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1. Introduction

This chapter is devoted to a review of foundations of solid mechanics. It is based on an edited

transcript of two lectures by the author on that subject at a 1993 summer school of the NSF

Institute for Mechanics and Materials.  In university courses, it usually takes a healthy part of the

semester to go over the material.  So, it is hoped that the student will appreciate that this is

indeed a review.  It is assumed that the material has to some extent been encountered before, and

it is hoped that this quick review will help the reader put things together in his or her own mind.

Please see the bibliography for references on the history of the subject, and for further readings.

Figure 1 shows an orthogonal Cartesian reference frame, which we consider to be a

Newtonian frame.  Coordinates in space are denoted 1, 2, 3; the e's are unit vectors along these

coordinate directions.  The vector x, which denotes a position in space, has components x1, x2,

x3.  v is the velocity vector for this position.
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We focus on an arbitrarily chosen region of some body.  That region has volume V; its

surface is denoted by S.  We see in Fig. 1 an element of surface, dS, a unit normal to the surface,

n, and an element of volume, dV.

The quantities which are going to enter the equations of motion are, of course, the linear and

angular momentum.  These are taken as integrals over the region of mass density times velocity

integrated over volume, and for the angular momentum, the cross product of mass density times

velocity integrated over volume:

Linear momentum ≡ P = ρv dV
V∫  (1)

Angular momentum (relative to the coordinate origin) ≡ H = ρx × v dV
V∫ (2)

The student may reasonably ask: "In microscopic terms, what do these quantities mean?" Of

course, mass density is an average of mass per unit volume, and we assume in a theory of the

type to be discussed that it is taken over spatial and temporal scales that are large enough to be

independent of any fluctuations at the microscopic level.  If we ask "What does velocity mean?",

especially when we consider the large random fluctuations at the molecular scale, the precise

definition of velocity is the vector flux of mass (again, well-defined if taken over large enough

scales) divided by the mass density.  So, in that sense, a velocity vector is also a well-defined

quantity.

2. Newton-Euler Overall Equations of Motion

The equations of motion (called here the Newton-Euler equations of motion, because the

independent status of the torque part of these equations, at least in a macroscopic theory not
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reduced to interacting point masses, was recognized by Euler) state that the total force is the rate

of change of linear momentum and the total torque, or moment, is the rate of change of angular

momentum.  So, if we take the rates of change of the expressions above (Eqns. 1 and 2) for linear

and angular momentum,

Total force ≡ F = dP / dt , (3)

Total torque or moment (relative to the coordinate origin) ≡ M = dH / dt (4)

We note that the integral for which we are doing the calculation, let us say of linear

momentum of (1), involves mass density times an element of volume.  That is an invariant in the

motion.  So, we do not have to take its time derivative, and we end up just taking the time

derivative of velocity; this gives us, for example, mass density times acceleration a of material

points in the integral over the volume, which explains the first integral term in

F = dP /dt = ρ adV
V∫ + Tmom. fluxdS

S∫ (5)

But in fact, there is really a second term, because there is a microscopic motion, in general,

relative to the mass-averaged macroscopic motion.  The relative motion causes some momentum

flux Tmom. flux  per unit area, across surfaces S, which themselves move with the mass-averaged

motion.  In a similar way, the rate of change of angular momentum can be calculated and we

have the expression:

M = dH / dt = ρ x × a dV
V∫ + x × Tmom. fluxdS

S∫  (6)

3. Cauchy Stresses and Local Equations of Motion in Terms of Stress
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The important hypothesis of Cauchy is the foundation of continuum mechanics and the

theory of stress.  The idea is that all interactions of an arbitrarily selected region of the body with

its surroundings (Fig. 1) can be divided into body forces, f per unit volume, and surface forces.

T force  is a force vector per unit area acting on the surface of the region.  Force and moment

derive from those terms:

F = T force dS
S∫ + f dV

V∫ (7)

M = x × T force dS
S∫ + x × f dV

V∫ (8)

When we equate force and moment of (7) and (8) to the rates of change of linear and angular

momentum, given in (5) and (6), we arrive at the final equations of motion.

In those equations the stress (or traction) T vector is now defined, as the force vector

combined with the term which came from the momentum flux:

Stress vector ≡ T = T force − Tmom. flux (9)

In a solid at low temperature, virtually the entire stress is made up of the force term; however, in

a gaseous system, the momentum flux term is the most important part of the stress.  The

equations of motion expressing the linear momentum principle are therefore, from (5), (7) and

(9),

T dS
S∫ + f dV

V∫ = ρ adV
V∫ (10)

In a similar way we express the angular momentum principle from (6), (8) and (9),
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x × T dS
S∫ + x × f dV

V∫ = ρ x × a dV
V∫ (11)

We will now examine the consequences of requiring that (10) and (11) hold for every

conceivable region.  First note that we could, upon accepting Cauchy's hypothesis, define a stress

vector on any surface orientation at all through a point in the solid.  The way that the stress

components get introduced is thus shown in Figure 2.  If we decide, for example, that we will

focus on a little cut in the solid with face that points in the positive 1 direction, then we will have

a stress vector T acting on that face.  Because the face normal points in the 1 direction, the

superscript 1 is attached to that vector, and we call it T(1).  But that vector, of course, has
components along the three coordinate axes, and those components have the notation σ1 j  where

j = 1, 2, 3.  More generally, we will let σij  denote components of the stress vector T(i)

associated with a cut face with normal which points in the positive i direction.  Thus the first

subscript of the σ's denotes the face and the second subscript gives the direction, so that σ11 is a

normal stress, and σ12 and σ13 are shear stresses, and they are the components of the stress vector

T(1) (see Fig. 2).  Thus

Stress vector associated with surface element pointing in positive i direction:

T ≡ T(i) = σi1 e1 +σ i2 e2 +σ i3 e3         ( i =1,  2, 3)

Stress components:   σij        (i, j =1,  2, 3) (12)

i :  face    ,    j :  direction

How about faces that point in the negative coordinate direction?  In particular, suppose we

focus on a face that points in the negative 1 direction; such is shown in Figure 3.  In order to find

out what the traction T(−1)  is on that face, what one does is apply the linear momentum equation

(10) to that thin slab, let its thickness go to zero, then let its areal extent go to zero.  That leads us
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to the conclusion that the volume terms go to zero faster than surface terms in (10), and leaves us

with the sum of traction vectors adding vectorially to zero.

T(−1) + T(1) = 0 ,   T(−1) = −T(1) ; (13)

So, the traction vector on the negative face is just minus the traction vector on the positive face.

Sometimes this is called the principle of action-reaction.  Hence the traction vector on any face

oriented in the negative i direction is

T(−i) = −T(i) = −σ i1 e1 −σi2 e2 − σi3 e3         (i =1,  2, 3) (14)

So far we have thought of stress components merely as components of traction, or stress,

vectors on faces that point in the three coordinate directions.  Suppose we ask the question that

Cauchy asked himself in the 1820s: "What if we now take an arbitrarily oriented face in the

solid; what stress vector acts on that face, the face with the unit normal n?"  We can construct a

tetrahedron with faces in the three other coordinate directions, which are negative coordinate

directions in the illustration (Fig. 4), and we can draw all the stress vectors.  We again use the

linear momentum equation, (10), which contains both surface and volume integrals.  If we divide

the whole equation by the area of that inclined face, and then let the size of the tetrahedron go to

zero, we conclude again that the volume integrals all go to zero faster than the surface integrals.

The only term that survives in the limit is an integral of the tractions over the faces, which

integral must be zero.  Rather than writing the tractions multiplied by the elements of area of the

faces with which they are associated, we may note that the area of a face like ΔS1 , pointing in the

negative 1 direction, is just n1  times the area the area ΔS  of the inclined face, and similarly for

other faces.  Thus (10) requires that

T + n1T
(−1) + n2T

(−2) + n3T
(−3) = 0   (using ΔS(i) /ΔS = ni ) . (15)
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If we use (14) and solve for the traction vector T, and in particular take its component Tj  in the j

direction, this is the sum of components of unit normal times stress components acting in the j

direction:

Tj ≡ e j ⋅T = n1σ1 j + n2σ2 j + n3σ3 j = ni σij
i=1

3
∑   ( j = 1, 2,  3) (16)

(Summation convention:   Tj = ni σij )

Almost always in this subject, when we have a summation, we are summing on an index that

happens to be repeated.  So, a commonly adopted notation is one in which we rewrite Equation

16 just dispensing with the summation sign.  Apparently, it was Einstein who first decided that

he was tired of writing summation symbols and such is sometimes called the Einstein summation

convention.  In this Chapter, summation symbols are almost always kept, but the reader should

understand that they could be dispensed with.

