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Abstract. What are the origins of earthquake complexity? The possibility that some aspects 
of the complexity displayed by earthquakes might be explained by stress heterogeneities de- 
veloped through the self-organization of repeated ruptures has been suggested by some simple 
self-organizing models. The question of whether or not even these simple self-organizing models 
require at least some degree of material heterogeneity to maintain complex sequences of events 
has been the subject of some controversy. In one class of elastodynamic models, previous work 
has described complexity as arising on a model fault with completely uniform material properties. 
Questions'were raised, however, regarding the role of discreteness, the relevance of the nucleation 
mechanism, and special parameter choices, in generating the complexity that has been reported. In 
this paper, we examine the question of whether or not continuum complexity is achieved under the 
stringent conditions of continuous loading, and whether the results are similar to previously claimed 
findings of continuum complexity or its absence. The elastodynamic model that we use consists of 
a 1-D fault boundary with friction, a steady slowly moving 1-D boundary parallel to the fault, and a 
2-D scalar elastic media connecting the two boundaries. The constitutive law used involves a pair 
of sequential weakening processes, one occurring over a small slip (or velocity) and accomplishing 
a small fraction of the total strength drop, and the other at larger slip (or velocity) and providing 
the remaining strength drop. The large-scale process is motivated by a heat weakening instability. 
Our main results are as follows. (1) We generally find complexity of type I, a broad distribution of 
large event sizes with nonperiodic recurrence, when the modeled region is very long, along strike, 
compared to the layer thickness. (2) We find that complexity of type II, with numerous small events 
showing a power law distribution, is not a generic result but does definitely exist in a restricted 
range of parameter space. For that, in the slip weakening version of our model, the strength drop 
and nucleation size in the small slip process must be much smaller than in the large slip process, 
and the nucleation length associated with the latter must be comparable to layer thickness. This 
suggests a basis for reconciling different previously reported results. (3) Bulk dispersion appears 
to be relatively unimportant to the results. In particular, motions on the fault plane are seen to be 
relatively insensitive to a wide range of changes in the dispersion in the bulk away from the fault, 
both at long wavelengths and at short wavelengths. In contrast, the fault properties are seen to be 
very important to the results. (4) Nucleation from slip weakening and time-dependent weakening 
showed similar large-scale behavior. However, not all constitutive laws are insensitive to all nu- 
cleation approximations; those making a model "inherently discrete" and hence grid-dependent, 
in particular, can affect large scales. (5) While inherent discreteness has been seen to be a source 
of power law small-event complexity in some fault models, it does not appear to be the cause of 
the complexity in the attractors examined here, and reported in earlier work, fortuitously in the 
special parameter range, with the same class of continuum fault models and same or very similar 
constitutive relations. Continuum homogeneous dynamic complexity does indeed exist, although 
that includes type II small-event complexity only under restricted circumstances. 

1. Introduction 

Earthquakes are complex in many ways. Where they oc- 
cur, when they occur, and what kind of shaking they produce 
when they finally do occur are just some of the complicated 
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features we would like to understand. A basic, open question 
is what is the source of the complexity. Are earthquakes com- 
plex because fault zones are complicated? Or might there be 
some underlying cause that would produce complexity even 
along a completely homogeneous fault? 

There is no doubt that material heterogeneities play a ma- 
jor role in producing the complexity displayed by earth- 
quakes. The question is to what extent do dynamic stress 
heterogeneities, possibly set up even on a smooth fault of 
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uniform properties by the self-organization of repeated rup- 
tures, also produce complexity. A further question, beyond 
the scope of this paper, is how the two potential sources 
of complexity, static material heterogeneities apd dynamic 
stress heterogeneities, might interact. Here we focus our at- 
tention instead on the dynamics of a uniform fault, examin- 
ing questions of complexity in this simpler case, where fewer 
features of the fault have to be specified. 

A theoretical description of earthquakes would mean 
we had a set of equations that behaved like earthquakes. 
Decades of research have made it clear that elastodynamics 
provides a sufficient framework for discussing the waves em- 
anating from the earthquake source [Aki and Richards, 1980; 
Kostrov and Das, 1988]. The nonunique inverse problem can 
be done: Given a set of seismic recordings, a set of source 
motions can be specified that match the set of records. What 
remains to be resolved are what are the appropriate combina- 
tions of fault-like boundaries and constitutive-based bound- 

ary conditions on those boundaries (and perhaps nonelastic 
constitutive properties in the nearby domain), including their 
possible spatial variations, such that the source motions are 
produced in the first place. We are beginning to learn how 
much of the behavior can be captured by the simplest kinds 
of descriptions, and what features cannot. 

Because the simplest description is both easiest to study 
and offers the most appealing explanation if it is good 
enough, that is the place to start. A nearly ubiquitous approx- 
imation in elastodynamic models has been to consider a pla- 
nar fault boundary. How much of the essential physics can 
be captured in this context remains an open question, partic- 
ularly when fault properties are uniform. But it is our focus 
here as a beginning. 

There is a long history of studying individual elastody- 
namic ruptures on planar surfaces. Analytic work on simple 
elastodynamic cracks established fundamental scaling rela- 
tions for simple geometries, which formed the basis for quan- 
titative seismology of the source [Kostrov and Das, 1988; 
Aid and Richards, 1980]. Numerical work of individual 
elastodynamic ruptures extended that work to more general 
boundary conditions [Ida, 1973; Andrews, 1976; Madariaga, 
1976; Day, 1982; Okubo and Dieterich, 1984]. 

Studying individual ruptures, however, contains some of 
the difficulties of the inverse problem: a lack of uniqueness, 
and thus constraints. The forward problem, beginning from a 
partial differential equation, requires three basic ingredients: 
the bulk equation of motion, the boundary conditions, and 
the initial conditions. With an individual rupture the initial 
conditions and boundary conditions are independently speci- 
fiable degrees of freedom that combine to produce one out- 
come. 

There is an even deeper problem in applying individual 
ruptures to the earthquake problem: that of transients. Earth- 
quakes happen on faults over which there have been many, 
many previous events. There is time, therefore, for the sys- 
tem to evolve beyond whatever arbitrary initial condition it 
began from to a state wlaich is compatible with the dynamics 
in the long term. Thus, earthquakes will lie on an attracting 
subspace, not the huge transient space of all possible initial 

conditions. This means that there is a deep relationship be- 
tween the "initial condition" at a later time and the boundary 
conditions, coupled through the dynamics. That is, if we treat 
the value of the field at a later time as an initial condition for 

the future development, not all initial conditions are possi- 
ble. The boundary conditions and the initial conditions are 
not, in effect, independently specifiable degrees of freedom 
for representative, nontransient events. 

The problem of a dynamical attractor for studying individ- 
ual ruptures becomes, instead, a tremendous asset when we 
study repeated ruptures. When we examine statistical ques- 
tions of long sequences on the attractor, the beginning ini- 
tial conditions can become irrelevant. Studying repeated rup- 
tures thus can usefully avoid the question of what the initial 
conditions are, and can focus attention onto the more relevant 
dynamic attracting subspace. It is a description of the dynam- 
ics of the attractor that earthquakes lie on that our theoretical 
description aspires to. This is not to say that the study of spe- 
cific ruptures is not useful (for an interesting example, see 
Olsen, et al. [1997]). Rather, it is that we obtain additional 
constraints on the forward problem from studying repeated 
ruptures. 

Are attractors of simple elastodynamic systems interest- 
ing? Carlson and Langer [1989] and Horowitz and Ru- 
ina [1989] opened up a new way of looking at the problem 
by demonstrating that one could get a remarkable amount 
of complexity out of a system without any material irregu- 
larities. Examining repeated ruptures in a one-dimensional 
elastodynamic model [Burridge and Knopoff, 1967] with 
velocity-weakening friction, Carlson and Langer reported a 
power law distribution of small events and an excess of large 
events which occurred above the extrapolated small-event 
rate. Using modem rate and state friction, Horowitz and Ru- 
ina [1989] found nonperiodic motion developing in a cer- 
tain parameter range for very long faults in a quasi-static 
two-dimensional continuum model in which a velocity- 
strengthening term, b,'coming important at higher slip rates, 
was added to the standard velocity-weakening constitutive 
law to keep the range of maximum to minimum sliding ve- 
locity of the order of 10. 

The question of whether the elastodynamic models with- 
out any material heterogeneities could produce realistic 
earthquake like behavior led to further examination of the 
complexity displayed in the simplest models with, among 
other things, the cycle of small-event activity preceding large 
events [Shaw et al., 1992] and the moment source spectra 
[Shaw, 1993] being studied. Rice [1993], however, noted 
a peculiar feature of the results up to that time: that the re- 
sults at the large scales depended on the resolution of the 
small scales. Noting that grid resolution could make a dif- 
ference in whether one obtained complex or periodic behav- 
ior in the 2-D and 3-D models that he studied with depth- 
variable rate and state dependent friction (and with static ver- 
sus wave-mediated calculation of stress transfers), he raised 
the question of whether this was more generally true, and, in 
particular, whether "inherent discreteness" was the cause of 
the complexity being obtained in some of the self-organizing 
models. Further work with these models confirmed this 
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way of generating nonperiodic behavior through discreteness 
[Ben-Zion and Rice, 1995, 1997]. 

To address the question of whether dependence on grid 
resolution, and thus discreteness, was the origin of the com- 
plexity reported in the simple one-dimensional elastody- 
namic models, a viscous stress dependent on the curvature of 
the slip rate distribution was added to the velocity-weakening 
friction in the one-dimensional model, which then stabi- 
lized the smallest scales; large-scale behavior independent 
of the grid resolution was then obtained, and complexity es- 
sentially the same as without the regularizing viscous term 
was seen [Shaw, 1994]. The one-dimensional model does 
not, however, produce the stress concentrations that occur 
in higher dimensions, and questions persisted as to whether 
complexity would occur in higher-dimensional models. A 
two-dimensional model using slip-weakening friction was 
then studied and shown to produce complexity [Myers et at., 
1996; Langer et at., 1996], interestingly, in many respects 
very similar to the one-dimensional model. Again, a power 
law distribution of small events with an excess of large events 
above the extrapolated small-event rate, and independence of 
the distribution of sizes of events on the grid resolution was 
obtained, although (we now know) it was not recognized at 
the time that the numerous small events, reported as being a 
genetic outcome, depended on fortuitous parameter choices. 
Velocity-weakening friction, with a viscous regularization, 
was also shown to give similar results in two dimensions 
[Shaw, 1997] with related parameter choices. 

