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Abstract

The stability of quasi!static frictional slip of a single degree of freedom elastic system is
studied for a DieterichÐRuina rate and state dependent friction law\ showing steady!state
velocity weakening\ and following the ageing "or slowness# version of the state evolution law[
Previous studies have been done for the slip version[

Analytically determined phase plane trajectories and Liapunov function methods are used
in this work[ The stability results have an extremely simple form] "0# When a constant velocity
is imposed at the load point\ slip motion is always periodic when the elastic sti}ness\ K\ has a
critical value\ Kcr[ Slip is always stable when K × Kcr × 9\ with rate approaching the load!point
velocity\ and unstable "slip rates within the quasi!static model become unbounded# when
K ³ Kcr[ This is unlike results based on the slip version of the state evolution law\ in which
instability occurs in response to su.ciently large perturbations from steady sliding when
K × Kcr[ An implication of this result for slip instabilities in continuum systems is that a critical
nucleation size of coherent slip has to be attained before unstable slip can ensue[ "1# When the
load point is stationary\ the system stably evolves towards slip at a monotonically decreasing
rate whenever K − Kcr × 9[ However\ when K ³ Kcr\ initial conditions leading to stable and
unstable slip motion exist[ Hence self!driven creep modes of instability exist\ but only in the
latter case[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] A[ Dynamics^ B[ Friction^ Constitutive behavior^ C[ Stability and bifurcation

0[ Introduction

Consider a rigid block attached to a linear spring "Fig[ 0#[ The block slides fric!
tionally with velocity V when a constant velocity V9 is imposed at the other end of
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Fig[ 0[ Single degree of freedom elastic system sliding frictionally under imposed load!point motion[

the spring[ Normal stress on the contact interface is assumed to be constant[ At steady
state\ the block slips with the velocity of the imposed motion[ Away from steady state\
the equation of motion of the block\ assuming quasi!static slippage\ is

t¾ �K"V9−V# "0#

where t is the frictional shear stress on the block and K is the spring sti}ness per unit
area of sliding contact[

Motivated by experimental studies of rock friction\ Dieterich "0868# and Ruina
"0872# proposed an empirical frictional constitutive law in which friction depends
both on the slip rate\ V\ and the state of the surface in the form

t� t�¦A ln"V:V�#¦B ln"V�u:L# "1#

where A\ B and L are constants\ t� and V� are reference values of friction stress and
sliding velocity\ respectively\ and u is a state variable[ Generally\ t�\ A and B are
considered to be proportional to e}ective normal stress[ Also\ for V� chosen in the
range of imposed slip rates in the experiments mentioned "e[g[\ 09−8Ð09−2 m:s#\ A
and B are typically of order 1) to 3) of t�\ and =A−B= of order 0) or less[

Based on the work of Dieterich "0868#\ Ruina "0872# introduced two widely used
empirical laws for the evolution of the state variable[ In one form\ called the DieterichÐ
Ruina ageing "or slowness# law\ the state variable is interpreted as an e}ective time
of contact of surface asperities[ State evolution by this law is described by the equation

u¾ � 0−Vu:L[ "2#

An important feature of this law is that friction evolves logarithmically with time
even under stationary contact "V�9#[ Hence it is called an ageing law[ Another
widely used state evolution law\ referred to as the RuinaÐDieterich slip law is given
by

u¾ �−"Vu:L# ln "Vu:L#[ "3#

Here\ state evolves only during slip "V� 9#[ See Beeler et al[ "0883#\ Perrin et al[
"0884# and Rice and Ben!Zion "0885# for further discussions and comparisons of slip
predictions based on these laws[ The latter also discuss a physically based reg!
ularization "based on Arrhenius rate process model# of the ln"V# term near V�9
which is sometimes required\ although not in the cases discussed here[
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For both the DieterichÐRuina ageing "or slowness# law and the RuinaÐDieterich
slip law\ at steady state\

V ss �V9\ tss � t�−"B−A# ln"V9:V�#[ "4#

It is clear that the frictional stress at steady state decreases with increasing velocity
when B×A[

A linear stability analysis of the steady state solution for both evolution laws was
done by Ruina "0872#\ and more generally\ for linear frictional constitutive laws with
instantaneous velocity dependence and fading memory of prior history of velocity\
by Rice and Ruina "0872#[ They show that quasi!static steady state slip is stable "V:
V9# or unstable "V:�# as the spring sti}ness is greater than or less than a critical
value given by