There is an important consequence of this equation (16) for the stress vector on an arbitrarily

inclined face.  We could, if we wanted, have chosen some other coordinate system than the one

shown in Figure 4, say a coordinate system — we will call it a primed system ′ x 1, ′ x 2, ′ x 3  — for

which one of the axes runs perpendicular to the face of the tetrahedron.  Then, the stress vector

on that face would just be a stress vector associated with one of the coordinate faces of that

primed coordinate system.  This consideration lets us at once discover that stress is, in fact, a

second rank tensor.  If we choose a primed set of axes so that one of these coordinates, say the k

coordinate of the primed set, is normal to the face of the tetrahedron, then

T = T( ′ k ) = ′ σ k1 ′ e 1 + ′ σ k 2 ′ e 2 + ′ σ k 3 ′ e 3 (17)
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We can then extract, say, the k, l component of stress in the primed system, ′ σ kl , by just

projecting this stress vector onto the l direction of the primed system by the scalar product:

′ σ kl = ′ e l ⋅T
( ′ k )

This leads at once to the transformation law of stress when we realize that T is expressible in

terms of the unprimed stresses by (16):

Since ′ e l ⋅T = ′ σ kl  ,   ′ σ kl = αki αljσ ij  (where αpq = ′ e p ⋅eq )
j=1

3
∑

i=1

3
∑ (18)

The stresses in the primed system are related to the stresses in the original system by a

transformation law, a double sum on i and j ; again, these are repeated indices and therefore we
could dispense with writing out the summations.  The alphas, αpq , are the scalar products of unit

vectors along the p direction of the primed system and the q direction of the unprimed, so αpq

just defines the cosine of the angle between those axes.

This expression (18) is indeed the transformation which qualifies a quantity as being a
second-rank tensor; so, we see that stress components σij  form a tensor.  For comparison, first-

rank tensors, or vectors, and also the Cartesian coordinates, transform as a similar relation with a

single term:

Coordinates related by  ′ x k = αki xi
i=1

3
∑ ; (19)

The matrix that defines such a transformation of coordinates is the so-called "orthogonal

transformation"; if we assemble the α's into a three-by-three matrix, it satisfies
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[α ]T [α ] = [α ][α ]T = [I] (20)

which is another way of saying that, for [α], the transpose is in fact the same as the inverse.  That

is true of an orthogonal transformation matrix:  the inverse of the matrix is its transpose.

So far we have applied the linear momentum principle of (10) to a tetrahedron, but now we

could also apply it to some arbitrarily selected region of any body.  Indeed, when we do that, we

extract the differential equations of motion.  In the steps that follow, we consider an arbitrary

region, with surface S.  We make use of Cauchy’s relation (16) for the stress vector on an

inclined face in terms of stress components at every point along the surface.  Remember that the

linear momentum equation (Eqn. 10) contains a surface integral of the traction vector plus a

volume integral of body force, and on the right hand side a volume integral involving density

times acceleration.  The surface integral transforms to a volume integral by use of Gauss'

divergence theorem, explained in Chapter 1.  We simply use the Cauchy relation to rewrite the

traction in (10) as a set of products of components of the unit normal vector to the surface times

different terms, and then apply the theorem.  If we have a surface integral involving, let us say,

the first component of the unit normal to that surface, it transforms to a volume integral

involving derivative with respect to coordinate in that first direction.  Thus:

Using Cauchy tetrahedron relation  Tj = niσ ij
i=1

3
∑  , and divergence theorem,

Tj dSS∫ = (n1σ1 j + n2S∫ σ2 j + n3σ 3 j ) dS =
∂σ1 j
∂x1

+
∂σ2 j
∂x2

+
∂σ3 j
∂x3

 

 
 

 

 
 V∫ dV . (21)

The linear momentum equation (Eqn. 10) already contains two other volume integrals; one

involves the body force, the other involves the acceleration.  So if we now demand that this

linear momentum equation hold for absolutely any choice of volume, we conclude that
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∂σ1 j
∂x1

+
∂σ 2 j
∂x2

+
∂σ 3 j
∂x3

+ fj ≡
∂σ ij
∂xii=1

3
∑ + f j = ρa j    ( j = 1, 2,  3) (22)

Some common notational short-cuts in writing (22) are as follows:

Summation convention:   
∂σ ij
∂xi

+ f j = ρaj (23)

Comma notation:  σij, i + f j = ρaj (24)

The comma means derivative with respect to the coordinate whose index follows it.

These equations (22), or (23) or (24), are the equations of motion for a continuum.  We have

three of them, one associated with each coordinate direction.

We also have an angular momentum equation (11), and the details of similarly going through

its consequences are omitted here.  Its result is that when we use (16) and the divergence theorem

to rewrite the surface integral in (11), and use the linear momentum equation to simplify things,

the angular momentum equation tells us one piece of information only, and that is that the stress

tensor is a symmetric tensor:

σij = σ ji    (i,  j =1,  2, 3) (25)

If we interchange indices, we end up with the same value.  Put another way, if we interpret

Figure 2 as showing a little lump of material, what this is saying is that shear stresses on adjacent

faces, say σ12 and σ21 are equal to one another, and we can see that that indeed is a result that

relates to balance of torques which would otherwise generate an angular momentum.
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4. Principal Directions and Principal Stresses

Once we know that the stress tensor is symmetric, we can infer additional things about stress,

and in particular we can infer that a set of principal axes exist.  Any arbitrary stress tensor has the

property that there exist three mutually orthogonal directions so that the stress vectors T

associated with each of those directions are purely normal to the face with which they are

associated.  In fact, that is because the stress tensor is symmetric; any symmetric three-by-three

matrix has the following representation:  if we give an appropriate rotation of the coordinate

system, the matrix can be made purely diagonal.  That is what we do here with stress.  The

principal stresses are found in an attempt to answer either of the questions which follow.

Remember, we have a way of associating a stress vector T with any unit vector n denoting an

orientation through some material point; that is the relation (16) from the Cauchy tetrahedron

analysis.  So, one question we could ask is: "Do there exist directions n such that T is parallel to

n?"  If these do exist, then the stress vector is perpendicular to the face; hence, there are no shear

stresses on it.  Another question we might ask, and it turns out to have an identical answer, is

"Are there any directions n so that the normal component of the stress vector σn , (= n ⋅T , which

is the stress vector projected onto the direction normal to the face) is an extremal (an extremal

meaning a local minimum, maximum or saddle point), as we vary the direction n?".

The answer to both those questions is given by a simple eigenvalue problem,

σij nj
j=1

3
∑ −σ ni = 0    ( i = 1, 2, 3) (26)

The summation defines the j component of the traction vector by (16) and if we temporarily shift

the second term to the other side of the equation to get the (vector) form T = σn, we see this says
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the traction vector is in the same direction as the unit normal and has magnitude σ.  The

equations (26) are a set of equations in the components of the unit normal, a homogeneous set of

equations.  One solution is that we should just set the n's to zero, but that is unacceptable of

course because n is meant to be a unit vector.  We get the other, relevant, solutions when we set

the determinant of coefficients of the n's to zero:

Solutions exist for σ = σn = σ I,σII ,σ III , which are roots of  

det
σ11 − σ σ12 σ13
σ 21 σ 22 − σ σ23
σ 31 σ32 σ33 − σ

 

 

 
 
 

 

 

 
 
 

= −σ 3 + I1σ
2 + I2σ + I3 = 0;

σ1 ≤ σ n ≤σ III .

(27)

Here

I1 = σii ,   
i=1

3
∑ I2 = −

1
2
I1

2 +
1
2

σijσ ji
j=1

3
∑

i=1

3
∑  ,    I3 = det[σ ] , (28)

The three σ's which make the above determinant vanish are the three principal stresses.  The

associated n's are the three principal directions, and as sketched in Figure 5, they are mutually

orthogonal.

