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ABSTRACT 

Perrin et al. (1995) and Geubelle and Rice (1995) have introduced a spectral method for numerical solution 
of two- and three-dimensional elastodynamic fracture problems. The method applies for ruptures confined 
to a plane separating homogeneous elastic half spaces. In this method, the physical variables, such as the 
traction components of stress and displacement discontinuity on the rupture plane, are represented as 
Fourier series in space with time-dependent coefficients. An analytical solution is found for each Fourier 
mode, in that each Fourier coefficient for stress is expressed by the time convolution of the corresponding 
coefficient for displacement with a convolution kernel specific to the rupture mode. Once the 2D formulation 
of the method is known, the method is readily generalizable to 3D problems in that it involves only linear 
combinations of the convolution kernels found for each rupture mode in 2D. This conceptual simplicity 
has, however, a major drawback : due to the Fourier series representations of the physical variables, the 
problem solved is in fact an infinite and periodic replication of rupture events on the fracture plane. So, in 
order to study the evolution of a single rupture, one has to use a spatial period large enough in order that 
the waves coming from the replication cracks do not enter the zone of interest during the time duration 
studied, or provide negligible stress alteration when they do arrive. We show here how to rigorously offset 
this defect while retaining the modal independence. Once expressed in the spatial domain, the method 
amounts to truncating in space the space-time convolution kernels, in a manner that provides an exact 
evaluation for all positions within the rupture domain (where the constitutive law between stress and 
displacement discontinuity is to be imposed), but not outside. In order for the method to be identical in 
structure to the method of Perrin et al. (1995) and Geubelle and Rice (1995). the oeriod of the Fourier 
series is requested to be only twice as large as the rupture domain of interest. The only difference, then, to 
the original spectral method is that the convolution kernels in the Fourier domain require more elaborate 
calculations to be established, but this has to be done only once to allow simulations on a given domain. 
‘$3 1997 Elsevier Science Ltd 
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1. INTRODUCTION 

Perrin et al. (1995) and Geubelle and Rice (1995) have introduced a spectral method 
for numerical solution and two- and three-dimensional elastodynamic fracture prob- 
lems. The method applies for ruptures confined to a plane separating homogeneous 
elastic half spaces. In this method, the physical variables, such as the traction com- 
ponents of stress and displacement discontinuity on the rupture plane, are represented 
as Fourier series in space with time-dependent coefficients. An analytical solution is 
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found for each Fourier mode, in that each Fourier coefficient for stress is expressed, 
via a convolution integral, in terms of the corresponding coefficient for displacement. 
This modal independence allows for an efficient numerical method. It is highly suitable 
for implementation on parallel computers since the most time-consuming part of the 
calculation, namely evaluation of the convolution integrals, can be carried out in 
parallel without communication between processors. 

This conceptual simplicity has, however a major drawback: due to the Fourier 
series representations of the physical variables, the problem solved is in fact an infinite 
and periodic replication of rupture events on the fracture plane. So, in order to study 
the evolution of a single rupture, one has to use a spatial period large enough in order 
that the waves coming from the replication cracks do not enter the zone of interest 
during the time duration studied, or provide negligible stress alteration when they do 
arrive. We show here how to offset this defect, dealing with just a single rupture event 
and yet retaining the modal independence which is critical to efficient calculations. 
The resulting spectral method without spatial replications requires more elaborate 
calculations to establish the convolution kernels, but is otherwise identical in structure 
to the method of Perrin et al. (1995) and Geubelle and Rice (1995). We describe the 
methodology in general, in 2D and 3D, and give full details of the analysis here for 
the 2D anti-plane strain (mode III) formulation. 

Another spectral method has also been developed by Bouchon and Aki (1977) for 
kinematic representation of spatially extended sources, with exp(iot) time depen- 
dence, in a vertically layered medium, representing the wave field by a Fourier series 
expansion in horizontal spatial coordinates. It has recently been applied to fracture 
problems (Bouchon and Streiff, 1997). Although different from Perrin et al. (1995) 
and Geubelle and Rice’s (1995) method, it also presents the replication drawback 
mentioned above. 

2. THE SPECTRAL METHOD FOR TWO-DIMENSIONAL PROBLEMS 

Consider a two-dimensional displacement field, dependent on x, y, and t, and 
associated with rupture along the plane y = 0 in an infinite homogeneous space. Let 
6(x, t) = u(x, y = O+, t) - u(x, y = O-, t) and r(x, t) denote the displacement dis- 
continuity and the stress on the rupture plane, respectively. This 6 and z may refer to 
opening displacement and tensile stress (mode I), or to in-plane (mode II) an anti- 
plane (mode III) slip and associated shear stress. 

According to the equations of elastodynamics, the relation between stress and 
displacement discontinuity can be expressed by [e.g. Geubelle and Rice (1995)] 

7(x, t) = To (x, t) - Ad,,(x, t) +f(x, t) 

in which r” is the externally applied stress (i.e. that which would act if the rupture 
plane was constrained against displacement discontinuity), A is the radiation damping 
term, equal to ~/2c, for modes II and III and (;1+2p)/2cd for mode I, where I and ,U 
are the Lame parameters and c, and cd are the shear and dilational wave speeds, 
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respectively. The subscripted comma denotes differentiation, and f(x, t) is a linear 
functional of previous displacement history. 