Kcr � "B−A#:L[ "5#

When K�Kcr\ the linearized slip motion is periodic[
Gu et al[ "0873# have done a non!linear analysis of the stability of steady slip with

state evolution according to the RuinaÐDieterich slip law "3#[ For this law\ they show
that when K�Kcr\ initial conditions leading both to periodic stick!slip motions as
well as unstable motions exist[ When K×Kcr\ initial conditions su.ciently close to
the steady state lead to stable slip while others cause unstable slip[ When K³Kcr\ slip
is always unstable[

In the present work\ a non!linear stability analysis of steady quasi!static slip\ with
evolution described by the DieterichÐRuina ageing law "2#\ is carried out[ The analysis\
similar to the work of Gu et al[ "0873#\ is carried out using analytically determined
phase plane trajectories and Liapunov function techniques[ The implications of the
stability results for slip in continuum systems is also discussed[

This paper is organized as follows[ In Section 1\ the governing equations are non!
dimensionalized and a phase plane analysis is carried out[ Analytical phase plane
trajectories are derived for two particular cases] "0# the case when K�Kcr with
arbitrary\ non!zero "constant# load point velocity^ "1# the case of a stationary load
point with arbitrary spring sti}ness[ In Section 2\ the stability of steady state slip with
a non!stationary load point is studied using the phase plane trajectories obtained in
Section 1 and by constructing a Liapunov function[ Stability of sliding with a station!
ary load point is studied in Section 3[ The conditions under which unstable self!driven
creep modes can exist are established and compared with those for the RuinaÐ
Dieterich slip law[ The results are _nally summarized in Section 4[

1[ Phase plane trajectories

The governing equations of the problem are "0#\ "1# and "2#[ We introduce the
dimensionless quantities]

T�V�t:L\ k�KL:A\ c� "t−t�#:A\
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f� ln"V:V�#\ b�B:A\ v9 �V9:V�[ "6#

Combining "0#\ "1# and "2# to eliminate the state variable u and using "6#\ we get

df

dT
�k"v9−ef#−bðe"f−c#:b−efŁ "7#

dc

dT
�k"v9−ef#[ "8#

Now\ "7# and "8# are the governing equations in non!dimensional form[
The steady state solution "4# can be rewritten non!dimensionally as

fss � ln"V9:V�#\ css �−"b−0#fss[ "09#

This describes a straight line with slope −"b−0# in the "c\f# plane[ In particular\ if
V� is chosen to equal V9 � 9\ the steady state of the system is at the origin of the
phase plane[

The critical spring sti}ness for linear stability given by "5# can be written using "6#
as

kcr �b−0 "00#

and the velocity!weakening condition B×A translates to

b× 0[ "01#

To commence the phase plane analysis\ T is _rst eliminated from the governing
eqns "7# and "8# to get an equation of the form

P"c\f# dc¦Q"c\f# df� 9 "02#

where

P"c\f# �k"v9−ef#−bðe"f−c#:b−efŁ "03#

Q"c\f# �−k"v9−ef#[ "04#

An integrating factor of the form eq"c\f# is now sought such that

dU� ðP"c\f# dc¦Q"c\f# dfŁeq"c\f# "05#

is a perfect di}erential[ This requires that

1ðeq"c\f#P"c\f#Ł
1f

�
1ðeq"c\f#Q"c\f#Ł

1c
[ "06#

Substituting for P and Q and simplifying\ we get

kv9$
1q
1c

¦
1q
1f%−kef$

1q
1c

¦
1q
1f

¦0%−be"f−c#:b$
1q
1f

¦
0
b%¦bef$

1q
1f

¦0%� 9[

"07#



K[ Ranjith\ J[R[ Rice:Journal of the Mechanics and Physics of Solids 36 "0888# 0196Ð0107 0100

The most general solution of "07# for arbitrary k and v9 could not be found[ However\
solutions in which q is linear in its variables could be found when k� kcr with arbitrary
v9 and when v9 �9 with arbitrary k[ We consider the two cases separately below[

1[0[ Case 0] k�kcr\ arbitrary v9 � 9

First\ the case k� kcr 0b−0 "i[e[ K�Kcr# with a non!stationary load point is
studied[ The phase plane trajectories obtained here are used in Section 2 to construct
a Liapunov function and hence establish results on the stability of steady!state sliding
for arbitrary perturbations from steady state[

