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ABSTRACT 

We present simulations of 3 D dynamic fracture which suggest that a persistent elastic wave is generated 
in response to a localized perturbation of a propagating crack front, e.g., by a local heterogeneity of critical 
fracture energy. The wave propagates along the moving crack front and spreads, relative to its origin point 
on the fractured surface, at a speed slightly below the Rayleigh speed. The simulations were done using the 
spectral elastodynamic methodology of Geubelle and Rice (1995). They model failure by a displacement- 
weakening cohesive model, which corresponds in the singular crack limit to crack growth at a critical 
fracture energy. Confirmation that crack front waves with properties like in our simulation do exist has 
been provided by Ramanathan and Fisher (1997). Through a derivation based on the linearized per- 
turbation analysis of dynamic singular tensile crack growth by Willis and Movchan (1995), those authors 
found by numerical evaluation that a transfer function thereby introduced has a simple pole at a certain 
w/k ratio, corresponding to a non-dispersive wave. Further, we show that as a consequence of these 
persistent waves, when a crack grows through a region of small random fluctuations in fracture energy, 
the variances of both the local propagation velocity and the deformed slope of the crack front increase, 
according to linearized perturbation theory. in direct proportion to distance of growth into the randomly 
heterogeneous region. That rate of disordering is more rapid than the growth of the variances with the 
logarithm of distance established by Perrin and Rice (1994) for a model elastodynamic fracture theory 
based on a scalar wave equation. That scalar case, which shows slowly decaying (as t -“‘) rather than 
persistent crack front waves, is analyzed here too. 0 1998 Elsevier Science Ltd. All rights reserved 
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INTRODUCTION 

When a crack propagates through a region of locally heterogeneous critical fracture 
energy, its front must speed up or slow down to accommodate those variations. This 

process creates elastic waves which interact with local stressing and fracture along 
other parts of the front. This paper addresses crack encounters with isolated regions of 
fracture energy heterogeneity, and shows that such interactions generate a previously 
unrecognized type of elastic wave which propagates along the moving crack front. 

Consequences are discussed for the growth of fluctuations in local speed and shape 
of the crack front during fracture propagation. 

At the present level of modeling, the crack is confined to a plane and the medium 
through which it advances is assumed to be elastically homogeneous. Previous work 
(Perrin and Rice, 1994), based on a model scalar elastodynamic theory with linearized 
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perturbation of the crack front from a straight line (Rice et al., 1994), showed that 
no statistically stationary crack configuration will exist under a sustained, small 
stationary random variation in critical fracture energy. The variances of both crack 
front slope and propagation velocity diverge logarithmically with distance of growth 
into the zone of variable toughness (although nonlinearities must ultimately saturate 
the fluctuations to a large-amplitude stationary distribution). The origin of the log- 
arithmic divergence, discussed also by Ben-Zion and Morrissey (1995), is found in 
the asymptotic behavior of the space-time convolution kernel associated with wave- 
mediated stress transfer in the linearized perturbation analysis. That kernel decays as 
the inverse root of its argument for large arguments; its squared integral, arising in 
statistical analysis of the system, diverges logarithmically. 

Of particular interest is the decay rate of signals produced in real vectorial ela- 
stodynamics by fracture energy fluctuations under Mode I (tensile) loading. We 
employ 3-D spectral computational methodology (Geubelle and Rice, 1995) to 
address such fluctuations in crack growth for Mode I cracks with a displacement- 
weakening failure criterion. The simulations of crack front interactions with inhom- 
ogeneities display long-lived signals produced by local fracture energy variations. 
These certainly decay more slowly than the inverse square root of travel distance, and 
seem not to totally decay, so as to represent persistent waves propagating along the 
moving crack front (Morrissey and Rice, 1996). The solution for the Mode I singular 
crack model with linearized perturbations in propagation speed has been developed 
by Willis and Movchan (1995). In support of the persistent crack front waves shown 
by our simulations, Ramanathan and Fisher (1997) have used the Willis-Movchan 
solution to extract a certain transfer function, that we call Ei(k,o) subsequently 
(k = wave number along crack front, co = frequency), for crack growth at constant 
fracture energy. Their numerical evaluation of g(k, cu) confirms that it has a simple 
pole at a certain ratio w/k, corresponding to existence of a propagating mode at a 
wave speed comparable to what we found in the simulation. 

It follows that the variances of small linearized fluctuations in crack front slope 
and velocity, in propagation through a region of small stationary random variation 
in fracture energy, diverge linearly with travel distance through the variable toughness 
zone for Mode I cracks in vectorial elasticity, rather than just logarithmically with 
travel distance as for the scalar theory. 

DYNAMIC CRACK MODELS 

We consider an unbounded solid which contains a crack propagating on the plane 
y = 0 (Fig. 1). Two formulations are discussed here : 

l A model elastodynamic theory based on a scalar wave equation. 
l Actual elastodynamic theory based on the vectorial Navier equations of motion. 

The model theory involves a single displacement quantity u satisfying c2V2u = u,,, with 
associated stress r~ = Mu,~ which vanishes on the fracture ; A4 is an elastic modulus 
and c the wave speed. That formulation was used by Rice et al. (1994) and Perrin and 
Rice (1994) in the first studies of 3-D dynamic cracking through media of het- 
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Fig. 1. Fracture on the plane y = 0 in an unbounded solid 

erogeneous fracture toughness. The vectorial theory involves displacement vector u 
satisfying (c,” - ci)V(V - u) + c,ZV*u = u,,,, with associated stresses aUB = @V - u)S,, + 
,u(uB,,+u,,J of which aY, = ovJ = aYz = 0 on the fracture. Here 2 and p are the Lame 
moduli, p being the shear modulus, and cd and c, are the dilatational and shear wave 
speeds, with cj/c,2 = (A+ ~P)/,u. 

