is the coefficient of friction. Then we ar-
tificially nucleate an event by increasing the pore fluid pres-
sure, i.c., decreasing the effective normal stress |79, in alim-
ited space-time region (see Figure 1). Finally, we impose
some constitutive law at the interface, which we discuss in
section 3.

3. IlI-Posed Nature of the Problem
With Classical Coulomb Friction

With identical materials, Coulomb friction, and a uniform
initial stress along the 2, axis in Figure 1 that is less than
the frictional strength (|77| < f|79]), no matter how vig-
orously an event is initiated in the nucleation zone, it ulti-
mately dies. With dissimilar materials. and following ABZ,
one would ideally wish to use Coulomb friction, i.e., constant
coefficient of friction, to study the instability due to material
contrast independently from other, more classical sources of
instabilities (e.g., rate-dependent friction). We emphasize
that we are not considering a static/kinetic friction, which is
sometimes referred to as “Coulomb” friction but is, in fact, a
particular case of rate-dependent friction.

3.1. Harmonic Perturbation of Steady Sliding

As remarked, Renardy [1992] and Martins and Simdes
[1995] for the elastic/rigid case and Adams [1995] for the
general elastic/elastic case have shown that such a problem
is often not well-posed. (Note that Adams did not mention
ill-posedness, which is only implicit in his results.) They all
considered the same model of two semi-infinite half-spaces
(as in Figure 1 but without the nucleation zone) sliding past
one another at a constant velocity V' = 4 — ] with con-
stant traction stresses 70 = — f73 and looked for perturbed
solutions of the elastodynamic equations with an exp(ikz1)
space dependence. We generated such solutions numerically
(Figure 2) by supposing that the shear stress 77 is perturbed
by the harmonic quantity

Ay, t) = Q) | 2)

Q(t) being arbitrary in general but taken as a step function in
those illustrations. Adams [1995] looked for such exp(ikz 1)
solutions and found propagating slip rate perturbation modes
of the form

AV (21,1) eAtikzy _ 6ik(z1—ct)€a[k|t, 3)
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Figure 2. (top) Measure of instability, i.e., rate of exponen-
tial growth of velocity following a harmonic perturbation of
the loading stress to the two half-spaces of Figure | in steady
sliding under Coulomb friction (see equation (3)). For a 20%
material contrast the generalized Rayleigh wave speed is de-
fined. In such cases, there is instability for all values of the
coefficient of friction. When the generalized Rayleigh wave
speed is not defined, as is the case for a 30% material con-
trast, there is a transition. (bottom) Numerical illustration
of the velocity (normalized by the unperturbed velocity) as
a function of normalized time at a point, in response to a
Heaviside-in-time perturbation, for the three representative
cases noted at the top (20% contrast with f = 0.75; 30%
contrast with f = 0.1 and f = 0.2). Exponential growth
with normalized rate independent of mode number & (as is
the case here) implies ill-posedness for general problems (see
text).

with A = a]k| — ick, with a and the propagation speed ¢
being real and independent of the wavenumber k& and with
a > 0 for a broad range of friction coefficients and material
contrasts.

For such a > 0 cases, all wavelengths in the slip response
are unstable, and the growth rate of the instability is inversely
proportional to the wavelength. Thus the solution given by

summing such modes,
I ‘
AV(a?l,t) — 2_ AVQ(]’J,0)6aik|t61k(xl_6t)dk )

TC —co
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fails to exist (it diverges by oscillation at large k for any
nonzero x; — ct) for all time ¢ > 0 whenever we con-
sider a generic perturbation for which the Fourier transform
AVy(k,0) of the component in that unstable mode decays
less rapidly with & than exponential at large |£|. Such a prob-
lem is said to be ill-posed. Note that this is not contradic-
tory to the existence of the Adams [1998] steady pulse dis-
cussed previously, since this pulse is supposed to exist since
t = —oo and hence has not been created by any perturbation
of shear stress 7, which is uniform along the interface in that
case. However, the steady pulse is expected to be unstable.

We show in Figure 2 (top) how the Adams [1995] insta-
bility varies with friction coefficient for two representative
cases of material contrasts, both with identical Poisson ratios
equal to 1/4: one for a 20% contrast in wave velocities and
densities, i.e., (' = p~ /pt = ¢7 Jef = 1.2 (a generalized
Rayleigh wave exists in this case) and one for a 30% contrast,
i.e., ' = 1.3 (no generalized Rayleigh wave exist). One can
see that for a 30% contrast the transition value is fu &~ 0.15.
(Note that A here differs from A of Adams [1995], who used
a nondimensionalized quantity; however, the quantity repre-
sented on the y axis in Figure 2 is the same as Adams’, as the
dimensionalizing factors cancel out.) We further illustratein-
stability by showing in Figure 2 (bottom) the velocity at one
point of our numerical model when a harmonic stress pertur-
bation is introduced at time O on the steady sliding system
(i.e., Q(t) in equation (2) is the Heaviside function). This is
also shown to demonstrate the robustness of our numerical
scheme. Even when regularization is introduced (section 4),
the underlying physical instability appears extremely strong,
and the numerical resolution remains very challenging.

3.2. Numerical Illustration of Ill-Posedness
in the Unstable Range

We now move to the simulations of realistic cases corre-
sponding to various cases of Figure 2. In this section we
precisely mimic the conditions of one of ABZ studies (cor-
responding to their Figures 9-12). We have a 20% contrast
with friction coefficient f = 0.75 (corresponding to case 1
in Figure 2). The initial shear stress is equal to 93.3% of
the frictional strength. An event is initiated by superposing
some smoothly rising then decaying fluid pressure to the ini-
tial stress 7 inside the nucleation region in the x; — ¢ plane.
The mathematical details are copied from ABZ and are re-
called in Appendix B. We will focus on response at locations
Py and P» at 2 = 99.9m and 134.9 m, respectively, the
leftmost side of the roughly 60 m nucleation region being lo-
cated at the origin (see Figure 1); later we will also consider
Py atwy = —100.7m.