When k� kcr and v9 � 9\ it can be shown that

q� "c−f#:b "08#

is a solution to "07#[ On integrating "05#\ the trajectories in phase plane are found to
be given by

U�kb$v9¦
ef

b−0%e"c−f#:b−cb� constant^ k�kcr 0b−0[ "19#

1[1[ Case 1] v9 �9\ arbitrary k

Explicit phase plane trajectories could also be determined for the case of a stationary
load point\ with the spring sti}ness being arbitrary[ This situation may be taken to
model\ for instance\ the stressing of a stationary fault segment by a large earthquake
in its vicinity[ It is of interest to know whether the stress change associated with the
earthquake can trigger a delayed instability "aftershock# in the fault segment[ Such
an instability mechanism is referred to as inducing a state of accelerating self!driven
creep "see Rice and Gu "0872# and Dieterich "0883##[ The results obtained below will
be used in section 3 to derive a simple condition for the existence of such an instability[

When v9 �9\ it can be shown that

q�
"b−0#"b−k#

kb
c−

f

b
"10#

is a solution to "07#[ The trajectories\ obtained by integrating "05#\ are

U� $befe"c−f#:b−
"b−0#b
b−0−k%

k
b−0

e"b−0−k#c:k � constant^ k� kcr "11#

U�befe"c−f#:b−cb� constant^ k�kcr[ "12#

2[ Stability results with non!stationary load point

In this section\ the phase plane trajectories obtained in Section 1[0 for the case of
critical spring sti}ness are used to study the stability of steady state slip when the load
point is non!stationary "moving at constant velocity V9 × 9#[
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2[0[ Case 0] k�kcr

We show that slip motion is always periodic when k� kcr and the velocity weak!
ening condition\ b× 0 is satis_ed[ In other words\ the phase plane trajectories "19#
always form closed contours when b× 0[ We establish this result by showing that for
given values of U and c\ there exist either two or no values of f that satisfy "19# and\
similarly\ for speci_ed values of U and f\ there exist either two or no values of c

satisfying "19#[ First\ choose V��V9 "i[e[ v9 �0# without loss of generality[ For
given values of U and c\ "19# may be written in the form

e−f:b¦
ef"b−0#:b

b−0
� constant[ "13#

Now\ from a graphical construction of the left and right hand sides of the above
equation\ it is easily seen that there are either two or no values of f that satisfy the
above equation when b× 0[ Similarly\ for speci_ed values of U and f\ "19# gives

"constant#ec:b �cb¦U[ "14#

As before\ it may be shown that the above equation is satis_ed by either two or no
values of c[ Hence\ the trajectories form closed contours when b× 0 and slip is always
periodic[ A typical plot of the phase plane trajectories for this case is shown in Fig[
1\ with b�4:3[

This result may be contrasted with the one obtained by Gu et al[ "0873# for the
RuinaÐDieterich slip law[ They show that\ when k� kcr and b× 0\ with friction

Fig[ 1[ Trajectories in phase plane for slip motion under constant\ non!zero imposed load!point velocity
V9\ with b � 4:3\ k � kcr � 0:3[ V

�
has been chosen to equal V9[
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evolving according to the slip law\ there exists initial conditions leading to both
periodic as well as unstable slip motions[ Perturbations that displace the system
su.ciently away from the steady state solution cause the instability[

2[1[ Case 1] k�kcr

The stability of steady!state slip for generic k� kcr is determined by _nding a
Liapunov function for the problem[ It is shown that with a velocity weakening
DieterichÐRuina ageing law\ slip is always stable when k× kcr and always unstable
when k³ kcr[

Consider the function generated by adding a certain function of c to U of "19#]

U0 �kb$v9¦
ef

b−0%e"c−f#:b−cb−v"b−0#:b
9 b1$

k
b−0

−0%ec:b[ "15#

It is easily established that U0 is a Liapunov function when b× 0 since]

0[ Trajectories of constant U0\ when they exist\ are closed contours around the steady
state solution "09# when b× 0[ This may be shown by graphical construction
similar to the ones presented earlier[ The global minimum of U0 occurs at the
steady state solution "09#[