The models of Myers et at. [1996] and Shaw [19971 both 
•:.•cluded coupling to stably sliding creeping regions, tht;ugh 
in different ways. In the model of Myers et at. [1996] the 
coupling was through the bulk, leading to a Klein-Gordon 
equation. In the model of Shaw [1997], it was through a 
steadily moving boundary, like for the Horowitz and Ru- 
ina [1989] configuration, but now leading to a wave equa- 
tion. Nevertheless, the results from the two different long 
fault geometries were shown to be nearly the same [Shaw, 
1997]. Other work on two-dimensional elastodynamic mod- 
els was also done, with different results reported. A differ- 
ent two-dimensional geometry was considered by Cochard 
and Madadaga [1996] and Nielsen et at. [1995], who con- 
sidered a finite fault, which was pinned at the ends in un- 
breakable barriers. This geometry was limited, however, to 
short faults, where the fault length was less than the width of 
the seismogenic zone. Thus the large events in this geome- 
try break or scale with the whole fault length and are con- 
trolled by this imposed geometry. Further, since faults are 
not allowed to grow, stress singularities develop at the un- 
breakable ends. Rice and Ben-Zion [ 1996] considered a two- 
dimensional geometry where only the depth direction was 
retained, with depth-variable properties as in the model of 
Pa'ce [1993], but modeling the slip distribution as if it was 
the same at every section along strike. Those authors devised 
a methodology to resolve fully the initially quasi-static nu- 
cleation process in space and time, for the first time in such 
elastodynamic studies, for a plate loading rate that was 9 or- 
ders of magnitude less than seismic slip rates. They found 
no small-event complexity and, indeed, found only periodic 

events for the constimtive parameters used, although other 
studies, reported in the same paper, have hinted that modest 
alterations in the form of the constimtive law (Dieterich ver- 
sus Ruina form for state evolution) can sometimes give a dis- 
tribution of large-event sizes. 

The existence of complexity in the small events has been 
the subject of much discussion in the literature. In addition to 
the different geometries, different fictions have been used, 
and different results have been obtained. Using a fiction 
with only a time-dependent drop and neither slip nor veloc- 
ity weakening, Nielsen et at. [1995] saw either periodic or 
nonperiodic events, depending on the timescale of the drop. 
Using a small time-dependent drop and slip-weakening fric- 
tion, Myers et at. [ 1996] saw complexity in the small events. 
Using a state variable friction that evolved with slip- and 
velocity-weakening effects, Cochard and Madariaga [ 1996] 
also saw some complexity in the small events, in a particu- 
lar parameter range, but not generally. Using a laboratory- 
based friction with a single logarithmic weakening, Rice and 
Ben-Zion [ 1996] did not see small-event complexity. Using a 
small time-dependent drop and velocity-weakening friction, 
Shaw [1997] saw complexit)' in the small events. 

These studies have sharpened current discussions on com- 
plexity, with recognition that there are two facets to such 
complexity: (I) a broad distribution of rapture sizes with 
nonperiodic event occurrence in time, and 0I) an at least 
approximately power law frequency-size distribution, of 
Gutenberg-Richter type, over some range of small events. 
We call this second case "small event complexity." Both 
types of complexity occur for natural fault zones. In the mod- 
els the results from the different efforts, as briefly summa- 
rized above, have varied. 

What are the causes of these different results? Is it the ge- 
ometry of the models? The frictions? The algorithms? One 
motivation for this work was to try to reconcile these differ- 
ent results. Most especially, we want to eliminate concerns 
that particular algorithms may be the source of the model re- 
sults, and we want to establish, under the most stringent con- 
ditions, if and when continuum complexity can indeed occur. 
A further point that we seek to address is, not only the ex- 
istence of continuum complexity in some part of parameter 
space, but the range of behaviors in other areas of parameter 
space. We observe, in particular, a relatively restricted range 
of parameter space where there are numerous small events 
showing a power law distribution of sizes. This suggests a 
basis for reconciling the different reported results, an issue 
to which we will return. 

One concern raised regarding the reported two- dimen- 
sional elastodynamic complexity [Myers et at., 1996; Shaw, 
1997] was the role of the nucleation process in producing 
events [Rice and Ben-Zion, 1996]. In Myers et at. [1996], 
and Shaw [1997], an approximation of the nucleation phase 
was made, for reasons of computational efficiency, whereby 
a small but rapid time-dependent drop in friction was used 
to nucleate events. Cochard and Madar/aga [ 1996] also used 
a small initial drop, instantaneously in their case. These ini- 
tial drops allowed what Myers et at [1996] and Shaw [1997] 
interpreted as seismic events to occur at the smallest single 
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grid resolution scale. Does this matter? Lapusta and Rice 
[1997, 1998] fully resolved the nucleation process and saw 
no small-event complexity, although they did not study the 
parameter ranges analogous to the regimes where Myers et 
a/[1996] and Shaw [1997] saw the small-event complexity. 
In this paper, we address the question of whether that partic- 
ular time-dependent nucleation mechanism is important for 
the resulting large-scale complexity, and show that, in fact, 
at least in two dimensions, it is not; in particular, we show 
that the distribution of sizes of events at large scales is insen- 
sitive to that simplification of the nucleation process. 

Elastodynamic studies [Ben-Zion and Rice, 1997] have 
shown that another type of simplification, at the smaller 
scales, rendering grid points capable of failing indepen- 
dently of one another, does indeed affect, and complexify, the 
larger-scale event distribution, at least for the attractor asso- 
ciated with the friction they used. An analogous approxima- 
tion with the class of constitutive equations that we consider 
here did not, however, have obvious qualitative effects on the 
basic complexity of the attractor [Shaw, 1994]. Why these 
different sensitivities to different perturbations, in this case, 
the discreteness versus continuum limit of the physics at the 
small length scales? One possible origin is the nature of the 
attractor: in the former case, the basic attractor was noncom- 
plex, which may be more sensitive to perturbations than the 
already complex attractor examined in the latter case. Fur- 
ther work would be needed to resolve these questions. In the 
absence of a general understanding, however, being in the 
continuum limit is prudent. 

We set for ourselves the most stringent conditions to ad- 
dress, definitively, questions of nucleation and discreteness 
in obtaining complexity: (1) that there be stability at the 
smallest scales, (2) that it be done in at least two dimensions, 
(3) that there be a finite loading rate, with (4) stable aseis- 
mic sliding occurring at length scales below a critical stiff- 
ness during nucleation and (5) dynamic break-out occurring 
above that critical stiffness, with (6) grid resolution of the 
critical stiffness scale and (7) independence of the results on 
grid resolution. Subject to these conditions, one is looking 
for events being independent of the small loading rate. 

The model we use, which meets all the criteria listed 

above, consists of the Horowitz-Ruina configuration of a 
two-dimensional scalar elastic bulk, now satisfying the 2-D 
wave equation, with one boundary that is slowly loaded and a 
fault on a parallel boundary that is subject to a frictional force 
[Shaw, 1997]. We modify the previously used model in two 
ways: we make the loading rate finite, and change the fric- 
tion so the nucleation phase has either a slip-weakening or a 
velocity-weakening type instability. In order to make the slip 
weakening consistent with creep and a finite loading rate, we 
introduce a healing mechanism, similar to a frictional heating 
mechanism presented by Shaw [1995]. We also add a small 

marized in the abstract, and are presented in more detail in 
the body of the paper. 

The rest of the paper is organized as follows. In section 2, 
we present the model, and discuss the friction used. Section 3 
discusses numerical issues and parameter ranges. The results 
follow in section 4. We conclude in section 5. 

We caution that many of the figures are used to delin- 
eate the highly restricted parameter range in which type II 
small-event complexity with power law feature•, is a legit- 
imate model outcome. Casual perusal of the figures could 
thus lead to the interpretation that such small-event complex- 
ity is a ubiquitous model outcome, whereas, at least in this 
two-dimensional model that is studied, just the opposite is 
true. Further, there is a plausible rationalization, which we 
give in section 5, as to why that restricted parameter range 
might be expected to produce small-event complexity. 

2. The Model 

The simplified picture of a fault we have in mind, which 
we will even further simplify, is as follows. The fault is a 
planar surface on an elastic bulk which is slowly constantly 
loaded. Friction on the fault plays a central role in the prob- 
lem. At depth, below the seismogenic zone, there is frictional 
strengthening, and the fault slides stably, creeping along at 
the slow plate loading rate. At seismogenic depths, there is 
frictional weakening, and the fault slides unstably in sudden 
stick-slip events [Brace and Byedee, 1966; Tse and Rice, 
1986; Blanpied et at., 1991; Rice, 1993]. The coupling of 
the stuck seismogenic fault to the lower stably sliding creep- 
ing region loads the stuck fault. It also ties the displacement 
field to a reference field, which then constrains the maximum 

amount of slip when the whole seismogenic depth ruptures in 
a large event. 

To reduce this to a two-dimensional model, we treat the 
planar surface as a one-dimensional line, connected to a two- 
dimensional bulk. Here the slip can be interpreted as an aver- 
age over the seismogenic depth that is variable along strike, 
like in the Rice [1980], Lehner et at. [ 1981 ], and Johnson 
[ 1992] 2-D crustal plane models with elastic (rather than E1- 
sasser viscous) coupling to a mantle substrate. We further 
simplify the bulk by considering only scalar motions. My- 
ers et al. [ 1996] considered the loading to occur in the bulk, 
giving a Klein-Gordon equation for the bulk elastodynamics. 
Here, we use the loading geometry of Shaw [1997], which 
places the loading on a boundary parallel to the fault, giv- 
ing the wave equation for the bulk elastodynamics. The same 
configuration was analyzed, both quasi-statically and elasto- 
dynamically, by Rice and Ruina [1983] for the stability of 
rate- and state-dependent frictional slip, and was used quasi- 
statically by Horowitz and Ruina [1989] to study event se- 
quences. We use the wave equation model here because it 

amount of strengthening to stabilize the smallest scales. It can be run on a smaller domain and is thus more computa- 
is important to note that the constitutive laws used involve a tionally efficient. The results that we present in this paper 
pair of weakening processes, one occurring over a small slip hold in both geometries. 
(or velocity) and accomplishing a small fraction of the total The two-dimensional wave equation model we use is 
strength drop, the other at larger slip (or velocity) and provid- as follows [Shaw, 1997]. We use dimensionless variables 
ing the remaining strength drop. Our main results are sum- throughout, to minimize the number of intrinsic parameters. 
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In the bulk we have 

3:U 

•/t. T -- VaU, (1) 
where U is the displacement field, t is time, and V 2 is 
the two-dimensional Laplacian operator V 2 = 02/0x 2 + 
02/0y 2 . We will choose x to be the direction along the fault 
and y to be the direction perpendicular to the fault. As we 
want to study the intrinsic complexity of the dynamics, we 
will choose uniform boundary conditions; by studying the 
most uniform case, which is most likely to give a periodic 
response, we give a lower bound to the complexity. 

The fault is located at y = 0, with the boundary condition 
that the strain is equal to the (dimensionless) frictional trac- 
tion ß acting on the surface: 

OU I -•. ay u=0 
(2) 

We will return to a discussion of ß shortly; first, let us specify 
the other boundary conditions. 

