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Abstract

It has been shown recently that steady frictional sliding along an interface between dissimilar
elastic solids with Coulomb friction acting at the interface is ill-posed for a wide range of
material parameters and friction coefficients. The ill-posedness is manifest in the unstable
growth of interfacial disturbances of all wavelengths, with growth rate inversely proportional
to the wavelength. We first establish the connection between the ill-posedness and the existence
of a certain interfacial wave in frictionless contact, called the generalized Rayleigh wave.
Precisely, it is shown that for material combinations where the generalized Rayleigh wave
exists, steady sliding with Coulomb friction is ill-posed for arbitrarily small values of friction.
In addition, intersonic unstable modes and supersonic steady-state modes exist for sufficiently
large values of the friction coefficient. Secondly, regularization of the problem by an exper-
imentally motivated friction law is studied. We show that a friction law with no instantaneous
dependence on normal stress but a simple fading memory of prior history of normal stress
makes the problem well-posed. 2001 Published by Elsevier Science Ltd.
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1. Introduction

Recent work (Renardy (1992), Adams (1995), Martins et al. (1995), Martins and
Simões (1995) and Simo˜es and Martins (1998)) has shown the ill-posedness, in the
sense described below, of steady sliding of an elastic half-space against a dissimilar
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elastic half-space when Coulomb friction acts at their interface. LetV denote the
velocity of steady sliding, the same at every point along the interface, andt the
shear stress at the interface. When the shear stress is perturbed in a single spatial
mode of wavenumberk,

Dt5Q(t)eikx1, (1)

wherex1 is the coordinate axis along the interface andQ(t) is an arbitrary function
of time, t, propagating slip-rate modes of form

DV5A(k)eik(x1−ct)ea|k|t

are found,A(k) is the amplitude of the mode,a andc are independent of the wave-
length, and wherea.0 for a broad range of friction coefficients and material pairs.
For sucha.0 cases, all wavelengths in the slip response are unstable and the growth
rate of the instability is inversely proportional to the wavelength. An observer trave-
ling with the phase velocityc of the instability sees a perturbation velocity field that
is the sum of an infinite number of modes, namely,

DV(x1ct, t)5 E
1`

2`

A(k)eikxea|k|tdk

wherex=x12ct. Clearly, this integral fails to exist (diverges by oscillation forxÞ0)
in an arbitrarily small time after the perturbation is turned on, unlessA(k) decays
exponentially or faster with |k|. Such a problem is said to be ill-posed.

Renardy (1992) studied the sliding of a neo-Hookean elastic solid against a rigid
substrate. In the limit of linear elasticity, he showed that ill-posedness exists when
the friction coefficient is sufficiently high, namely, greater than unity. This limiting
case was studied independently by Martins et al. (1995). On the other hand, Adams
(1995) showed that when the two solids on either side of the interface are linear
elastic and not very dissimilar, the problem can be ill-posed for arbitrarily small
values of friction.

Earlier, Weertman (1963) and Achenbach and Epstein (1967) had shown that in
frictionless sliding of dissimilar elastic half-spaces, constrained against formation of
opening gaps, an interfacial wave solution can exist when the material mismatch is
not very high. It is called the generalized Rayleigh wave since its speed of propa-
gation reduces to that of the Rayleigh surface wave when the two materials are
identical. The numerical results of Adams (1995) suggested a connection between
the existence of the generalized Rayleigh wave and the ill-posedness. fThis is fully
explored in our present work. We show that for conditions under which the gen-
eralized Rayleigh wave exists in frictionless contact, the stability problem with Cou-
lomb friction is ill-posed for arbitrarily small values of friction.

Weertman (1980) argued that when such a wave exists, a self-healing slip pulse
can propagate along the frictional interface between dissimilar elastic solids, even
when the remote shear stress is less than the frictional strength of the interface, and
a family of such pulse solutions has been constructed by Adams (1998). The velocity
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of propagation of the slip pulse is precisely that of the generalized Rayleigh wave.
Numerical studies of the nucleation and propagation of such slip pulses with a Cou-
lomb friction law at the interface, by Andrews and Ben-Zion (1997), Ben-Zion and
Andrews (1998) and Harris and Day (1997) have difficulties that seem to have their
origin in the instability and ill-posedness results cited earlier. They observe that their
simulations depend on mesh size and that a nucleated slip pulse splits into a number
of pulses. Using the spectral numerical methodology for bi-materials (Breitenfeld
and Geubelle (1998)), Cochard and Rice (2001) illustrate the ill-posedness by show-
ing that the more terms in their spectral basis set, the more the pulse splitting for a
case which is ill-posed in the sense discussed above. They show that the same method
gives results which converge with enlargement of the basis set for parameter choices
in the well-posed range.