In writing out the determinant in (27), one sees that, because it is a three-by-three

determinant , that there will be a σ3 term; there will also be lower-order terms and their

coefficients, I1, I2, I3.  If we think a moment about it, all of the stress components are going to be

involved in determining that set of coefficients, but on the other hand those coefficients cannot

possibly depend on what we arbitrarily chose as a set of coordinate axes to which we refer

stresses.  So, the coefficients, I1, I2, I3, are invariant quantities (invariant to the choice of our

reference axes); no matter what coordinate system we choose, the stresses at a point always give

the same value for these quantities.
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In the theory of isotropic materials, theories of elasticity or elastic-plastic yielding for

isotropic materials, invariants play an important role.  If, for example, a medium is isotropic and

we try to express its strain energy in terms of stress, we would know that the strain energy could

at most depend on those three invariant quantities.

5. Formulation of Mechanics Problems

In general, if we want to formulate problems in the mechanics of materials, we need at least

three conceptual ingredients.  That "at least three" reduces to "exactly three" for problems in

which we neglect temperature effects generated by deformation, in which there are no

electromagnetic couplings, and in which there is a single medium with no diffusion of one

constituent of the medium relative to another (as we would have, for example, for an alloy at

high temperatures or for a fluid-infiltrated soil or rock).

The first such ingredient involves the equations of motion, or in simpler problems, the

equations of static equilibrium.  We have just been through these equations; they are the

equations of motion in terms of stress, which we have derived in Section 3 as equations (22) and

(25).  The second ingredient one has to consider is the geometry of deformation:  the way that

strains of the material relate to gradients of the displacement field, and considerations of

compatibility of strain.  In Sections 6 to 9, we examine the geometry of deformation.  The third

ingredient is the stress-strain relation.  That is a large subject, addressed also in other chapters

here.  We shall consider the general framework and the specific example of linear elasticity in

Sections 12 and 13.

6. Geometry of Deformation
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For many of the problems we address in solid mechanics, we can be rather casual about

geometric matters and address them within the so-called small strain or infinitesimal strain

theory.  However, if we are considering something like a buckling problem or a finite extrusion

of material through a die, or many other problems, we have to understand deformation in a way

that is appropriate for deformations of arbitrarily large magnitude.  So that is the set-up that we

will begin with here.

When we discuss such deformations, a very typical notation is to use upper case X to denote

the position vectors of material points in a reference configuration, say at time t = zero.  We

consider that reference configuration as undeformed.  That is to say, when we introduce

measures of strain, they are going to be such that they will be zero in that reference

configuration.  The reference configuration is often taken as an unstressed configuration, but that

need not be the case and there are many circumstances when it is convenient to take the

reference configuration as pre-stressed.  Thus

X = (X1, X2, X3):  Denotes position vectors of material points at time t = 0

(in the reference configuration, considered as undeformed). (29)

x = (x1, x2, x3):  Denotes position vectors at time t (in current, or deformed, configuration).

A deformation history is simply a mapping of these three components of initial position into the

three components of current position at time t, and of course, at time zero, x and X agree with

one another.  The displacement is the difference between current and initial positions, and

velocities and accelerations can be expressed as below:

Deformation history:  x = x(X,t);  x(X,0) = X .

(30)

Displacement vector:  u = x(X, t) −X
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     (also,  v = ∂x(X,t) /∂t    and  a = ∂2x(X,t) / ∂t2 )

Recall that from a microscopic point of view, v is well defined in terms of mass flux and

density averages over large enough local space and time scales to be rid of fluctuation effects.

Thus we should regard ∂x(X,t) /∂t  as the physically well-defined quantity, and regard the

mapping x = x(X,t)  as, strictly, being well-defined only by integrating ∂x(X,t) /∂t  in time.

In discussing strains, an important ingredient is the deformation gradient tensor Fij.  Its

definition is very simple.  Suppose we take some little vector dX, with components dXj, in the

reference configuration.  The vector dX,  pointing in some particular direction in space, goes

over to a vector in another direction in space, and of another length, in the deformation.  The

vector it goes into is dx, and the components of those two vectors are related by the deformation

gradient:

Deformation gradient  Fij :  dxi = Fij dX j
j=1

3
∑   ({dx}= [F]{dX}) (31)

It is sometimes convenient to rewrite that as a matrix equation so the columns represent the

elements of the material fiber that is being considered.  The components of F are just the

derivatives of the current spatial coordinates with respect to the reference or material

coordinates,

Fij = ∂xi /∂Xj = δij + ∂ui /∂X j . (32)

This involves the Kronecker delta, δij ; it is a quantity which vanishes when the indices differ

from one another, and which is equal to unity if the indices agree.



16

The theory of small strain, that is used in classical elasticity, is of course the theory that

results if we have small stretches of all fibers, and also — and this is very important — small

rotations.  That is the case where all components of displacement derivatives are extremely small

compared to one,

∂ui /∂X j << 1 (33)

Even if we meet this criterion, there are certain problems for which we still have to be cautious

in using the small strain theory;  the classic one is Euler’s problem of buckling of a thin strut.

We really cannot get that right if we think exclusively in terms of small strain theory even

though the strains, at least in the early stages of buckling, are generally extremely small strains.

Figure 6 shows a picture of a block of material that, in its reference configuration shown by

dashed lines, was a cube with edges along the coordinate directions.  A very special kind of

strain is considered first:  a purely extensional strain which just stretches along the coordinate

directions, or perhaps compresses along some directions, but which keeps sides perpendicular to

one another.  Figure 6b is the same block in the current configuration.  A ratio of a length in the

deformed state to a length in the undeformed state is called a stretch ratio:

Stretch ratios:  λ1 = Δx1 / ΔX1, λ2 = Δx2 / ΔX2 , λ3 = Δx3 /ΔX3 (34)

It may seem very special to focus only on extensional strains, but a very important theorem is

this:  If we consider an absolutely general state of deformation at a point in the material, we

could always have chosen an orientation of such a little cube (like shown in Figure 6) at that

point, but now not generally lined up with coordinate directions, so that that cube undergoes

purely extensional strain with no shear strains.  That is called the principal strain orientation.  So,

it is worthwhile focusing on these extensional strains.
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How do we measure strain?  We have already introduced the idea of stretch ratios, the λ's as

lengths in the deformed configuration divided by lengths in the undeformed.  We can write one

of these equations for each of the three directions, like in (34).  The most common understanding

of strain is change in length divided by initial length.  So, if we would make that definition of

strain, and ask how much did our block stretch in the 1 direction, we would want the change in

length in that direction divided by initial length.  That is, the Δx1  minus ΔX1  gives us change in

length, and that also is the difference in displacement from one edge to another of the block as

we move in the 1 direction.  And we divide that by the initial length to get:

Common definition of strain : E11 = (change in length)/(initial length)
= (Δx1 − ΔX1) /ΔX1 = Δu1 / ΔX1 = λ1 −1

(35)

All other definitions of strain that we make in this subject agree with this common definition

when the stretches are very small (when the λ's are very near 1).  But, in fact, we can define an

infinite number of strain measures and at least three or four are current in the literature on

continuum mechanics.

The idea is this:  We define a strain by the function g of the stretch ratio by

E11 = g(λ1) where  g(1) = 0  and  ′ g (1) = 1 (36)

The restrictions on g(λ) make the definition of strain vanish in the reference state and also agree

with the simple change in length over initial length definition when the λ is sufficiently close to

1.  They make all such strain measures agree with the so-called infinitesimal strain in the right

limit.  Other than that, g(λ) is arbitrary except that we will also want to choose functions so that

′ g (λ ) > 0  for all λ, 0 < λ < ∞.
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One such strain measure, which we call here a strain based on the change of the metric

tensor, (it will be explained shortly what justifies that terminology), and is sometimes called the

"Green strain", is

E11
M = (λ1

2 −1)/ 2 (37)

Another definition of strain is the logarithmic strain.  This is very commonly used in

discussing plastic flow, and is

E11
L = ln(λ1) (38)

To review, because we are going to depart for a moment from this topic and then come back

to it:  What we have looked at are purely extensional strains, and we have found different ways

of measuring the strain, so far in a single direction.  Ultimately, we have the job of measuring

strains in arbitrary coordinate directions.