The loading surface is placed parallel to the fault, a fixed 
distance away. There the displacement field is moved at a 
slow steady rate. Without loss of generality, we scale all the 
lengths in the problem to the distance to this loading surface, 
so it is located at y = 1 (so that unit length should be associ- 
ated, roughly, with the depth of the seismogenic zone): 

OU 
= v, (3) 

0t 
y--1 

where v << 1 is the slow plate loading rate. 
Along the fault direction, we use periodic boundary con- 

ditions: 

U(x + Lx) = U(x) . (4) 

To complete the description of the model, it remains to 
specify the constitutive relation between the friction ß and 
slip on the fault U(x, O, t). 

2.1. The Friction 

All of the nonlinearity in the problem resides in the fric- 
tion function •. A fundamental element leading to ruptures 
is that the friction ß weakens, either with increasing slip or 
slip rate. The friction ß we use in this paper is chosen so that 
we can meet the criteria set out earlien We use it because it 

contains the basic slip-weakening instability that we wish to 
study, which has been shown to be important to laboratory 
measurements of the nucleation phase of friction [Dieterich, 
1992], and because of its simplicity. The friction that we use 
also contains a velocity-weakening limit, which we will also 
examine. We will, however, focus most of our attention on 
the slip-weakening nucleation. We choose the friction that 
we use because it is well controlled and has the properties 
;.hat we wish to study. It does not equally satisfy both authors. 
One (j.R.R.) believes that, since the results on complexity are 
not universal, but do depend on parameter ranges, it would 
be more prudent to use the standard laboratory-based loga- 

rithmic rate and state laws, e.g., as by Rice and Ben-Zion 
[1996], with the now standard Arrhenius-based regulariza- 
tion near zero slip rate [Heslot et at., 1994], and with con- 
sideration of possible modification (like in 7_3eng and Rice 
[ 1998]) for very short asperity lifetimes, at high slip rates, ly- 
ing beyond the well-studied laboratory regime. The other au- 
thor (B.E.S.), who builds on a background of work with laws 
like those adopted, considers them both physically motivated 
and easy to study numerically. 

The equations are based on a modification of a simplified 
picture of frictional weakening caused by frictional heating 
[Shaw, 1995, 1997]: 

05 t' < t) H( 05 05 ß - _ - at ß (5) 
Here OS/c9t = OU/Otl•=o is the slip rate on the fault, with qb 
depending on the past history of slip. The function H is the 
antisymmetric step function, with 

o_•s 

H- ot 
IHI < 1 

os 
aw • 0; 
05 

(6) 

A 

where OS/Or is the unit vector in the sliding direction. Thus 
H represents the stick-slip nature of the friction, being mul- 
tivalued at zero slip rate. 

The parameter r/is the strength of the viscous-like bound- 

ary dissipation, with Vi• = 02/Oz 2 being the fault-parallel 
Laplacian operator. This term is useful for giving stability 
to the smallest length scales [Langer and Nakanishi, 1993; 
Shaw, 1997], although such stability emerges in a natural 
way without such a term, when the laboratory-based rate and 
state laws are used [Rice and Ruina, 1983]. 

The history dependent • we examine in this paper is given 
by 

•b = •o - - E (7) 
1 +aQ 

with 

at =-vQ+I•I ß (8) 
Here •o is the threshold value of sticking friction, which, as 
long as it is large compared to the maximum friction drop, 
tums out the be an irrelevant parameter in the problem. The 
variable Q is something like heat; it accumulates with in- 
creasing slip rate on the fault and dissipates on a timescale 
1/7. An equivalent integral solution of Q 

/• OS Idt' Q(t) - (9) 

shows that when 1/7 is large compared to the rupture 
timescale of unity, Q is just the slip, while when 1/7 is 
small, Q rapidly reaches a steady state value of 1/7 times 
the slip rate. Thus 7 controls the relative amount of slip- 
weakening versus velocity-weakening effects [Shaw, 1995]. 
This formulation is based on a physical idea which goes back 
to Sibson [1973], whereby frictional heating increases pore 
fluid temperature, and therefore pressure, thereby reducing 
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the effective normal stress. The slow heat dissipation slip- 
weakening limit was solved by Lachenbruch [1980] and 
later discussO by Rice [1994]. Mase and Smith [1987] con- 
sidered additional effects of pore volume expansion. The 
fast dissipation velocity-weakening limit was pointed out by 
Shave [ 1995]. The formulation used here is a simplification 
[Shaw, 1997] of the full nonlinear case [Shaw, 1995]. 

The parameter a is the rate of weakening at small Q, which 
as we will see will turn out to be a crucial parameter control- 
ling the behavior. It has dimensions of inverse length. The 
denominator 1 + aQ is used so as to saturate the drop in fric- 
tion caused by this term at large Q, with the strength drop 
scaled to unity. 

The third term in the friction, E, describes the stress drop 
in going from sticking to sliding friction. We will make a 
gross simplification of this term and, for simplicity, consider 
a E which has the same form as the second term: 

1 +/•Q/a ' (10) 
This gives a drop which weakens initially linearly in Q with 
slope •, and then saturates to a constant stress drop rr at large 
Q. It is one of our purposes in this paper to show that the 
manner in which the stress drop rr occurs is not very impor- 
tant; in particular, we will show that a E that changes with 
time instead of Q gives similar results at large scales. The 
form of E that we use is, however, convenient for studying 
continuum nucleation and stability issues, a subject we will 
examine in further detail. 

Thus the constitutive law contains a pair of sequential 
weakening processes, which, together, cause a strength drop 
of 1 + a. One process is active at "large" slips (or velocities, 
in the velocity-weakening case) of order l/a, and involves a 
strength drop of order unity. The other is active at small slips 
(velocities), of order 1/(a + •), and involves a strength drop 
of a. We may consider laws with a single weakening process 
by either setting rr = 0 in equation (10), in which case E 
vanishes and • is irrelevant, or by setting a = 0 (so the total 
strength drop is a). Note that all the crustal-scale earthquake 
modeling discussed above in the context of laboratory-based 
rate and state friction has used a constitutive law with a single 
weakening process, associated with slip-dependent state evo- 
lution (evolution of the contact population), with the excep- 
tion of the Rice [ 1996] shear heating model which has an ad- 
ditional, much larger, slip scale for evolution of elevated pore 
pressure. However, experiments analyzed in the rate/state 
framework [Ruina, 1983] do sometimes suggest a character- 
ization in terms of a pair of widely different state evolution 
slip distances. Constitutive relations have been written for 
such cases and shown [Ruina, 1983; Gu eta/., 1984] to lead 
to much richer stability results, with possible regimes of sta- 
ble but chaotic sliding, in single-degree-of-freedom systems. 

The concept of a small-scale strength drop rr seems to have 
emerged in two interpretations in the literature. In this paper, 
we introduce cr as part of our constitutive description at small 
slips, and we try to fully model the nucleation process based 
on strength drop during those small-scale slips (although we 
later argue that a simplified representation as a rapid but con- 

tinuous strength drop a over some timescale, like in Myers et 
a/. [1996], is a valid approximation in the cases we have ex- 
amined). 

The other interpretation of rr is as a computational aid, 
hoped to be unessential to the final results. One then tends to 
think of the (small) strength drop a not as a legitimate part 
of the constitutive description, but rather as a simple way 
of kicking the system into dynamic motion when a critical 
stress has been reached. This obviates the time-consuming 
calculations of modeling the initially slow and aseismic slip 
that will ultimately make the transition to rapid dynamic mo- 
tion. Our results suggest considerable caution in such inter- 
pretation of the rr concept. A population of small events will 
be produced, if rr is small enough, which would go out of 
existence if rr were set to zero (although then the more dif- 
ficult nucleation calculations would be required). Cochard 
and Madar/aga [1996] adopt this second interpretation of rr 
and study in an appendix how the artifact population of small 
events, of stress drop scaling with a, changes in character 
over several orders of magnitude reduction in a. 

Our present results confirm that event populations with 
small rr (say, of order 0.01) are distinctly different, at least 
for small events, than for rr = 0. Indeed, there are sound 

theoretical reasons why we should expect a small-event pop- 
ulation to exist for any sufficiently small positive a, but not 
necessarily to exist when rr = 0. 

Finally, as an aside, throughout the paper we use the di- 
mensionless formulation we have described in this section, 

as the minimal parameterization it affords is the most conve- 
nient environment in which to examine theoretical and nu- 

merical questions. To link with observations, however, it is 
important to be able to go back and forth between dimension- 
less and dimensional variables. The conversions to do this 

are therefore given in Appendix A. 

2.2. Stability of the Friction 

To examine the stability of the model under the friction 
that we have chosen, we look at the linearized growth of a 
sinusoidal perturbation and examine the rate of growth as a 
function of the wavelength of the perturbation. Rice and 
ina [ 1983] derive the stability results for this case, both quasi- 
statically and dynamically, with a constitutive formulation 
that is general enough to include equations (5) to (10), but 
without the viscous second gradient term in (5). Because the 
stability analysis for the geometry of Myers eta/. [ 1996] is 
easier, and the results are similar to that for the wave equa- 
tion, we examine the stability for the friction in the Klein- 
Gordon equation here. In that model, equations (1)-(2) are 
replaced by 

02U 
=V2U-U+vt . (11) 

Consider the growth of the mode 6U off of a uniform 
creeping solution U - Uo + vt + 6U, where Uo - •oe-U 
just balances the threshold friction, and 

6U -- ul eik•-'•u+f•t (12) 

with luxl << 1. First, we consider the slip-weakening case 
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(although a uniform creeping solution strictly makes sense 
in that case only if u << 7, where one requires 7 << 1 to 
be in the slip-weakening regime; see Appendix B for a full 
treatment). In the limit where 7 = 0, where we have pure 
slip-weakening, and with r/= 0, the dispersion relation, us- 
ing (11), (2), and (12), can be calculated to be 

(13) 

where & is the rate of slip weakening at small slipß For our 
friction (equations (5)-(10)), which weakens at small Q with 
slope a +/5, we have & - a +/5. We see that at long wave- 
lengths the system is unstable for & > 1, while at short wave- 
lengths it is marginally stable, having zero real growth rate. 
The critical half wavelength where the system goes unstable 
occurs at 

•:-- •-- &))l . (14) 
•/&2_ 1 a 

We also see from this that there is a critical amount of slip 
weakening, & • 1, which is needed for the long-wavelength 
instability. We regard this half wavelength as the equivalent, 
within a factor of near unity, of the "nucleation size" or "co- 
herent slip patch." Other calculations to represent a finite 
slipping region give a similar expression with prefactors ap- 
proximately equal to this value. 

