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Abstract

Willis and Movchan [Willis, J.R., Movchan, A.B., 1995. Dynamic weight functions for a
moving crack I. Mode I loading. J. Mech. Phys. Solids 43, 319.] devised weight functions

for a dynamic mode I fracture, within the singular crack model, using a ®rst order
perturbation of in-plane crack motion from the 2D results. Ramanathan and Fisher
[Ramanathan, S., Fisher, D.S., 1997. Dynamics and instabilities of planar tensile cracks in
heterogeneous media. Phys. Rev. Lettr. 79, 877.] reformulated the Willis-Movchan's result

in terms of crack growth at constant fracture energy, thereby con®rming the existence of a
crack front wave. Such a wave, as a propagating mode local to the moving crack front, was
seen in the non-perturbative numerical simulations based on a cohesive zone fracture

model, equivalent to growth at constant fracture energy. In this paper, the result of
Ramanathan and Fisher, given in the wavenumber±frequency domain, is recast in the
wavenumber±time domain to analyze fracture propagation within ®rst-order perturbations

for the singular crack model. This allows application of a spectral numerical methodology
and is shown to be consistent with the known 2D results. Through analysis of a single
spatial mode of crack shape, the propagating crack front wave and its resonance are
demonstrated. Crack propagation through a randomly heterogeneous zone, and growth of

disorder with propagation distance, are also examined. 7 2000 Elsevier Science Ltd. All
rights reserved.

Keywords: Dynamic fracture; Crack mechanics; Stress waves; Numerical methods

0022-5096/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0022 -5096 (99)00069 -1

Journal of the Mechanics and Physics of Solids

48 (2000) 1229±1251

www.elsevier.com/locate/jmps

* Corresponding author.



1. Introduction

A crack propagating through a region of locally varying critical energy release
rate in a 3D solid must speed up or slow down to accommodate those
¯uctuations. The resulting local crack accelerations produce elastic waves which
either remain con®ned to a region close to the crack tip, or propagate outwards
from the crack tip as body and surface waves which may intersect distant portions
of the crack front. The con®ned waves, discovered in recent studies (Morrissey
and Rice, 1996, 1998; Ramanathan and Fisher, 1997) of mode I crack
propagation, are called crack front waves. In both cases, the waves cause portions
of the crack front which are remote in space and time from the wave origin to
alter velocity as well. Long-range interactions of the body-wave type, under
sustained random ¯uctuations in critical fracture energy, were shown by Perrin
and Rice (1994) to cause a crack in a model scalar elastic to become increasingly
disordered. The type of elastic wave that remains local to the crack front, i.e., the
crack front wave, can cause a mode I crack in a linear elastic solid to become
disordered even more rapidly than suggested by that scalar analysis.

In this paper a methodology is developed to simulate mode I dynamic cracking
within the singular crack model, based on ®rst-order in-plane perturbations from
crack propagation at uniform speed with a straight front. It is similar in form to
that of Rice et al. (1994) and Perrin and Rice (1994), but for a true elastic solid
rather than for a model scalar elastic solid as was considered in those works. This
method is then applied to analyze crack front waves and resonances for single
spatial modes in crack shape, as well as cracking through regions of randomly
heterogeneous critical energy release rate.

This methodology begins with the perturbative solution for mode I dynamic
cracking of Willis and Movchan (1995), as expressed in terms of energy release
rate by Ramanathan and Fisher (1997). The latter formulation, given by its
authors in the wavenumber±frequency domain, is inverted to the wavenumber±
time domain to obtain an equation of motion for the mode I crack front which is
similar in structure to that of Rice et al. (1994) for the scalar case.

In all of these methods, unlike the spectral method of Geubelle and Rice (1995)
employed by Morrissey and Rice (1996, 1998) with a non-singular cohesive zone
fracture model, crack motion is regarded as a linearized, in-plane perturbation in
crack velocity about a constant velocity v0, and the crack front is a
mathematically sharp object sustaining the normal type of 1=

��
r
p

stress singularity.
This allows a more accurate description of the crack front wave. Furthermore, the
lower dimensionality of the system (1 less space dimension describing the crack)
enables simulations to be performed on current workstations, unlike the method
of Geubelle and Rice (1995) which usually requires supercomputing power for
meaningful simulations.

The problem considered is that of a half-plane crack in an in®nite solid, as
depicted in Fig. 1. The crack is con®ned to the x±z plane, and is traction-free
along its faces. The rest value, Grest, of the energy release rate G is constant in
con®gurations for which the crack remains straight as it propagates, taking the
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value Grest0 there. In general, G � g�v�Grest, following the result of Freund (1972),
where g�v� is a universal function of crack velocity with the properties, g�0�� � 1,
and g�cR� � 0, cR being the Rayleigh speed. In the absence of any spatial variation
of critical energy release rate Gcrit, the crack propagates in the positive x-direction
with a uniform velocity v0 satisfying Gcrit0 � g�v0�Grest0 :

However, in a region with a deviation in critical fracture energy, DGcrit�z, x�,
from the background value Gcrit0 the velocity is perturbed, producing a deviation
in crack shape A�z, t� and also perturbing Grest: Here A�z, t� � a�z, t� ÿ v0t where
the crack front lies along x � a�z, t� in the x, z plane. Perturbing Freund's result
to ®rst order, the crack propagates according to:

DGcrit�z, v0t�
Gcrit0

� g 0�v0 �
g�v0�

@A�z, t�
@ t

� DGrest

�
z, t; A�z 0, t 0 �, ÿ1 < z 0 < �1, t 0Rt

�
Grest0

�1�
where the notation is to indicate DGrest is a functional of A�z, t�, determined by
the equations of elastodynamics. We will now develop an expression for the
relationship between DGcrit�z, x� and A�z, t� based on the work of Willis and
Movchan (1995) and Ramanathan and Fisher (1997).