For each of these formulations, the problem of spontaneous crack motion has been 
addressed, thus far, by two types of analysis : 

l As a small perturbation from a straight crack front, and from propagation at 
uniform speed, for a half plane crack in an unbounded solid : In this case the singular 
crack model has been used and the solutions have been expressed in terms of 
perturbations to stress intensity factors K and energy release rate G along the crack 
front. Such solution was given for the scalar theory in Rice et al. (1994) and 
Perrin and Rice (1994), and was derived for vectorial elastodynamics by Willis and 
Movchan (1995) in the case of a mode I tensile crack, and by Movchan and Willis 
(1995) for modes II and III shear cracks. The analysis was recently extended to out- 
of-plane perturbations, not considered here, by Willis and Movchan (1997). 

l As a non-perturbative numerical analysis of spontaneous fracture : In this approach 
a non-singular cohesive crack model of Barenblatt-Dugdale type has been adopted, 
as shown in Fig. 2, relating stress and relative displacement of the crack walls 

Fig. 2. Cohesive displacement-weakening relation between tensile stress 0 and crack opening 6. Fracture 
energy G,,,, of corresponding singular crack model is equal to the area under the 0 vs 6 relation ; G,,,, = 4,,S,,,‘2 

in this case. 
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through a displacement-weakening relation. This approach has been used by Geu- 
belle and Rice (1995), as an application of a spectral numerical methodology that 
they develop, and by Morrissey and Rice (1996) who noted the evidence of persistent 
crack front waves, for a mode I crack in vectorial elasticity, that we present here. 

The non-singular displacement-weakening approach coincides with that based on 
the singular crack when the latter is formulated in terms of a critical fracture energy 
Gcr,,, where G,,,, is the area identified in Fig. 2, at least in the case for which the size R 

of the zone over which displacement-weakening occurs is much smaller than other 
overall length scales in the fracture problem. In that range Rice [(1980) ; eqns (6.12) 
and (6.16)] shows that 

R = R,.=,,/f(v) where RI.,,, x (9rc/32)(M/~r~)&,. (1) 

Here A4 is the modulus of the model theory and is cl/( 1 - O) for vectorial elasticity, 
where V( = ;2/[2(;2 +p)]) is the Poisson ratio. The functionf(v), where v is crack growth 
velocity, is unity when v = Of and increases to infinity at a limit speed Vlimit, which is 
c for the scalar theory and is the Rayleigh speed cR for vectorial elasticity. That is 

f(v) =(l -v’/~‘))“~(scalar), and f(v) = ‘dv2 
(1 _ o)r(v)cg (vectorial mode I), (2) 

where Y(V) = 4&ad-(l +a;)* is the Rayleigh function, c(, =(I -z.~/c~)‘!‘, 
c(d = (1 -v2/c,j)“2, and c, and cd are the shear and dilatational wave speeds ; Y(c~) = 0. 

We attempt here to choose parameters, within computer limitations, so that R is small 
compared to relevant scale lengths, but still large compared to the discretization size 
in the numerical formulation, so that our numerical solutions for cohesive crack 
models will be essentially indistinguishable from the corresponding singular crack 
solutions. 

For the singular crack model, we know from the results of Kostrov (1966) and 
Eshelby (1969) for the scalar case, done as the mode III 2-D elastic problem, and of 
Freund (1972, 1990) for vectorial mode I, that the stress intensity factor K has the 
mathematical structure 

K = &)L (3) 

where i(y) is a universal function of instantaneous crack speed v, with i(O) = 1 and 
&v,,,J = 0, and where the “rest” value of K, to which it would revert if the crack 
growth were suddenly stopped, is K,,, ; K,,,, is a functional of the history of crack 
motion up to the present. It has a very simple form, emphasized by Eshelby (1969) 
and Freund (1972), when the crack front is straight (2-D problem) and when only 
outgoing waves are involved, without effect of reflections from boundaries or from 
the opposite end of the crack. Here i(v) is 

f(v) = (1 -v/c”2)(scalar), and R(v) = 
1 -V/CR 

&!?+(l/u)(l -v/cd)“2 
(vectorial mode I), 

(4) 
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Table 1. Values of the Freund (1972, 1990) slowness function S + ( 1 /u) for various crack 
speeds v, for a range of values of Poisson ratio IJ 

0.15000 0.20000 0.25000 0.30000 0.35000 0.40000 
0.90222 0.91100 0.91940 0.92741 0.93501 0.94220 

1 .oooo I .oooo I .oooo I .oooo 1 .oooo 1 .oooo 
0.98600 0.98459 0.98308 0.98147 0.97979 0.97806 
0.96989 0.96689 0.96370 0.96032 0.95681 0.95321 
0.95113 0.94635 0.94127 0.93594 0.93041 0.92480 
0.92899 0.92217 0.91498 0.90746 0.89973 0.89193 
0.90243 0.89328 0.88367 0.87371 0.86354 0.85336 
0.86992 0.85804 0.84566 0.83293 0.82005 0.80726 
0.82906 0.81393 0.79831 0.78241 0.76646 0.75079 
0.77580 0.75669 0.73718 0.71753 0.69804 0.67908 
0.70248 0.67819 0.65368 0.62928 0.60538 0.58236 
0.59093 0.55851 0.52606 0.49399 0.46267 0.43243 

where the slowness function S+(l/v) is an integral arising from the Wiener-Hopf 
factorization for the moving crack problem by Freund (1972 : p. 133, eqn (2.19) ; 
1990: p. 347, eqn (6.4.18)). Freund (1990 : p. 349) notes that S+(co) = 1 and that 
S+(l/c) is “not too different from unity over the full range of its argument”. The 

most compact means of evaluation seems to follow from a transformation by Freund 
(1990 : p. 347, eqn (6.4.20) ; p. 88, eqn (2.5.29) ; p. 349) to another function Sl (l/l%), 
which arises in Wiener-Hopf factorization for a non-growing crack, and this shows 
that 