The shear strength 77 > 0 consistent with a symmetric
Coulomb friction is given by

&)

i = fmax(0,—m) ,

where f is the friction coefficient and 7 is the effective nor-
mal stress (incorporates the externally imposed fluid pres-
sure). When velocity is zero, sliding is initiated when |7 |
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becomes equal to 7f. During sliding, |71 | remains equal to
71 with the sign of V' being the same as that of 7y (7, V' > 0).
Opening, which could occur in cases where 75 > 0, is pre-

cluded in the simulations presented in this paper. Except
inside the nucleation region, for the time extent of simula-

tions presented, we have encountered this situation only in
the pathological case that we now discuss (and very late in
the simulation).
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Figure 3. Exact mimic of Andrews and Ben-Zion’s [1997]
conditions showing the slip velocity at two points of the fault
plane, following an artificially nucleated rupture. The condi-
tions are those of the unstable case | of Figure 2, of a 20%
material contrast with Coulomb friction. From top to bottom
we show four different levels of increasing grid refinement,
each time decreasing the grid size by a factor of 2. Con-
vergence of the solution through increasing resolution is not
obtained, which illustrates ill-posedness, as discussed in the
text. (Material properties are Poisson ratios v~ = vt =
1/4,C = p=/pt = ¢ /et = 12 u-o= 30GPa
¢y = 3 km/s. Initial conditions are 75 = —100 MPa, 7 =

0.933f|79|. Nucleation characteristics of the spatlotempo-
ral pore fluid distribution are (see Appendix B) Py = |77],
aen = 10m, bey = 60 m (which corresponds to a spatial

nucleation extension given by \/aen + be” ~ 60.8 m) and
ven = 2475 m/s. The friction coefficient is f = 0.75. Purely
numerical parameters are replication length A = 437.2m,
Courant parameter h = max(c}, c; JAt/Azy = 0.4 (see

Appendix A), and the number of points /N as indicated in the
figure.)
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We represent in Figure 3 the sliding velocity at points P
and P> (which should be compared to ABZ’s Figure 11, in
which they used dimensionless variables) for different res-
olutions, that is, the replication length A in the numerical
method is kept constant while the number of points used to
discretize A, corresponding to the number of terms in the
Fourier series (see equation (A3)), is increased as indicated
(Azy = A/N). There is no hint of convergence through
grid size and time step reduction (we keep a constant value
for the Courant parameter h = max(c], c; )At/Azy; see
Appendix A). Rather, we see that the maximum velocity
reached becomes increasingly larger for increasing resolu-
tion. Further, this pulse splits into a swarm of narrower
pulses. (Like ABZ we find here that the “average” pulse ve-
locity is nearly that of the generalized Rayleigh wave speed,
but this is not significant: If we could further increase the res-
olution, as has been checked with these resolutions but with
a higher modal growth rate, the figure would become full of
one-point spikes and no velocity could be measured. Even
before this state of total chaos, one observes that the pulse
propagating at the slower P wave velocity, that is, the one that
arrives at P; attime ~ 25 ms and which seems well resolved,
begins to resemble the noisy pulse observed here.) ABZ did
simulate the problem with two different resolutions. They
found a splitting into two pulses with both resolutions which
led them argue that this was “a believable feature of the re-
sults” (p. 563). Later, Ben-Zion and Andrews [1998] sus-
pected Adams’s [1995] instability to be responsible for this
feature, but it was not clear at that time that the set of physical
parameters used were, indeed, in the Adams’ unstable range,
as we showed in section 3.1.

Now, in the light of Adams’s [1995] instability, one can in-
terpret heuristically the numerical results of Figure 2: When
increasing resolution, one is effectively injecting higher and
higher modes (higher k) in the numerical solution. This
1s fully apparent with the numerical method we use which
makes use of summations of Fourier modes (see equa-
tion (A3)), but is the same, although less explicit, for any
other numerical method and in particular for the finite differ-
ence method that ABZ used. Hence the exponential growth
(with dependence on k) will be visible earlier and earlier in
the simulation or, conversely, have stronger consequences at
a given time, which is observed in Figure 3. With the results
obtained with the lower resolution we see that one can get
apparently stable results even for an ill-posed problem, just
because the instability has not become visible yet. This is a
likely explanation why most of the results presented by Har-
ris and Day [1997] are apparently stable numerically in spite
of the instability mechanism. Also, and contrary to ABZ,
Harris and Day [1997] used a numerical viscosity in their fi-
nite difference scheme, which is likely to further delay the
appearance of the instability (D. J. Andrews and S. Day, per-
sonal communication, 2000). They studied the same kind of
bimaterial (or trimaterial) systems with a slip weakening fric-
tion with strength 7 at a given slip proportional to —75, for
which the problem is also ill-posed, as discussed in section 4.

If one wants to persist using classical Coulomb friction
and to have solutions exist, one must move outside the ill-
posed range, which we now discuss.
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3.3. Moving Outside the Unstable Range

We performed the same kind of simulation as shown in
Figure 3, still with Coulomb law, but with a set of physical
parameters for which the problem is no longer ill-posed: a
30% material contrast and a friction coefficient f = 0.1, cor-
responding to case 3 in Figure 2. As shown in Figure 2, this
problem is Adams stable.

Again, the sliding velocity at points Py and P» is shown in
Figure 4 with several numerical resolutions. The first obvi-
ous observation is that the results converge to a seemingly
unique solution. Second, the propagation velocities of the
pulses are close to those of the slower P and S waves (remem-
ber that the generalized Rayleigh wave speed is not defined
in this case). More precisely, the velocity of the faster pulse
isV, = 3628 £ 12m/s at P, and V, = 3421 &+ 10 m/s
at P, (thus slowing down), while that of the slower pulse
is Ve, = 2279 £ 4m/s at P and V, = 2286 &+ 4 m/s at
P- (the uncertainties coming for the finiteness of the numer-
ical time step), while the slower P and S wave speeds are
of = 3997.0m/s and ¢} = 2307.7 m/s, respectively. As
can be seen in Figure 4, both pulses are dying. As is natural
to expect, this is a generic feature of all simulations that we
did in this Adams stable range. Simulations performed with
the same material contrast (30%), but in the Adams unstable
range (e.g., f = 0.2 > fuu, as case 2 in Figure 2), show the
same kind of grid dependence as in Figure 3.