1[ The derivative of U0 along a solution trajectory is given by

dU0

dT
�

1U0

1c

dc

dT
¦

1U0

1f

df

dT
[ "16#

Using "15# and the governing eqns "7# and "8#\ this may be evaluated as

dU0

dT
�−k$

k
b−0

−0%bec:b"ef−v9#"e"b−0#f:b−v"b−0#:b
9 # "17#

Clearly\ the factor "ef−v9#"e"b−0#f:b−v"b−0#:b
9 # in "17# is always of positive sign

when b× 0[ Hence\ when k×b−0"� kcr# and b× 0\ dU0:dT³ 9 and every solution
trajectory evolves with monotonically decreasing values of U0[ Since the global mini!
mum of U0 occurs at the steady state solution when b× 0\ it follows that every initial
condition evolves towards the steady!state solution[ Therefore\ all slip motions are
stable when k× kcr and b× 0[ Similarly\ when k³b−0"� kcr# and b× 0\
dU0:dT× 9[ Every initial condition evolves towards ever increasing values of U0[
Hence\ all slip motions are unstable with slip velocity becoming unbounded[

These results may be compared with the analogous results obtained by Gu et al[
"0873# for the RuinaÐDieterich slip law[ They show that when k× kcr\ initial con!
ditions corresponding to a su.ciently small perturbation from the steady state solu!
tion give rise to stable slip\ while others cause unstable slip[ When k³ kcr slip is
always unstable\ as for the DieterichÐRuina ageing law[
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2[2[ Discussion

The stability results obtained in this section have an important implication for
nucleation of slip instabilities in continuum systems[ Consider a patch of linear
dimension D slipping frictionally in elastic surroundings with shear modulus m[ An
e}ective sti}ness can be identi_ed in this case as

K½m:D[ "18#

For the DieterichÐRuina ageing law\ we know from the present analysis that
unstable slip occurs only when

K³Kcr\D×Dcr[ "29#

Hence\ a critical nucleation size\ Dcr\ has to be attained before unstable slip can occur[
On the other hand\ for the RuinaÐDieterich slip law\ such a nucleation size can be
de_ned for linearized stability analysis but is not strictly de_ned in general since
unstable slip can occur at any value of K if the initial condition is su.ciently perturbed
from the steady state[

The results of this section may conveniently be visualized in terms of a stability
diagram in the KÐD plane\ where D is a perturbation in stress or sliding velocity from
steady state[ We have seen that in this plane\ the straight line K�Kcr forms the
stability boundary dividing regions of stable and unstable slip[ The e}ect of inertia of
the block on the stability boundary has been studied numerically in work the details
of which are not reported here[ An additional parameter is introduced into the
problem by inclusion of inertia[ This maybe taken to be the ratio of an inertial to a
frictional time scale]

r� 0
T:1p

L:V�1\ "20#

where T is the period of free vibrations of the spring!mass system[ An interesting
feature of the results is that for small values of r\ the stability boundary initially bends
towards higher values of K from Kcr and then bends back towards values of K³Kcr[
This implies that in response to _nite perturbation\ periodic stick!slip motion can
occur even for values of K×Kcr\ albeit in a very narrow range[ For larger values of
r\ the stability boundary lies throughout in the region K¾Kcr[

3[ Stability results for stationary load point

In this section\ the phase plane trajectories obtained in Section 1[1 are used to
establish conditions for the existence of self!driven creep modes of instability[ We
shall show that the spring sti}ness K�Kcr plays a critical role in dividing types of
response[ This is remarkable because Kcr arose in the context of a linearized stability
analysis of steady sliding\ which is not a mode of response when the load point is
stationary[
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We observe that when v9 �9\ the only long time behaviors of the system\ consistent
with the governing eqns "7# and "8# are

f:� and c:−�\ "21#

or

f:−� and c:−�[

We consider the two cases k³ kcr and k− kcr separately below[

3[0[ Case 0] k³kcr

First\ consider the case when k³ kcr[ The trajectories corresponding to U�9 are
straight lines given by

c�−"b−0#f¦b lnð"b−0#:"b−0−k#Ł[ "22#

These are parallel to the steady state line in the "f\c# plane\ but located above it "at
higher c\ for given f#[