We show results for S, (l/v) as a function of v, for several values of 0, in Table 1. 
The energy release rate has the mathematical form 

G = f(v)K’/2A4, (6) 

wheref(c) and A4 are the same as earlier, and thus one has 

G = g(v)G,,,t (7) 

where G,,, E K&,/2M is the rest value of the energy release rate, a functional of prior 
growth history, and where g(v) =,~(v)[&v)]~. This function g(v) satisfies g(O+) = 1 
and g(z+,,,,,,) = 0 ; specific forms are 
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Fig. 3. (a) Illustration of relation G = g(v)G,,,, between energy release rate G (per unit crack area), crack 
speed v, and rest value G TeSt of G; uliml, = c for scalar model, u,,,,,~, = cR for vectorial mode I ; for vectorial 
case, J = 0.25. (b) Also shown: How crack growth at constant G (=G,,,,) but steadily increasing G,,, 

causes t’ to accelerate towards v,,~~,. 

g(u) = [( 1 - u/c)/( 1 + v/c)] ‘I* (scalar), and g(v) z 1 - u/c,(vectorial mode I) 

(8) 
where the latter is an approximation suggested by Freund based on his plots of g(u) 
(Freund, 1972: p. 139, Fig. 4; Freund, 1990: p. 349, Fig. 6.10). Figure 3a shows both 
g(u) functions, with the exact one plotted in the vectorial case, for t, = 0.25. Figure 
3b indicates that if, like in typical situations for enlarging cracks under remote loading, 
G,,, increases as the crack grows, and if that growth is, e.g., at a constant G = G,,,, 
then u accelerates towards Ulimit. Of course, real cracks will bifurcate away from the 
assumed planar path well before u approaches uhmlt, unless channeled by a weakly 
bonded interface (Washabaugh and Knaus, 1994). 
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SIMULATION METHODOLOGY 

In order to implement the non-singular cohesive model, with displacement-weak- 
ening, we follow the spectral numerical methodology of Geubelle and Rice (1995). 
Assuming that the fracture takes place on the plane y = 0 separating identical elastic 
half spaces, they show that the following equation in vectorial elastodynamics, for 
mode I, relates tensile stress rr(x,z, t) (=q,,.(x,O,z, t)), acting perpendicular to the 
interface _r = 0, to the opening displacement discontinuity 6(x, z, t) there : 

x + 2p d6(x, Z, t) 
0(x, -7, t) = cP(x, z, t) - __ 

2c, at 
f&x, z, t). (9) 

Here 6(x, z, r) = u(x, O+, z, t) - u(x, O-, z, t), where u( = u,.) is displacement in a direc- 
tion perpendicular to the interface, o”(x, z, t) is the stress which external loading would 
transmit to that interface if it was constrained against any opening (i.e., if 6 was 
constrained to be uniformly zero), and 4(x, z, t) is a functional which depends on the 
prior history of opening 6(x’, z’, t’) for all x’, z’, t’ within the wave cone of x, z, t. The 
numerical method that we employ adopts a spectral representation of both 6 and 4, 
as a Fourier sum over wave numbers k and WZ, 

(10) 

where the Fourier coefficients are related by (Geubelle and Rice, 1995) 

F(k,m,t) = -iq2c, 
s 

‘h(qc,(t-t’))D(k,m,t’)dt’ 
0 

with q = Jk’+m2 and 

(11) 

h(T) = PC,(~) = P BZ_T J, W) _4T s [jTJ, CT’) 
7 

~dr’+8(4-P2)Jo(PT)-4J,(T) . 1 
Here Jo and J, are Bessel functions of the first kind, and p’ = cj/c,Z = (A + 2p)/p. 

For the scalar theory, the same formulation applies but now (2 + 2~)/2c, in eqn (9) 

is replaced by M/2c, c, in eqn (11) is replaced by c, and the convolution kernel there 
is replaced by h(r) = MJ1 (T)/T. The relation between 4(x, z, t) and 6 (x, z, t), in both 
scalar and vector cases, can also be expressed as space-time convolution integrals 
given by Cochard and Rice (1997). 

In the numerical implementation we select a region of the X-Z plane, Fig. 4, of 
extent 1, = 2 in the z direction and A, = 2i in the z-direction, and cover it with a grid 
of N, (= 512 for scalar, 1024 for vectorial) points in the z direction, and N, ( = 1024 
for scalar, 2048 for vectorial) points in the x direction. Regarding these as Fast 
Fourier Transform (FFT) sample points, this corresponds to selecting wave numbers 
k = 2njjA, and m = 2nl/i,, with j ranging over all integers from - NJ2 to NJ2 and I 
from - N=/2 to NJ2, in truncated Fourier series representations of 6 and 4 like in eqn 
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Asperity, 
D = 0.04 a (scalar) 

D = 0.02 A (vectorial, mode I) periodic 
in x 

Z 
in z 

Unperturbed crack speed, 
vo = 0.6 c (scalar) 

vo = 0.5 cs (vectorial, mode I) 

Fig. 4. Simulation domain, replicated with periodic length i, in the z direction, along the crack front, and 
21 in the x direction. Critical fracture energy G,,, (and Q and 6,) are constant everywhere ahead of the 
pre-crack, except for the asperity region where o0 and 6, are increased by 5%, hence G,,,, by 10%. The 
loading u”(x, t) is chosen to give an approximately constant crack growth rate u0 in absence of the asperity. 
A narrow strip of high rrO at the crack border near x = 0, and its periodic replicates, prevents propagation 

in the negative x direction. 