We show that an experimentally motivated friction law incorporating a memory
dependence, rather than instantaneous dependence, on normal stress regularizes the
problem of steady sliding along an interface between dissimilar elastic solids. A
friction law for this problem must necessarily incorporate the response to varying
normal stress, since slip along a dissimilar material interface alters normal stress.
Creep–slippage experiments by Linker and Dieterich (1992) at sliding rates of order
1 µm/s suggest that friction has an instantaneous as well as a memory dependence
on normal stress. That is, in response to a step changeDs in compressive normal
stress at approximately constant slip rate, which will ultimately lead to shear strength
increase offDs, a partial strength increase of (f2a)Ds occurs at the time of the step
and a further memory-like increaseaDs occurs with continuing slip over a fewµm
distance. They founda<(0.3 to 0.8)f, depending on how their data was fit. But
subsequent work by Prakash and Clifton (1993) and Prakash (1998) on high-speed
sliding (1 to 10 m/s) induced by oblique shock impact, in which normal stress was
altered over a much shorter time scale by a wave reflection, showed no instantaneous
effect, but just a fading memory of prior history of normal stress (i.e.,a=f). In this
work, we use a friction law suggested by the latter experiments. Previous studies by
Martins and Simo˜es (1995) and Simo˜es and Martins (1998) show that regularization
can also be achieved by using a friction law in which the usual instantaneous depen-
dence on normal stress is replaced by a dependence on normal stress averaged over
some small finite area, although such a law seems not to be directly motivated by
experiments and would not, for example, be consistent with memory effects in those
just mentioned, for which normal stress was altered uniformly over a macroscopic
sliding surface.

This paper is organized as follows: In Section 2, the governing elastodynamic
relations between perturbations (from steady sliding) in slip and opening and those
in shear and normal stress at the interface are derived. These relations are used in
subsequent sections to derive the governing equations for stability. First, the case of
frictionless sliding is reviewed in Section 3, leading to a discussion of the generalized
Rayleigh wave of Weertman (1963) and Achenbach and Epstein (1967). In Section
4, slip stability with Coulomb friction at the interface is studied. A simpler rederi-
vation of the ill-posedness results of Adams (1995) is presented. The connection
between the existence of the generalized Rayleigh wave and the ill-posedness is
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explicity shown. In Section 5, regularization of the problem with a simple, exper-
imentally motivated friction law incorporating the effect of normal stress changes is
discussed. The results are finally summarized in Section 6.

2. Elastodynamic relations

Let (x1,x2) be Cartesian coordinates defined such that the slip plane lies atx2=0
(see Fig. 1) and the steady state velocities of the material points on either side of
the interface,x2=0+ andx2=02are, respectively,+V/2 and2V/2. Far away from the
interface, a shear stresst` equal to the frictional strength of the interface is applied,
i.e. t`=fs`, wheref is the Coulomb friction coefficient ands` is the remote com-
pressive normal stress. The shear and dilatational wave speeds of the material in the
region x2$0+ are denoted bycs1 and cd1, respectively. Corresponding wave speeds
in the lower half space,x2#02 are denoted bycs2 and cd2, respectively. Similar
notation is used for the densities,r1 andr2, shear moduli,m1 andm2 and Poisson’s
ratios, n1 and n2, of the two solids. Without loss of generality, we assume that
cs2.cs1.

Let sab(x1,x2,t) and ua(x1,x2,t) denote the stress and displacement fields. In this
section, we derive elastodynamic relations between perturbations in traction compo-
nents of the stress on the interface,

ta(x1,t)5s2a(x1,0,t) (2)

and those in displacement discontinuities,

da(x1,t)5ua(x1,0+,t)2ux(x1,0−,t) (3)

Fig. 1. Frictional sliding along an interface between dissimilar materials.
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at the interface. We restrict our study to the case whereV¿cs1, which is generally
the regime of interest.

Consider a perturbation field in a single spatial mode of the form

t1(x1,t)=t`+T1(t)eikx1,

t2(x1,t)=−s`+T2(t)eikx1,

u±
1(x1,t)=±Vt/2+U±

1(t)eikx1,

u±
2(x1,t)=U±

2(t)eikx1.

(4)

Denoting the Laplace transform with respect tot by

ĝ(p)5E
`

0

e−ptg(t)dt, (5)

following Geubelle and Rice (1995), it can be shown that perturbations in displace-
ments atx2=0+ are related to those in shear and normal stress by

HT̂1

T̂2
J5FĜ11 Ĝ12

Ĝ21 Ĝ22
GHÛ+

1

Û+
2
J (6)

where

Ĝ11(p,k)=−m1|k|
ad1(1−a2

s1)
1−as1ad1

,

Ĝ22(p,k)=−m1|k|
as1(1−a2

s1)
1−as1ad1

,

Ĝ12(p,k)=−im1kS2−
1−a2

s1

1−as1ad1
D=−Ĝ21(p,k),

(7)

with

as15Î1+s2/c2
s1, ad15Î1+s2/c2

d1 and s5p/|k|. (8)

To ensure bounded displacements inx2$0, (see Geubelle and Rice (1995), eq. 14),
we require that the real parts ofas1 andad1 be non-negative in the physical domain
Re(s)$0. We make the real parts non-negative for alls by defining branch cuts in
the complex s-plane along (2i`,2ics1] and [ics1,+i`) for as1 and, similarly,
along(2i`,2icd1] and [+icd1,+i`) for ad1.