In Appendix B, we examine stability to perturbations rig- 
orously for arbitrary nonzero •. We show that nonzero • in- 
troduces a velocity-weakening part, which, in the absence of 
an), other terms, would then lead to an instability at the small- 
est wavelengths. With a nonzero r/, however, the smallest 
wavelengths are stabilized. We obtain, from a linearized ap- 
proximation valid for small 7 and small •/(see Appendix B), 

(•27 _ •k 2) 12 -- 4-iv/k 2+1-&2 + ( k 2+1-&2 
+ (15) 

From this we see that the high wavenumbers are stabilized 
by •/, having Re • < 0, when 

(16) 

Rice and Ruina [ 1983] show that an alternative dynamic sta- 
bilization at high wave number results from the experimen- 
tally observed positive variation of strength with slip rate at 
fixed state (fixed contact population), as embedded in the 
standard rate/state laws. No similar experimental basis is 
known for the r/term. 

Our only other requirement is that in this slip-weakening 
case we do not want the •/term to be affecting things above 
the nucleation scale (equation (14)). From (15) we then rec- 
ommend an upper bound on r/, 

1 

•/< 2& 2 , (17) 
to get a slip-weakening dominated nucleation. For this slip- 
weakening case, to stabilize the small length scales, we 

could have used a velocity strengthening term, rather than 
the viscous-like term we used here, and gotten similar re- 
sults. For the velocity-weakening case, however, a velocity- 
strengthening term would not have worked without killing 
the instability altogether, and something like the viscous term 
is needed. We therefore, in this paper, consider just the 
viscous-like dissipation term, a stabilizing mechanism which 
can handle both cases. 

For the velocity-weakening case, which occurs when 7 is 
large, the r/term provides stability when, approximately, 

a t 
k • > --, (18) 

where now a t = (a +/3)/7 is the velocity-weakening rate at 
large 7. Equation (18) provides an upper bound on the crit- 
ical k in general and becomes exact when 7 >> 1 and for 
4a t < •/72. This stability criterion comes from noting the 
transition from weakening to strengthening in (5) at large k 
for (7), (8), and (10) with large Y- 

We will focus our attention in this paper on the slip- 
weakening case, both because of its more direct relevance to 
the slip-weakening nucleation believed to be relevant to real 
earthquakes, and because it has a more straightforward inter- 
pretation in terms of length scales. The velocity weakening 
does, however, provide analogous results, and helps to show 
how these results might generalize. 

We have found conditions for stability along the fault di- 
rection. For the numerics, we also need to know how re- 

solved the structure in the fault perpendicular direction needs 
to be. From the stability analysis we see that we need to know 
how big •, the y direction inverse decay scale, is. For slip 
weakening, • - &, independent of k. This is, however, the 
same size as the maximum k that we need to resolve from 

(13), so the resolution requirements in both directions are 
roughly equal. For velocity weakening, 

tc = •(a' - r/k 2) . (19) 

Using the dispersion relation for (11), (2), and (12) gives 

•2 _ k 2 + 1 (20) ß 

(a t -- r/k2) 2 - 1 

The singularity in the denominator, which occurs near the nu- 
cleation scale k = V/a t/•/, tells us that the Fourier mode is 
not a good approximation of the structure at the nucleation 
scale. Nonetheless, away from this singularity we can use the 
expression to find that for k large, 

(21) 

is the structure of the modes. Thus again we find the same 
resolution requirements coming from the fault parallel and 
perpendicular directions. 

3. Numerical Simulation 

To solve the partial differential equation (11), we dis- 
cretize the bulk into equal finite rectangular blocks, approx- 
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imating the spatial derivatives with finite differences, and 
then solve a set of coupled ordinary differential equations in 
time. We use a second-order space, first-order time finite dif- 
ference approximation. Relative to higher-order approxima- 
tions, this has the disadvantage of introducing more bulk dis- 
persion at the shortest wavelengths [Afford et al., 1974]. It 
has the advantage, however, of being faster, and therefore 
of allowing us more resolution along the fault. As we will 
see, bulk dispersion does not appear to be important in the re- 
sults that we will examine, so we make the trade-off in favor 

of higher fault resolution. For more accurate motions away 
from the fault, higher-order approximations would be prefer- 
able [Olsen eta/., 1997]. 

We have solved the finite difference equations using two 
different algorithms in order to confirm that the results do 
not depend on the algorithm used. In one algorithm, we used 
the formulation of Wn'ieux and Madariaga [1982], tracking 
the velocity field and stress field on a staggered grid with a 
leap frog in time. Boundary conditions on the fault are im- 
plemented through a ghost stress layer, with the stress set by 
either canceling the stress from the bulk in the stuck phase, 
or being equal to the sliding friction given by equations (5)- 
(7) in the sliding phase. The boundary conditions are updated 
after the velocity and stress fields are updated, giving a three- 
step staggered cycle. In the second algorithm we track the ve- 
locity field and the displacement field at the same points. The 
fault boundary condition is again implemented with a ghost 
layer, this time displacement, with the strain set by the stress, 
and the stress calculated in a way analogous to the previous 
method. This second algorithm is in some ways more primi- 
five, but it allows us to use a fast and efficient way of damp- 
ing the radiation, a technique which will be useful in studying 
nucleation processes without having disturbances from pre- 
vious events. It also allows an independent check on the in- 
dependence of the results from the algorithm. 

All time increments are done explicitly. Time steps are 
taken small enough to satisfy numerical stability conditions. 
In the absence of bulk dissipation the time steps are typically 
two fifths the timescale of the smallest grid resolution (CFL 
stability condition 0.4) in the slip-weakening case, and one 
fifth the grid resolution (CFL condition 0.2) in the velocity- 
weakening case, while with bulk viscous dissipation they are 
smaller [Virieux and Madar/aga, 1982; Alford et al., 1974]. 
We have checked that changing the time steps does not af- 
fect the results that we will present, so that we have achieved 
a continuum in time. It is one of our purposes in this paper to 
demonstrate that our results also do not depend on the spatial 
resolution, so that we have achieved a continuum in space as 
well. 

The numerical catalogue of events is generated is as fol- 
lows. Starting from any initial condition where the displace- 
ment along the fault is nonuniform, the system self-organizes 
into a statistically steady state which is independent of the 
initial conditions. We begin collecting data after the self- 
organized state has been reached. The system is loaded con- 
tinually at the slow loading rate. The fault remains locked 
while the stress at the fault boundary is less than the frictional 

strength. When the stress reaches the sticking friction, the 
fault begins to move. Because of the friction that we are us- 
ing, for unstuck patches less than the critical stiffness length 
:•, the fault will slide stably (creep) at rates which scale with 
the slow loading rate. We therefore define an event as ini- 
flaring when some part of the fault has a velocity that ex- 
ceeds some multiple of the plate-loading rate, and an event 
as ending when all of the fault has a velocity that has then 
dropped below a multiple of the plate-loading rate for some 
amount of time. We typically use a multiple of 10 being the 
factor ai for initiating an event, a multiple of 5 being the fac- 
tor a! for finishing an event, and a time 0.2 for the fault hav- 
ing remained below the air/finishing velocity cut. We have 
checked that the results at large scales are not sensitive to the 
choice of these numbers; only at the nucleation scale, where 
there are creep surges which occur at many times the plate 
loading rate, is there any issue. Then a large value of the cut- 
off factor ai is useful in removing them. 

3.1. Bulk Dissipation 

Because we have elastic radiation emitted during the 
events, and boundaries which reflect some of the radiation, 
we need to use some type of bulk dissipation to damp out the 
elastic waves in the bulk between events. We have examined 

a number of different ways of adding dissipation to the bulk, 
all of which give results that behave similarly. None of them 
match the form of dissipation which best describes the Earth 
[Aki and Richards, 1980; Sipkin and Jordan, 1979]. How- 
ever, since the dissipation in the Earth is very weak at scales 
near the source, the bulk dissipation should not be an impor- 
tant effect on the source dynamics, and all of the forms of 
dissipation that we examine share that property. And again, 
all of them give the same results. 

In one case, we add dissipation to the bulk in the form of a 
Kelvin-Voigt viscoelastic model (stress in bulk equals strain 
plus constant F times strain rate) with a coefficient that de- 
pends on the distance y from the fault; equation (1) becomes 

09'U OU 

ate. = v'u + v. . (22) 
In an alternative case, we used a bulk dissipation that ties the 
velocity to the reference tectonic velocity, so as to represent 
substrate drag, again with a y dependence: 

09-U 

o•t 2 + ou -37-). (23) 

In a third case, we studied a bulk dissipation which uses the 
elliptic boundary value problem to quench the intemal ki- 
netic waves. The procedure is as follows. Once the max- 
imum velocity on the fault drops below the cutoff for end- 
ing an event, and does it for a sufficient amount of time, we 
check to see whether the static elastic solution for the cur- 

rent boundary displacement has all the stresses not exceed- 
ing the friction strength. This static solution is found by solv- 
ing the Dirichlet boundary value problem for Laplace's equa- 
tion (the static scalar elastic equation) with the stuck fault and 
loading surface as boundaries, and, as in the dynamics, peri- 
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odic boundary conditions along the fault. There are two pos- 
sibilities. If the static solution has a stress at some point on 
the fault which exceeds the friction strength, then we know 
the event i.s not finished. Hence we resume the full elas- 

todynamic s;mulation as before, continuing from where we 
had interrupted to do the check. If, instead, the static solu- 
tion indeed has all parts of the fault below the sticking fric- 
tion strength, then we consider the event done. We then re- 
place the kinetic bulk with the static bulk elastic solution. 
The bulk velocities are also reset, by updating the bound- 
ary displacements which are creeping, displacing them for 
a small finite time, finding the static solution for this future 
time, and then setting bulk velocities to the difference be- 
tween the two static solutions divided by the time increment. 
This sets all the velocities less than or equal to the creep 
speed. This method of dissipation was studied using the sec- 
ond algorithm, which solved for displacement and velocity, 
using fast elliptic solvers for displacements. 

Again, all three methods of dissipating energy in the bulk 
give the same result. We used these different types of dissi- 
pation to show that the details of the loadfi•g process and the 
bulk dissipation are unimportant. They each have quite dif- 
ferent dispersive properties for the waves impinging on the 
loading surface, and quite different time dependences of the 
dissipation and dispersion of different wavelengths. It is, in 
fact, quite interesting that the details of the bulk dissipation 
and dispersion have quite unimportant effects on the behav- 
ior; much more important, as we will see, is the friction on 
the fault. 

3.2. Events 

After an event is completed, we analyze the properties of 
the event that just occurred, and continue loading until the 
next event occurs, and the cycle is repeated. There are a num- 
ber of properties of each event we can measure. The moment 
M measures the net slip in an event. To conserve moment, 
we measure the slip from the last time an event occurred there 
with that minimum velocity. Thus 

M -- f 5S(x)dx, (24) 
where 5S(x) is the net slip measured since the last net slip 
event occurred at the location x and is zero unless a velocity, 
taken to be ai•,, has been exceeded. The only issue in how 
exacfiy one defines the moment is how to consider creep dis- 
placements. However, since the seismic part of the slip dom- 
inates the sum, and the slow creep is basically negligible, it 
does not matter. The magnitude of an event is the logarithm 
of the moment:/• -- logx0 M. 