When U× 9\ it follows from "11# that

efe"c−f#:b × "b−0#:"b−0−k#[ "23#

Using this condition in "7#\ it can be shown that

df:dT× kef:"b−0#[ "24#

Now\ since Ð�
f e−f? df? is bounded\ f:� in _nite time[ Therefore\ the slip velocity

becomes unbounded in _nite time when U× 9[ The unboundedness of slip velocity
in this case is due to the neglect of inertial e}ects[

From "11#\ we can write

e"b−0#f:b � $
U
bk

e−"b−0−k#c:k¦
0

b−0−k%"b−0#e−c:b[ "25#

When U³ 9\ with k³b−0"� kcr#\ b× 0 and c:−� according to "21#\ it is clear
that f decreases at long times along every trajectory[ Hence slip is stable when U³ 9[

A typical plot of the phase plane trajectories when k³ kcr is shown in Fig[ 2[ As
has been shown in the analysis above\ the straight line trajectory corresponding to
U�9 divides the phase plane into stable and unstable regions[ Slip is stable when
initial conditions cause U³ 9 and unstable when U× 9[ Gu et al[ "0873# found a
similar division of the phase plane in the stationary load!point case\ but for their
analysis\ with the slip law "3#\ such division exists for all k× 9\ and here it exists only
for k³ kcr[

3[1[ Case 1] k−kcr

Next\ we show that when k− kcr\ slip is always stable[ It is easily seen that\ when
k− kcr and b× 0\ f:� is inconsistent with U being a constant along a trajectory[



K[ Ranjith\ J[R[ Rice:Journal of the Mechanics and Physics of Solids 36 "0888# 0196Ð01070105

Fig[ 2[ Trajectories in phase plane for slip motion with stationary load point and b � 4:3\ k � 0:7 ³ kcr[
Self!driven creep occurs when U × 9[

Hence\ according to "21#\ the only long time behavior permissible is that f:−�
"i[e[ V: 9#[ In other words slip is always stable when k− kcr[ Typical plots of
trajectories for k� kcr and k× kcr are shown in Figs 3 and 4 respectively[

Fig[ 3[ Trajectories in phase plane for slip motion with stationary load point and b � 4:3\ k � kcr � 0:3[
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Fig[ 4[ Trajectories in phase plane for slip motion with stationary load point and b � 4:3\ k � 0:1 × kcr[

3[2[ Discussion

It is clear from the above analysis that self!driven creep modes of instability can
exist\ when the ageing law "2# applies\ only when k³ kcr[ The amount of stress
perturbation\ Dc required to drive a system from steady state to instability is the
distance of the stability boundary "22# from the steady state line "09#]

Dc�b lnð"b−0#:"b−0−k#Ł[ "26#

In contrast\ for the RuinaÐDieterich slip law\ Gu et al[ "0873# show that stable and
unstable regions exist for all kcr × 9[ Hence\ self!driven creep modes exist for all values
of k[ In the unstable region\ slip velocity becomes unbounded in _nite time\ as in the
present study[

4[ Conclusions

The stability of quasi!static frictional slip of a rigid block loaded by a linear spring
has been studied[ A rate! and state!dependent frictional constitutive law "1# with state
evolution described by the DieterichÐRuina ageing law "2# have been adopted in this
study[ A non!linear stability analysis of the steady state solution "4# using analytically
determined phase!plane trajectories and Liapunov function techniques has been car!
ried out[ The stability results are shown to have an extremely simple form]

, With non!zero load!point velocities "V9 � 9#\ slip motion is always periodic when
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K�Kcr � "B−A#:L× 9[

When K×Kcr × 9\ sliding is always stable[ In other words\ the block always
approaches the velocity of the imposed motion[ When K³Kcr\ slip is always
unstable with the sliding velocity becoming unbounded[

, When the load point is held stationary "V9 �9#\ the system stably evolves towards
ever!slower slip rates whenever K−Kcr × 9[ However when K³Kcr\ initial con!
ditions leading to stable and unstable slip motion exist[ This shows that self!driven
creep modes can exist only in the latter case[ The unstable motions are shown to be
such that the slip velocity becomes unbounded in _nite time\ corresponding to a
delayed instability\ or an aftershock[

The preclusion of instabilities when K×Kcr has an important implication for slip
instabilities in continuum systems[ In a continuum system\ a critical nucleation size
of coherent slip has to be attained before unstable slip can ensue and the nucleation
size does not depend on the strength of the perturbation[
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