Inverting Eq. (6) we get

HÛ+
1

Û+
2
J5FĈ+

11 Ĉ+
12

Ĉ+
21 Ĉ+

22
GHT̂1

T̂2
J (9)
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where

Ĉ+
11(p,k)=−

1
m1|k|

as1(1−a2
s1)

R1(s)
,

Ĉ+
22(p,k)=−

1
m1|k|

ad1(1−a2
s1)

R1(s)
,

Ĉ+
12(p,k)=−

1
im1k

2as1ad1−(1+a2
s1)

R1(s)
=−Ĉ+

21(p,k),

(10)

with

R1(s)54as1ad12(11a2
s1)2. (11)

The properties of the Rayleigh functionR1(s) are discussed, for instance, in Achen-
bach (1973). The function has a double zero ats=0 and simple zeros ats=±icR1,
wherecR1 is the speed of propagation of the Rayleigh wave at a free surface of the
material. It is important to note that the combination

Ĉ+
11Ĉ+

222Ĉ+
12Ĉ+

215(12as1ad1)/m2
1k2R1(s), (12)

and thus has simple poles ats=±icR1, and not double poles as may be naively
expected.

Analogous equations atx2=02 are

HÛ−
1

Û−
2
J5F−Ĉ−

11 Ĉ−
12

Ĉ−
21 −Ĉ−

22
GHT̂1

T̂2
J (13)

where

Ĉ−
11(p,k)=−

1
m2|k|

as2(1−a2
s2)

R2(s)
,

Ĉ−
22(p,k)=−

1
m2|k|

ad2(1−a2
s2)

R2(s)
,

Ĉ−
12(p,k)=−

1
im2k

2as2ad2−(1+a2
s2)

R2(s)
=−Ĉ−

21(p,k),

(14)

with

as25Î1+s2/c2
s2, ad25Î1+s2/c2

d2 and R2(s)54as2ad22(11a2
s2)2. (15)

Branch cuts foras2 andad2 are defined analogous to those foras1 andad1 to ensure
bounded displacements in the half spacex2#0. The non-trivial roots of the Rayleigh
function R2(s) are denoted bys=±icR2. Note that the combination (Ĉ−

11Ĉ−
222Ĉ−

12Ĉ−
21)

only has simple poles ats=±icR2.
Writing the perturbed slip and opening as
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d1(x1,t)=Vt+D1(t)eikx1,

d2(x1,t)=D2(t)eikx1,
(16)

we can subtract Eq. (13) from Eq. (9) at low slip rates,V¿cs1, to get

HD̂1

D̂2
J5FK̂11 K̂12

K̂21 K̂22
GHT̂1

T̂2
J (17)

where

K̂115Ĉ+
111Ĉ−

11, K̂225Ĉ+
221Ĉ−

22, K̂125Ĉ+
122Ĉ−

1252K̂21. (18)

The functionsK̂ij have simple poles ats=±icR1 and ats=±icR2.
We will find it convenient to use the inverse of Eq. (17), namely

HT̂1

T̂2
J5FM̂11 M̂12

M̂21 M̂22
GHD̂1

D̂2
J (19)

where

M̂115K̂22/D, M̂225K̂11/D, M̂1252K̂12/D52M̂21, (20)

with

D5K̂11K̂222K̂12K̂21. (21)

The combination (K̂11K̂222K̂12K̂21) only has simple poles ats=±icR1 and s=±icR2,
following our previous discussion of the poles of a similar combination ofĈ±

ij . Thus,
the Rayleigh poles in the numerators of the expressions forM̂ij cancel those in
the denominator.

Suppose that a perturbation in shear stress is applied at the sliding interface (e.g.
due to a wave incident on the interface) of the form

Dt1(t,k)5Q(t)eikx1

such thatQ(t)=0 for t,0 and Q(t) is arbitrary for t.0. We interpret this as an
additional stress (tot`) that would have been supported if the interface was con-
strained against further slip (thanVt) or opening. The total change in shear and
normal stresses at the interface is the sum of externally applied perturbation and
those due to heterogeneous slip and opening, given by Eq. (19):

HT̂1

T̂2
J5FM̂11 M̂12

M̂21 M̂22
GHD̂1

D̂2
J1HQ̂

0
J (22)

whereQ̂(p) is the Laplace transform ofQ(t). In the subsequent sections, we determine
the sliding responseD̂1 due to the appliedQ̂, when various friction laws are operative
at the interface.
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3. Frictionless sliding: the generalized Rayleigh wave

First, consider the case when there is no friction at the interface. SettingT̂1=0
and D̂2=0 in Eq. (22) and using Eq. (20), we get

D̂152
K̂11K̂22−K̂12K̂21

K̂22
Q̂. (23)

As noted earlier, the Rayleigh poles in the denominator and numerator of the
transfer function cancel each other. The only poles of the transfer function are the
roots of the equation

K̂22(s)50, (24)

which is precisely the equation for the generalized Rayleigh wave of Weertman
(1963) and Achenbach and Epstein (1967). Cancelling the Rayleigh poles in the
numerator and denominator of the transfer function, the above equation can be writ-
ten in the form

2K̂22(s)R1(s)R2(s)m1c2
s2|k|/s25(m1/m2)ad2(s)R1(s)1(cs2/cs1)2ad1(s)R2(s)50. (25)

Weertman (1963) and Achenbach and Epstein (1967) showed that when the two
materials are not very dissimilar, the above equation has pure imaginary roots
so=±icGR corresponding to steady interfacial wave propagation. WhencR2,cs1, such
roots always exist and the speed of the wavecGR is such that

min(cR1,cR2),cGR,max(cR1,cR2).