We measure the length of an event in two different ways. 
The length A measures all the parts of the fault that have 
slipped at a velocity which exceeded the cutoff minimum ve- 
locity needed to initiate an event. The slip zone size length L 
measures the size of the spatially connected fault patch which 
moved at all, at the place surrounding the location on the fault 
which slipped the fastest during the event. As we will see, 
this length L is particularly useful in examining nucleation 
questions. 

3.3. Parameters 

Before turning to the series of plots which form the core 
of our results, we discuss here the different parameters in the 
problem, their relevance, and the reasons we have chosen the 
ranges of values that we study. There are two main sets of pa- 
rameters: one set describes the bulk, and the other describes 
the friction. A further distinction can be made between those 

parameters which turn out to be relevant, and those which 
turn out to be irrelevant to the resulting behavior. Even for 
those that do turn out to be relevant, we will see, quite fortu- 
nately, that for nearly all those parameters the behavior scales 
in a simple way with the parameter, in the regimes that will 
be of interest. 

The bulk is described by the geometry and boundary con- 
ditions away from the fault. For a big enough and sufficiently 
resolved bulk, all of the bulk parameters are either irrele- 
vant or unimportant. We consider a rectangular geometry of 
a plate of length Lx and width Ly -- !. For long enough 
faults, Lx becomes an irrelevant parameter if the model does 
actually exhibit a broad distribution of rupture sizes, i.e., type 
(I) complexity. The longest events will then not break the 
whole fault length, and changes in L• do not affect the statis- 
tics. For short enough faults, the longest events do break 
the whole length, and the longest events therefore scale with 
L•. In that case, the statistics of the events do depend on 
Lx. We need to be concerned if the transition value of Lx is 
longer than for the major faults typically found in the Earth's 
lithosphere (often it is). Horowitz and Ruins [1989], in their 
quasi-static study that was stabilized by the onset of veloc- 
ity strengthening at higher slip rates, noted the importance 
of Lx for complexity. They reported that complex solutions, 
with features roughly like what we have called large event 
complexity, type I, above (i.e., their Figure 10), had been 
found only at large values of L:. They show such a case for 
L: = 20•r • 63, but show another (their Figure 9) with no- 
tably less complexity at that same L: but larger critical stiff- 
ness of the fault law relative to the elastic unloading stiffness 
of the surroundings. 

The resolution of the grid in the x direction is 5x, and the 
resolution in the y direction is 6y; we have refined the grid 
such that the results do not depend on these parameters, thus 
demonstrating a spatial continuum limit. We find that we 
need to make 5y small enough compared to 6x to get a con- 
vergent response; 5y/Sx = 0.5 is sufficient in the parame- 
ter ranges we study. We would, ideally, like to make the grid 
resolution extremely fine. This is, however, a very expensive 
limit, with the cost scaling as the cube of the degree of refine- 
ment (one degree each from the two spatial degrees of free- 
dom, and a third from having to take smaller time steps to 
resolve the faster associated frequencies). 

The other bulk parameters are associated with the wave 
dissipation F(y). As the results do not depend on which 
type of dissipation we use, in the ranges we have used, these 
parameter values are not important. There are, neverthe- 
less, values which give the most efficient damping. Since 
the quenched dissipation (third case, described after equa- 
tion (23)) removed the bulk kinetic energy most rapidly, we 
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generally used that in the calculations of the nucleation pro- 
cesses. In the case where we used continuous dissipation, the 
viscous form (first case) was seen to dissipate kinetic energy 
the fastest, and was the preferred method. There, typically, 
we used a linear form of F(y), with 

r(y) - { o y <_ yo; -(y- > ß 
(25) 

For Yo = 0.5, the viscous dissipation (22) with a value of 
a • 0.4 was seen to dissipate the bulk kinetic energy most 
rapidly; however, this large value required a smaller time 
step, owing to the numerical stability conditions, so we gen- 
erally compromised with a smaller value, a compromise be- 
ing a = 0.2. Again, though, none of these choices were im- 
portant to the results. It is one of the features of our findings 
that we wish to emphasize that the results that we present are 
insensitive to the bulk dissipation and dispersive properties. 

The loading rate parameter v sets the timescale between 
events, and sets the velocities in the creep regime, but is oth- 
erwise unimportant for the dynamic events. We want v to 
be small so as to make this separation of relevance and irrel- 
evance clear (and to match the extremely small values that 
occur in the Earth), but not so small that is takes too long to 
accumulate much loading. (Rice and Ben-Zion [1996] and 
Lapusta and Rice [ 1997] have developed a boundary integral 
model with a spectral formulation that allows for arbitrarily 
slow loading rates.) 

There are five friction parameters in our model: a, /•, 
a, 7, and r/. A sixth, the threshold value $o, is irrelevant and 
can be scaled out of the problem; this follows from the lin- 
earty of the bulk equations, which allows the addition and 
subtraction of a constant stress solution, 

$ --* ß - $o U -• U + Soy ß (26) 

As a consequence, as in earthquakes, only stress drops, not 
absolute stresses, are relevant (in thermo-mechanically un- 
coupled models). We have already used a nondimensional- 
ization to set the scale of the maximum friction drop from the 
large-scale ct weakening in (7) to unity. 

The parameter 7 sets the timescale of the healing of the 
friction. When the time 1/7 is long compared to the rup- 
ture timescale, we get slip weakening. When 1/7 is short 
compared to the rupture timescale, we get velocity weaken- 
ing [Shaw, 1995]. Since we want healing between events, we 
need 

v << 7 ß (27) 

In the slip-weakening case, when 7 << 1, 7 is seen to be an 
irrelevant parameter. 

The parameter r/, which controls the viscous strengthen- 
ing, is included to give stability to the smallest wavelengths 
(see (16)-(18)). It does not affect the behavior qualitatively 
when it is small. 

For the case of laws with a single weakening process, that 
leaves a single relevant parameter. We may describe that 
scale, equivalently, for slip weakening by either saying that 
(1) ct = 0, cr is irrelevant beyond providing the scale of the 

strength drop (it could be rescaled to unity) and the parameter 
is/•, or (2) a -- 0,/3 is then without effect and the parameter 
is ct. This one-process case can be treated as a special case 
of what follows. 

For laws with a pair of weakening processes, that leaves 
us with three relevant parameters: ct, /3, and a. The param- 
eter cr sets the scale of the stress drops of the small events. 
Stress drops of earthquakes are observed to be roughly equal 
for small and large events, so this suggests a value of rr closer 
to unity would be the more realistic value. Alternatively, we 
could accept arbitrarily small values of a, provided that ct 
was made large (so that •r/ct << 1, in the slip-weakening 
case); if we then assume that observable earthquakes only oc- 
cupy the length scale range larger than •r/ct, the invariance of 
stress drops for observable events would be respected in this 
slip-weakening case. However, this regime is difficult to re- 
solve numerically. 

The parameter/• sets the scale of the smallest events in the 
two-process case. For slip weakening, the nucleation length, 
from equation (14), is •r/(/• + ct), while for velocity weak- 
ening, from equation (18), it is •rv/7•//(/3 + c•). We would 
like to have this length be very small and, also, to have the 
initial drop in friction happen rapidly compared to any over- 
all weakening effects; thus/3 >> ct is the desired regime. In 
practice, however, if we want to resolve the nucleation length 
with the grid resolution, we cannot use such large values of 
/3. Nevertheless, we will see that we obtain appropriate scal- 
ing with the range of/3 that we can achieve. 

The crucial parameter in the problem is ct in the case of 
slip weakening, and c•/7 in the case of velocity weakening. 
This sets the behavior of the large events (or of all events in 
the one-process case), and rates of small events when there 
are two processes. It both qualitatively and quantitatively 
changes the behavior in the model. It needs to be larger than 
unity in order to make the large-scale weakening unstable in 
the problem. The most realistic range of stress drop invari- 
ance occurs when cr is order unity or when rr is small but ct is 
very large, as above. However, the special parameter range 
allowing full small- and large-event complexity in this two- 
dimensional uniform fault model is with small rr and ct near 

3. Then there are numerous small events. For larger values 
of ct we get few small events. 

Even with our relatively modest parameterization, we 
would still have a huge space to check if we were to try to 
check all of parameter space. Instead, we will focus on first 
showing results for a range of parameters which illustrate 
the conclusions that we have already announced, discussing 
these results within the emerging theoretical insights devel- 
oped from this and earlier studies. Because of the theoretical 
interest in the special parameter range for which small-event 
complexity results, we devote a series of figures to that case. 

For the bulk, we use v -- 0.0001. In general, we use Lx = 
200, 6x - 0.1 and 6 u -- 0.05, although further refinement 
is sometimes necessary. The special parameter range which 
has shown small-event complexity is, for the slip-weakening 
case, ct - 3 (which means that what would reduce to a nucle- 

ation size •r/ct in the limit cr- 0 is then tuned to unity), small 
cr of order 0.1 or less, and/3 much larger than a. For exam- 
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ple, c• = 3,/3 = 9, and a = 0.03 are used in several figures 
here to illustrate that parameter range. When such cases are 
studied with higher resolution, we use Lx = 100, 6x = 0.05, 
and,,, = 0.025. 

4. Results 

4.1. Single Weakening Mechanism 

We consider first the case of a singe weakening mecha- 
nism, a = 0 (so that/3 is irrelevant). We then will wish 
to choose the nucleation size •r/c• much smaller than crustal 
dimensions. There is a well-established framework for an- 

ticipating some features of the event population. We expect 
slip to begin aseismically when the highest-stressed position 
on the fault just reaches the threshold stress. Then the aseis- 
mically slipping zone will gradually enlarge in size until it 
has reached a spatial extent comparable to what is called the 
nucleation size, and is denoted by :• (• •r/c•, for c• >> 1, 
for the present laws). At that point, rapid slip breaks out 
as a propagating rupture. This scenario is supported by all 
known elastodynamic simulations of earthquake sequences 
that fully model nucleation [R/ce and Ben-Zion, 1996; Ben- 
Zion and R/ce, 1997; Lapusta and R/ce, 1997, 1998], and was 
already apparent in earlier works that did not do full elastody- 
namics [ Tse and R/ce, 1986; R/ce, 1993]; it is supported by 
our present studies. Once dynamic rupture breaks out, with 
the single weakening mechanism it will generally occupy a 
region much larger than the nucleation size. In some cases, 
that region occupies the entire fault domain, whereas in oth- 
ers a population of large event sizes develops. As anticipated 
from Horowitz and Ruina [1989] and Carlson eta/. [1991], 
we find for the present cases that sufficiently large L• always 
leads to a broad population of (large) event sizes. The smaller 
the nucleation size, the larger the L• value required [Shaw, 
1995]. It may be long compared to natural examples. 