2. Relationship between DGcrit�z, x� and A�z, t�

The linear perturbation analysis of Ramanathan and Fisher (and that of Willis
and Movchan) requires substituting v0t for x in the evaluation of DGcrit�z, x�: This
allows relating the deviation in crack position A�z, t� and DG by a linear
functional, resulting in the equation of motion

DĜ�k, o�
G0

� ÿP̂�k, o�Â�k, o�, �2a�

Fig. 1. Geometry of the fracture problem addressed.
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where

Â�k, o� �
��1
ÿ1

��1
ÿ1

eÿikzÿiotA�z, t� dz dt �2b�

and

DĜ�k, o� �
��1
ÿ1

��1
ÿ1

eÿikzÿiotDGcrit�z, v0t� dz dt �2c�

The function P̂�k, o� is given by Ramanathan and Fisher (1997) in the
wavenumber±frequency domain:

P̂�k, o� � 2cRjkj
c2R ÿ v20

���������������
c2R ÿH

q
ÿ cdjkj

c2d ÿ v20

��������������
c2d ÿH

q

ÿ jkj1
p

�c2
d

c2s

tanÿ1
 
4
�����������������
1ÿ J=c2d

p �����������������
J=c2s ÿ 1

pÿ
2ÿ J=c2s

�2
!

2v20JÿH
ÿ
J� v20

��������������������
J�JÿH�

p ÿ
Jÿ v20

�2 dJ

�3�
where H � v20 � o2=k2 and cR, cs, cd are the Rayleigh, shear, and dilatational wave
speeds, respectively. In Morrissey and Rice (1998), P̂�k, o� is written as 2=Ĥ�k, o�,
that transfer function Ĥ�k, o� being distinct from the H de®ned above, and the
expression for Ĥ�k, o� is given in terms of a function introduced by Willis and
Movchan (1995). We note that P̂�k, o� has the form jkj times a function of o2=k2,
and is real for o2=k2 < c2R ÿ v20:

As shown in Fig. 2, and observed by Ramanathan and Fisher (1997), the
function P̂�k, o� has a simple zero corresponding to a propagating mode of
velocity cf , slightly less than the Rayleigh wave speed cR. Here cf is the speed

Fig. 2. Graph of the function P̂�k, o� for Poisson ratio 0.25 and v0 � 0:5cR: Note the simple root

corresponding to the crack front wave.
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relative to a ®xed point on the fracture plane at which the wave was nucleated or
through which it passed, simultaneously with the crack front, in earlier crack
motion. The velocity cf varies with the unperturbed crack velocity v0, approaching
the Rayleigh wave speed with increasing crack speed, as shown in Fig. 3(a). The
speed c of the propagating mode parallel to the crack front may be related to cf
by the Pythagorean rule; if the wave has moved distance cft from such ®xed
position on the fracture plane as mentioned above, and has moved by ct parallel
to the crack front, during a time in which the front itself has advanced by v0t,
then �cft�2 � �ct�2 � �v0t�2, and thus c �

��������������
c2f ÿ v20

q
: In fact, the o=k

���������������
c2R ÿ v20

q
axis

position at the zero of P̂�k, o� in Fig. 2 corresponds to c=
���������������
c2R ÿ v20

q
, and that

measure of wave speed is shown as a function of v0 in Fig. 3(b).
In order to use the result P̂�k, o� in simulations, the equation of motion (2a)

must be partially inverted to the time domain.

2.1. Inversion of the equation of motion

We make the substitution
���
J
p � Z in Eq. (3) and de®ne

Y�Z; cd, cs � � 2

p
tanÿ1

 
4
�������������������
1ÿ Z2=c2d

p �������������������
Z2=c2s ÿ 1

pÿ
2ÿ Z2=c2s

�2
!
, �4�

which takes on values from 0 to 1 over the range of the integral, to obtain

P̂�k, o� � 2cR

c2R ÿ v20

�����������������������������������ÿ
c2R ÿ v20

�
k2 ÿ o2

q
ÿ cd

c2d ÿ v20

����������������������������������ÿ
c2d ÿ v20

�
k2 ÿ o2

q

ÿ
�cd

cs

Y�Z; cd, cs � v20k
2ÿ

Z2 ÿ v20
� dZ����������������������������������ÿ

Z2 ÿ v20
�
k2 ÿ o2

q
� o2

�cd

cs

Y�Z; cd, cs �
ÿ
Z2 � v20

�ÿ
Z2 ÿ v20

�2 dZ����������������������������������ÿ
Z2 ÿ v20

�
k2 ÿ o2

q �5�

The branches of the square root are chosen consistently with our de®nition of the
transform in Eq. (2), with use of ÿio rather than �io as in Ramanathan and
Fisher (1997), such that����������������

p2 ÿ o2
p

� i sign�o�
����������������
o2 ÿ p2

p
for large real o, �6�

which implies the remaining term involving o in the integrands above is

1����������������������������������ÿ
Z2 ÿ v20

�
k2 ÿ o2

q for o2 <
ÿ
Z2 ÿ v20

�
k2,
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and

ÿi sign�o�����������������������������������
o2 ÿ ÿZ2 ÿ v20

�
k2

q for o2 >
ÿ
Z2 ÿ v20

�
k2:

That is recognized as the Fourier transform of H�t�J0�
���������������
Z2 ÿ v20

q
jkjt�, where H�t� is

the Heaviside unit step function, and J0 is the Bessel function of the ®rst kind.
Henceforth, let us denote the timewise Fourier transform of a function f�t� as

FT�f�t��: We may then write

P̂�k, o� � 2cR

c2R ÿ v20

�����������������������������������ÿ
c2R ÿ v20

�
k2 ÿ o2

q
ÿ cd

c2d ÿ v20

����������������������������������ÿ
c2d ÿ v20

�
k2 ÿ o2

q

ÿ
�cd

cs

Y�Z; cd, cs �FT

�
H�t�J0

� ���������������
Z2 ÿ v20

q
jkjt

��
v20k

2 dZÿ
Z2 ÿ v20

�
� o2

�cd

cs

Y�Z; cd, cs �FT

�
H�t�J0

� ���������������
Z2 ÿ v20

q
jkjt

��ÿ
Z2 � v20

�
dZÿ

Z2 ÿ v20
�2 �7�

In order to invert the ®rst two terms of P̂�k, o�, we extract their non-vanishing
parts as o41 and thus note that

����������������
p2 ÿ o2

p
� io�

�
ÿ io�

����������������
p2 ÿ o2

p �
� FT

�
@

@t
� pH�t�J1�pt�

t

�
, �8�

where p 2 will represent either �c2R ÿ v20�k2 or �c2d ÿ v20�k2:
Observing also that FTfo2FT�f�t��g � ÿFT�d2f�t�=dt2�, and exchanging the

inverse Fourier transform with the integral over Z in the expression for P̂�k, o�,
we may thus write

P̂�k, t� �
 

2cR

c2R ÿ v20
ÿ cd

c2d ÿ v20

!
@

@t
� 2cRk

2H�t�
J1

� ���������������
c2R ÿ v20

q
jkjt

�
���������������
c2R ÿ v20

q
jkjt

ÿ cdk
2H�t�

J1

� ��������������
c2d ÿ v20

q
jkjt

�
��������������
c2d ÿ v20

q
jkjt

ÿ
�cd

cs

Y�Z; cd, cs �
�
H�t�J0

� ���������������
Z2 ÿ v20

q
jkjt

��
v20k

2 dZÿ
Z2 ÿ v20

�
ÿ @2

@ t2

�cd

cs

Y�Z; cd, cs �
�
H�t�J0

� ���������������
Z2 ÿ v20

q
jkjt

��ÿ
Z2 � v20

�
dZÿ

Z2 ÿ v20
�2 �9�
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For simulations we will need to ®nd the inverse of ÿP̂�k, o�Â�k, o�, which is
ÿP̂�k, t� 
 Â�k, t�, where 
 denotes convolution in time. The convolution yields

ÿP̂�k, t� 
 Â�k, t� �
 

cd

c2d ÿ v20
ÿ 2cR

c2R ÿ v20

!
@Â�k, t�
@ t

ÿ 2cRk
2

�t
ÿ1

J1

� ���������������
c2R ÿ v20

q
jkj�tÿ t 0 �

�
���������������
c2R ÿ v20

q
jkj�tÿ t 0 �

Â
ÿ
k, t 0

�
dt 0

� cdk
2

�t
ÿ1

J1

� ��������������
c2d ÿ v20

q
jkj�tÿ t 0 �

�
��������������
c2d ÿ v20

q
jkj�tÿ t 0 �

Â
ÿ
k, t 0

�
dt 0

�
�cd

cs

�t
ÿ1

Y�Z; cd, cs � v20k
2ÿ

Z2 ÿ v20
�J0� ���������������

Z2 ÿ v20

q
jkj�tÿ t 0 �

�

� Â
ÿ
k, t 0

�
dt 0 dZ� @ 2

@t2

�cd

cs

�t
ÿ1

Y�Z; cd, cs �
ÿ
Z2 � v20

�ÿ
Z2 ÿ v20

�2
� J0

� ���������������
Z2 ÿ v20

q
jkj�tÿ t 0 �

�
Â
ÿ
k, t 0

�
dt 0 dZ �10a�

Taking the second derivative with respect to time inside the integrand of the last
term, and collecting like terms, we have one term that corresponds to the
instantaneous dependence of energy release rate on crack motion, and other terms
that carry the wave-mediated change in energy release rate generated by all prior
nonuniformities of crack motion:

ÿP̂�k, t� 
 Â�k, t� �
"

cd

c2d ÿ v20
ÿ 2cR

c2R ÿ v20
�
�cd

cs

Y�Z; cd, cs �
ÿ
Z2 � v20

�
dZÿ

Z2 ÿ v20
�2
#

� @Â�k, t�
@t

� k2
�t
ÿ1

"
cd
J1
ÿ
kadcd�tÿ t 0 �

�
kadcd�tÿ t 0 �

ÿ 2cR
J1
ÿ
kaRcR�tÿ t 0 �

�
kaRcR�tÿ t 0 �

#
Â
ÿ
k, t 0

�
dt 0

� k2

2

�t
ÿ1

�cd

cs

Y�Z; cd, cs �
"
Z2 � v20
Z2 ÿ v20

J2
ÿ
kaZZ�tÿ t 0 ��

ÿ J0
ÿ
kaZZ�tÿ t 0 ��#Âÿk, t 0� dZ dt 0 �10b�
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Here we have simpli®ed notation by introducing the de®nition ag �
�������������������
1ÿ v20=c

2
g

q
for

any given wave speed cg and unperturbed crack velocity v0. Note that agcg is the
speed with which a wave of speed cg relative to a ®xed point on the fracture
plane, nucleated as the crack passes through that point, travels in the direction

parallel to the moving crack front. Also, aZ �
�������������������
1ÿ v20=Z

2

q
:

Lastly, we obtain the following form, for comparison with the analogous
formula for a crack moving in a model scalar elastic solid derived by Rice et al.
(1994):

ÿP̂�k, t� 
 Â�k, t� � Cv�v0�@Â�k, t�
@t

� 2I�k, t� �11a�

where

I�k, t� �
�t
ÿ1

dt 0BI

ÿ
k, tÿ t 0

�
Â
ÿ
k, t 0

�
: �11b�

The equation of motion is then written in the wavenumber±time domain as:

DĜcrit�k, v0t� � Gcrit0

�
Cv�v0�@Â�k, t�

@ t
� 2I�k, t�

�
�12�

For mode I the corresponding quantities are:

Cv�v0� � cd

c2d ÿ v20
ÿ 2cR

c2R ÿ v20
�
�cd

cs

Y�Z; cd, cs �
ÿ
Z2 � v20

�ÿ
Z2 ÿ v20

�2 dZ �13a�

and

BI�k, t� � k2

2

�
cd
J1�kadcdt�
kadcdt

ÿ 2cR
J1�kaRcRt�
kaRcRt

�

� k2

4

�cd

cs

Y�Z; cd, cs �
"
Z2 � v20
Z2 ÿ v20

J2
ÿ
kaZZt

�ÿ J0
ÿ
kaZZt

�#
dZ �13b�

2.2. Reduction to 2D results

Comparing to Eq. (1), the coe�cient of instantaneous velocity in Eq. (12),
Cv�v0�, should in fact be equal to g 0�v0�=g�v0�, derivable from Freund (1972) for
unsteady 2D crack motion. As discussed earlier, g�v0� is a universal function of
crack velocity that describes the reduction in energy ¯ow to the crack tip with
crack speed.

From Freund (1972), g�v0� � �k̂�v0��2f�v0�, where (see also Morrissey and Rice,
1998)
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k̂�v0 � � 1ÿ v0=cR�������������������
1ÿ v0=cd

p
S��1=v0 �

and f�v0� �
v20

�������������������
1ÿ v20=c

2
d

q
c2s �1ÿ n0�r�v0 � �14�

The function r�v0� is the Rayleigh function, de®ned by

r�v0� � 4
�������������������
1ÿ v20=c

2
s

q �������������������
1ÿ v20=c

2
d

q
ÿ ÿ2ÿ v20=c

2
s

�2 �15�

and S��1=v0�, arising from a Wiener±Hopf factorization in the solution of the
dynamic 2D mode I crack problem, is

S��1=v0� � exp

(
ÿ v0

2

�cd

cs

Y�Z; cd, cs � dZ
Z�Zÿ v0�

)
: �16�

We may then write

g 0�v0�
g�v0� �

f 0�v0�
f�v0� � 2

k 0�v0�
k�v0�

� 2

v0
� cd

c2d ÿ v20
ÿ 2

cR ÿ v0
ÿ r 0�v0�

r�v0� �
�cd

cs

Y�Z; cd, cs � dZ

�Zÿ v0�2 �17�

At ®rst glance, this looks little like the form derived for Cv�v0� in Eq. (13a), but
proof of their equality is given in Appendix A. The proof involves reforming the
term r 0�v�=r�v� into a contour integral.

3. Numerical formulation

The numerical solution of the equations of motion (Eqs. (12) and (13)) begins
with a discretization of the space dimension (z ) by N FFT sample points with a
spacing of Dz: Time is likewise discretized into discrete time intervals Dt, chosen
small enough that the argument of the space±time kernel BI�k, t�, kaRcRt, changes
by a small fraction of p with each increment of time Dt: We represent the fracture
energy ¯uctuation by the discrete Fourier sum

DGcrit�z, x� �
XN=2

n�ÿN=2
Gn�x�e2pinz=lz �18�

where N is an even integer and the distribution is replicated periodically in the z
direction over length lz: The FFT may be used to ®nd the Gn, given DGcrit at
values of z corresponding to the FFT sample points.