On the other hand, whencR2.cs1, roots exist when

r2/r1,(cs1/cs2)4ad2(ics1)/ad1(ics1)R2(ics1)

and the wave speedcGR,cs1. For modestly different densities and Poisson’s ratios,
the generalized Rayleigh wave exists for mismatches in shear wave speeds up to
about 40%.

4. Ill-posedness with Coulomb friction

In this section, a simpler rederivation of the ill-posedness results of Adams
(1995) and Martins et al. (1995) is first presented. This is then used to establish
the relationship between the ill-posedness and the existence of the generalized Ray-
leigh wave.

Taking V.0, the Coulomb friction law is

t152ft2.
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As before, we study the stability of sliding response to perturbations from the
steady state at velocityV. Solving for D̂1 in Eq. (22) with the constraints

T̂152fT̂2, D̂250, (26)

we get,

D̂152
K̂11K̂22−K̂12K̂21

K̂22−fK̂21

Q̂. (27)

The poles in the numerator of the above expression corresponding to the Rayleigh
waves of the two materials are again cancelled by identical poles in the denominator.
For instability, we thus need that a root of the equation

K̂22(s)2fK̂21(s)50 (28)

have a positive real part. Recalling from Eq. (18), Eq. (10) and Eq. (14) thatK̂22

has 1/|k| dependence onk and thatK̂21 is proportional to 1/k, the roots of the above
equation depend only on the sign ofk and not its magnitude.

The kernelsK̂22 and K̂21 have the following properties:

K̂22(s,k)5K̂22(s̄,k)5K̂22(2s,k)5K̂22(s,2k), (29)

K̂21(s,k)52K̂21(s̄,k)5K̂21(2s,k)52K̂21(s,2k), (30)

where the overbar denotes complex conjugation. We see immediately that ifs* is a
root of Eq. (28), so is2s*. Also, if s* and 2s* are the roots for wavenumberk, s∗

and 2s∗ are the roots for wavenumber2k. Writing

Re(s∗)5a and 2sign(k)Im(s∗)5c, (31)

the slip response to perturbations with wavenumberk or 2k has propagating modes
of the form

d1(x1,t)|(eik(x1−ct)e+a|k|t, eik(x1+ct)e−a|k|t, e−ik(x1−ct)e+a|k|t, e−ik(x1+ct)e−a|k|t). (32)

The modes propagate in opposite directions with phase velocityc. When a root
of Eq. (26) has a positive real parta, one mode grows with an exponent ofa|k|,
while the other decays at the same rate. Thus there is unstable growth in the modal
response with the growth rate being faster for short wavelengths. Further, the growing
modes associated with a given root propagate with a unique velocityc and in the
same direction along the interface fork and 2k. When c.0, the unstable modes
propagate in the positivex1 direction and whenc,0, they travel in the negativex1

direction. Note also from Eq. (29) and Eq. (30) that when a root exists with a real
part a, then a root also exists with that same real parta when f is changed to2f.

4.1. Ill-posedness at arbitrarily small f when cGR exists

Here, we prove that when the material properties on either side of the interface
are such that a generalized Rayleigh wave exists in frictionless sliding, the stability
problem with Coulomb friction is ill-posed for arbitrarily small values of the friction
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coefficient. In Section 3, we saw that when the generalized Rayleigh wave exists,
the equationK̂22(s)=0 has two imaginary roots,so=±icGR. We now show using a
perturbation analysis that whenf is changed from zero, one root moves into the right
half s-plane while the other moves into the left half plane. The numerical results
presented in Section 4.2 are in agreement with this analysis.

For small values off, we expect roots ofK̂222fK̂21 close toso. Using a perturbation
expansion of the form

s5so1fs11 · · · (33)

for the roots in Eq. (28) and retainingO(f) terms, we get

s15K̂21(so)/K̂9
22(so). (34)

SinceK̂21(so) and K̂9
22(so) are purely imaginary,s1 is a real number. Furthermore,

it follows from Eq. (29) and Eq. (30) that

K̂21(±icGR)=K̂21(+icGR),

K̂9
22(±icGR)=±K̂9

22(+icGR).

Therefore, the termfs1 in the perturbation expansion is of opposite signs (and real)
for the two valuesso=±icGR. The roots move fromso=±icGR parallel to the Re(s) axis
asf is changed from zero. One root moves into the right halfs-plane, while the other
moves to the left. This makes the problem ill-posed for arbitrarily small friction for
cases where the generalized Rayleigh wave exists in frictionless contact. Note in
particular that the argument would apply for positive or negativef, both giving
ill-posedness.