(10). Hence, whatever rupture process happens over this domain, of extent 2, by A,, 
is replicated periodically in the two spatial directions, with respective periods & and 
2,. Thus we are interested in results of the calculation up until the arrival of waves 
from the replicate regions. Cochard and Rice (1997) show how to eliminate these 
replication effects rigorously in a formulation that retains the spectral basis and modal 
independence of the convolution, but at the expense of far more elaborate calculations, 
not yet implemented in code for vectorial elasticity, to obtain the convolution kernels. 

As illustrated in Fig. 4, the problem we address is one for which an initial crack 
exists of 2-D form so that, if the loading is independent of z, as we assume, and if the 
fracture properties are uniform, the fracture would grow with a straight front under 
2-D plane strain conditions in the x-y plane. However, our focus here is on the effect 
of small heterogeneities in fracture toughness, so that the crack front is slightly 
perturbed from straight. This is to provide solutions to compare with the analytical 
works on linearized perturbation mentioned, and particularly to learn how the Perrin 
and Rice (1994) analysis of disorder in growth may extend to the vectorial case. 
[Geubelle and Rice (1995) show an application of the methodology to far stronger 
perturbations of toughness, nearly sufficient to arrest a running crack.] The fracture 
properties e0 and 6, are taken as uniform everywhere except within the small asperity 
region identified, where both are increased by 5%, so that the fracture energy is 
increased from G,,,, to 1.1 G,,,, within the asperity. To disallow fracture propagation 
for the end of the crack near x = 0, and its periodic replicates, o0 is assigned large 
values in a narrow strip which borders it. The asperity diameter D is chosen as 201’1 in 
all cases, where h is the FFT sample point spacing, that is, h = 3./N, = 22/N,. Thus 
D = 0.04A in the scalar and 0.021 in the vectorial simulation. Further, we choose the 
parameter combination M&/o,, in the scalar case, and &,/(l -~)a, in the vectorial, 
so that the nominal cohesive zone size is RI,,,, = 8h in both cases. 
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The loading r~‘(x, z, t) is chosen so that, for a calibration run in absence of any 
asperity region, the crack speed would be nearly constant at uo, chosen as v. = 0.6~ in 
the scalar case to be shown here, and u,, = 0.5~~ in the vectorial. Loadings of the type 
o” cc l/$ can accomplish growth at constant speed, within the singular crack model, 
for cracks which begin at zero length. The cracks in the simulations begin at finite 
length Q,,,,~ = 64h (= n/8 in the scalar case and A/l 6 in the vectorial) and are non- 
singular cracks. We stipulate that c = 0 on the initial crack 0 < x < alnit for all time 
t > 0, and we let the cohesive law apply outside the crack. We let u(t) mark the 
furthest extent of the decohering zone (i.e., the zone where (T has previously reached 
the strength CJ~ and is now undergoing displacement weakening) in the calibration 
run; a(O+) = U,,it, and we apply the loading stress a’(~, t) for t > 0 as 

Oo(x,z,t)~constantx~~ for Otx<a(r) 
(13) 

lo for a(t) < x < 2/1 

Here M is the modulus of the scalar theory and is replaced by ,u/( 1 - 9) in the vectorial 
mode I case. Choice of the constant equal to unity in this equation corresponds to 
the static crack growth threshold for the corresponding singular crack model with 
fracture energy Gcrlt = 0,6,,/2, for an isolated tunnel crack of length a(t).Choice of 
greater values of the constant corresponds to dynamic crack motion. We found in 
such cases that after an initial transient the crack speed v(t) z da(t)/dt settled down 
to a nearly constant value (within about f5%) despite wave reflections from the 
crack end blocked at x = 0, at least until relatively large times when stress pulses 
arrived from the periodic replicates of the fracture process. We chose the constant by 
trial and error to give the unperturbed speeds noted above. 

In application to the fully 3-D simulations with the asperity zone present, the same 
constant was used and the loading history was as described above, but with the non- 
zero value of cO(x,z, t) now applying for 0 < x < u(z, t), where u(z, t) is the local 
crack depth (Fig. 1). Again, we specify (T = 0 for all time on the initial crack, whereas 
the rest of the medium follows the stressdisplacement law once the stress cro (or 1.05 
co in the asperity) has been attained. The constitutive relation is imposed only at the 
FFT sample points, which are equal in number to the number of Fourier modes in 
the spectral sum. 

The time step At chosen in 0.5h/c in the scalar case, and 0.5h/c, in the vectorial. To 
understand the computational procedure, consider a moment z in the history at which 
the opening displacement 6(x, z, t) has been determined by calculations up to that 
time. We need to determine 4(x, z, t) also, and we obtain that by doing the following 
three operations : 

(9 

(ii) 

(iii) 

Do an FFT to go from 6(x, z, t) at its sample points x, z to the modal components 
D(k, m, t) for all wave numbers k, m in the truncated Fourier sum. 
Making use also of all prior D(k, m, t’), t’ -C t, perform the convolutions for each 
Fourier mode to get F(k, m, t). 
Do an inverse FFT to go from the F(k, m, t) to 4(x, z, t) at the sample points. 
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From the then known 4(x, z, t), and from evaluating a(x, z, t) in terms of 6(x, z, t) 
according to the displacement weakening constitutive law, use can be made of eqn 
(9) to calculate the opening velocity &3(x, z, t)/& at all sample points. We then step 
6(x, z, t) to a new value 6(x,z, t+ At) = 6(x, z, t) +At &3(x, z, t)/&, at t+At at the 
sample points, and then the process just described begins anew. 