We need to define another type of strain, a simple shear strain, where the undeformed

element is shown by dashes and the deformed by full lines in Figure 7.  This looks extremely

different from the extensional strains, but as suggested already, there would have been a special

orientation of a square element that we could have identified in the undeformed state so that that

element would have undergone extensions only (positive in one direction, negative in the other)

without shear.

7. Infinitesimal Strains
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With that as background, let us spend a moment on the classical infinitesimal strain that was

introduced by Cauchy as part of his great work of the 1820s, basically introducing linear

elasticity as we know it today.  He was preceded in this derivation by Euler, who had already

worked out for a fluid a corresponding definition of what we would call a rate of deformation

tensor.  The idea is given in Figure 8, which shows two line elements labeled as dX1 and dX2,

line elements or material fibers as they existed in the undeformed or reference configuration.

Those line elements have gone over into the two solid line elements in the deformation.  If we

look at the origin of those elements, it is displaced by u1 in the direction 1 and by u2 in the

direction 2.  But then, if we look at extremities of the elements, they have slightly different

displacements.  The right hand end of what was, initially, dX1 has displaced in the 1 direction by

u1, the same amount that the origin displaced, plus a small increase because we have moved the

distance dX1 in the 1 direction so as to accumulate the additional displacement dX1(∂u1 / ∂X1) .

In a similar way, the upper end of the element that was dX2 has moved upwards a different

amount than the origin has moved.  That amount of movement is identified in Figure 8.  We want

to make a definition of strain that is appropriate when we have small strains and rotations, that is,

when all derivatives of displacements are very much smaller than one.  (Incidentally, in that case,

we can with impunity just replace derivatives with respect to material coordinates with

derivatives with respect to spatial coordinates, above and in other equations, like the equations of

motion.)  Then, the changes in length of an element, used to define strain, can just be equated to

those additional displacements reckoned above.

Dividing those small additional displacements by the initial length of the fibers gives the

extensional infinitesimal strains.  In the 1 direction, that strain is called ε11.  Thus we write as

follows:

Extensional  strains :  ε11 = ∂u1 /∂X1  and  ε22 = ∂u2 / ∂X2 (39)
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Shear strains are commonly understood as angle changes between initially orthogonal lines.

Gamma denotes such an angle change.  This turn outs to be twice the so-called tensor shear

strain:

Shear  strain :  γ 12 = 2ε12 = ∂u2 /∂X1 + ∂u1 / ∂X2 (40)

If we carefully look at the diagram (Fig. 8), we will see that this sum adds up to the total angle

change between initially orthogonal lines at least within the approximations, valid in the case

considered, that sinθ ≈ tanθ ≈ θ and that all line length changes are very small.  The general

expression which captures these and indeed defines all the strains is:

General expression :  εij =
1
2

∂uj
∂Xi

+
∂ui
∂X j

 

 
 

 

 
       ( i, j = 1, 2,  3) (41)

So, Eqn. 41 defines six components of strains — six, not nine, because the definition is

symmetric in i and j.  We have three extensional strains and six shear strains, but three of them

are identical to the other three; so, effectively, we have three shear strains.

If we work out the strains by measuring displacements and coordinates relative to some

rotated coordinate system, we will quickly discover that the strains ′ ε kl  in that rotated system are

related to the strains εij by the standard law of tensor transformation, the same as in equation

(18).  So ε is a second rank tensor.  Also, because ε is symmetric, there exist principal directions

relative to which there are extensional strains only and not shear strains, and the principal values

include the least and greatest extensional strains experienced by fibers of any orientation.

8. Compatibility Conditions
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Remember that we have six strain components in (41) but they are derived from only three

components of displacement, by taking derivatives.  So it is not possible that these strain

components could vary in a completely arbitrary way from point to point in a medium.  We

cannot have six functions of position vary in an arbitrary way if they are really defined by only

three functions of position.  So, there must be equations which restrict the way strains can vary in

space.  These are called compatibility equations.  They are needed when we try to formulate the

basic equations of elasticity in terms of stresses as variables, rather than displacements.  A

typical compatibility equation — one which is the only one needed for plain strain and plain

stress analysis — is written out here:

Compatibility :  For  example,   ∂2ε22 /∂X1
2 + ∂2ε11 /∂X2

2 = 2∂2ε12 /∂X1∂X2 (42)

No attempt to derive it is made here, but the reader can easily check its validity:  If the strains are

written in terms of displacements, this will emerge as a simple identity.  It is an example of the

way these strains must be constrained in their spatial variation to make sure that, in this case, the

three strain components which appear in (42) are indeed derivable from the two displacements,

u1 and u2.

9. Finite Strains

Let us come back to the subject of finite strain and ask how do we characterize a finitely

deformed material and how do we write down expressions for strains.  The first thing to

understand on this topic is the polar decomposition theorem.  Remember F (Eqns. 31 and 32),

the deformation gradient matrix, the matrix by which we multiply a small vector dX in the

reference configuration to produce a vector dx in the deformed configuration.
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A basic theorem is that any such deformation gradient can be written out as a product of two

terms (polar decomposition theorem):  an orthogonal transformation matrix R, which represents a

rigid rotation, and a pure deformation matrix U which is its own transpose, that is to say, it is a

symmetric matrix.  The rotation R is just like the coordinate rotation matrix α, which was seen in

transformations of stress (Eqn. 18).  Thus, in a matrix notation,

[F] = [R][U],  where : (43)

[R] = rigid  rotation  ([R]T [R]= [R][R]T = [I],  det[R]= 1); (44)

[U ] = pure  deformation  ([U] = [U ]T ,  det[U] > 0) . (45)

So, if we think of writing

{dx}= [F]{dX}= [R][U ]{dX}= [R]([U]{dX}) , (46)

the multiplication by R means nothing more than take whatever vector is given in the parentheses

(  )  and simply rotate it rigidly by R without stretching it; and indeed if we consider other vectors

in that neighborhood, they all rotate the same.  So, we neither stretch nor change angles between

vectors by multiplying by R.

What are some properties of the pure deformation matrix U? It is a symmetric matrix.  Let us

produce a vector dˆ x  by symmetric matrix times dX,

{dˆ x } = [U]{dX} . (47)
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Because U is symmetric, there exist three mutually orthogonal directions denoted by unit vectors

N(I), N(II) and N(III) which are just the eigenvectors of the matrix [U] and are the principal

directions of deformation.  They have the property that if the initial material fiber dX that we

consider lies along one of those directions, then so does the dˆ x  that is produced.  So, there is no

shearing relative to those directions.  Stretch ratios along N(I), N(II), N(III) are λI, λII, λIII (the

eigenvalues of [U]) and are the extremal stretch ratios.

Indeed, we can write the pure deformation U in the form

Uij = λINi
(I)Nj

(I) + λIINi
(II)N j

(II) + λIIINi
(III)N j

(III) (48)

Let us go on to a general deformation [F], so that

{dx}= [F]{dX}= [R][U ]{dX}= [R]{dˆ x } (49)

Fibers having the three mutually orthogonal directions N(I), N(II), N(III) in the reference

configuration undergo extensional strain but have no shearing between them.  Thus they are

rotated by [R] relative to the reference configuration.

A relation that will be used later when we look at a specific definition of finite strain is that

[F]T [F] = [U][U] ≡ [U ]2 , (50)

which follows from (43) and (44).  So, if we write out the ij component of  [F]T[F] in the

subscripted notation, we see that it is just the sum of λ2 times the products of unit vectors:
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([F]T [F])ij = Fki Fkj
k=1

3
∑ = λI

2Ni
(I )Nj

(I) + λII
2 Ni

(II)Nj
(II) + λIII

2 Ni
(III)N j

(III) (51)

It has already been indicated how we could define a family of finite strain measures.  The

idea was to choose a function g(λ), with g(1) zero and ′ g (1)  unity so that the strain agrees with

our small strain definition.  To make a definition of a corresponding finite strain tensor, all we do

is take g(λ) and multiply it by the components of the vector in the principal direction, and sum

over directions to get

Eij = g(λI)Ni
(I)Nj

(I) + g(λII )Ni
(II)N j

(II) + g(λIII )Ni
(III )Nj

(III)  (52)

The principal axes of strain [E] are the same as those of the pure deformation [U], and are

unaffected by the rotation [R].