Suppose now that the two solids are sufficiently different such that the generalized
Rayleigh wave does not exist in frictionless contact. This means that the equation
K̂22(s)=0 has no roots, not only along the imaginary axis but in the whole complex
plane. The latter is easily seen as follows. From the discussion of roots given in the
previous subsection, if there exists any root with non-zero Re(s), in the response to
an eikx1 perturbation, then there must exist a root with Re(s).0, hence showing
growth in time. But this violates energy conservation, which must apply in the fric-
tionless case, as argued below. The two sliding bodies have a strain energy corre-
sponding to uniform stressing in the unperturbed configuration, and have a kinetic
energy corresponding to the rigid translation at rateV. An eikx1 perturbation field
then provides a positive definite change in both strain energy and kinetic energy (the
cross terms of the respective quadratic forms for strain and kinetic energy density
integrate to zero). But such energy per wavelength cannot be greater (or smaller)
than the energy put into the initial eikx1 perturbation. Hence no root toK̂22(s)=0 with
Re(s)Þ0 can exist. (The same energy conservation argument does not apply, of
course, whenfÞ0.)

Thus, if no generalized Rayleigh wave exists,K̂22(s)=0 has no roots. If we now
consider solutions to the problem with friction,K̂22(s)2fK̂21(s)=0, it is clear that for
arbitrarily small but non-zerof, there will be no roots. (Indeed, there will be none
for sufficiently small positive or negativef.) The possible exception is that a root
might emerge at̀ as f is altered slightly from zero, but this possibility is precluded
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by the expressions in Eq. (10) and Eq. (14) which show thatĈ±
21(s)/Ĉ±

22(s), and hence
K̂21(s)/K̂22(s), approach zero ass→`. Thus, when no generalized Rayleigh wave
exists, there will be an interval aroundf=0, say2fc,f,fc (where fc.0) for which
there is stable response to an eikx1 perturbation. Note in particular that the analysis
for this case predicts stability even in a range of negative friction coefficients,
2fc,f,0.

4.2. Discussion of roots of Kˆ
222fK̂21=0

First, we show that for sufficiently large values off, a family of steady-state (i.e.,
non-growing) supersonic interfacial wave solutions exist. Along the imaginary axis
s=iz, for |z|$max(cd1,cd2), both K̂22(s) and K̂21(s) are pure imaginary. Hence,f=
K̂22/K̂21 is a real number ands=iz is a root corresponding to that value off. These
roots correspond to supersonic waves at the interface. They generalize the ones found
by Adams (2000) for a bi-material system with a rigid substrate. Adams’ results can
be obtained by lettingcs2/cs1→` and m1/m2→0 in the expressions Eq. (18) for
K̂22(s) and K̂21(s) and using them in Eq. (28). This gives

f5
ik
|k|

ad1(1−a2
s1)

2as1ad1−(1+a2
s1)

. (35)

Clearly, the right hand side is a real number whens=iz is purely imaginary with
|z|$cd1.

To numerically compute the roots of Eq. (28) in the complexs-plane, we use the
property that sincef is a real number, Im(K̂22/K̂21)=0 at any root location. The follow-
ing steps are performed:

1. Fix a value of Re(s)=r.
2. Determine all values ofs with Re(s)=r for which Im(K̂22/K̂21)=0.
3. Computef=K̂22/K̂21. Ignore the root iff,0.

The case studied in Figs. 2 and 3 is one where there is a modest mismatch in material
properties across the interface such that the generalized Rayleigh wave exists in
frictionless contact. The material properties arecs2/cs1=1.2, r2/r1=1.2, n1=n2=0.25.
For this pair, the speed of the generalized Rayleigh wave iscGR=0.9898cs1. We focus
only on the roots in the right halfs-plane since they determine stability. Whenf=0,
there are two roots atso=±icGR. As f is increased from zero, one of these roots moves
into the right halfs-plane, as seen in Figs. 2 and 3. Furthermore, Fig. 2 shows that
the imaginary part of the root remains approximately constant asf is increased from
zero. This implies that the velocity of propagation of the mode is approximately
independent of the coefficient of friction in this regime (and thusc<cGR, wherec
is defined as in Eq. (31). These results are consistent with the perturbation analysis
presented in the previous section.

For sufficiently high friction, other unstable modes are introduced. Atf=0.22, two
roots appear on the branch cut ofK̂22(s) on the imaginary axis. One of these moves
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Fig. 2. Root locations ofK̂22(s)2fK̂21(s)=0 in the complex right halfs-plane as a function of friction
coefficientf for a particular bi-material pair:cs2/cs1=1.2,r2/r1=1.2, andn1=n2=0.25. The generalized Ray-
leigh wave exists in frictionless contact for this material combination and its speed iscGR=0.9898cs1.
Following the analysis in Section 4.1, roots exist in the right halfs-plane for arbitrarily smallf.