Most of the computer time is spent on the convolutions, step (ii) above. They can 
be done completely in parallel without processor communication. So the methodology 
is well suited to highly parallel computer architectures, with large amounts of memory. 
We used the CM-5 Connection Machine. The convolution integrals have the structure 
F(t) = - Sb H(t - t’)D(t’) dt’ (omitting explicit reference to wave numbers and absorb- 
ing constants into a new function definition H(t) - (1/2)q*c,h(qc,t) for the kernel). 
We wish to evaluate F,, = F(nAt) in terms of the known sequence D, E D(m At), 

m = 1,2,..., n, where D,, = 0, m d 0. We followed the procedure of Morrissey and 
Geubelle (1997), first storing arrays of pre-integrated kernel values 

K, =(At/2)[H((n+d)At)+H((n-l+d)At)] for n = 1 ton,,,, (14) 

where nmax is the largest number of steps in the calculation, and then evaluating 

Fn = - K,,,, -,D,. (15) 

Here dis a delay factor which, based on the Morrissey and Geubelle (1997) suggestions 
from studies of numerical precision and stability of the procedure, we take as d = l/2 
in the scalar case and d = 0 in the vectorial case. Further details of the methodology 
follow Geubelle and Rice (1995) who used the same displacement-weakening model. 

RESULTS 

The asperity encounter induces a local fluctuation in speed of the fracture front, 
which propagates along the front as it moves. We determine the local fracture velocity 
at the fracture front, to obtain the difference V(z, t) = v(z, t) -z),, between the local 
and unperturbed velocity (where we take v0 as the very slightly time-dependent speed 
in the calibration run with straight crack front discussed above). It is perhaps more 
fundamental to think of results as a perturbation in G,,,, which would, in absence of 
the asperity, be uniform along the then straight crack front, and be nearly (within 
simulation accuracy) uniform in time. The crack grows in a region of uniform G,,,, after 
passing the asperity, so that G,,i, = ~(z))G,,,~ is constant, and hence the fluctuations are 
related by 

AG,,t(z, 4 = - b'(~,)l~*(~o)lGr,t W> 0. (16) 

Note that the bracketed term is negative so that both fluctuations are of the same 
sign. 

We show plots of AGJAG,,,, (where AGcrit = O.lG,,,, in this case) vs distance z 
along the crack front at a series of equally spaced times t after the asperity encounter, 
so that the quantity plotted is AG,,,,IAG,,,, + constant x t. This conveys the notion that 
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Fig. 5. Results for model elastodynamic theory based on scalar wave equation. Perturbation of conditions 
along the crack front, due to asperity encounter, shown by plotting AG,,t(~, t) +constant x t vs z; AC,,, is 
proportional to the local perturbation V(z, t) of crack speed. For this scalar case the wave of disturbance, 
propagating along the moving crack, slowly decays, as t-I’*. Dashed lines represent locus of intersections 

of spherical wave front, growing from asperity location at speed C, with the moving crack front. 

the crack front, where not yet influenced by waves from the asperity encounter, is 

advancing uniformly with time. 

Crack in a scalar elastic solid: Figure 5 depicts pulses that are created by the crack 
encounter with the asperity. The dashed lines in the figure show where body waves of 

speed C, originating from the asperity, would intersect the future crack front. The 
pulse size decreases with propagation and the pulse travels with the wave speed c 
relative to the asperity site. That corresponds to speed ,/G as measured in the 

direction parallel to the crack front. Since we had a tougher asperity rather than a 

more brittle zone, most of the signal is to slow v down rather than speed it up. So, in 
terms of the resulting perturbation of crack front position, this results in a gentle 

propagating kink. 

Figure 6a shows the amplitude (measured from peak to trough) of the disturbance 
of Fig. 5 vs normalized time et/D (D = asperity diameter). The disturbance is seen to 
decay. The decay is initially rapid but slows down after the pulse has traveled 10 
asperity diameters. There is some noise in the measure of the amplitude because the 
measure chosen is very simple. A more sophisticated measure would probably smooth 
this out. Figure 6b is a logarithmic plot of the same results. This lets us obtain an 

exponent of the decay rate of the amplitude of the pulse, which is seen to be well 
described by decay in proportion to t- ‘I2 This is the result expected from the linearized 
perturbation analysis for the scalar case (Rice et al., 1994; Perrin and Rice, 1994), 
which is that long after the asperity encounter the perturbation v(z, t) -v. should 
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Fig. 6. Decay of the amplitude (measured from peak to trough) of AC,,, shown (a) on linear scale, and (b) 
on logarithmic scale, for the scalar case. Here D is the asperity diameter. The plot in (b) confirms the 

theoretical prediction of pulse amplitude decay as z~“~. 

t-‘/’ in a pulse which spreads laterally along the crack front at speed 
Such may be deduced from the result (Perrin and Rice, 1994) for per- 

turbation in crack front position as 

AGnt (vo t’, z’) 

a;C2(t-t’)*-(Z-z’)2 
(17) dz’ dt’ 

for growth into a region, beginning at x = 0, in which the critical fracture energy is 
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AG,,t / AGent + const x t 

(for discrete, equally spaced, t values) 
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0 

Fig. 7. Results for mode I crack in vectorial elastodynamics, showing persistent crack front waves generated 
by the asperity encounter. Perturbation of conditions along the crack front shown by plotting AG,,,, 
(2, I) fconstant x t vs 2; AC,,,, is proportional to the local perturbation V of crack speed. Dashed lines 
represent the intersections of spherical wave fronts of dilatational and shear waves, and of circular front 
of Rayleigh surface wave, with the moving crack front. The persistent wave appears to move (relative to 

the source asperity) slightly slower than the Rayleigh speed. 

perturbed by AG,,it(X, Z) from its uniform value Gcrlt,“, prevailing for x < 0 and leading 
there to unperturbed crack speed c,,. Here, a, = (1 -ui/c’)’ ‘2 and the half plane crack 
grows under loading conditions such that G,,,, has a constant value, equal to 

[( 1 + QJM 1 - dc)l “2Gr~t,o> so long as the crack front remains straight. 
Crack in a vectorial elastic solid, mode I: Figure 7 shows the simulation result for 

AG,,,,/AG,,,, (or, essentially, V), for the vectorial elasticity mode I case. Now we see 
that the pulses spreading along the crack front are long-lived with no evident tendency 
for decay, or at least for decay with rapidity comparable to the scalar case. Lines in 
the figure show where shear and dilational body waves, and Rayleigh surface waves, 
originating from the asperity would intersect the crack front. The dilational wave 
arrival has no discernible effect on the crack and the disturbance seems to begin with 
the shear arrival. The long-lived pulse seems to propagate at a speed, relative to the 
asperity, which is very close to, but slightly less than, the Rayleigh speed. 