The crack position perturbation A�z, t� and prior history functional I�z, t� then
have the representations
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A�z, t� �
XN=2

n�ÿN=2
An�t�e2pinz=lz , I�z, t� �

XN=2
n�ÿN=2

In�t�e2pinz=lz �19�

and the equation of motion is then

Gn�v0t� � Gcrit0

�
Cv�v0�dAn�t�

dt
� 2In�t�

�
�20a�

where

In�t� �
�t
ÿ1

BI

ÿ
k, tÿ t 0

�
An�t 0 � dt 0 �20b�

with k � 2pn=lz:
We assume that A�z, t� has been calculated up to the present time, and that

An�t� and BI�k, t� are stored at discrete time intervals Dt: At each time step, the
following loop is performed:

1. Calculate the In�t� by convolving the BI�k, t� with the An�t�: Each convolution is
done as a trapezoidal-rule sum based on values of the integrand at the discrete
times.

2. Given the Gn�v0t� and In�t�, solve for the dAn�t�=dt, and update to time t� Dt
by the Euler scheme An�t� Dt� � An�t� � Dt dAn�t�=dt:

3. Use the inverse FFT to ®nd the updated A�z, t� Dt� at the FFT sample points
z.

4. Return to step (1) with t replaced by t� Dt:

Each analysis begins with a crack moving steadily through a homogenous material
in the positive x-direction. At some point (typically chosen to coincide with time
t � 0), the crack reaches an inhomogeneity, and DGcrit becomes non-zero. This
produces a non-zero @A�z, t�=@ t in step (2), and hence a non-zero A�z, t�: Upon
returning to step (1), the history functional In�t� typically becomes non-zero.
However, the zero in the function P̂�k, o� implies that there are motions of the
crack front that produce no change in energy release rate. That is, there are
motions An�t�, as crack front waves, that continue for all time even when Gn�t�
has returned to 0.

4. Simulations of dynamic crack growth

4.1. Modal analysis

To see the e�ect of the crack front wave for mode I cracks, it is useful to ®rst
examine the response to a heterogeneity composed of a single spatial frequency, or

DGcrit�z, v0t� � Gk�t� cos�kz�: �21a�
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(Here the subscript k denotes wavenumber, not index on the Fourier sum.) By
linearity, the deviation in crack shape A�z, t� is then

A�z, t� � Ak�t� cos�kz� �21b�
One of the simplest choices for Gk�t� is a Heaviside step, or

Gk�t� � gkGcrit0H�t� �22�
where gk is the amplitude of the ¯uctuation in critical energy release rate as a
fraction of the background value Gcrit0 : Since H�t� has non-vanishing Fourier
transform at all frequencies, it will be non-zero near, o2 � k2�c2f ÿ v20� the
frequency at which P̂�k, o� has a simple zero, and its inverse has a simple pole.
Therefore, it is expected that the time variation of the deviation in crack shape,
Ak�t�, will ultimately be sinusoidal, representing the superposition of two
propagating waves, one traveling to the left, and the other traveling to the right.
The numerical simulation of this process is shown in Fig. 4. Except for the
absence of the FFT, the procedure is identical to the outline of Section 3, with
time step Dt chosen such that kafcfDt � p=10:

Fig. 4 shows that, except for a short-term transient, each Fourier mode of crack
deviation essentially behaves like a simple harmonic oscillator in which Gk�t� plays
the role of the driving force. Like the simple harmonic oscillator, if the driving
force oscillates at the natural or resonant frequency, the response grows secularly.
Thus, if Gk�t� is of the form

Gk�t� � gkGcrit0 cos

�
kt

��������������
c2f ÿ v20

q �
H�t�, �23a�

we expect Ak�t� to grow at long time as:

Ak�t�4constant� kt
��������������
c2f ÿ v20

q
� cos

�
kt

��������������
c2f ÿ v20

q
� j

�
, �23b�

where cf is the crack front wave speed. The numerical result of this process is
shown in Fig. 5.

The implication of these results for crack disordering, as discussed in Morrissey
and Rice (1998) (in which it is now evident that their linear response function
L�k, t� is indeed ultimately sinusoidal), is that under a general, sustained random
¯uctuation of DGcrit, the variances of crack shape and velocity grow linearly with
time of propagation into the disordered region.

4.2. Crack propagation through random DGcrit

Consider now a normal distribution of DGcrit�z, x� with two-point auto-
correlation function R�Dz, Dx�: We will model DGcrit�z, x� as a random Fourier
sum. Thus,
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DGcrit�z, x� �
XN=2

n�ÿN=2

XM=2
m�ÿM=2

Gnme2pinx=lxe2pimz=lz �24�

where G00 is a normally-distributed real random variable of zero mean, where the
other Gnm are normally-distributed complex random variables of zero mean and
uniformly distributed phase (thus assuring statistically independent real and
imaginary parts), where G�ÿn��ÿm� � �Gnm as required for a real-valued function, but
where the real and imaginary parts of every other Gqp are statistically independent
of those of Gmn whenever the ordered pair qp di�ers from nm. Under these
conditions it is readily seen that the ensemble average hDGcrit�z� Dz,
x� Dx�DGcrit�z, x�i is independent of location x, z and de®nes an auto-correlation
function