Fig. 3. Normalized growth rate of instability as a function of friction coefficient for a particular bi-
material pair:cs2/cs1=1.2,r2/r1=1.2, andn1=n2=0.25. The generalized Rayleigh wave exists in frictionless
contact for this material combination. Following the analysis of Section 4.1, instability occurs for arbi-
trarily small f. As defined in Eq. (31),c=2Im(p/k) is the phase velocity of the instability. The speed of
supersonic modes is close tocd2 for the range of friction coefficients shown in the figure.

into the right halfs-plane asf is further increased. Again, the propagation speed
along the root path varies only modestly asf is increased, although for both roots,
the rate of growth of the instability increases rapidly withf (Fig. 3). In addition to
these unstable modes are the family of steady-state supersonic solutions mentioned
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Fig. 4. Root locations ofK̂22(s)2fK̂21(s)=0 in the complex right halfs-plane as a function of friction
coefficient f for a Steel–PMMA material pair:cs2/cs1=2.40, r2/r1=6.58, n1=0.35 andn2=0.3. The gen-
eralized Rayleigh wave does not exist in frictionless contact for this material combination. Following the
analysis in Section 4.1, no roots exist in the complexs-plane for |f|,fc=0.03.

earlier. They correspond to purely imaginary roots in Figs. 2 and 3 indicated with
the thick line.

We next study in Figs. 4 and 5 a material pair with large contrast in properties
across the interface so that the generalized Rayleigh wave does not exist in fric-
tionless contact. The properties chosen are for a Steel–PMMA bi-material system:

Fig. 5. Normalized growth rate of instability as a function of friction coefficient for a Steel–PMMA
material pair:cs2/cs1=2.40,r2/r1=6.58,n1=0.35 andn2=0.3. The generalized Rayleigh wave does not exist
in frictionless contact for this material pair. Following the discussion in Section 4.1, instability occurs
only when |f|.fc=0.03. As defined in Eq. (31),c=2Im(p/k) is the phase velocity of the instability.
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cs2/cs1=2.40,r2/r1=6.58,n1=0.35,n2=0.3. In this case, no roots exist in the right half
s-plane whenf,0.03. Hence frictional sliding is stable in this range. Atf=fc=0.03,
a root appears on the right bank of the branch cut ofK̂22(s)2fK̂21(s), with propagation
speed nearcd1 and moves into the right halfs-plane asf is further increased. Other
unstable modes are also introduced atf=0.98 and at the rather uninterestingly large
f=6.31. In addition, a family of supersonic steady-state solutions also exist at large
friction.

Stability diagrams showing the range of values for which the stability problem is
ill-posed can be constructed by calculating the value of the friction coefficientfc at
which an unstable right half pole first appears for a particular material combination.
Two such diagrams are shown in Figs. 6 and 7, as a function of the shear wave
speed mismatch. Fig. 6 is for the case when there is a modest 20% mismatch in
densities between two Poisson materials (n1=n2=0.25). The figure shows that when
the shear wave speeds of the two materials are not too dissimilar so that the gen-
eralized Rayleigh wave exists in frictionless contact,fc=0 and the stability problem
is ill-posed for arbitrary small values of friction. For slightly larger mismatch in
shear wave speeds than in the previous case, an unstable mode propagates in the
positive x1 direction with a speed in the range (1 to 1.2)cs1. For still higher values
of cs2/cs1, the destabilizing mode propagates at a speed very close to, but slightly
lower thancd1 in the negativex1 direction. Another stability diagram is shown in
Fig. 7 for material pairs wherer2/r1=5.0,n1=0.25 andn2=0.35, which are properties
typical of a metal/carbon fiber composite bi-material system (approximating the latter
as isotropic). Here, as before,fc=0 when the shear wave speed mismatch is small
enough to allow the existence of the generalized Rayleigh wave. When the gen-
eralized Rayleigh wave ceases to exist, an unstable mode propagates with a speed
in the range (1 to 1.3)cs1. For a narrow band of wave speed ratios the first destabiliz-

Fig. 6. Stability diagram for two families of bi-material pairs as a function of the shear wave speed
ratio. For one pair, the density ratio isr2/r1=1.2 and for the otherr2/r1=0.8. For both families of material
pairs,n1=n2=0.25. As defined in Eq. (31),c=2Im(p/k) is the phase velocity of the instability.



355K. Ranjith, J.R. Rice / Journal of the Mechanics and Physics of Solids 49 (2001) 341–361

Fig. 7. Stability diagram for a family of bi-material pairs withr2/r1=5.0, n1=0.25 andn2=0.35 as a
function of the shear wave speed ratio.c=2Im(p/k), as defined in Eq. (31), is the phase velocity of
the instability.

ing mode propagates at a speed close to and slightly higher thancd1. This mode
propagates in the negativex1 direction. Again, at large values ofcs2/cs1, an unstable
mode is introduced at small values of friction that travels with a speed slightly lower
than cd1 in the negativex1 direction.

5. Regularization of steady sliding

In this section, we study stability to perturbations when friction has memory of
normal stress history. The experiments of Prakash and Clifton (1993) and Prakash
(1998) involve oblique shock impact of a hard metal plate against another made of
a cutting tool material, so that slip at roughly constant velocity of order 1 to 10 m/s
begins at once. A reflected stress pulse is generated at the back face of the target
plate which causes an abrupt decrease in normal stress that is presumably uniform
all over the sliding surface. Laser-based optical interferometric measurement of the
motion of the back face, on a time scale for which all waves can be regarded as
one-dimensional, allows the interfacial slip rate and shear stress to be inferred.