Here is a particular example, and an important one:  The strain based on change of metric,

which is sometimes called the Green strain, is based on

g(λ) = (λ2 −1)/ 2 . (53)

This strain was introduced in Eqn. 37.  If we write out our definition of strain in (52) with this

g(λ) we see that

Eij
M =

1
2
(λI
2 −1)Ni

(I )Nj
(I) +

1
2
(λII
2 −1)Ni

(II)Nj
(II) +

1
2
(λIII
2 −1)Ni

(III)N j
(III) (54)

We already know that λ2  times these vector products adds up to [F]T[F], like in (51); and unity

times those vector products just adds up to the Kronecker delta.  Thus
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Eij
M =

1
2

FkiFkj − δij
k=1

3
∑
 

 
  

 

 
  =

1
2

∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂X jk=1

3
∑

 

 
  

 

 
  (55)

So, this strain measure has the very nice feature that we can explicitly write it out in terms of the

deformation gradient, indeed, in terms of derivatives of displacements, without actually solving

for the principal axes.  This is what makes it a very convenient finite strain measure and the

reason why it is the one most often, although not universally, used.

Why is it called a strain measure based on the change of metric?  Imagine that in the

reference configuration we draw families of lines in the material along each coordinate direction,

and then we let the material deform so that these lines become a curvilinear coordinate system.

The metric tensor for that curvilinear coordinate system is just the tensor gij with the property

that the squared length of a line element in that coordinate system is the metric times increments

of the coordinates, which in this case are the material coordinates.  If we simply work out what

that squared length is, we find that

dx ⋅ dx = δij + 2Eij
M( )

j=1

3
∑

i=1

3
∑ dXidX j (56)

so that

metric  gij = δ ij + 2Eij
M (57)

This means that the change in the metric is just 2E.  Again, this is the reason for sometimes

calling the Green strain the strain based on the change of metric.

10. Work Conjugate Stress Tensors
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We have a family of finite strain tensors that we can define, one of the most convenient being

that based on change of metric, because it is easy to directly calculate in terms of the deformation

gradient tensor F or in terms of displacement derivatives.  All of these finite strain tensors agree

with the infinitesimal strain tensor when we do indeed have small stretches and small rotations.

Associated with each finite strain tensor Eij, there is a work conjugate stress tensor Sij that is a

symmetric quantity; it is defined by writing out rate by which stress working is done per unit

volume of material, where we measure that unit volume in the reference state, and then requiring

that

Stress work rate per unit volume of reference state

≡ det[F] σ ij∂ ˙ u j /∂xi
j=1

3
∑

i=1

3
∑ = Skl

˙ E kl
l=1

3
∑

k=1

3
∑

for arbitrary but related deformation rates  ∂ ˙ u j / ∂xi  and  ˙ E kl

The dots represent time derivatives.  We demand that for every possible combination of

derivatives of instantaneous velocity, and corresponding instantaneous strain rates, that this

relation holds good.  That suffices to define S, the work conjugate stress, in terms of the true (or

Cauchy) stress.  A different S is defined for each different strain measure E, or for each different

g(λ) which generates that measure.  A relation which is of some interest, and which we will see

later, is the one which results for the stress which is conjugate to the strain measure based on

change of metric or Green strain.  This stress is called the second Piola-Kirchhoff stress, and it is

Skl = Skl
2nd P-K = det[F] Fki

−1Flj
−1σij

j=1

3
∑

i=1

3
∑ (58)
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It is a linear combination of the actual true stresses but multiplied by certain components of the

inverse of the deformation gradient matrix.

11. Principle of Virtual Work

Let us continue with a couple of important diversions before we get to stress-strain relations.

The first diversion is to the principle of virtual work.  That is a very old principle.  It was

established in the rapid development of mechanics shortly after Newton by Jean Bernoulli in

1717.  He applied the principle of virtual work to objects like pin-connected rigid bodies.  A

short time later, in the middle-late 1700s, Euler was already applying the principle of virtual

work, and related ideas of the calculus of variations, as a way of extracting the equations of

statics for objects like beams.  At the beginning of the 1800s, this was being done by several

French mechanicians for problems of thin plates.  This approach to continuum solid mechanics

existed, in fact, before the concept of stress was really formalized.  Stress was not really

understood as a clear concept until the late 1700s.  The work of Coulomb stands out, through

there are precedents for the idea in the works of James Bernoulli around 1700.  The real

development of continuum mechanics as we now understand it, in terms of stress tensors and the

like, was Cauchy’s contribution of the 1820s, but the whole variational approach had actually

been developed before.  So, the principle of virtual work has an old history and continues to be

an important work horse for this subject.  The idea is to consider a solid in its deformed

configuration at any arbitrary time t and then, taking the configuration at that time, to ask how

much work is done on some imagined displacements δu through which we take the loads and

stresses of that solid.  The δu’s are virtual infinitesimal displacements.  Associated with them is a

variation of strain:
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δu = δu(x ) = virtual, or imagined,  infinitesimal displacement field;

δεij =
1
2

∂(δui )
∂x j

+
∂(δuj )
∂xi

 

 
 
 

 

 
 
 

= associated virtual strain field
(59)

Note that these derivatives are based on the current configuration; so δε is an infinitesimal strain

from the current state, a virtual strain field.  One can show from the equations of linear and

angular momentum, specifically from equations (16), (22) and (25), that the work of the stress

vector plus the work of the body force vector (with the d’Alambert procedure of including mass

times acceleration of an effective body force) is

T ⋅δudS +
S∫ (f − ρa) ⋅δudV

V∫ = σ ijδεij dV
j=1

3
∑

i=1

3
∑V∫ (60)

This is the principle of virtual work.  It is useful for many purposes.  It is usually the starting

point in proving things like uniqueness or in developing minimum principles and the like.  It

provides, in fact, an alternative statement of the governing equations.  If we assume that the
stress is symmetric (σij = σ ji ) , which assumption is typically built in to a stress-strain relation

anyway, and if we further assume that the principle of virtual work holds for all possible virtual

displacements and compatible virtual strains (i.e., related by (59)), then we are able to obtain the

equations of linear momentum:

σij,i + f j = ρaj  in  V,  niσij = Tj  on  S . (61)

This use of the principle of virtual work, as an alternative way of stating the equations of motion,

is the most common — not the only, but the most common — starting point for the finite

element method.  In that method, one begins with the statement of the governing equations in the

form of the principle of virtual work, and represents the displacement field approximately by
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displacements of nodes which are then interpolated to define the displacement field within the

finite elements.  Then one demands that the principle hold good for every virtual displacement

field that we could generate by giving arbitrary virtual displacements to the nodes of the finite

element system.  When stresses are expressed in terms of strains, this provides a discrete system

of equations for the nodal displacements which can be solved numerically.

The principle of virtual work has a close connection with a work energy relation, and this is

shown below.  It is called the mechanical work-energy relation to distinguish it from the first law

of thermodynamics, which will be presented in the next section.  The linear and angular

momentum principles imply, via the principle of virtual work, that the work rate done by the

stress vector on the surface, plus the work rate of body forces is the rate of change of the kinetic

energy of the body plus the rate at which stresses do work in deformation:

Linear and angular momentum principles imply (via PVW) that

T ⋅ vdS +
S∫ f ⋅v dV

V∫ =
d
dt

1
2
ρ v ⋅v dV

V∫ + σij
j=1

3
∑

i=1

3
∑V∫ Dij dV. (62)

Here D is the rate of deformation tensor,

Dij = (1/ 2)(∂vi /∂x j + ∂vj / ∂xi ) (63)

Equation (62) follows at once from (60) if we choose δu = v δt  and then cancel the common δt.

So it holds good simply on the basis of the linear and angular momentum principles.  There is no

thermodynamics in it, although it looks somewhat similar to the first law of thermodynamics,

which is seen in the next section.

12. First Law of Thermodynamics
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A question to be asked is: "When do we need to deal with the first law of thermodynamics, as

part of the system of equations needed to address problems in solid mechanics?"  That is needed

if we have any problem in which we consider temperature not as a passive variable (which we

somehow prescribe), but if we consider it as a quantity that is generated by and coupled to the

deformation field.  For example, if we stretch a bar of metal only a little, so that it is still elastic,

it actually gets a little bit colder.  If we stretch it a lot, into the plastic range, it gets hot.