Figure 8a shows the amplitude of the disturbance (measured peak to trough) vs 
normalized time. This confirms that, in contrast to the scalar elastic case shown in 
Fig. 6, the disturbance does not seem to decay, but rather represents a persistent wave 
which spreads along the growing crack front. When we take the logarithm of the mode 
I results, as is done in Fig. Sb, it appears that there is initially a decay proportional to 
tee”’ just like in Fig. 6b. 

The existence of crack front waves in the vectorial case may be directly verified 
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Fig. 8. Decay of amplitude (measured peak to trough) of AG,,,, shown (a) on a linear scale, and (b) on a 
logarithmic scale, for the vectorial mode I case. Here D is the asperity diameter. The plot in (a) shows the 
persistence of the crack front waves. That in (b) suggests that the early history of the response may decay 

approximately as t-Ii* like for the scalar case. 

based on the Willis and Movchan (1995) linear perturbation solution for the singular 
crack model. This involves a half plane crack in an unbounded solid, growing under 
conditions for which K,,,, and G,,, are constant when the crack front remains straight, 
the same case considered by Rice et al. (1994) for the scalar model. Let the crack 
front position perturbation A(z, t) E a(z, t) - uot have space-time Fourier transform 

e-ikiPin’r,4(z, t) dzdt (18) 
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and use similar notation for the transform Af?(k,w) of the corresponding stress 
intensity factor perturbation from its unperturbed value K,,. Willis and Movchan 
(1995) show that 

A@k, WY& = IklF(wllkl, u,)&k, a), (19) 

where F(w/lkj, vo) is given by an expression involving an integral [their eqns (8.10) 
and (9.7)-(9.12)] that does not allow simple evaluation. Since G =J(v)K2/2M, the 
corresponding perturbation in G is 

AG(z, 0/G,, = U”‘W/f(~o)l W, 0 + 2AK(z, O/S,, (20) 
where V(z, t) = dA(z, t)/at. Thus writing p(k, o) = iwi(k, w), the Willis-Movchan 
solution implies that the perturbation of G is 

AG(k, 0)/G, = 2&k, w)/f?(k, w), (21) 

where the transfer function f?(k, co), relating a perturbation of G (which we regard as 
given through a specified, slightly non-uniform, G,,,, distribution) to the resulting 
perturbation A of crack motion is 

^ 2/M 
H(k’w) = [J”(v,,)/&>]io/lkI +2f’(‘(u/lkl, uo) 

Ramanathan and Fisher (1997) have numerically evaluated an expression which 
should be equivalent and thus shown that @(k, o) has a simple pole at a certain real 
value of o/k. That confirms the existence of a propagating mode for crack 

Y 

rowth at 
constant fracture energy. The critical w/k corresponds to the speed c: -vi at which 
such waves propagate in the direction parallel to the crack front, which is moving 
itself at the (unperturbed) speed vO. With such notation, cr is the speed relative to a 
fixed point on the fractured surface from which the wave originated, and Jci --vi is 
the corresponding lateral speed of a Rayleigh wave from the same source. For i = ,u 
(0 = l/4), Ramanathan and Fisher (1997) report that ~~/~~ varies from 
about 0.94-l .OO as the unperturbed crack speed v0 varies from 0 to cR. These results 
are consistent with our simulation, Fig. 7. Ramanathan and Fisher further note that 
the crack front wave exists only when the propagation criterion is one of constant 
G,,,,, which is the singular-crack case to which our non-singular displacement weak- 
ening model corresponds. That is the case in which the fracture model forms a 
dynamically conservative system. Further, if G,,i, is instead assumed to depend on 
velocity u of crack propagation, Ramanathan and Fisher show that the pole moves 
off the real w/k axis such that assumption of dG,,Jdv > 0 attenuates the crack front 
wave, whereas dG,,,,/dzl < 0 results in unstable amplification. 

DISCUSSION : CRACK FRONT WAVES AND STATISTICS OF 
DISORDERING 

Perrin and Rice (1994) showed how to calculate, in the scalar case, the space-wise 
power spectrum and correlation function for position of a singular crack front which 
grows through a region, beginning at x = 0 and t = 0, of small but statistically 
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stationary random fluctuation in fracture energy. They showed that, within the linear 
perturbation analysis, the crack front never attains a statistically stationary con- 
figuration. Rather, the variances of such quantities as the local velocity fluctuation 
V(z, t) = u(z, t) -vO, or local slope S(z, t) = &z(z, t)/az of the crack front, increase 
without limit. This increase is very gradual in time, as log(t). 

The non-existence of a statistically stationary limit, within the linear perturbation 
analysis, was pointed out by Rice et al. (1994) and Perrin and Rice (1994) to be due 
to the slow (as t-‘j2) decay of the response to perturbation, as illustrated in Figs 5 
and 6. We have now seen that the response to perturbation in the vectorial elastic 
case does, in fact, not decay at all. So there too, no statistically stationary state of the 
perturbed crack front will be achieved and there will be a more vigorous growth of 
the variances of V and S. Indeed, these must grow in direct proportion to distance of 
propagation into the heterogeneous region, as now discussed. 