4. Regularization of IlI-Posedness and
the Simplified Prakash-Clifton Law

We will use an experimentally based constitutive law
[Prakash and Clifton, 1993; Prakash, 1998] that has been
shown to provide a regularization to the previously discussed
ill-posedness [Ranjith and Rice, 2000].
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4.1. Friction Under Variable Normal Stress:
Experimental and Theoretical Background

It is very intuitive that since the ill-posedness nature of
the problem originates from alteration of normal stress, the
variation of normal stress has to be taken into account in a
proper constitutive law. In particular, classical slip weak-
ening or rate- and state-dependent constitutive laws, with
strength level proportional to local normal stress, times a
function of slip or slip rate and state, do not provide a reg-
ularization. This is trivial for slip weakening since it is then
equivalent to Coulomb friction as soon as the slip-weakening
distance is overcome. For a given dissimilar material prob-
lem, use of slip weakening simply delays the time of occur-
rence of obvious noisy numerical results. Conversely, for a
given time, one can obtain seemingly stable numerical results
with a smaller grid size. This may be part of the reason why
most of Harris and Day’s [1997] results appear stable even in
the ill-posed range. The same reasoning applies for classical
rate- and state-dependent constitutive laws. Several levels of
grid size reductions might look stable, but they are not com-
parable with each other, and in any event, numerical noise of
the kind shown in Figure 3 will always reappear through fur-
ther grid reduction, as we have checked in our simulations
with slip weakening and rate- and state-dependent constitu-
tive laws.

Martins and Simdes [1995] and Simdes and Martins
[1998] proposed several types of law which achieve regu-
larization. In one which is able to deal with the case of two
elastic half-spaces without opening, the usual dependence on
normal stress in the Coulomb law is replaced by a depen-
dence on normal stress averaged over some small finite area.
However, such a law would not, for example, be consistent
with the experimental results of Prakash and Clifton [1993]
and Prakash [1998] now discussed.
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Figure 4. Same parameters as in Figure 3 but for a 30% material contrast (C' = 1.3) with a friction co-
efficient f = 0.1, i.e., below the critical value. This corresponds to case 3 in Figure 2. The problem is
not ill-posed, and the numerical solution converges through grid size reduction. However, the pulse is not

self-sustained.
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These experiments involved oblique shock impacts be-
tween hard metal and cutting tool plates that induce relative
sliding at high relative velocities of the order of meters per
second. The first reflected wave from the back of the target
plate produces a very abrupt, effectively instantaneous step
reduction in normal stress at the interface. Using the equa-
tions of one-dimensional wave propagation (which apply for
the part of their experiment for which results are reported)
and further accurately monitoring the displacements at the
back face of the target plate, these authors were able to infer
slip rate and stresses at the interface. These experiments are
conceptually very simple in that, unlike most friction experi-
ments, there is no apparatus stiffness to take into account; in
that respect, they are easier to interpret.

The results suggest that there is no instantaneous change
of shear strength, but rather a gradual change which occurs
over a few microns of sliding or about 0.1 s in time (see Fig-
ure 5). They can be interpreted in the framework of rate- and
state-dependent friction, in which shear strength is regarded
as a property of the current population of asperity contacts,
and of their lifetimes, if we assume that it is only with ongo-
ing slip or time that the population, and therefore the shear
strength, can be altered. That is, there is no instantaneous de-
pendence of shear strength on normal stress but only an ef-
fect which has a fading memory dependence on recent nor-
mal stress history. Note that with the regularizing friction
law of Martins and Simées [1995] and Simdes and Martins
[1998] discussed above, an abrupt decrease in shear strength
simultaneous with the decrease in normal stress would have
been predicted since 7 is then rewritten as f times the aver-
age of —7» over a small finite area and, owing to the exper-
imental design, 7 is approximately uniform over the entire
macroscopic sliding surface.

Oaq

Normal Stress
A b
[}
=
2 foa

Shear Strength

fob
Slip or Time

Figure 5. A simplified Prakash-Clifton law. It is neces-
sary to incorporate a proper response to alteration of normal
stress in order to regularize ill-posedness. In particular, clas-
sical slip-weakening or rate- and state-dependent constitu-
tive laws with instantaneous response to change in local nor-
mal stress will not be appropriate. The bottom curve is a
schematic illustration of the response of the interface follow-
ing an abrupt change in normal stress (top curve) with the ex-
perimentally based Prakash and Clifton [1993] and Prakash
[1998] constitutive law that we use to regularize the problem;
strength evolves toward the corresponding Coulomb strength
with constant coefficient of friction f. Exact evolution law
used is described by equation (7).
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However, earlier as well as recent studies on rock samples
[Linker and Dieterich, 1992; Richardson and Marone, 1999]
at sliprates of order 1 ym/s imposed changes in normal stress
during slip. Those workers found that there was a partial sud-
den change in the shear strength, followed by a gradual ac-
cumulation of the full effect of the altered normal stress over
increasing slip and time. Since the shock experiments study
the normal stress alteration over a much shorter timescale, we
believe that it is appropriate, before more experimental stud-
ies can resolve this issue, to use their result here, and to in-
terpret the “sudden” change of shear strength of Linker and
Dieterich [1992] as a possible feature of the slow creep slip-
page range that they studied, or possibly an effect of their
less abrupt change in time (compared with the shock experi-
ments), which may have mapped memory effects into an ap-
parent instantaneous effect.

Linker and Dieterich [1992] have a parameter « in their
proposed constitutive law which they consider as a constant.
However, we observe (see also H. Perfettini et al. (Fault re-
sponse induced by time-dependent fluctuations of the nor-
mal loading, submitted to Journal of Geophysical Research,
2000)) that if we take o as nonconstant, and specifically set
« = f = |m|/|72| (although this does not seem to be sup-
ported by their results), then the Linker and Dieterich [1992]
law predicts no change of |r;| for an abrupt change of 7 at
a given slip rate. Recently, Bureau et al. [2000] did PMMA-
on-PMMA friction experiments with variable normal stress,
and reported results that cannot be interpreted in terms of the
Linker and Dieterich [1992] law.