Traditional, simplified, approaches to solid mechanics ignore the effects of any such

deformation-induced temperature changes on the mechanical response.  If instead we want to

deal rigorously with such coupled phenomena, and in the process solve for the temperature field,

then we need an additional equation.  That is provided by the first law of thermodynamics.  The

first law is written out here for the continuum as:

(T ⋅ v − qn )dS
S∫ + (f ⋅ v + r)dV

V∫ =
d
dt

ρ (e+ 1
2
v ⋅ v)dV

V∫
e = internal energy per unit mass,

qn = surface heat flux,
r = rate of radiant heat supply

(64)

This balance law, like the balance law of linear momentum, can be used to extract, as

consequences, certain equations which hold good at surfaces and certain partial differential

equations that must be satisfied throughout a region, which are the local forms of the balance

law.  These consequences are

Heat flux vector q exists such that:  qn = n ⋅q  on  S,

Local form of first law of thermodynamics:

− ∂qi /∂xi
i=1

3
∑ + r + σijDij

j=1

3
∑

i=1

3
∑ = ρ de /dt  in  V. (65)
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As regards the first statement, if we apply (64) to a Cauchy tetrahedron, and use (16) to simplify,

we conclude that there has to exist a heat flux vector q so that the flow out is just the normal

component of that heat flux vector.  In the second statement of (65), the ordinary d is meant to

denote a time rate of change following a material point, or following the motion.  This is written

as an ordinary partial derivative of e with respect to time if we write e in terms of material

coordinates X and time.  It has an additional transport term that comes in if we write e as a

function of spatial coordinates x and time:

de / dt = derivative following the motion
= ∂e(X,t) /∂t = ∂e(x, t) /∂t + Σ vi ∂e(x, t) /∂xi

(66)

13.  Second Law of Thermodynamics and Constitutive Equations

In the modern-day literature on continuum mechanics, the second law seems to be treated in

one of two different ways.  One approach is to introduce it as a new kind of balance law, then

generally called the Clausius-Duhen inequality, where rather than having zero on the right hand

side, we have greater than or equal to zero.  The quantity being greater or equal to zero is what

we think of as an entropy production rate.  A second approach is simply to incorporate the

second law into writing admissible local variations of state variables.  The two approaches turn

out to be equivalent in the constraints they deliver on how, for example, stresses can vary with

strains, temperature, and possible other local state variables (introduced in certain viscoelastic or

viscoplastic theories).  The former approach is more general because, while it does not contradict

the latter approach, it delivers more goods.  Specifically, it delivers further transport constraints,

such as for a heat-conducting body that q ⋅∇θ ≤ 0  (where θ is the thermodynamic temperature),

which requires that the thermal conductivity matrix [K], of {q} = −[K]{∇θ}, be positive definite.
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The latter approach is, nevertheless, adopted here because it is simpler.  Let us think of

purely elastic solids.  In that case, what are the requirements of the first and second laws?  Here

we think of applying these laws to local processes within the solid, which are reversible.

Understand, if we work in the context of thermoelastic behavior, we can have locally reversible

relations between stress, strain, and temperature in a body which undergoes an irreversible

process because heat conduction, for example, goes on.  That is precisely what happens if we

think of thermoelastic dissipation.  If we have a vibrating rod, as it vibrates the upper surface is

for a moment in extension, another moment in compression.  This sets up an unequal

temperature field in the body in each cycle of oscillation, which heat conduction tries to even

out, and ultimately results in an energy loss mechanism.  But locally, at each point of the

material, if the solid is elastic, we have a reversible behavior.  As we know from elementary

thermodynamics, that means an increment of internal energy per unit volume of reference

configuration, which is de multiplied by ρo (the mass density in the reference configuration), is

equal to the thermodynamic temperature θ multiplied by an increment of entropy (here s is the

entropy per unit mass) plus an increment of work of the relevant force quantities.  We have seen

that we can always introduce stress conjugates to whatever strain tensor we use, so as to give a

work per unit volume.  Thus

ρoθds + Sij
j=1

3
∑

i=1

3
∑ dEij = ρo de (67)

This is the thermodynamic requirement for elastic behavior.  Analogs for simple fluid

systems will be clear.  A consequence is that there exists a potential, or strain energy-like term,

so that

Skl = ρo ∂f ([E],θ) /∂Ekl  ,   s = −∂f ([E],θ )/ dθ
where  f ([E],θ) ≡ e −θ s = Helmholtz free energy.

(68)
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Here f is the Helmholtz free energy per unit mass, so that the stresses are given by its derivatives

with respect to strains.  Since the strain is a symmetric matrix, we understand when we write

such equations that we rig things so that the dependence on Ekl and Elk is identical.

The entropy is given by the derivative of f with respect to temperature.  So this is the

structure of stress-strain relations for elastic materials.  To generate particular material models,

we have to feed in particular definitions of the free energy.  If, for example, we wanted to

describe an isotopic material, say a block of rubber, then we would choose a free energy which

depended only on the invariants of the strain tensor rather than on all components.  On the other

hand, if we had something like a fiber-reinforced composite, or a single crystal where there are

preferred directions, then of course there is a more complex dependence on the strain

components.

The Cauchy stress can be expressed in terms of the stress that is work-conjugate to the strain,

and in particular, if we choose that stress as the second Piola-Kirchhoff stress, conjugate to

Green strain, then the relation is obtainable from (58) as

Cauchy stress  σij = (1/ det[F])  FikFjl Skl
l=1

3
∑

k=1

3
∑  when  

Skl = 2nd  P - K stress, Ekl = strain based on change of metric (Green strain)
(69)

where the Ekl is given by (55) and the Skl is given in terms of E, and θ, by the first line of (68).

If we look at materials which are not elastic but which nevertheless have instantaneous

elasticity, we have a very similar structure which applies for constitutive equations.  This

includes a variety of non-elastic material models, for example, viscoelastic and viscoplastic
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models.  In models commonly in use for polymers, the stress is a unique function of the

instantaneous change of strain and temperature, given the prior history of both, so they are

included in the class now considered.  In fact, the general structure of a constitutive equation is

derived by focusing on invariance of a general relation between stress and deformation to

superposed rigid rotation.  This leads rather directly to the form

σij (t) = (1/ det[F(t)]) Fik (t) Fjl (t)Skl
l=1

3
∑

k=1

3
∑ ([E( t)], θ(t); [E( ′ t )], θ( ′ t ),  to < ′ t < t) (70)

where the quantity Skl is just the second Piola-Kirchhoff stress.  For solids with instantaneous

elasticity, it is a direct function of the instantaneous strain and temperature, i.e., of the strain and

temperature at time t, as indicated in (70), and is a functional of the prior history of these

quantities from the formation time to of the material up to the present time; that is what the latter

arguments of S are meant to denote, a functional dependence.  Further, in view of the

instantaneous elastic property, the dependence of S on the instantaneous E and θ must be

compatible with the existence of a potential like in the first of equations (68), although f may

have a very complex dependence on the prior history.  That dependence is only weakly
constrained by thermodynamics, which provides only the inequality ˙ f ≤ ˙ E ij ∂f /∂Eij + ˙ θ ∂f /∂θ ,

where summation convention has been used and the derivatives with respect to E and θ represent

derivatives relative to instantaneous variations of those quantities.  Thus, at fixed E and θ one

must have ˙ f ≤ 0 .

In writing specific constitutive models, that dependence on prior history is often replaced by

a dependence on a set of state variables, where these state variables satisfy supplementary

evolution relations, sometimes called kinetic relations.  Those kinetic relations are then required

to be consistent with the constraint just cited.
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In this constitutive equation description, the instantaneous strain rate does not appear

explicitly.  This is what is meant by instantaneous elasticity.  In terms of classical rheological

models described by arrays of springs and dash pots, this sort of thing is o.k. if there is not a

viscous element which constrains the entire array against instantaneous (elastic) deformation in

response to an instantaneous change in stress.  Classical viscous liquids are regarded as being

constrained in that way.  A solid which is thus constrained is called a Kelvin solid, and such

Kelvin viscous response is incompatible with instantaneous elasticity.  Note, however, that

classical models for viscoplastic flow in elastic-plastic materials do include instantaneous

elasticity, specifically because of that elastic part of the response.  In such models, it is the

expression for the plastic part of the strain rate, not the total strain rate, which is reminiscent of a

viscous (but now non-linear, and evolving-state-dependent) liquid.  The classical rate-

independent elastic-plastic model does not allow instantaneous elastic response for all changes in

stress (e.g., not for those directed into the plastic domain), but it does for those which point into

the elastic interior of the yield domain, and that is enough to assure that the general structure of

(70), with the generalized version of (68), applies.