We present a simplified analysis of the statistics of such disordering here; the 
outline of a rigorous discussion in the style of Perrin and Rice (1994) is given in the 
next section. Assume that Gcrit is uniform on the domain x < 0 of the fracture plane 
but contains small random fluctuation from that uniform value on x > 0. The random 
distribution has correlation length scale h, so we can think of the heterogeneities, 
approximately, as small asperities, each of area b2, which are uncorrelated with one 
another. The crack propagates at uniform speed IJ, over the domain x < 0 and then, 
upon reaching x = 0, begins to be perturbed. The net result is an excitation of the 
crack front by each of the asperities that have been encountered, whose effect we can 
sum linearly. Each asperity creates a pair of pulses which decay in the scalar theory 
(Fig. 5) but are persistent in the vectorial case (Fig. 7). We may say that the velocity 
perturbation in the pulse generated by a single asperity, representing a unit per- 
turbation in GCrlt, decays long afterwards as q(b/vof’)P where q is a factor, t’ is time 
since the asperity encounter, and where p = l/2 for the scalar model but p = 0 for 
vectorial elastodynamics (persistent pulse). 

The net velocity fluctuation V at some position z along the crack front is the sum 
of effects from all previously encountered asperities whose pulses happen to be passing 
by z at the moment considered. After a time t of propagation, the crack will have 
traversed II = v,t/b rows of such asperities. An asperity having a G,,,, perturbation of 
Rk, encountered k rows before the present crack front position, at time t’ = kb/vo 

before t will therefore generate a pulse of amplitude qkePRk, at least at reasonably 
large k, along the crack front at time t. Thus, summing the effects of those asperities 
from each row which can deliver a pulse to z at time t, we generate the fluctuation 

V x c qk-“(Rk+R;) (23) 
k=l 

there. This recognizes that for each k, there are two asperities, one of strength Rk at 
a position z’ < z and one of strength R; at a z’ > z, which can deliver pulses to z. 
Thus, since all the Rk and R; are identically distributed and statistically independent, 
E(R,R,) = E(RJR;) = 6,&x2, and E(R,R;) = 0, where R^ is the r.m.s. fluctuation in 
Gcrlt, and E denotes an ensemble expectation. 

We thus obtain, for the crack which has grown over n( >> 1) correlation lengths, the 
variance of local propagation velocity 
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E(V’) z 2y’lt” i k-‘“. 
!%=I 

(24) 

The same type of result, proportional to the summation C;l=, kp2”, is obtained for 

the variance of crack front slope, E(S2). 
For the scalar theory, p = I/2, and C;=, k-2p becomes C;=, k ’ , which approaches 

a constant flog(n). Thus this reproduces, through a simplified development, the 
main feature of the Perrin and Rice (I 994) results, namely, that E( V2) [and also E(S’)] 
increases like a constant + log(v,t/b) at large t. 

For vectorial elasticity, with its persistent crack front waves, p = 0 so that the 
summation C;l,, kpZP = n. Thus, E(V’) and E(S) grow with leading effect at large t 
that is directly proportional to t+,t/b, i.e., to the number n of correlation lengths 

traversed, and hence to the distance of crack growth into the heterogeneous region. 
The vectorial elasticity case discussed here is that of a mode I crack constrained to lie 
in a plane. However, if for other modes, or for perturbations out of the plane, a 
persistent crack front wave could be shown to exist, then for similar reasons, the 

variances of V and S within the linear perturbation range should grow as ~:,,t/h. 
A full non-linear analysis is required to establish the ultimate limit to such fluc- 

tuations. Presumably, they do approach a finite amplitude, statistically stationary, 

distribution. It is not yet known if that finite amplitude will approach zero as the size 
of perturbation approaches zero or if it instead will always ultimately result in velocity 
fluctuations between zero and some high speed, perhaps c,~,,,~~. Simulation results for 

the scalar case with finite variations in G,,,, by Rice et al. (1994), based on retaining 
the full non-linear form of g(v) in eqns (7) and (S), but on evaluating Gres, by the 
linearized perturbation expression, suggest that the perturbations of crack velocity 

can grow so large that the crack front can momentarily come to a complete halt at 
isolated positions along the front. Further, there was a tendency for such arrest zones 

to propagate laterally along the crack front, much like for the pulses shown in the 
small perturbation situation here. 

These non-linear crack perturbation phenomena can, in principle, be studied by 
the spectral methodology used here. To do so in an illuminating way, which means 

with very long crack growth times before effects of the finite computational domain 
affect the results, will require its implementations on computer architectures with 

massive memory and highly parallel rapid processors. 
It is known that smooth tensile fracture surfaces in glass (Wallner. 1939) and 

tungsten (Hull and Beardmore, 1966) can exhibit long-lived pulse markings, now 
called Waliner lines, produced by disturbances at the intersection of the main crack 
front and the specimen surface, or at internal heterogeneities. The crack front wave 
results shown in this paper, or perhaps some extension of them which explicitly in- 
cludes small out-of-plane crack motion, may provide an explanation of Wallner lines. 

EXACT LINEARIZED ANALYSIS OF STATISTICS OF DISORDERED 

GROWTH 

A more precise analysis of the statistics may be formulated following Perrin and 
Rice (1994), who derived the spatial correlation function and power spectral density 
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of A (z, t) E a(z, t) - v,t in the scalar case. They describe a perturbation measure r(z, t) 
which is equivalent within linearization to 

(25) 

Here AG,,i,(X,z) is a stationary random function with zero mean in the domain 
x > 0, and we assume AGctit(X, z) = 0 in x < 0 so that the crack enters the randomly 
heterogeneous zone with an initially straight front. The random distribution has 
correlation function 

for x,, x2 > 0. 