4.2. A Simplified Prakash-Clifton Constitutive Law

The constitutive law proposed by Prakash and Clifton
[1993] and Prakash [1998] to interpret their experimental re-
sults includes the classical rate and state dependence at con-
stant normal stress. As we want to concentrate on the insta-
bility mechanism specific to bimaterials, we first consider a
simpler form:

T ::——(V/L)(Tl —|—f7'2) (6)

(assuming V, L > 0), for which response tends to evolve
toward Coulomb friction response, 71 — — f7, through a
characteristic slip distance L (see Figure 5).

By using the same kind of modal analysis as that used to
rederive ill-posedness with Coulomb friction (section 3.1),
Ranjith and Rice [2000] were able to show that this simpli-
fied form does provide regularization. More precisely, they
show that for conditions under which the generalized Ray-
leigh wave speed exists, even if all wavelengths are still un-
stable with this friction law, the rate of exponential growth
now depends on the wavenumber k in a way which insures
a finite energy integral over all excited modes for all times
so that the stability problem is now well-posed. For condi-
tions under which the generalized Rayleigh wave speed does
not exist, Ranjith and Rice [2000] found generic stability at
sufficiently small wavelengths (i.e., sufficiently large k) for
all values of f, proving well-posedness in that case. They
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also note that well-posedness would result if (again, assum-
ing V' > 0) the term V//L in (6) was replaced by a positive
constant or by a term of form a + bV where both & and b are
non negative and at least one is nonzero.

Numerical tests of the form shown in section 3.1 are con-
sistent with this analysis. The same kind of behavior as
shown in Figure 2 (bottom) is observed, i.e., a velocity
growth after some time, but with this particular time now de-
pending on the wavelength.

However, even under the more sophisticated form that
they consider, the constitutive law proposed by Prakash and
Clifton [1993], in that it deals with moving surfaces, cannot
be used as such for ABZ-like studies in which an event is
nucleated by an externally applied normal stress component
(the pore pressure) while the fault plane is at rest. Indeed, as
can be seen on the simplified expression (6), the strength is
assumed to be altered by the slip but not directly by the time
since a normal stress change. The slip cannot be initiated in
this way with this friction law.

To remedy to this problem, we use a modified version of
the simplified Prakash-Clifton law, for which strength 77 >
0 at a given point on the fault also evolves with time follow-
ing normal stress changes (see Figure 5) according to
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where V* is a positive constant and in which, similarly to
Coulomb friction, it is understood that when V' = 0, sliding
is initiated when || becomes equal to 7, whereas |71 | = 77
during sliding, and 7V > 0 in all cases. The characteris-
tic distance L deduced from the Prakash and Clifton exper-
iments, when fitted to an expression like (6), is of order mi-
crons, whereas when V' = 0, the characteristic time of evo-
lution to the new Coulomb strength following a change in
normal stress, L/V*, would have to be determined by other
experiments able to cope with this issue. It might be pos-
sible to deduce an upper bound for this time constant from
the experiments by Linker and Dieterich [1992], in that it
should be less than the shortest timescale that they are able
to resolve in their experiment leading to the apparent instan-
taneous jump in normal stress that they report (see discus-
sion in section 4.1). For the time being, however, and since
we are mainly concerned with qualitative features, the con-
straints on how small the value of L can be made are dictated
by computational limitations. We simply ensure that V* re-
mains significantly smaller than representative seismic slip
velocities, i.e., average slip velocities reached during well-
developed ruptures (not dying pulses), the restriction in this
matter being also dictated by computer limitations. As re-
marked, Ranjith and Rice [2000] showed that the conclusion
that they draw concerning regularization of ill-posedness re-
mains unchanged when using the modified expression (7).
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Figure 6. Same parameters as in Figure 3 (Adams unstable, generalized Rayleigh wave speed defined)
but with the regularizing modified Prakash-Clifton law (equation (7) with L = 8.5 mm, V* = 1 m/s).
Convergence through grid size reduction is obtained. The pulse is self-sustained and propagates nearly at
the generalized Rayleigh wave speed in the direction of slip in the more compliant medium. Behavior is
qualitatively similar in the Adams unstable range without a generalized Rayleigh wave speed (correspond-
ing to case 2 in Figure 2), but the pulse’s rupture velocity is essentially that of the slower S wave speed, in
agreement with the Ranjith and Rice [2000] modal analysis. Depending on parameters, for decreasing val-
ues of the characteristic distance L, the peak velocity of the pulse grows faster with propagation distance.
For increasing L, there is a transition above which the pulse dies.
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While we have not attempted it yet in our work, we note
that it should also be possible to do converging simulations
based on the regularization of Coulomb friction of Martins
and Simdes [1995] and Simdes and Martins [1998], in which
local normal stress is replaced by its average over some finite
area.

4.3. Well Resolved “Weertman’’ Pulses

We can now attempt to simulate the same conditions that
led to ill-posedness with classical Coulomb friction. We
again use the set of parameters used by ABZ and in Fig-
ure 3, but with friction law (7). Similarly to Figure 3, slip
velocity as a function of time is shown in Figure 6 for dif-
ferent grid resolutions. We now have convergence through
grid size reduction and can have some confidence in the va-
lidity of the solution. The rupture velocity V, of the pulse
is determined by finding the points along the fault at which
the disturbance begins for various times for the best resolu-
tion used. We find that the average rupture velocity between
Py and Py is V. = 2414 4 5 m/s. This velocity is less than
and very close to the generalized Rayleigh wave speed which
1S c¢r = 2474.56 m/s in this case. We therefore refer to
this as a “Weertman pulse” since Weertman [1980] suggested
that such pulses could propagate at the generalized Rayleigh
wave speed [see also Adams, 1998]. We see that the pulse is
now self-sustained. The pulse does not split into two pulses,
as had been reported in ABZ. Other results (not shown here)
show that the width of the pulse decreases with increasing
propagation distance. The velocity of the other (dying) pulse
measured between P, and Ps is V,, = 4007 & 14 m/s, which
is close to the slower P wave speed of c;' = 4330 m/s.