The results suggest that there is no instantaneous change of shear strength, but
rather a gradual change which occurs over a few microns of sliding. If analyzed with
the regularizing friction law discussed by Martins and Simo˜es (1995) and Simo˜es and
Martins (1998), in which the usual instantaneous dependence of shear strength on
normal stress is replaced by a dependence on normal stress averaged over some
small finite area, an abrupt decrease in shear strength would have been predicted
(because the normal stress change was presumably uniform over the sliding surface).
Such abrupt decrease was not observed. Instead, Prakash and Clifton (1993) and
Prakash (1998) analyze their experiments in the framework of rate- and state-depen-
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dent friction, in which shear strength is regarded as a property of the current popu-
lation of asperity contacts, and of their lifetimes, and it is only with ongoing slip or
time that the population, and therefore the shear strength, can be altered. That is,
there is no instantaneous dependence of shear strength on normal stress, but only
an effect which has a fading memory dependence on recent normal stress history.
In a constitutive law proposed by Prakash and Clifton (1993) and Prakash (1998),
the strength is assumed to be altered by the slip but not directly by the time since
a normal stress change, although such remains to be verified experimentally. Earlier
studies by Linker and Dieterich (1992) at slip rates less than 1µm/s imposed changes
in normal stress during slip that were far less abrupt than those of the oblique shock
experiments. Those workers found that there was a partial sudden change in the
shear strength, followed by a gradual accumulation of the full effect of the altered
normal stress over increasing slip and time. Since the shock experiments study the
normal stress alteration over a shorter time scale, we believe that it is appropriate
to use their result here, and to interpret the “sudden” change of shear strength of
Linker and Dieterich (1992) as a feature of the slow creep slippage condition they
studied, or of material differences (granite for them, versus hard metals against cut-
ting tool materials in the shock experiments), or possibly as an artifact of their less
abrupt change in time, which mapped memory effects into an apparent instantaneous
effect. More experimental study of these issues is merited.

5.1. A regularizing friction law

We continue by using a simplification of the constitutive form suggested by Prak-
ash and Clifton (1993) and Prakash (1998) which retains its essential feature for our
purposes (regularization), namely, that there is a simple monotonic memory depen-
dence but no instantaneous dependence of shear strengthts on compressive normal
stresss. The form used is:

t15sign(V)ts if VÞ0; ṫs52(|V|/L)(ts2fs) (36)

wherets.0, |t1|#ts if V=0, and we are assumings=2t2.0; V is the sliding velocity
andL.0 is a characteristic slip length over which the changes occur. No conclusion
concerning regularization in the following development would change if we tookL
proportional to |V|, so that evolution of strength with time, rather than with slip, if
we simply replaced |V|/L with an expression of forma+b|V|.0 wherea$0 andb$0.
We assumeV.0 below so that Eq. (36) requires

ṫ152(V/L)(t11ft2). (37)

Linearizing the above equation about the unperturbed slip rate (which amounts to
treatingV/L as constant since its factor (t1+ft2) already vanishes in the unperturbed
state), taking Laplace transform, and considering a single Fourier mode as before,
we get

pT̂152(V/L)(T̂11fT̂2). (38)

Using this relation in Eq. (22), imposing the constraintD̂2=0 and solving forD̂1,
we get
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D̂15
(pL/V+1)(K̂11K̂22−K̂12K̂21)

(pL/V+1)K̂22−fK̂21
Q̂. (39)

Thus, the equation governing stability is

(sq11)K̂22(s)2fK̂21(s)50 (40)

whereq=L|k|/V.
We immediately see that no steady-state (i.e.,s pure imaginary) supersonic sol-

utions of Eq. (40) can now exist forkÞ0 since bothK̂22(s) and K̂21(s) are purely
imaginary in that region. In the long wavelength limit, |k|→0 and henceq→0, the
above equation reduces to Eq. (28), the governing equation for stability with constant
Coulomb friction. Since ill-posedness relates to response as |k|→`, it is of interest
to know if there is stability at short wavelengths. This will require that the unstable
roots of Eq. (28) move into left half plane or into a different Riemann sheet as |k|
is increased from 0 tokcr.

In the limit |k|→`, equivalent toq→`, the equation determining stability becomes
K̂22(s)=0, which is precisely the condition for existence of the generalized Rayleigh
wave in frictionless contact. Thus, if the material pair is sufficiently different that a
generalized Rayleigh wave does not exist, which means thatK̂22(s)=0 has no solution,
then we are assured of stability at sufficiently large |k|, |k|.kcr. For cases where the
generalized Rayleigh wave exists, a perturbation expansion in powers of 1/|k| for the
roots gives the root location at large |k| as

s5p/|k|5s01is1/|k|1(s21is3)/k21 · · ·,

wheres0=±icGR ands1, s2 and s3 are real numbers withs2.0 for one of the values
of s0. Therefore, a perturbation with large wavenumberk grows as es2t/|k|. This assures
a finite integral over the amplitudes of all excited modes at all times and thus reg-
ularizes the problem. We thus see that for conditions under which the generalized
Rayleigh wave exists in frictionless contact, all wavelengths are unstable with the
friction law Eq. (36) as it was with the Coulomb friction law. However, the stability
problem is now well-posed.