R�Dz, Dx� �
XN=2

n�ÿN=2

XM=2
m�ÿM=2

hjGnmj2ie2pinDz=lze2pimDx=lx : �25�

The R�Dz, Dx� for such a process is necessarily spatially periodic, since each
realization of DGcrit�z, x� is. However, we can make R�Dz, Dx�, agree over the
region �ÿlz=2 < Dz < lz=2, ÿlx=2 < Dx < lx=2], within limitations of truncation
of the Fourier series, with some given correlation function for a non-periodic
process that has been generated as the Fourier transform of a non-negative two-
dimensional power spectral density. Then, in terms of the given R�Dz, Dx�, we
have, by inversion of the series,

Fig. 4. Response of a single Fourier mode in crack shape to a Heaviside step in time of DGcrit in that

mode. The sustained sinusoidal nature is indicative of a superposition of crack front waves, forming a

standing mode.
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hjGnmj2i � 1

lzlx

�lz=2
ÿlz=2

�lx=2
ÿlx=2

R�Dz, Dx�eÿ2pinDx=lxeÿ2pimDz=lz dDx dDz: �26�

In what follows, R�Dz, Dx� is taken as s2eÿ
�������
Dx 2
p

�Dz2=b with correlation length b
equal to 8lz=512 �lz being the spatial period along z ) or eight FFT sample spaces
long. The standard deviation s is 0:25Gcrit0 : However, to avoid negative values of
Gcrit, DGcrit�z, x�, is restricted to the range �ÿ3s, � 3s], or
�ÿ0:75Gcrit0 , � 0:75Gcrit0 ]. Since 95% of a normal distribution lies within three
standard deviations of the mean, this is actually a small correction.

Fig. 6 shows the crack position a�z, t� at various increasing times for a crack
moving through a particular realization of the random DGcrit distribution
described above. The X's show points at which the predicted perturbation has
become so large that the local crack velocity is less than or equal to zero. (While
one could, by ®at, demand that the crack velocity be constrained to the range
�0, cR], the linearized formulation is strictly followed here.) They appear to
correlate along lines with a slope determined by the crack front wave speed cf ,
denoted by dotted lines, implying that these ``arrests'' are the result of dynamics
rather than purely the result of local regions of high critical energy release rate.
The unperturbed crack speed v0 was taken to be 0:5cR for which g�v0� � 0:525,
with Poisson ratio 0.25, meaning that the rest value of G (the value to which G
would revert if the crack were to suddenly stop) is about 2Gcrit0 : But the maximum
value of Gcrit is 1:75Gcrit0 : Then it follows that without the assistance of elastic
waves to reduce the local energy ¯ow to the crack tip, the crack would always be

Fig. 5. Secular growth of a single Fourier mode in crack velocity, caused by a sinusoidal variation, with

propagation distance, of DGcrit in that mode, with temporal frequency equal to the resonant frequency

for that mode.
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everywhere su�ciently overloaded to cause fracture, and would therefore, never
locally arrest.

However, there is no impression in Fig. 6 of increasing disorder or waviness in
the crack shape with increasing growth through the disordered zone, which is a
provable property of the analytical solution devised. A possible explanation can
be found in a careful comparison of the discrete, simulated system to the
continuous one.

In the continuous system, the heterogeneity in critical energy release rate
DGcrit�z, x� � DGcrit�z, v0t� has spectral content at all frequencies o: But in the
discrete system where DGcrit�z, x� is modeled by a random Fourier sum, the set of
frequencies with non-vanishing spectral content is limited to
on � knxv0 � 2pnv0=lx, 0RnRN=2: These frequencies may or may not coincide
with the resonant frequencies for Am�t�, the set of spatial Fourier modes
describing the crack shape. Each mode in crack shape Am�t� is associated with a
particular spatial wavenumber kmz � 2pm=lz, which resonates at a precise

Fig. 6. Crack growth through a heterogeneous region modeled by random Fourier series. The X's mark

places where the crack velocity ¯uctuation (within the linearized perturbations studied) became so

severe as to make the net velocity R0. These ``arrest'' events are a result of mode I dynamics.
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frequency om � kmz

��������������
c2f ÿ v20

q
: Thus, the mth mode of crack shape can grow

unboundedly if and only if, for some nRN=2, on � om:
Fig. 7 shows an example of the resonant frequencies versus the available time

frequencies for the Fourier sum representation of DGcrit: Resonance occurs when a
`+' mark lies along the line where the two frequencies are equal. There is in fact
no resonance in this ®gure, though some modes of crack shape come very close to
resonating. It is possible to choose a set of spatial frequencies for the DGcrit

distribution such that most or even all modes of crack shape Am�t� will resonate.
An example of crack propagation under such a condition is shown in Fig. 8.

The only di�erence between the simulation performed for Fig. 8 and that of Fig. 6
is that in the former the fundamental wavelength lx of DGcrit was shortened by
10%, bringing the lower 2/3 of crack shape modes into resonance. (Frequencies
high enough to resonate the top third of spatial modes simply were not present in
this analysis.) The deviation in crack shape in this case is decidedly larger, and
there is a veritable forest of local arrest eventsÐso many, in fact that the unaided
eye can easily follow the tracks of the propagating crack front waves.