To give a more general view of the event, we present the
spatiotemporal evolution of slip velocity in Figure 7 and a
contour plot of the solution in Figure 8. We see a wide dy-
ing disturbance that propagates at a not well defined veloc-
ity between the P wave speeds in the negative z; direction
as well as another dying pulse propagating at the slower P
wave speed in the positive z; direction. Only the Weertman
pulse is self-sustained, and it propagates in the positive z;
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Figure 7. Space-time view of the Weertman pulse for the
regularized formulation. Same parameters as in Figure 6; the
best resolution was used (N = 4096).
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Figure 8. Similar to Figure 7; the propagating velocity of the
Weertman pulse is close to that of the generalized Rayleigh
wave speed. On this plot, the highest velocities are reached
inside the nucleation region.

direction with a velocity that is close to that of the general-
ized Rayleigh wave speed.  In Figure 9 we also show the
different fields as a function of time for the Weertman pulse
at point P; (note that slip velocity was already presented in
Figure 6).

For conditions under which the generalized Rayleigh wave
speed does not exist but still in the unstable range (f > fei),
we get the same qualitative results as in Figures 6-8 except
that the self-sustained pulse propagates at about the slower
S wave speed. As expected, for conditions under which the
generalized Rayleigh wave speed does not exist and in the
stable range, we always find dying pulses, similar to what is
shown in Figure 4.

4.4. A Self-Sustained Pulse in the Opposite Direction

So far the self-sustained pulses observed were all propa-
gating in the positive 1 direction, i.e., the direction of slip in
the more compliant medium. This is the direction predicted
by Weertman [1980] and later found in ABZ. However, in
their stability analysis, as discussed previously, Ranjith and
Rice [2000], extending Adams [1998] results, found that in
some cases and for sufficiently high friction coefficient, other
unstable modes exist. They propagate in the opposite direc-
tion, at a velocity alittle more than the slower P wave, and are
less unstable than the lower speed modes. (In retrospect, this
new family of modes can also be found with Adams’ method;
they correspond to yet other curves in Figure 2 (top) (one for
each material contrast), emerging at a higher value of the fric-
tion coefficient and remaining below the curve correspond-
ing to the usual family of modes.) This suggests the possi-
bility of self-sustained pulses propagating in the opposite di-
rection in our model. For a 20% contrast, Ranjith and Rice
[2000] found that the condition of existence of such modes is
f > 0.22, so is should be possible to excite them in the ABZ
case for which f = 0.75.

InFigure 10 we show the slip velocity at observation point
Ps, and in Figure 11 we show a space-time view of slip ve-
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Figure 9. (top) Slip velocity (solid line) and normal veloc-
ity (dashed line). (bottom) Shear stress (solid line), shear
strength (short-dashed line), and normal stress (long-dashed
line), for the Weertman pulse at observation point P;. Note
that the normal velocity represents the velocity in the z5 di-
rection of both sides, i.e., there is no opening. (Same param-
eters as in Figure 7.)

locity, using a nucleating ellipse with velocity about equal
to the slower P wave speed, propagating in the negative z;-
direction. Again, the pulse is well resolved numerically.
Also note that the Weertman pulse is not excited in this case.
Consistently with the Ranjith and Rice [2000] analysis, we
found that this pulse is less favored than the Weertman pulse:
we had to use a smaller value of L in order to have a self-
sustained (versus dying) pulse. Also, we have not been able
to generate this pulse with a circular nucleation region, in
contrast to the case of the Weertman pulse which can be gen-
erated this way (even if less vigorous, everything else being
equal). Monitoring of the velocity of the pulse at various
points shows that it increases from V,, = 4218 m/s near the
origin to V,, = 4301 m/s, whereas the slower P wave speed
is ¢ = 4330 m/s.

This opposite pulse was obtained under condition of ex-
istence of the generalized Rayleigh wave speed. When the
generalized Rayleigh speed does not exist, the modal analy-
sis shows a similar result. However, for the cases tested here
(30% contrast), this new family of modes appear at a value
rather irrelevant for seismology, i.e., f > 1.75.

At the present level of progress, we are unable to deter-
mine the precise limits to parameter ranges (material proper-
ties, friction, loading details) for which self-sustained pulses
exist. Some elements of answers will be provided in the dis-
cussion.
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5. Discussion and Conclusions
5.1. Summary

We have reproduced the Andrews and Ben-Zion [1997]
(ABZ) study of simulations of ruptures along bimaterial in-
terfaces under Coulomb friction. We have illustrated the ill-
posed character of the problem for some parameter range;
grid size reduction does not lead to convergence of the so-
lutions. We show that an experimentally based friction law,
which tends toward the Coulomb law for large slip or time,
provides a regularization. With this new law, we find that the
main (qualitative) conclusion of ABZ, namely, the existence
of a self-sustained pulse, still holds. When the generalized
Rayleigh wave speed exists, the pulse propagates essentially
at that velocity in the direction of slip in the more compliant
medium. As a slight extension of the ABZ results, it propa-
gates at essentially the slower S wave speed and in the same
direction, when the generalized Rayleigh wave speed is not
defined. However, contrary to ABZ, we have not observed
splitting of the pulses.

As anticipated from the Ranjith and Rice [2000] modal
analysis, we find that another class of (less unstable) pulses
can be generated. They propagate in the opposite direction,
at a velocity close to the slower P wave speed.

In fact, we find that all our results (ill-posedness, propaga-
tion velocities, and growth rate of pulses) are consistent with
the Ranjithand Rice [2000] analysis. Figure 12 illustrates the
first two points and summarizes our mains findings.