Generically, we find multiple bands of wavelengths that are unstable. We are
concerned here only with determining the wavelength (or wavenumberkcr) at which
the first unstable mode that causes the pathological ill-posedness is regularized. This
mode is stabilized at short wavelengths when the material parameters are such that
generalized Rayleigh wave does not exist in frictionless sliding. Particular cases are
illustrated in Figs. 8–10. Fig. 8 is for a Steel/PMMA material pair. It was shown
earlier in Fig. 5 that there are at most two unstable modes in the long wavelength
limit when f is between 0 and 2. The critical wavenumberkcr above which the first
unstable mode is stabilized is shown in Fig. 8.

Fig. 9 shows a similar plot for the case of a material pair withr2/r1=1.2 and
n1=n2=0.25. We saw in Fig. 6 that the critical friction coefficient for this case is
fc=0.742 whencs2/cs1=1.7 and fc=0.184 whencs2/cs1=2.2. Now, Fig. 9 shows the
wavelength at which the first unstable mode is stabilized for these two cases. Fig.
10 is a similar plot for an interface withr2/r1=0.8 andn1=n2=0.25 at the same two
values ofcs2/cs1 as in the previous case.
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Fig. 8. Regularization of short wavelength instability with simplified Prakash–Clifton friction law for a
Steel–PMMA material pair wherecs2/cs1=2.40,r2/r1=6.58,n1=0.35 andn2=0.3.

Fig. 9. Regularization of short wavelength instability with simplified Prakash–Clifton friction law for
bi-material pairs withr2/r1=1.2, n1=n2=0.25.

5.2. Further discussion of regularization

As remarked, the existing experimental evidence (Prakash and Clifton (1993) and
Prakash (1998)) at high slip rates of order 1 to 10 m/s, favors a memory-dependent
description of friction in which the shear strength evolves continuously with slip
and/or time in response to an instantaneous (step) change in compressive normal
stresss. If subsequent results validate, for the dynamic sliding range, the step change
of shear strength with step of normal stress found by Linker and Dieterich (1992)
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Fig. 10. Regularization of short wavelength instability with simplified Prakash–Clifton friction law for
bi-material pairs withr2/r1=0.8, n1=n2=0.25.

for their creep–slippage experiments, then some other regularization would be
required than that which we have discussed. We explain briefly how the regulariz-
ation scheme of Martins and Simo˜es (1995) and Simo˜es and Martins (1998) can be
analyzed in the present framework. For simplicity, we do this in the context of
friction without any memory dependence so that, for slip situations which can be
reduced to 2D perturbations like here, we write the shear strength as

ts(x1,t)5f E
x1D

x2D

w(|x9
12x1|)s(x9

1,t)dx9
1 (41)

where the weightw(|x1|)$0 and E
1D

2D

w(|x9
1|)dx9

1=1. As before,t1=τs whenV.0. Pertur-

bations in modal shear and normal stresses of the form Eq. (4) at the interface are
then related by

T1(t)52f̃(k)T2(t), wheref̃(k)5f E
1D

2D

cos(kx9
1)w(|x9

1|)dx9
1. (42)

Thus, the response to perturbation is the same problem as we have addressed in
the body of the text, but with the classical Coulomb friction coefficient replaced by
f̃(k). Now, assuming thatw(|x|) is a function of bounded variation, we may assert
on the basis of Fourier analysis that |kf̃(k)|,B whereB is some bound valid for all
k. Thus f̃(k)→0 as |k|→`.



360 K. Ranjith, J.R. Rice / Journal of the Mechanics and Physics of Solids 49 (2001) 341–361

Consider first cases for which the generalized Rayleigh wave does not exist. Then
we showed that there is stability for sufficiently smallf (Figs. 5–7). As |k| increases,
f̃(k) will fall into such a range. Hence the weighted friction law gives stable response
at sufficiently large |k| and regularizes such cases. When the generalized Rayleigh
wave does exist, the sliding problem is unstable to perturbation for all non-zerof,
but we showed (Eq. (33) and Eq. (34)) that whenf is changed slightly from zero,
the real part ofs is proportional tof, and hence the growth (or decay) rate is of
order±kf. But the corresponding quantity±kf̃(k) is bounded as |k|→` for the weighted
friction law. This implies that the growth rate is bounded, so that we retain instability
as |k|→` but secure well-posedness.

6. Summary

The stability and well-posedness of steady frictional sliding along an interface
between dissimilar linear elastic solids has been studied. It has been shown that with
a Coulomb law, the stability problem is ill-posed for arbitrarily small friction when
the solids on either side of the interface are such that the generalized Rayleigh wave
exists in frictionless contact. Regularization of the problem by an experimentally
motivated friction law incorporating the frictional response to normal stress changes
has been demonstrated.
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