K(z2-z1,x2-x,) = ~~~(zl,~,/~~)~(z2,~2/~~)1 (26) 

Let the spacewise Fourier transform of r(z, t), and of the linear perturbation 
response A(z, t) to it, be 

E(k, 0, A”@, 91 = 
s 

fm [z(z, t), A(z, t)]e-‘k’ dz. (27) 
-CC 

These must be related by an expression of the type 

s 

fW 
A”@, t) = - L(kB)z”(k, t - 0) de, (28) 

--Ix 

where dimensional considerations show that the response kernel L can depend on k 
and t only in the product form kt. 

The response L may be obtained from the full space and time Fourier transform 
a(k, w) of A@, t), which satisfies an equation of the type a(k, w) = I?(k, o)Q(k, w), 
where the transfer function f?(k,o) is given for the scalar case by Perrin and Rice 
(1994). From it they showed that L(kt) = 2afjcJ,,(a,kct). The f?(k, o) for the vectorial 
mode I case may be extracted from the Willis and Movchan (1995) perturbation 
solution in the way explained in eqns (21) and (22). However, the complexity of the 
expression for F(o/k, u,,) seems to preclude an explicit extraction of the response 
kernel L(kt) for that case although, because of the pole, we recognize the L(kt should 
approach a non-zero periodically oscillating function, of frequency k ?- cf’ -ui, at 
large kt. 

We may now follow step by step the development of Perrin and Rice (1994), now 
phrased more generally in terms of the linear response functions L for either the scalar 
or vectorial case. Thus it follows by reproducing, in that more general context, the 
results of their Section 6 that the spatial power spectral density of the random process 
A(z, t) is 

+= $A(k,t) z 
s 

E[A(O, t)A(z, t)]e-“’ dz 
--3o 

’ = 
ss 

’ L(kB,)L(k&)R”,(k, uo(Q2 -0,)) de, de,. (29) 
0 0 

Here R”,(k, x) is the Fourier transform of RT(z, x). As Perrin and Rice (1994) found, 
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even in the scalar case, tjA(k, t) diverges as t -+ co due to the strong contribution along 
and near the diagonal 6, = & of the region of integration. This feature is best seen by 
making the change of variables r = ~~(8, +8,)/2, s = vO(OZ--8,). Then 

I(~)L(~)a(k,r)ds]dr. (30) 

The bracketed integral on s receives non-negligible (or in some cases non-zero) 
contributions only when 1.~1 is of order of the correlation length b in the random 
fracture energy fluctuations, since &k, s) is zero or insignificant at greater IsJ. Hence 
the value of the double integral at large t is controlled by the variation of [L(krh,)]* 
with r at large r. 

In the scalar case L(kr/v,) inherits from its Bessel function dependence a behavior 
of type 

L(kr/v,) CC Juoloc,krcos(cq,kcr/v, + constant) (31) 

at large r, so that [L(kr/u,)]’ integrates to a term which grows as log(v,t) at large t. 
Hence the power spectral density $Jk, t) for any k diverges as log(u,t) in that case. 
as shown by Perrin and Rice (1994). For the vectorial case we understand on the 
basis of the persistent crack tip waves that 

L(kr/v,) cc cos(Jakr/u,, +constant) (32) 

at large r, so that the integral of [L(kr/v,)]’ grows at large t in direct proportion to 
t’,,t. Hence we have the yet stronger divergence of eA(k, t), as t itself in that case. 
The spatial power spectral density of the crack front slope S(Z, t) = da(z, t)/dz is 
tjS(k, t) = k’$,(k, t), so it is likewise divergent with t. These results are consistent with 
the simplified analysis of the last section. 

SUMMARY 

We have used the spectral elastodynamic numerical methodology of Geubelle and 
Rice (1995) and a displacement-weakening cohesive fracture model to study the 
fluctuations of crack fronts induced by small heterogeneities in fracture energy. The 
cracks are constrained to propagate on a plane in a 3-D solid (Figs 1 and 4) and 
would grow with straight fronts in the absence of any perturbation. 

Heterogeneity of critical fracture energy in the form of an isolated asperity is shown 
to create pulse-like disturbances of local crack propagation velocity, which propagate 
laterally along the moving crack front. For the model elastic theory, based on a scalar 
wave equation, the pulse amplitude is found to decay as tr”’ well after the asperity 
encounter (Figs 5 and 6). That is in agreement with the results of linearized per- 
turbation analysis of Rice et al. (1994) and Perrin and Rice (1994) for a singular crack 
growing with a constant fracture energy criterion in such a scalar solid. 

For actual vectorial elasticity in the mode I tensile crack case, we find that the 
pulses do not decay, at least over the time scale of our simulation, and appear to 
represent a previously unrecognized type of persistent wave which propagates along 
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the crack front (Figs 7 and 8). Willis and Movchan (1995) gave a small perturbation 
solution for the singular mode I crack in vectorial elasticity. They did not develop 
details of the solution or discuss the crack motion according to any particular fracture 
criterion. However, Ramanathan and Fisher (1997) have developed details of the 
Willis-Movchan solution and shown that when it is applied to crack growth at 
constant fracture energy, there is indeed a persistent crack front wave implied, like 
that found in our simulation. 

Even the (slowly) decaying pulse of the scalar model had been shown (Perrin and 
Rice, 1994) to imply continuously growing variances of crack front slope and local 
propagation velocity, in linearized perturbation analysis of growth into a region of 
small random fluctuation in critical fracture energy. In that case the variances were 
proven to grow with the logarithm of distance of propagation into the heterogeneous 
region. We present a statistical analysis here which confirms that result. It shows also 
that, because of the persistent crack front waves of actual vectorial elastodynamics, 
the growth of disorder is then yet more rapid. Variances of crack front slope and local 
propagation velocity, again within linearized perturbation theory, grow (to leading 
order) in direct proportion to distance of growth into the heterogeneous region. Crack 
front waves may also provide an explanation of persistent crack surface markings 
called Wallner lines. 
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