For example, Figure I shows two different representations 
of the slip history produced by the model when c• = 16. 
In this case the nucleation size is •r/16 = 0.20. In gen- 
eral, only large events are seen. Only part of the long space 
and time history is shown (the fault length, in this case, is 
twice what is shown). Faintly visible, in the upper Figure la, 
are what look like some exceptions to this. They consist of 
two types of motions. First, there are isolated patches which 
can be triggered by dynamic waves from an event. When 
we count events numerically with our event-counting crite- 
ria, these multiple patch events are considered as one event, 
and small isolated patches triggered by dynamic waves from 
larger events do not end up being counted as separate events. 
There is a second set of motions, rarer than any of the oth- 
ers, which occasionally show up, and are due to finite res- 
olution. Near the nucleation scale, there may be the occa- 
sional creep surge in these plots. Slower loading and a more 
resolved grid remove even these last vestiges of creep surges. 
However, these limits are very cosfly to implement for such 
long loading, and we therefore tolerate these extremely rare 
exceptions here. Higher cutoff velocities can also remove 
them; we do not, however, want to eliminate small events 
simply by virtue of having set the cutoff velocity too high. 
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Figure 1. Two different representations of an attractor pro- 
duced by the model for a single weakening mechanism. The 
horizontal axis is distance along the fault, measured in units 
of the brittle crust depth. The material properties are uniform 
along the fault. (a) The times at which various parts of the 
fault break- a standard space-time plot in seismology, only 
here for very many loading cycles, whereas ½.p_1¾ a fraction 
of a loading cycle is generally available for real data. (b) 
The cumulative slip along the fault following an event, for 
the same set of events as above in Figure l a. The friction 
parameters used here are c• = 16, • = 0, 7 = 0.1, and 
u = o.ooool 

These rare surges are restricted to being close to the nucle- 
ation length scale; they are, however, occasionally counted 
as events by the picking criteria we use. They differ in two 
significant ways from the small events that we will see when 
we consider two weakening mechanisms. First, they are not 
broadly distributed over a range of length scales, but rather 
peak about the nucleation scale. Second, and most signifi- 
canfly, these surges exhibit sensitivity to the grid resolution, 
with their rate of occurrence changing markedly as the grid 
becomes more resolved. This is in stark contrast to the small 

events that we will see when we introduce two weakening 
mechanisms, which are insensitive to grid resolution. A re- 
lated symptom of the grid resolution problem for the surges is 
the nonmonotonic parameter dependence in the surge rates; 
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as we change c•, we change the nucleation length scale •, 
and as this becomes a favored and disfavored multiple of the 
grid resolution, we get nonmonotonic changes in the number 
of surges as a function of c• at fixed grid resolution. This is 
again in stark contrast with the small events that we will see 
when we introduce two weakening mechanisms, where we 
see steady changes in the distributions of events as the pa- 
rmeter values are changed. Aside from these rare nucleation 
scale surges, essentially all of the events have lev. gths much 
larger than the nucleation size, and, indeed, for large c•, it is 
rare to see events with lengths smaller than about 4 to 6 (i.e. 
4 to 6 times seismogenic thickness), which is, for this value 
of c•, 20 to 30 times the nucleation size and would correspond 
to lengths like 40 to 90 km for strike-slip faults with 10 to 15 
km seismogenic depth. Hence the model suggests that essen- 
tially all events will be large events in the case shown. The 
events do not repeat periodically in the long term, although 
there are many locations at which sequences of, say, four to 
eight very similar events occur with roughly uniform recur- 
rence intervals. 

There is a distribution oi large event sizes, although we 
emphasize that this occurs only because the modeled region 
is sufficiently long. For the case shown, that length is 200, 
which means 2000 to 3000 km for strike-slip faults in na- 
ture, comparable to the entire length of the San Andreas or 
North Anatolian systems. If we had modeled a region of, say, 
25 length •,250 to 400 km in nature, already rather long for 
strike-slip faults), the simulations would not give large-event 
complexity but, rather, a nearly periodic sequence of large 
events that rupture the entire region. 

What happens as we vary a (and hence the nucleation size 
•r/x/c• a - 1, which, from here on, we will approximate by 
•-/a)? Figure 2 shows size distributions for a range of c•. As 
long as the nucleation size is small compared to unity, i.e., 
to seismogenic thickness, the slip history is similar to that 
shown. There are no small events, and the larger the a, hence 
the smaller the nucleation size •-/a, the larger the minimum 
size of those large events and the longer the length needed to 
give a broad size distribution (versus nearly periodically re- 
peated events that span the domain). However, a transition 
occurs if we diminish c• so much that the nucleation size be- 

comes comparable to the seismogenic thickness. The min- 
imum event length of the population tends to approach the 
seismogenic thickness and a broader distribution of events, 
bordering on the nucleation size, then emerges. 

For example, we see in Figure 2 that the large-event peak 
extends down to near 5 when a = 16 (•r/a = 0.20) and 
down to near 4 when a = 8 (•-/a = 0.39). However, in 
the cases c• = 6 (•r/c• = 0.52) and c• = 4 (•r/c• = 0.78), 
the peaks extend down to near 2. These lower peak events 
of the large-event population finally merge with the nucle- 
ation length around a = 3 (•r/a = 1.1). That is not a physi- 
cally interesting range of a for a model with a singe weaken- 
ing mechanism since it precludes all earthquake nucleation 
with length smaller than seismogenic thickness. However, 
we will see that the choice of a in this special range, around 
3, in models with a pair of weakening mechanisms, is pan of 
the special parameter range leading to small-event complex- 
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Figure 2. The distribution of lengths L of events for the slip- 
weakening friction with different a for the case when a = 0. 
The differential number of events in a logarithmic interval of 
lengths is plotted against the event length. Note that we now 
have essentially only large events, aside from a few fluctu- 
ations near the nucleation scale. Four values of a are used 

here, a = 4, 6, 8, and 14. Increasing line thickness corre- 
sponds to increasing values of a. 

ity (the other part being a small strength drop a in the first, 
small-slip, weakening process). 

Our results with small nucleation sizes in this case of a 

single weakening mechanism are consistent with the results 
of R/ce and Ben-Zion [1996] on continuum fault models, 
that dynamic events burst from the nucleation size to a much 
larger size, and that there are no small events, and hence no 
small-event complexity. 

4.2. Pair of Weakening Mechanisms 

Now consider a nonzero a and associated parameter/3. 
Under continuous loading, slip initiates when the highest 
stress just reaches the threshold stress and continues aseis- 
mically until the sliding region occupies an extent compara- 
ble to the nucleation size :• = •r/(c• +/•), at which point a 
dynamic breakout occurs. However, in this dynamic break- 
out, the stress drop near the nucleation site is just of order 
a, at least before enough slip takes place so that the large- 
scale weakening process is activated (it could cause a further 
drop of 1, for a total stress drop of 1 + a in these frictions 
with two weakening processes). Now suppose that a is ex- 
tremely small, yet still positive, and that the stress field at the 
moment of nucleation is spatially heterogeneous. In such a 
case, there arises the possibility that the rupture will propa- 
gate into a region where the initial stress was more than a 
away from threshold. Then, for small slip such that the large- 
scale weakening process does not contribute significantly, 
this generates a region of negative stress drop that will ar- 
rest the rupture. These considerations lead us to suspect that 
the introduction of sufficiently small a > 0 will always lead 
to some distribution of small events, at least when the stress 
field stays spatially heterogeneous from event to event. 
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If the nucleation size that would result when •r --- 0, 

namely, •r/c•, is much less than unity, then we expect that the 
ruptures of such small-event distribution might not stop once 
they reach size 7r/c•, so that instabili• based on the large- 
scale weakening process sets in. Thus we then expect the 
small-event population to mainly occupy only the size range 
between •r/(c• + fi) and 

We have no complete theoretical explanation of this 
regime, but simulations do indeed show that when that nu- 
cleation size •: = •r/x/a g- 1 is comparable to or a lit- 
tle larger than unity we can retain enough heterogeneity of 
stress in the system to allow that event population, associated 
with initially small strength drop rr > 0, to span a range of 
sizes, from •r/(a +/•) to sizes even larger than •r/x/a 2 - 1. 
In particular, we find in simulations that if a - 3 (so that 
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Figure 3. Two different representations of an attractor pro- 
duced by the model for the special parameter range where nu- 
merous small events exist. The special parameter range con- 
sists of two weakening mechanisms with c• close to 3 and a 
small. The same type of plots as in Figure 1 are shown, but 
with the axes rescaled somewhat. (a) The times at which var- 
ious parts of the fault break. (b) The cumulative slip along 
the fault following an event, for the same set of events as in 
Figure 3a. The same set of parameters as in Figure 1 is used, 
except now c• = 3 a -- 0.03, and/• = 13. Note the rich 
population of smaller events, for this friction. 
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Figure 4. Two different representations of an attractor 
produced by the model where two weakening processes are 
used, with the small-scale nucleation size being the same as 
in Figures 1 and 3, but now with c• significantly larger than 
the critical value. (a) The times at which various parts of the 
fault break. (b) The cumulative slip along the fault following 
an event, for the same set of events as in Figure 4a. D•e•same 
set of parameters as in Figure 1 are used, except now c• = 8, 
•r = 0.03, and/3 = 8. 

•:•,=0 • 1.1), if/• >> • (e.g.,/• = 9 or larger) and if rr is 
small (e.g., 0 < rr < 0.1), then there is a small-event distri- 
bution of power law frequency-size statistics, which results 
as a legitimate outcome of a continuum model. Fortuitously, 
Myers eta/. [1996] focused in their simulations on precisely 
this parameter range, leading them to susI•Ct that they were 
seeing a universal feature of dynamic fault models. We es- 
tablish in the present work that such a power l•w distribution 
truly exists, but also show that it does so only in that special 
parameter range, and that, consistent with the above discus- 
sion, it does not exist when either rr is large, of order 1, or 
when c• >> 3, so that •:,=0 << I. 

In fact, Ben-Zion and Rice [1997] had already forecast 
what we find here, namely, that the tuning of the nucle- 
ation parameter •:•,=0 to crustal dimensions was important 
in obtaining the power law small-event range of Myers et 
a/. [ 1996] and Langer eta/. [1996], although they also raised 
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Figure 5. Two different representations of an attractor 
produced by the model where two weakening processes are 
used, but a is large. (a) The times at which various parts of 
the fault break. (b) The cumulative slip along the fault fol- 
lowing an event, for the same set of events as in Figure 5a. 
The same set of parameters as in Figure 1 are used, except 
now a = 3, c = 0.3, and/• = 13. 