Fig. 7. Graph of resonant frequencies of the spatial modes of the crack front vs. the time-frequencies

available in the representation of DGcrit by a random Fourier series. Resonance occurs only when a plus

(+) sign lies on the dotted line where the two frequencies are equal.
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4.3. Modal analysis of crack propagation through random DGcrit

In order to reproduce the analytic prediction of linear growth of disorder in the
propagating mode I crack front, it is clear that the spectrum of time frequencies in
the representation of DGcrit�z, v0t� must not be restricted as they are when the
heterogeneity is modeled by a random Fourier sum. We will now re-examine the
case of Section 4.1 where the heterogeneity DGcrit�z, v0t� is composed of a single
spatial component. Thus,

DGcrit�z, v0t� � Gk�t� cos �kz� and A�z, t� � Ak�t� cos �kz�: �27�

But now Gk�t� will vary randomly with time. In contrast to Section 4.2, the

Fig. 8. Crack growth through a heterogeneous region modeled by random Fourier series. Wavelengths

of the series in the direction of propagation were chosen to obtain resonance. Many more ``arrest''

events, marked by X's, are seen than in Fig. 6.
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random variation of Gk�t� will now be evaluated on-the-¯y, and will not be
periodic in time.

Let gnran, n � �0, 1, 2, . . .�, denote a sequence of normally-distributed,
independent, random real numbers of zero mean and variance s2g: An
exponentially correlated sequence gnk can be constructed from this one by the
initial condition g0k � g0ran combined with the recursion rule

gnk � w1g
nÿ1
k � w2g

n
ran, �28�

where w1 and w2 are positive reals less than 1. If w2
1 � w2

2 � 1, the sequence gnk is
stationary with expected square modulus

hÿgnk�2i � hÿgnran

�2i � s2g: �29a�

The correlation of the sequence then follows the geometric rule

hgnkgmk i � wjnÿmj1 s2g: �29b�

If we now make the association Gk�t� � Gk�nDt� � gnkGcrit0 , where Dt is the time
step of a simulation, then the autocorrelation of Gk�t�, R�t�, is

R�t� � hGk�t�Gk�t� t�i � wjtj=Dt1 s2gG
2
crit0
: �30a�

Since the modal crack shape Ak�t� resonates at frequency kafcf , an auspicious
choice for R�t�, i.e. one which ensures good spectral content near the resonant
frequency is

R�t� � G 2
crit0

s2geÿkafcf jtj �30b�

or

w1 � eÿkafcfDt:

Alternatively, if we wish to model an exponentially correlated heterogeneity with
spatial correlation length b in the direction of crack propagation, i.e.
R�t� � G 2

crit0
s2ge
ÿv0jtj=b, then the corresponding choice for w1 is w1 � eÿv0Dt=b:

Note that in principle, generating the values of Gk�t� on-the-¯y in this way
produces spectral content at all time frequencies o that are rational fractions of
the temporal Nyquist frequency of the simulation, p=Dt: Therefore, assuming
kafcf < p=Dt, the resonant frequency will be captured. (If kafcf > p=Dt, no
resonance or growth of disorder can occur for the mode of crack shape with
wavenumber k.)

Fig. 9 shows the expected value of the squared-amplitude of the deviation in
crack shape Ak�t� as a function of time, for crack growth through the modal
heterogeneous toughness described above. The expected values were obtained
from an ensemble average of 100 such simulations. In each simulation the
unperturbed crack velocity v0 was one-half of the Rayleigh wave speed, and the
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Poisson ratio for the solid was one quarter. Furthermore, the time step of the
simulations was chosen so that kafcfDt � p=10, and the correlation function for
the heterogeneity was as above, with b � v0=kafcf :

The expected variance of the crack shape grows linearly with time, a
consequence shown in Morrissey and Rice (1998) to be required due to existence
of the persistent crack front waves.

5. Summary

This paper developed a methodology for simulating mode I fracture through
regions of heterogeneous critical energy release rate. The methodology is based on
the mode I perturbation analysis of Willis and Movchan (1995), as formulated by
Ramanathan and Fisher (1997), and is similar in form to that of Rice et al. (1994)
for a model scalar elastic solid. Simulations using the methodology developed here
clearly show the e�ects of persistent crack front waves discussed by Morrissey and
Rice (1996, 1998), including linear growth of the variance in crack shape when a
crack propagates through a region of sustained, random ¯uctuations in critical
energy release rate. However, it is evident that, in simulations for which the
temporal spectral content of the toughness heterogeneity can be characterized by a
small set of discrete frequencies, the e�ect of persistent crack front waves can be

Fig. 9. Expected squared modulus of a single Fourier mode in crack shape, for a crack front

propagating through a zone of randomly variable fracture toughness. The values represent an ensemble

average over many simulations.
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greatly reduced, or can be greatly enhanced for particular choices of the set of
discrete frequencies.
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Appendix A. Equivalence of g 0�v0�=g�v0� and Cv�v0�

This appendix establishes the equivalence of the result for g 0�v0�=g�v0�,
appearing in Eq. (1) and expressed in Eq. (17) based on Freund (1972), and the
result for Cv�v0� derived in Eq. (13a) of the present work. Let
h�x� � �2ÿ x�2 � 4�xÿ 1�1=2�axÿ 1�1=2, where a � c2s=c