5.2. Adams’ Steady State Pulse

As briefly mentioned in section 1.2, with Coulomb friction
and when the generalized Rayleigh wave speed exists, there
exists a steady state propagating slip pulse solution [Adams,
1998; Rice, 1997]. The solution can, in fact, consist of a train
of any number of pulses, but let us consider only one pulse,
which is the case of interest here.

at P3
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Figure 10. A pulse in the opposite direction. Consistently
with the Ranjith and Rice [2000] stability analysis, we find
that a self-sustained pulse can propagate in the direction op-
posed to that of the Weertman pulse. We show the slip veloc-
ity at observation point Ps for a 20% material contrast, f =
0.75. (Same parameters as in Figure 6 except for L = 2 mm
and e = 60 m, by = 10 m, and vey = 4264 m/s.)
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Figure 11. Same as Figure 10, space-time global view. Also
in agreement with Ranjith and Rice [2000], we find that the
velocity of propagation of this pulse is a little less than the
slower P wave speed. On this plot, the highest velocities are
reached within the leftmost portion of the pulse (and would
keep on increasing).

In that solution the shear stress is uniform along the fault,
equal to the initial one, 7'10 (assumed smaller than the thresh-
old f|79]). The compressive normal stress is equal to the
initial one | 77| everywhere except within the pulse zone, in
which it is uniform and equal to ||/ f. It is thus the reduc-
tion in normal stress that is the driving mechanism.

As the pulse is steady state, it is legitimate to speak about
an apparent coefficient of friction f*, i.e., that which would
be measured in a friction experiment. Here f* = |70|/|7| <
f. In particular, one can have f* = 0, corresponding to a
complete drop in normal stress. In other words, one can have
sliding with an arbitrarily low initial shear stress and an ar-
bitrarily high coefficient of friction f but, e.g., without any
generation of heat.

Within the pulse, of arbitrary risetime and propagating in
the direction of motion in the softer medium at the general-
ized Rayleigh wave speed, the slip velocity is uniform, given
by

_ (fl] = )ear
fr*(ear)

where p*(¢) is a complicated function of speed ¢ and of ma-
terial properties, given by Weertman [1980].

(There is a misprint in equation (11) of Weertman [1980]
for ;*, which makes it dimensionally inconsistent. The sim-
plest way to restore dimensionality and have the required
change of sign of y* upon switching materials provides the
correct expression, which we have checked independently to
be (in the notation of Weertman [1980])
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For completness, we also recall the expression for i (equa-
tion (2) of Weertman [1980]), which provides the value of
¢ = cgr when ji(c) = 0:

Zﬂl,tm
A

ji= "=yl = a3)(mp —al)

+ payi (1 = af)(y282 — @3)] .

Here o; = /1 /20“, Bi = J/1—¢?/c2, and y; =

1—¢?/c?

(10)

o with ¢ = 1 or 2, while A, which is given

as equation (3) of Weertman [1980], can be rewritten in the
more compact but equivalent form

A= pi (1= y2B2) (1B — af) + p3 (1 — v181)
(202 — a3) + ppa[(1 = ai)(1 — a3)

(712 + 7251) + 2(m1 81 — af)(y2B2 — 03)] . (11)

The subscripts ‘1’ and ‘2’ in the above expressions corre-
spond to our plus and minus superscripts, respectively. The
curves in Figures 1 and 2 of Weertman [1980] have been
obtained with the correct expression for y* and, noting that
ABZ used a convention for subscripts ‘1’ and ‘2’ opposite to
that of Weertman [1980], their Figure 4 provides the proper
representation of x* and & for the 20% material contrast that
we use in this paper.)

It seems that the steady state Adams [1998] pulse could not
be stable to perturbation (due to the Adams [1995] instability)
and could not emerge from generic initial conditions; it may,
indeed, have a vanishing basin of attraction.

5.3. Influence of Parameters

A very limited exploration of parameter space has been
performed. It is clear (and not surprising) that effects of the
various parameters are strongly coupled. For example, it has
been observed that, for some parameters, a nucleation region
with ¢y = bey = 60 m (i.e., circular space-time nucle-
ation process, vy being then irrelevant) leads to a dying pulse
while the naively weaker ae;; = 10 m, bey = 60 m leads to a
self-sustained pulse, everything else being equal. Neverthe-
less, in general, some features are relatively robust.

5.3.1. Effect of initial stresses. We observe that the
lower | )|, the harder it is for an event to be initiated, which
is the expected behavior. For the conditions we tried, no self-
sustained pulse could be nucleated for |7} | less than ~ 90%
of fI79].

Equation (8) shows that for the idealized steady state
Adams pulse the lower ||, the higher slip velocity. Shear
stress is not altered at all during propagation. Instead, the
driving mechanism is the drop of normal stress that occurs
within the pulse, to such a level that the (unaltered) shear
stress meets the Coulomb condition. Hence, such a self-
sustained pulse may exist even with zero shear stress (how-
ever, the slip velocities thus generated would be significantly
higher than what is generally believed: formula (8) with
7 = 0 gives V ~ 55 m/s at a 10 km depth under hydrostatic
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Figure 12. Summary of results, with link to Ranjith and Rice [2000] modal analysis. 2 is normalized
growth rate (see Figure 2); k is mode number; Vj,op is propagation velocity of harmonic modes; V. is
propagation velocity of pulses in simulations like reported here. Sign of propagation velocities refers to
the direction of propagation, plus being that of the direction of slip in the more compliant medium, minus
being the opposite direction. Note the closeness between the theoretical V},op for the Coulomb law and the
numerically observed V. for simulations that have been made possible through the regularization with the

Prakash-Clifton law.

pressure for a 20% material contrast). With this idealized
pulse the static and dynamic shear stress drops are exactly
zero. Figure 9 shows that the static one is very close to zero
in the simulations. Although the minimum possible value of
compressive normal stress —7» within the slipping region for
the Adams steady pulse solution is zero (occurs in limit of
zero shear stress) and there is no opening, it may be that for
pulses of growing amplitude, there is complete normal stress
reduction followed by opening. Such response is hinted at by
results of ABZ and by some of our own results, although it
cannot be resolved at the present level of our modeling, not
least because we have disallowed the opening degree of free-
dom included in the general Breitenfeld and Geubelle [1998]
numerical methodology. Further analysis might thus invali-
date the argument that opening is precluded for earthquake
ruptures because of high normal pressure.