8,/• = 8, and cr = 0.03, and Figure 5 for a = 3,/• = 9, 
and tr = 0.3. These are both substantially depleted of small 
events, compared to Figure 3, and are, visually, much like 
Figure 1. These cases emphasize that when the model incor- 
porates only one of either small a (Figure 4) or a • 3 (Figure 
5), the results are significantly different from the special case 
(Figure 3). We cannot illustrate the entire parameter range, 
but when a is much larger than 3, and when tr is much larger 
than, say, 0.05, the results are much more similar, visually, to 
Figure 1 (a = 16, tr = 0) than to Figure 3 (a = 3, tr = 0.03). 
For example, Figure 6 shows results for a = 8,/• -- 8, and 
tr = 0.3; the results are qualitatively quite similar to those of 
Figure 1. 

4.3. Special Case with a • 3 and tr Small, and 
Variations 

Because of the theoretical interest of the small-event com- 

plexity in the special case a • 3,/• much larger, and tr small, 
we now focus on that case and the effect of parameter varia- 
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the question of if the simplified time-dependent strength drop 
a of those studies had rendered the system inherently dis- 
crete. We now find that this latter question is not the issue; 
rigorous modeling of the small-scale weakening process still 
produces power law small-event complexity so long as a is 
near 3 (:•=0 is near 1) and a is small. 

As an example, we show in Figure 3 the two representa- 
tions of the slip history when a = 3,/3 = 13 and tr = 0.03. 
This has the same nucleation size, •r/(a +/3) = 0.20, as 
does the case in Figure 1, but even casual inspection shows 
that something remarkably different is going on. There is a 
broad distribution of sizes, with many small events. Further, 
as we analyze in detail in a subsequent sequence of figures, 
the small-event population forms a power law distribution. 

To emphasize, however, that this remarkable behavior oc- 
curs only in a very special parameter range, and not for all 
models with a pair of weakening mechanisms, we show the 
following examples of event distributions: Figure 4, for a = 
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Figure 6. Two different representations of an attractor pro- 
duced by the model where both a and tr are large. (a) The 
times at which various parts of the fault break. (b) The cu- 
mulative slip along the fault following an event, for the same 
set of events as in Figure 6a. The same set of parameters as 
in Figure 1 are used, except now a = 8, a = 0.3, and/3 = 8. 
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Figure 7. The distribution of lengths L of events for differ- 
ent slip weakening lengths 1//3. Four values of/3 are used, 
• = 9, 12, 15, and 21. Increasing line thickness corresponds 
to increasing values of/3. Note the shift of the cutoff small- 
event peak to smaller lengths •: for larger values of •, as ex- 
pected. The nucleation scale lengths for these four values of 
/3 for the large scale weakening a = 3 used here are, respec- 
tively, 0.262, 0.209, 0.175 and 0.131, for increasing •. Note 
the good quantitative correspondence with the smallest event 
length cutoff. The grid resolution here is 6= = 0.05, while 
o' = 0.03. 

tions within it and from it. We will look at distributions of 

lengths, rather than distributions of moments, as it is easi- 
est to make direct quantitative comparisons with nucleation 
length scales associated with slip-weakening lengths. Plots 
of the corresponding distributions of moments further rein- 
force the results we describe, and only illustrate more clearly 
the existence of power law distributions. 

First, we show in Figure 7 the event rates versus rupture 
length for a = 3, a = 0.03, and a broad range of •3 values, 
/3 = 9, 12, 15, and 21. We see that results basically fall on 
top of one another, except for the population suddenly drop- 
ping to zero at a size around the theoretical nucleation size 
•r/(a +/3), which then ranges from 0.262 when/3 = 9 to 
0.131 when/3 = 21. 

Figure •, for a = 3 and/3 = 9, shows how the event fre- 
quency versus rupture length is affected by varying a. We 
see results for small a values in Figure 8. For a = 0.01 to 
0.08 the event frequencies are broadly comparable and are 
compatible with the power law distribution. However, the re- 
suits for larger values of a show very clearly that there is a 
diminished number of small events, and a significant change 
in the distribution as a becomes (moderately) large. 

Finally, we show the effect of change of a away from its 
special value, when a is small. Thus Figure 9 shows the 
event frequency versus rupture length for a = 0.03,/3 -- 9, 
and for a range of moderate a values, ct = 3, 4, 6, and 8. 
The results show clearly that detuning a from 3 severely de- 
pletes the small-event distribution. The a dependence for the 
larger events is broadly similar to that shown in Figure 2 for 
the a = 0 case (i.e., for a single weakening mechanism). 

0.0 

-2.0 ' • .... 
10 -1 10 2 

I I \ 
I I I 

...... J, I I , • . 

10 ø 101 
L 

Figure 8. The distribution of lengths of events for different 
small event stress drops a. Five values of a are used, a = 
0.01, 0.02, 0.04, 0.08 and 0.2. Increasing line thickness 
corresponds to increasing values of a, except for the dashed 
line which has a = 0.2. Note the decreased number of small 
events for larger values of a. The weakening parameters are 
a = 3 and/• = 9. 

4.4. Some Generalizations 

Having studied one case in detail, we would like to know 
how these results generalize. Here, we briefly comment on 
the results of changing three different features: changing 
the nucleation mechanism, changing the frictional instabil- 
ity, and changing the bulk dispersive properties. In each of 
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Figure 9. The distribution of lengths of events for different 
a. Note that both the large- and small-event rates are affected 
by c•. Four values of c• are used here, c• -- 3, 4, 6, and 8, 
with the larger values of ct having the biggest large events. 
Increasing line thickness corresponds to increasing values of 
ct. Note the shift of the peak of small events toward smaller 
values of L for larger values of a. The nucleation lengths •: 
are, respectively, 0.262, 0.242, 0.209, and 0.185 for increas- 
ing c•. The grid resolution here is 6= - 0.1; this coarseness 
is evident in the jump in the minimum length events between 
c• - 4 and c• - 6. 
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the slip-weakening case. In general, there is a broad distribu- 
tion of large-event sizes. Only for small • and for c•/-y near 
a critical value do we see numerous small events. The crit- 

ical value of c•/7 is again around 3, with a minimum value 
of unity for getting the basic instability. This minimum value 
occurs when the frictional fault stress weakens at a rate equal 
to the natural velocity scale in the problem, which is the in- 
verse radiation damping velocity, a velocity which is set by 
the shear wave speed multiplied by the strength drop divided 
by the shear modulus (all unity in our dimensionless vari- 
ables, and thus corresponding to a radiation damping veloc- 
ity of unity). This threshold value of unity for the dimension- 
less velocity weakening corresponds with an analogous crit- 
ical velocity found by Coc•Sard and Madadaga [1996], who 
saw small events in their model only when they tuned their 
velocity-weakening parameters to be close to the radiation 
damping velocity scale. 

4.4.3. Bulk dispersion. The insensitivity of the results 

Figure 10. The distribution of sizes of events for two dif- with respect to a number of aspects of the dispersion relation 
ferent nucleation mechanisms. The differential number of in the bulk is a feature of the behavior worth remarking on. 
events in a logarithmic interval of moments is plotted against 
the magnitude (the logarithm of the moment). The frictions 
differ in the nucleation mechanism, but are otherwise the 
same. A slip-weakening nucleation mechanism and a time- 
dependent nucleation mechanism are shown. Both distribu- 
tions have the same values of the overall weakening c• and 
the small-event stress drop a, but differ in the way that a oc- 
curs. Aside from the smallest creeping scale, note that the 
two curves nearly overlay, showing the independence of the 
distribution of sizes at the large scales on the details of the nu- 
cleation mechanism, and the finite loading rate in one case. 
The thicker line is the slip-weakening nucleation, while the 
thinner line is the time-dependent nucleation. 

these cases, we find results similar to what was discussed pre- 
viously: a broad population of large events, and a population 
of numerous small events only in a special parameter range. 

4.4.1. Nucleation mechanism. Changing from a slip- 
weakening nucleation to a time-dependent nucleation does 
not appear to change the results qualitatively. Near the criti- 
cal parameter values, the distribution of sizes of events even 
quantitatively agree. Figure 10 illustrates this, plotting the 
distribution of length of events for two very different types of 
nucleation: one with the nucleation mechanism discussed in 

this paper where the stress drop a occurs with a/• slip weak- 
ening mechanism, and the other where the stress drop a oc- 
curs in a time-dependent way, as in Myers et M. [ 1996] and 
Shaw [ 1997]. Other than the nucleation mechanism, all other 
parameters are the same. Observe that for events above the 
nucleation scale, for both the small and large events, the two 
curves are essentially identical. This plot was made for the 
large-scale weakening near the critical value; for values far- 
thei away the curves remain qualitatively similar, but begin 
to slightly differ quantitatively. 

4.4.2. Velocity weakening. We can explore different 
frictional instabilities by changing 7 in equation (8), going 
from slip weakening at small 7 to velocity weakening at large 
7, with a mixture in between. Our results are again similar to 

Shaw [1997] showed that with the same friction, the distri- 
bution of sizes of events for the Klein-Gordon model (equa- 
tions (11) and (2) [Myers, eta/, 1996]) and the wave equa- 
tion model (equations (1)-(3) [Shaw, 1997]) were nearly the 
same. These models have quite different dispersive proper- 
ties at long wavelengths. Here we amplify this result, re- 
porting that by using different F(y) we again obtain essen- 
tially the same distributions for a given friction. Using a vis- 
cous dissipation, equation (22), and changing I •, we change 
most strongly the dispersion of the small wavelengths. Taken 
together with changes in the degree of spatial regulariza- 
tion, we have a good exploration of the relevance of small- 
wavelength bulk dispersion to the results. Using the param- 
eterization of F given by (25), we have examined distribu- 
tions of sizes of events over a range of values of a and Y0, 
and gotten essentially the same results. Thus the results have 
been seen to be remarkably insensitive to both the long and 
short wave dispersive properties. This is very encouraging 
news for finite difference approximations, where dispersion 
is an intrinsic problem at underresolved wavelengths [Afford 
eta/., 1974]. It suggests much more robust results may be ob- 
tained than •vight have been thought. It also addresses a very 
important question about how much we need to know about 
the setting where earthquakes occur to get it fight. Here we 
have seen that the results are sensitive to the fault properties. 
In contrast, the motions on the fault appear to be very much 
less sensitive to a number of aspects of the bulk properties 

5. Conclusion 

Our main conclusions have already been summarized in 
the abstract. Our results suggest that nonperiodic irregular 
large events are generic, in the sense that this occurs over a 
large measure of parameter space, in fault models that are 
sufficiently long compared to the seismogenic depth. The 
existence of numerous small events with a power law distri- 
bution of sizes, in contrast, appears to occur near a critical 
value, rather than above a critical value, and thus occurs over 
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a small measure of parameter space- at least in these two- 
dimensional models. 