14. Linear Elasticity and Thermoelasticity

We will now look at linear elasticity and thermoelasticity.  The most general stress-strain

relation is

σij = Cijkl (εkl −α kl (θ − θo ))
l=1

3
∑

k=1

3
∑ (71)

where θo is the temperature of the reference state, here unstressed, from which we measure

strain.  We will say very little about anisotropy, because David Barnett describes the topic in

Chapter 4.
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Let us focus on what is inside the outer parentheses of Eq. 71.  If there was no stress acting

and we changed the temperature from, say, the temperature of the reference state, then the strains

would just be a set of expansion coefficients multiplied by the change in temperature, at least

within a linearized theory.  If we have stress acting, we have an additional source of strain, and

indeed the difference between the total strain and the thermal strain, which is sometimes called

the mechanical strain, enters the relation for stress.  The Cijkl are a set of isothermal elastic

moduli.  If we count the four indices on this set of elastic moduli, then at first the situation looks

dreadful, because 3 times 3 times 3 times 3 is 81 different constants.  But there are all sorts of

symmetries that greatly reduce the number.  First, because the strain is symmetric, the alphas

have to be symmetric, so there can be at most six of them, and it is meaningless to talk about

unsymmetric dependence of C on the last two indices:

εkl  symmetric⇒αkl = αlk  and  Cijkl = Cijlk (72)

Because the σij are symmetric, the Cijkl would have to be symmetric in the first two indices:

σij  symmetric⇒ Cijkl = Cjikl (73)

This gets us down to not 81 but 36 C’s.  Then, finally, the equations of thermodynamics imply,

as we have seen already, that stresses are derivable from a Helmholtz free energy, essentially a

strain-energy like function.  So, elastic moduli are just second derivatives of such a functions,

giving the further symmetry:

Thermodynamics⇒ Cijkl = Cklij  (Cijkl = ρo ∂
2 f ([ε],θo) /∂εij∂εkl ) (74)
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because the order of differentiation is immaterial.  That leaves us in fact with 21 independent

elastic constants for the most general material.

Material symmetries reduce the number of constants further.  There are two independent

constants for the isotropic material, three for a cubic crystal (like aluminum, copper, or iron at

low temperature), and five for a hexagonal crystal (for example, zinc).  Indeed, five applies for

any transversely isotropic material.  So, a fiber-reinforced composite with fibers running in a

single direction, and rather randomly arranged as they pierce a cross-section perpendicular to the

fibers, is a transversely isotropic medium when examined macroscopically at deformation scale

lengths that are large compared to fiber spacing or diameter.

There is, in the literature on crystal elasticity, a different notation that one will often

encounter.  This is also a common notation in many finite element formulations.  Recognizing

that we really only have six independent stresses, we make a column vector of stresses.  We also

have a column of six strains, where we use the three extensional strains but then twice the tensor

shear strains, to make these the shears coincide with those usually denoted by γ and referring to

an angle change.  They are indicated below in rows, with the symbols T to transpose them from

rows to columns.

{σ} = (σ11, σ22, σ33, σ12, σ23,σ31)
T

{ε}= (ε11, ε22, ε33, 2ε12, 2ε23, 2ε31)T .
(75)

Then the stress-strain relation is written in a matrix form, where the elastic constants C are

represented by a six by six matrix [c] (36 elements).  Thermodynamics requires that the matrix

be symmetric, and that gets us down to 21 elements, since the diagonal and half of the off-

diagonal of elements in the matrix add up to 21.  Thus
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{σ} = [c]({ε}−{α}(θ −θo)); Thermodynamics⇒ [c] = [c]T (76)

The free energy is written as

ρo f ([ε],θ ) = (1/ 2){ε}T [c]{ε}−{ε}T [c]{α}(θ −θo) + function of  θ (77)

If we neglect change in temperature altogether, it would just be a simple quadratic function of

strain.  The last term, that is not made very specific, the function of θ, describes the specific heat

of the material.

Let us now take up the simplest case, of an isotropic elastic material.  To recall some elastic

parameters for that case, consider a straight bar aligned in the 1 direction and subject it to

uniaxial tensile stress σ11.  The strain in that direction is ε11 = σ11/E, where E is Young's

modulus, and in the transverse directions is ε22 = ε33 = –ν σ11/E where ν is the Poisson ratio.

Now let us address the question of how to write stress-strain relations for a general stress

state like in Figure 2, and in particular, let us see why no additional elastic constants other than E

and ν are needed to describe the response.  There are different, but equivalent, ways of

approaching this.  One which draws on the power of the tensor concept is now described.  We

start by imagining that we have fortuitously chosen coordinate axes that line up with principal

directions at a point of interest, so that there are extensional stresses there but no shear stresses

(like in Figure 5).  Because the medium is isotropic, there must be zero shear strains in that

orientation.  To write a typical non-zero strain, ε11 would be σ11/E plus the Poisson effect due to

the stresses in the transverse directions.  If there is a change in temperature, we would have an

expansion coefficient times the change in temperature, where, for the isotropic material, α is a

simple scalar.  Thus
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ε11 = σ11 / E − ν(σ 22 + σ33) /E +α (θ −θo)
E =  Young' s (tensile) modulus,  ν =  Poisson ratio.

(78)

With a modest rearrangement, we could rewrite Equation 78 as

ε11 = (1 +ν)σ11 /E − ν(σ11 + σ22 +σ33) / E +α (θ −θo) (79)

Finally, knowing that the Kronecker delta has a "11" component of unity, we could sneak that in

in a couple of places without changing anything, to write

ε11 = (1 +ν)σ11 /E − νδ11(σ11 + σ22 +σ 33)/ E + αδ11(θ − θo ) (80)

A similar equation applies for directions 2 and 3, so we get all the stress-strain relations right

for this orientation if we write

εij = (1 +ν )σij / E − νδij (σ11 + σ22 +σ 33)/ E + αδ ij (θ −θo) , (81)

which is correct for shears as well, because we do not have any shear stresses or strains on

principal axes and the 12, 23, 31 components of the δ are zero.

This equation is certainly correct relative to principal axes.  Now we make use of the

powerful result that stress and strain, and also the Kronecker delta, are tensor quantities and that

the sum of stresses is an invariant, so it is independent of whatever system of axes is used.  If we

would write this equation referred to general axes rather than to principal axes then, because we

are dealing with tensor quantities, the equation would have exactly the same form.  Hence, this

stress-strain relation (81) is valid not just on principal axes, but is valid in general for all choices

of coordinate systems.
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This, of course, leads to a relation between elastic moduli, expressing the shear modulus G in

terms of E and ν.  That is, if we would evaluate let us say ε12, a shear strain, we would get

(1+ ν)σ12/E.  The shear strain based on the change of angle between initially orthogonal lines,

γ12, is twice the tensor shear and that γ type of shear strain is used to define the shear modulus by

γ12 = σ12/G.  This gives the relation between the constants:

Since γ 12 = σ12 / G = 2ε12 = 2(1 +ν )σ12 / E,   G = E/2(1+ν) (82)

Most readers will have encountered the derivation of this relation, done in an elementary way

using Mohr’s circles, for states of pure shear stress and strain, re-expressed as states of tension

and compression at ±45˚.  But that is an equivalent derivation, because Mohr’s circle just

describes the tensor transformation in a plane.

In the literature, there are other ways of identifying elastic constants for the isotropic solid.