However, in all simulations performed so far, reducing
|7 | has the more classical effect of diminishing slip velocity.
For the pulses that are self-sustained and look almost steady
state (like that in Figure 6) it is observed that that the varia-
tion of shear stress within the pulse decreases with increas-
ing distance, while the variation of normal stress increases.

This suggests that the pulse might be approaching the theo-
retical steady state pulse, but if it is so, it is still too far from
it for the expected relation between initial shear stress and
slip velocity to be verified (formula (8) gives V' ~ 2 m/s)
for the parameters of Figure 6 while the observed slip ve-
locity is ~ 7 m/s). In fact, the nucleation procedure that we
used, with total drop in normal stress in the nucleation region,
creates a very large drop in shear stress. So the initial con-
ditions are already far from the idealized steady state pulse.
More simulations, with different nucleation procedures, will
be necessary to understand this issue.

5.3.2. Effect of the characteristic distance L. For a
given nucleation region size, and a given nucleation process
by the pore pressure procedure described, L controls whether
the pulse decays or grows (i.e., is self-sustained). There is a
transition value of L below which the pulse will become self-
sustained. Not surprisingly, the transitional value is smaller
for lower initial shear stress. Also, below the critical value
(i.e., for growing pulses) the rate of growth is lower for larger
L, and this effect is much more pronounced for lower initial
shear stress (for a given initial normal stress). That is, for a
high initial shear stress a large alteration of L (below the crit-
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ical value) has little effect on the rate of growth of the pulse.
Probably closely related is the effect of L on the rupture ve-
locity: larger L implies slower V.. The most visible effect of
L is on the width of the pulse.

5.3.3. Width of pulses. For self-sustained pulses, e.g.,
like in Figure 7, we observe that width (or, equivalently,
risetime 1) decreases slowly and slip increases slowly with
propagation distance. For the limited parameter space ex-
ploration accomplished so far, 7. seems to be mainly con-
trolled by the characteristic distance in the friction law
L and by the risetime 7, of the artificial nucleation pro-
cess (i.e., not its total duration). This is given by T,, =
2 aenben/ (veny/aZ; + b%;) (notation of Appendix B), or ap-
proximately 2 ae/ven when beyy >> aep as for Figures 6-9.
For larger T, or larger L, T, is larger. In fact, the following
observations suggest that the risetime will in the end be de-
termined by L alone (in some dimensionally consistent form
like uL/[car(f|m2]—7D)]). Forlarge T, and small L, T, for
the entire pulse width seems to be directly determined by 7T,.
However, the shape of the velocity pulse becomes very nar-
row for large values of V, as if its width tends to scale with
L even while the entire width is still influenced by the nucle-
ation process. Consistently, 7;. decreases relatively rapidly
with propagation distance. By contrast, when 7,, is small but
L is relatively large, one can have 7). even greater than 7,
and the decrease of 7, is not observable. This is still very
speculative, and more studies are needed.

5.4. Observations

5.4.1. Slip pulses in homogeneous media. As men-
tioned in section 1, we now discuss a possible mechanism for
explaining some features observed in homogeneous media.
As an in-plane slip rupture propagates along a fault between
initially identical solids, extensional fault-parallel strains are
induced on the side of the fault and compressional strains on
the other. It seems possible in sufficiently nonlinear materials
that the moduli governing further increments of deformation
could be affected by those strains, such that different incre-
mental moduli would apply on one side of the fault than on
the other. This nonlinear effect might make local response
near the rupture tip mimic the linear response of dissimilar
materials, such that nonuniform slip induces significant al-
terations of normal stress. Such is beyond our capabilities to
address rigorously here but deserves attention since it may be
the origin of the pulse-like ruptures, with local normal stress
reduction and even fault opening, observed for fault propaga-
tion between foam rubber blocks by Brune et al. [1993]. This
line of explanation, still speculative, ties the normal stress al-
terations in the foam rubber experiments to the strong nonlin-
earity of that material. Foam rubber is elastically more com-
pliant in compression than in extension because load is car-
ried by fibrils which readily buckle when compressed [Gib-
son and Ashby, 1999]. Thus the zone of reduced wave speeds
would occur on the compressional side of the slip surface
near the propagating tip. This is consistent with pulse propa-
gation in the direction of slip in the material of slower wave
speeds. Competent rock may be expected to be less suscep-
tible to such effects (if they exist at all). The highly cracked
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and faulted zones bordering major faults [e.g., Chester et al.,
1993] may make those zones strongly nonlinear in their re-
sponse to fault-parallel extensional and compressional strain-
ing. However, in this case we expect (because of crack clo-
sure under compression) the compressed side of the rupture
to have increased incremental moduli and wave speeds, and
that would not obviously be consistent with pulse generation
in initially identical half-spaces with local crack/fault dam-
age near their sliding borders (note that foam rubber-like rup-
ture response has not been confirmed in Iaboratory rock ex-
periments).

5.4.2. Evidence of bimaterial effects for earthquakes?
Recently, Rubin and Gillard [2000] studied several thousand
pairs of consecutive earthquakes which occurred on a seg-
ment of the central San Andreas fault, south of the Loma Pri-
eta rupture. Among the second events of each pair which oc-
curred close to the first one, i.e., within two radii (~ 200
events), they find that over 70% more occur to the north-
west than to the southeast (at a larger distance, the distri-
bution is roughly symmetric). They interpret this asymme-
try as resulting from the contrast in material properties that
exists at this location of the San Andreas fault, the medium
being more compliant northeast of the fault than southwest
[e.g., Eberhart-Phillips and Michael, 1998]. With this dis-
symmetry a Weertman pulse would propagate to the south-
east. The Rubin and Gillard [2000] argument is twofold:
first, an earthquake propagating to the southeast will receive
an extra dynamic “kick,” which means that the barriers ul-
timately stopping the rupture will be, on average, stronger
at the southeastern end than at the northwestern one; sec-
ond, after the rupture, the static shear and normal stresses
outside the rupture zone are approximately symmetric (this
is from Weertman [1980] and confirmed in our numerical
simulations). The next rupture is then more likely to start
at the northwest. (Note that the above reasoning does not
consider the less likely “opposite” pulses discussed in sec-
tion 4.4, which could in fact be responsible for part of the
30% remaining earthquakes.) Rubin and Gillard [2000] also
present more direct evidence of preferential rupture propa-
gation to the southeast by measuring pulse widths as a func-
tion of azimuth, but on an, of course, more limited number
of events.