We have explained the existence of small events when 
there are two weakening scales and • is small. In the limit 
as • • 0, these events would appear more like creep events, 
relative to the large weakening scale. Small events are pos- 
sible because of sharply peaked stress concentrations which 
are left over by large events. The main question in obtain- 
ing small events is how large are the fluctuations left by the 
large events and how powerful are the small events in break- 
ing through the more stuck neighboring regions. Increasing 
• and c• both contribute to the ability of small events to prop- 
agate, and increasing either was seen to lead to fewer small 
events, or to a complete absence of small events. 

Despite the small parameter range over which somewhat 
realistic distributions of sizes of events occur, the mere exis- 

tence of a spectrum of event sizes can be quite useful. Go- 
ing beyond the question of what the distribution of sizes of 
events is, we can ask what the events themselves look like. 
So, for example, recent work has studied what the radia- 
tion from events for different sizes and different frictional in- 

stabilities looks like, finding, in particular, sensitivity to the 
source physics in the far-field radiated energy [Shave, 1998]. 

What does all this mean for our understanding of earth- 
quakes? The basic question underlying these investigations 
is the degree to which stress heterogeneities left by previ- 
ous ruptures may be contributing to the complexity seen in 
earthquakes. Material and geometric heterogeneities also, 
no doubt, contribute to earthquake complexity. The ques- 
tion is, however, how much the dynamics may be contribut- 
ing, and what the signatures of this contribution might be. 
There are a number of points to be made regarding this is- 
sue. First, this work has reaffirmed the existence of a pro- 
foundly complex attractor of the uniform dynamics in a re- 
gion of parameter space. An impressive array of earthquake- 
like properties are exhibited in this regime However, the re- 
gion of parameter space over which one gets numerous small 
events with a power law distribution of sizes is very lim- 
ited, at least in these two-dimensional models. Further, the 
small-event distribution changes continuously across this re- 
gion, so there does not appear to be a special exponent of the 
power law. At the same time, these observations, though re- 
stricted in frictional parameter space, seem quite genetic in 
other ways, transcending a variety of geometries, bulk dis- 
persive properties, and types of frictional instabilities. So, 
what about earthquakes? Choosing an optimal parameter, the 
models show an astonishing array of earthquake-like behav- 
iors. Earthquakes would, however, somehow need to orga- 
nize their rupture process in order to operate in any partic- 
ular parameter regime; and what might drive them to oper- 
ate in any particular regime remains an open question. This 
situation raises a number of avenues of questions from the 
point of view of research. How well do the best regimes cor- 
respond with earthquakes? What might be added to make the 
best regimes correspond even better? What might be driving 
earthquakes to operate in those regimes? Might three dimen- 
sions be differep•t? 

We have shou.'n that we obtain slip complexity under the 
most stringent conditions in a continuum setting. Further, we 
have seen that the complexity obtained is similar to that ob- 
tained when certain simplifications of the nucleation process 
are made. This provides convincing evidence that previous 
results with this class of constitutive laws describing elasto- 
dynamic slip complexity in homogeneous systems were in- 
deed arising from a genuine continuum dynamical instabil- 
ity, and not because of numerical discreteness or algorithmic 
effects. It also suggests that further physics may be needed, 
however, if this special frictional parameter regime is to be 
broadened enough to have a chance of holding for earthquake 
faults. These results support the continued examination of 
slip complexity in uniform elastodynamic systems, and the 
extension to more realistic tensor, three-dimensional, as well 

as nonuniform elastodynamic systems. Most importantly, it 
challenges us to search for a correspondence between the 
complex behavior displayed by these models and the com- 
plex behavior displayed by earthquakes. 

Appendix A: Dimensional Variables 

In the body of the paper we have used dimensionless vari- 
able throughout. This has the advantages of preserving gen- 
erality, identifying the relevant groupings of parameters, and 
presenting a minimal parameterization. To compare with ob- 
servations, however, it is usefui to go back and forth between 
dimensionless and dimensional variables, and so in this Ap- 
pendix we list the conversions for a typical crustal case. 

From the elastodynamic equation, the wave equation (1) 
in our scalar case here, we have three independent variables 
which can be scaled: space, time, and displacement. We 
scale space by the macroscopic geometrical lengthscale in 
the problem, the brittle crust depth W. This has a lengthscale 
of around 15 km in strike-slip environments, and a downdip 
length of around 60 km in subduction zones. Thus 

x'= Wx , (A1) 

where the prime denotes the dimensional variable, and the 
unprimed is our dimensionless variable used in the body of 
the paper. 

We set the dimensionless wavespeed to unity, which then 
sets the timescale as the time for a wave to travel W at the 

wavespeed c. Thus 
W 

t' = mr, (A2) 
c 

For shear wavespeeds of 3 km/sec this gives a timescale 
around 5 sec in the strike-slip case, and around 20 sec in the 
subduction thrust case. 

The last scaling comes from the displacements, where we 
have scaled the strength drop A• of 1 + a to a strain AU/W 
of unity. Converting back to dimensional variables, using 
equation (2), we see 

U'= W U (A3) 
O(1 + ty) ' 

where G is the shear modulus of the material, and on the 
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fault U t corresponds to slip S t. Here A• is the total strength 
drop, from the peak strength at onset of slip to the residual 
strength that is approached at sufficiently large and/or rapid 
slip; A(I, includes the strength drops in both of the weakening 
processes we consider, hence the I + a, where the 1 corre- 
sponds to just the large scale weakening process. 

If strength drop in the large scale process is comparable 
to the largest seismic stress drops in significant earthquakes, 
of order 10 MPa, and if G -- 30 GPa, that corresponds to 
strain changes of order 3 ß 10 -4 and displacements of or- 
der 3 ß 10 -4 W, which is about 5 meters in strike-slip envi- 
ronments. Such a 10 MPa total strength drop would gener- 
ally be interpreted as implying that the peak strength is very 
low compared to an expected 100 MPa nominal rock friction 
strength because major faults consist of anomalously weak 
materials or are at high pore pressures. Alternatively, the 10 
MPa strength drop could be consistent with the possibility 
that faults are strong, of the order 100 MPa peak strength, but 
that some as yet undiscovered mechanism could allow large 
slips 'at stresses comparable to that peak strength without sig- 
nificant weakening in the presence of the massive tempera- 
ture rises thus implied. 

One may instead argue plausibly that the peak strength is 
of order 100 MPa but that faults are brittle and generate lit- 
tle heat because they lose essentially all of that strength in 
very small slip. If stress equaled that strength over the en- 
tire fault plane, and the strength drop was total, the displace- 
ment would be of order 50 m. That will, however, be an ir- 
relevant number for actual earthquakes if the fault has some 
combination of defect regions of much lower effective stress, 
which act like Griffith cracks in nucleating ruptures, or if 
the fault retains severe local stress concentrations from pre- 
viously stopped events or from stressing at borders between 
locked and creeping zones. Then the peak strength can be ir- 
relevant to the average stress level at which the fault operates, 
which is instead the stress at which a rupture nucleated at one 
of those easy spots can propagate over large distances. Thus 
the characteristic slip in an actual event is properly chosen as 
that associated with dropping that propagation stress level to 
zero. 

The weakening state variable Qt, and also the characteris- 
tic weakening distances i/a t (not to be confused with a t in 
the body of the text) and 1//Y relate to their dimensionless 
equivalents just as U t does to U. Thus a = 3 corresponds 
in the strike-slip example to a characteristic large scale slip- 
weakening distance 1/a t = 0.5 m. 

The plate loading rate v t = vcA•/(G(1 q- a)) corre- 
sponds in the strike-slip case, with v = 0.0001, to 9 - 10 -5 
m/s for the strength drop 10 MPa mentioned. This is many 
of orders of magnitude faster than typical plate rates, around 
10 -0 m/s, or 30 mm/a, but much slower than seismic slip 
rates. Also, the characteristic time for relaxation of the state 

parameter Qt back towards its pre-weakening value of 0 is 
1/'7' = W/(c'7). This is about 50 s in the strike-slip case for 
a typical '7 = 0.1, such as we use in the slip weakening range 
which is the primary focus here. It would be about 0.5 s for 
'7 = 10 which would be in the velocity weakening range. Fi- 
nally, the Langer viscous parameter, multiplying the second 

gradient of slip rate, is r/= •iW2G/c. For ;/= 10 -5 as in 
the examples here, this is r/- 2.3.104 MPa-m-s in the strike 
slip case. 

Appendix B: Stabilizing the Small Scales With the 
Viscous Term 

For nonzero 7 the dispersion relation (13) is modified 
slightly, and we get, effectively, an extra velocity weakening 
term which scales with 7- This can be seen as follows. Us- 
ing the integral formulation for Q (eqeation (9)), restricting 
ourselves to positive slip rates, we integrate by parts: 

f/ Q(t) - e_.fit_d) OS oo Ot--7dt t - S - 3' e-'fit-e) Sdt t . 
(B1) 

Now using the sinusoidal form for the motion $ (equation 
(12)), we replace the slip $ in the integral by 1/f• times the 
slip rate: 

'y f: OS_, Q(t) - s- • e -•(t-t') •7dt . (B2) 

Equating the middle equation in (B 1) with the right-hand side 
of (B2) and then collecting terms, we get 

f $ t e -7(t-t')--••dt' - i q- 7,//f• = Q ß (B3) 

Since when '7 = 0wehaveQ = S, we find that the 
nonzero '7 effectively renormalizes the slip weakening rate 
& to &/(1 + 7/f•); that is, it picks up a velocity weakening 
part (the 1/f• piece). 

To examine the stability in this nonzero 7 case, we plug the 
renormalized & / ( 1 + 7 / f• ) into our dispersion relation (13), 
and generalize to nonzero ;/to get 

(f]2 + k2 + 1)1/2 _ & --r/k2f• . (B4) 
i q- 

Looking at small values of'7 and ;/and linearizing for small 
7/ft, an approximation which is valid away from the critical 
wavelength •: where f2 = 0, we can solve this equation per- 
turbatively about the '7 = 0 and •/= 0 solution to first order 
in '7 and •/. This will show us how our dispersion relation is 
stabilized at small wavelengths. Taking (B4), squaring, and 
keeping only lowest-order 3' and •/terms gives 

ft 2 + k 2 + 1 - &2 (1 - 2'7/ft) - 2&r/k2ft + 0('7 2 , r/2 , '7;/) , 
(BS) 

or, rearranging terms, 

f•- (&2_ k 2 - 1 2'7&2 • 2&r/k2• + 0('72• r/2• 7r/) . 
(B6) 

Defining f•0 = x/& •' - k 2 - i which is f• when 7 = r/= 0 
as in equation (13), as long as we are away from f•0 = 0, we 
can replace f• on the fight-hand side by f•0, since the fight- 
hand side f• terms are already of order 0('7, ;/). Thus, away 
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from f/0 = 0, expanding the square root the result is the dis- 
persion relation 

&:7 _ :) • -- -t-iv/k 2 + 1- &2 + (k • + 1- &• 
+ 0(7 2, (B7) 

Here we see now the utility of the r/term, which stabilizes 
the large k. 
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