One way is to ask:  "Given that the material is isotropic, and that stress and strain are symmetric

tensors, what is the most general linear relation that we could have between them?"  Throw

temperature in too.  The most general linear relation is

σij = λδ ij (ε11 +ε22 + ε33 − 3α (θ −θo)) + 2µεij (83)

It is written in a way which identifies constants which are called the Lamé constants.  µ is

nothing more than a new label for the elastic shear modulus G.  λ is a new modulus, and can be

written in terms of Poisson’s ratio and the other moduli:

Lamé constants :               µ ≡ G = E / 2(1+ ν),
                             λ = 2νG /(1 − 2ν ) =νE /(1+ ν)(1 − 2ν)

(84)
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Yet another modulus that we are sometimes concerned with is the bulk modulus.  If all the

normal stresses are negative and identical to pressure, then the fractional change in volume is the

sum of the strains and will be minus the pressure divided by a coefficient that defines the bulk

modulus:

Bulk modulus K :   For σ11 = σ22 = σ33 = − p  (pressure),
             fractional decrease in volume = (ε11 + ε22 + ε33) = −p / K;
                                       K = E / 3(1− 2ν ) = λ + 2µ / 3

(85)

We are accustomed to thinking of uniaxial stress because the standard laboratory tensile test

is one which approximates to uniaxial stress.  However, often we are also concerned, especially

in dynamic phenomena (such as wave propagation), with uniaxial strain, where the medium is

strained in a single direction, allowing no transverse strains to develop.  The modulus for that

kind of strain is:

Uniaxial strain modulus = λ + 2µ = (1 −ν )E /(1 +ν )(1 − 2ν ) (86)

It is this modulus, in fact, which enters an expression for the speed of dilational waves in

materials.

We will now distinguish between isothermal vs. isentropic moduli.  In thinking of what we

know about the deformation of gases, we are quite accustomed of thinking of deformation and

temperature changes as being seriously coupled.  If we compress a gas isothermically vs.

isentropically (isentropic denoting a reversible adiabatic process), there is quite a difference in

the stiffness of the gas.  For solids, it is quite a different story.
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The isothermal moduli are

Isothermal moduli:  Cijkl = ρo∂
2 f ([ε],θ )/∂εij∂εkl (87)

We define moduli for reversible adiabatic (or isentropic) processes in a similar fashion.  The

generating potential is not the Helmholtz free energy, but rather the internal energy written in

what a thermodynamicist would call a fundamental form, which is to say, written as a function of

strain and entropy:

Isentropic moduli:  C ijkl = ρo∂
2e([ε ],s) / ∂εij∂εkl (88)

In thermodynamics, we can derive all equilibrium properties of the medium if we write an

appropriate thermodynamic potential in terms of the right variables.  For example, if we write

internal energy e in terms of strain and temperature, that will not generate a fundamental

equation because there would be certain properties of the medium that we could not extract from

it.  But, if we write e as a function of strain and entropy, that is a fundamental form.  In the same

way, the Helmholtz function f, when written in terms of strain and temperature, is in fundamental

form.  Every single property, specific heat, stress-strain relations, thermal expansion, etc., is

derivable from that kind of a form.

The next question is:  how different are the isotropic and isothermal moduli?  We can write

out the isentropic moduli terms of the isothermic moduli as follows:

C ijkl = Cijkl + (θo / ρocε )βijβkl   where

βpq = Cpqrsαrs
s=1

3
∑

r=1

3
∑  ,   cε = specific heat per unit mass at constant (zero) strain.

(89)
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For the isotropic case, the shear modulus is identical isothermally and isentropically,

G = G (90)

but the bulk moduli are different,

K = K (1 + 9θoKα2 /ρocε ) (91)

However, it is important to understand that numerically, in almost all cases the difference is a

small one.  Let us look at the term inside the parentheses:

9θoKα
2 /ρocε   is typically of the order of 1% or less for metals and ceramics (92)

We can also work out a related quantity, the fractional change in thermodynamic or absolute

temperature when we deform a solid at constant entropy.  This is

[(θ −θo) /θo]s=const = −(9θoKα2 /ρocε )[(ε11 +ε22 + ε33)/ 3αθo];

3αθo  is typically in the range 10−3  to 4 ×10−2  at room temperature
(93)

So, even if we have a large volume change of order 10–2, we nevertheless typically generate 0.01

or less as a fractional change in temperature.  In that sense the coupling effects in the elastic

range are small.  That ceases to be true, as we know from common experience, when we take

materials well into the plastic range.  Still, over a wide range of conditions, the coupling of

temperature change to deformation is very small indeed.  That justifies the (most typically

followed) purely mechanical approach, in which temperature is not considered as a dependent

variable of the theory (but rather as a given quantity), and no use is made of the first law of

thermodynamics in formulating the governing equations.
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15. Equations of Linear Elasticity; Waves

We use the linear elastic stress-strain relations of (71); temperature changes, as justified

above, are neglected.  We use, in these stress-strain relations, the strains written in terms of

displacement gradients like in (41).  The equations of motion (22), in which the spatial gradient

can be replaced by a gradient in material coordinates for the present infinitesimal strain case,

then gives the set of three equations of motion,

∂

∂Xii=1

3
∑ Cijkl

∂uk
∂Xll=1

3
∑

k=1

3
∑
 

 
  

 

 
  + fj = ρ

∂2u j
∂t2

  ( j = 1, 2, 3) , (94)

for the three components of displacement.  In the isotropic case, these equations reduce to the so-

called Navier equations, the set of three equations

(λ + µ) ∂

∂X j
∂uk
∂Xkk=1

3
∑
 

 
  

 

 
  + µ

∂2uj
∂Xk

2
k=1

3
∑ + fj = ρ

∂2uj
∂t2

  ( j = 1, 2, 3) , (95)

restated in vector notation as

(λ + µ)∇(∇ ⋅u) + µ∇2u + f = ρ ∂2u /∂t2 (96)

I close this brief review by discussing simple solutions of the equations that describe what

are called body waves.  These describe plane disturbances of an arbitrary pulse shape that

propagate steadily in the direction of some arbitrarily chosen unit vector n.  What is unknown is

the speed c of propagation and the polarization p, which is the direction of displacement in the
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wave (each component of displacement being assumed to follow the same shape of pulse).  Thus

we seek solutions in the form

Assume   u(X, t) = p f (n ⋅X − ct ),
unit vector n= propagation direction,  p= polarization, c = wave speed. (97)

Here n is given, the function f(…) is chosen arbitrarily, and we seek solutions for p and c.  By

inserting the assumed form of solution into (94), we obtain the following eigenvalue problem:

General anisotropic solid:  Solutions exist for arbitrary functions f(…) if

ni Cijkl nl
l=1

3
∑

i=1

3
∑
 

 
  

 

 
  

k=1

3
∑  pk = ρc2 pj   ( j = 1, 2, 3) (98)

The result is that, for each direction n in the material, there exist three different wave speeds

(two may coincide in degenerate cases, like the isotropic), given as eigenvalues of the above

system.  Because the quantity in parentheses, called the acoustic tensor when we divide it by ρ, is

symmetric and positive definite, the three values of c2 are real and positive, and further, the

corresponding polarization directions are mutually orthogonal to one another (or can be so

chosen in the degenerate cases).

In the isotropic case, when the governing equation reduces to (95) or (96), the result is:

Isotropic solid:  Solutions exist for arbitrary functions f(…) if either

c = cd ≡ (λ + 2µ)/ ρ   and   p = n   (longitudinal or dilatational waves) (99)

or   c = cs ≡ µ /ρ   and   p ⋅n = 0   (transverse or shear waves) (100)
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Figure 1:  General body with volume and surface elements indicated, with Cartesian reference

frame, axes labeled 1, 2 and 3.

Figure 2:  Three orientations (orthogonal to coordinate directions) of cut faces through a generic

point of a solid.  The nine components of stress σij shown are introduced as the components of

traction vectors, or stress vectors, T(i) associated with each of the three face orientations.
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Figure 3:  Tractions acting on the two sides of a surface.

Figure 4:  Cauchy tetrahedron with inclined face having some arbitrary orientation n; constructed

about some material point, and to be shrunk onto that point in the limit to be taken.
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Figure 5:  Principal stresses associated with three mutually orthogonal face orientations.

Figure 6:  Illustration of extensional strains (λ = stretch ratio)
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Figure 7:  Illustration of "simple" shear strain

Figure 8:  Deformation of line elements dX1 and dX2; notice that origin of line elements has
displaced by u1 and u2, and that the extremities of the elements have displaced by slightly
different amounts, due to the displacement gradients ∂ui / ∂X j  (presumed small for purposes of
this diagram, which is used to introduce infinitesimal strain εij).