5.5. Further Work

An important poiritis that the mechanism discussed in this
paper acts for in-plane but not for antiplane slip, since the lat-
ter causes no alteration of normal stress and hence provides
no basis for unstable slippage when the Coulomb law is used.
Thus what will happen in 3-D for, say, a rupture nucleated on
a circular disc area along a bimaterial interface remains un-
certain; there will two rupture edges with in-plane slip, con-
ducive to the mechanism, but also two with antiplane slip.

Another unanswered question is to determine the behav-
ior of the model with realistic nucleations under low over-
all shear stresses. As seen in section 5.3.1, it seems dif-
ficult to nucleate an event under only moderately low ini-
tial shear stress (an issue not specific to bimaterials). How-
ever, it remains to be determined what would happen for a
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well-developed rupture (pulse or crack) entering a region of
low shear stress in a bimaterial environment (it would be ex-
pected to die in a homogeneous medium, as that would be a
relaxation barrier).

It also remains to be determined what controls precisely
the width of a pulse and, more generally, what conditions
lead to a self-sustained pulse. Future studies will have to con-
sider opening, with an appropriate constitutive relationship
yet to be determined.

Appendix A: Numerical Method

The functionals ¢£ (a = 1,2) in the elastodynamic rela-
tions (1) can be written as

+oo .
ot (z1,t) = %/ OE (k,t)e*k"1dk (Al)

— o0

where the Fourier coefficients ®Z are related to the Fourier
coefficient UZ of displacement u through a linear combi-
nation of convolution integrals, namely,

2

= t
@i(k,t):Zcfﬂ/ Heap(|kleEt)US (k,t —t')dt!
p=1 0
(A2)

which makes clear the coupling between the two possible
rupture modes in this problem (I and II). The expressions
for the convolution kernels H are given by Breitenfeld and
Geubelle [1998] in the Laplace domain. (We note that the
signs of each first term of each first equation of equations (4)
and (6) of Breitenfeld and Geubelle [1998] should both be F
instead of — and =+, respectively.) Out of the three different
kernels (H15 = Hsy), Breitenfeld and Geubelle [1998] were
able to derive analytical expressions in the time domain for
only two of them and some integrals would still have to be
computed numerically. So we found it more convenient to
compute all three kernels by numerical inversion of Laplace
transforms. This operation appears to be a delicate thing to
do, at least for the Bessel-like expressions that we have to
deal with. We tried several commercial and noncommercial
routines, but the only one which was always satisfactory was
that by Honig and Hirdes [1984]. Each kernel has to be de-
rived only once and is stored in a file for tabulated values of
the argument, and later interpolated at the required values.

For numerical treatments we write the displacement and
the functionals as the truncated Fourier series:

{ uy (21,1) }_ { Ug (kj, 1)
‘f'%(l’l,t) N

@ (kj, 1)
where N is some large even number, k; = 27j/A, A be-
ing some replication length along the z; axis. Finally, we
use a fully explicit time marching scheme and find that, as
suggested by Breitenfeld and Geubelle [1998], taking h =
max(cy, c; )At/Az; = 0.4 seems to be a very good com-
promise for stability, accuracy, and efficiency (the value of h
expressed in terms of the P wave velocities is simply that just

N/2

2.

j=—=N/2

} e*iT 1 (A3)
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given times \/2 (I-v)/(1-2 v), namely, /3 for a Poisso-
nian solid as used in this paper.

The method described above has been referred to as “inde-
pendent” by Breitenfeld and Geubelle [1998] because it in-
volves the displacements of both sides of the interface, by
contrast to that named the “combined” method which deals
with the relative displacements. As noted by Breitenfeld and
Geubelle [1998], the independent method appears more sta-
ble for a given value of N. For the combined method the
required memory is half, there are fewer convolution inte-
grals (as in A2) to compute, and, furthermore, the method
without replication of Cochard and Rice [1997] can be ap-
plied, which is not the case here (here we, of course, use a
domain large enough to avoid influence of replications dur-
ing the time for which results are shown).

Appendix B: Event Nucleation by
an Imposed Pore Fluid Pressure

The events in our simulations are nucleated by artificially
prescribing fluid pressure in an elliptical region of the 1 — ¢

plane. The following expressions are directly adapted from
ABZ. The following coordinates are used:

6 = (-731 - Uellt)/aell

(B1)
n = (21 + vent) /ben — 1o

with 1y = aé’" + bgu /beii. The boundary of the pressure
source is the ellipse of equation

1—¢% -

Within this elliptical domain the pore fluid pressure is given
by

n”=0. (B2)

Py =P(1=& =), (B3)
while it is zero outside. Thus it rises smoothly from 0 to P,
at the center of the ellipse. For ay significantly smaller than
ben this source looks like a disturbance roughly propagating
at velocity vy for vey > 0 (more precisely, the locus of max-
imum pressure propagates at a velocity a little less than vey).
The shape and orientation of the ellipse can be seen in Fig-
ure 9 of ABZ and can be inferred from, e.g., our Figure 8
where aep = 10 m, beyp = 60 m, and ve;; = 2475 m/s. For all
the simulations presented in this paper we use Py = |79| =
100 MPa, where IT{,)I is the external, uniform, normal stress,
so that full drop in normal stress is reached at the center of
the nucleation region (when P; = F).
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