2
d: In the complex x-plane, a

branch cut is taken along the real axis from 1 to 1=a: The function h�x� has zeroes
at the origin and on the real axis at the point g � c2R=c

2
s :

With the branch thus de®ned, on the interval [0, 1] of the real axis h�x�
becomes, with x � x,

h�x� � �2ÿ x�2ÿ4
�����������
1ÿ x
p ��������������

1ÿ ax
p

� ÿr
ÿ
cs

���
x
p �

, �A1�
so that r�v� � ÿh�v2=c2s �: Thus,

r 0�v�
r�v� �

�
2v

c2s

��
dh�x�=dx
h�x� jx�v2=c2s

�
: �A2�

Now let us consider the function

H�x0� �
�
G

h 0�x�=h�x�
xÿ x0

dx �A3�

where 0 < x0 < 1: The closed contour G is taken in the clockwise direction about
the branch cut of h�x�, as in Fig. A1. Note that

h 0�x�=h�x�
xÿ x0

� d

dx

(
ln
�
h�x��

xÿ x0

)
� ln

�
h�x��

�xÿ x0�2
, �A4�

Since the branch point for ln�h�x�� is g�< 1�, ln�h�x��=�xÿ x0� is single-valued on
the contour, leaving us with

H�x0� �
�
G

ln
�
h�x��

�xÿ x0�2
dx: �A5�
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Along G�, the portion of the path G lying just above the branch cut in the upper-
half of the complex x-plane, at x � x, we have

ln
�
h�x��

� � ln

� ��������������������������������������������������������
�2ÿ x�4�16�xÿ 1��1ÿ ax�

q �
� i arctan

"
4
�����������
xÿ 1
p ��������������

1ÿ ax
p

�2ÿ x�2
#
, �A6�

while along Gÿ, the portion of the path just below the branch cut, we have that
ln�h�xÿ�� is the complex conjugate of that expression. Thus,

H�x0� � 2i

�1=a
1

arctan

"
4
�����������
xÿ 1
p ��������������

1ÿ ax
p

�2ÿ x�2
#

dx

�xÿ x0�2
: �A7�

Now H�x0�, as it was originally written, will be found by application of the
residue theorem. We deform the path of integration into a counter-clockwise one
enclosing the roots of h�x� as shown in Fig. A2. In the limit, as the radius of the
path approaches in®nity, the integral over the outer circle vanishes, leaving us
with

H�x0� � 2pi S residues at x � 0, x0, g: �A8�
Near x � 0, the integrand is�

ÿ 1

x0

��
1

1ÿ x=x0

�
h 0�0� � h 00�0�x�O

ÿ
x2
�

0� h 0�0�x�O
ÿ
x2
� ,

giving a residue of ÿ1=x0: Near x � x0, the integrand is expanded as�
1

xÿ x0

��
h 0�x0�=h�x0� �O�xÿ x0�

�
,

giving a residue of h 0�x0�=h�x0�: Lastly, near x � g the integrand is expanded as�
1

gÿ x0

��
1

1ÿ �xÿ g�=�gÿ x0�
�
h 0�g� � h 00�g��xÿ g� �O

�
�xÿ g�2

�
0� h 0�g��xÿ g� �O

�
�xÿ g�2

�

Fig. A1. Path of the contour integral in the complex x-plane de®ning H�x0�: Note the branch cut

joining the points 1 and 1=a on the real axis.
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which leaves a residue of 1=�gÿ x0�: Thus,

H�x0� � 2pi
�
h 0�x0�
h�x0�

� 1

gÿ x0
ÿ 1

x0

�
: �A9�

Recalling that we have developed above an integral representation of H�x0�, and
equating the two, we ®nd

h 0�x0�
h�x0�

� 1

x0
ÿ 1

gÿ x0
� 1

p

�1=a
1

arctan

"
4
�����������
xÿ 1
p ��������������

1ÿ ax
p

�2ÿ x�2
#

dx

�xÿ x0�2
: �A10�

Therefore, substituting into the expression above for r 0�v�=r�v�, with v � v0, and
making the change of variable x � �Z=cs�2 we are ®nally left with

r 0�v0�
r�v0 � � 2

v0
c2s

(
c2s
v20
ÿ 1

c2R=c
2
s ÿ v20=c

2
s

)
�
�cd

cs

Y�Z; cs, cd� 2v0Zÿ
Z2 ÿ v20

�2 dZ

� 2

v0
ÿ 2v0

c2R ÿ v20
�
�cd

cs

Y�Z; cs, cd � 2v0Zÿ
Z2 ÿ v20

�2 dZ �A11�

Combining this with the other terms of g 0�v0�=g�v0� in Eq. (17) then gives

g 0�v0�
g�v0� �

cd

c2d ÿ v20
ÿ 2cR

c2R ÿ v20
�
�cd

cs

Y�Z; cs, cd� Z2 � v20ÿ
Z2 ÿ v20

�2 dZ, �A12�

which coincides with our expression for Cv�v0� in Eq. (13a) and proves the result.

Fig. A2. Alternative path allowing evaluation of H�x0� by the residue theorem.
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