Perrin et al. (1995) for mode III and Geubelle and Rice (1995) for the other modes 
show that if the displacement is expressed as 6(x, t) = D(k, t)exp(ikx), then this 
functional isf(x, t) = F(k, t) exp(ikx) with 

where the expressions for the convolution kernels C(T) for each mode are given in 
Appendix A. Thus, if we write the slip as a continuous superposition of Fourier modes 

6(x, t) = ; 
s 

+a: 
D(k, t) elk.’ dk (3) 

--r 

[by which we also define the Fourier transform $(k, t) = D(k, t)], we have the following 
spectral formulation of the functionalfin equation (1) : 

f(x, t) = & 
s 

tnc F(k, t) elk’ dx. (4) 
~ 3(> 

For numerical tractability, D(k, t) is concentrated at discrete wavenumbers 
k, = 2m/l, where n is integer, so as to represent 6(x, t) as Fourier series summation 
of modes consistent with a period of length A along the x axis, 

6(x, t) = y D,,(t) e2inn*!i. 
II= --u 

Then the functionalf(x, t) is given, for all x, as 

f(x, t) = y F,(t) e2’lm-x’i~, 
n= -m 

where F,,(t), derived from F(k, t) with k = 2m/A, is : 

F,(t) = -F(F)‘[‘a C(I$+,(t-B))D.(H)dB. 

(5) 

(7) 

In using this as a numerical method for crack propagation, the summations in (5) 
and (6) are truncated at -N/2 and + N/2 (the larger the N-necessarily an even 
number-the more accurate the solution) and the following procedure is 
implemented: we suppose the displacement history is known up to the present time 
t. The fast Fourier transform (FFT) is used to obtain D,,(t) from 6(x, t) at N sample 
points x = jAx, within a period, where j = 0, 1, . . . , N- 1 and Ax = n/N is the sample 
point spacing. For this purpose, the choice N = 2p is made where p is a positive 
integer. The same has been done after previous time steps on the calculation so that 
this extends the history of D,(O) to time Q = t. The time convolution is then explicitly 
computed giving F,,(t) and finally an inverse FFT gives the functional f(jAx, t). 
Once j-(x, t) is thus known, the velocity S,,(x, t) at that time can be computed by 
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simultaneously solving (1) together with some constitutive relation between z and 6, 
and possibly 6,,. For example, Geubelle and Rice (1995) modeled mode I cracking 
with a simple cohesive model with linear displacement-weakening from peak to zero 
strength. More complex constitutive laws have been used to characterize shear rupture 
surfaces, such as rate- and state-dependent friction laws (Perrin et al., 1995) which 
relate the strength to both the slip velocity and a state variable whose value depends 
on previous slip history. Knowing the slip velocity, 6(x, t +At) at the next time step 
can be determined, hencef(x, t + At), and so on. 

The Fourier series representation of 6(x, t) [equation (5)] shows that the slip history 
is spatially periodic with replication period 1, requiring, as already said, that I be 
chosen much wider than the crack length actually studied in order to avoid or 
acceptably reduce interaction from replication cracks. 

3. THE SPECTRAL METHOD WITHOUT REPLICATION, TWO- 
DIMENSIONAL PROBLEMS 

Equation (2) can be rewritten as 

.?(k, t) = - Fk’J(k, t), (8) 

where 

s 

I 
g”(k t> = C(lklc,(t-0)) 6-(k, 0) d0 

-3cI 

in which 

s 
+cc &k,O) = S(<, 0) eeikr dt. (9) 
-cc 

If we want to study a single rupture which is always confined within a spatial region, 
say, between -L/2 and + L/2 (see Fig. l), this means that 6 will be non-zero only in 
this domain. This is equivalent to substituting [-L/2, +L/2] for the domain of 
integration in the previous equation. We want to use the same methodology as in the 
previous section, i.e. to write 6 as a Fourier series and to obtainfas a similar series. 

U 

4 ______Y-+L -F 4 _I-_-___+_ ____________-_----__) 

\ rupture&main 

Fig. 1. Rupture domain of length L along the c axis and variable (with x) actual domain of integration, 
always of length 2L centered on position x as marked above, for the computation of 6(/c, 0) in (9) or for 
that of K(n, t) in (35) for the implementation of the spectral method without replication in two dimensions. 

The u axis is introduced for the purpose of Section 4.2. 
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The key point in allowing this, and achieving the desired modal independence, is then 
to notice that 

s fL/2 a+L 

(~(5) d5 = _L, 
2 s X-L 

v(t)@ forxe[-:,+:I (10) 

for any function q(t) that is zero on [ - 3L/2, -L/2] and [ + L/2, + 3L/2]. This prop- 
erty is achieved if we write 6 as a Fourier series with period 2L, to be used exclusively 
on the domain [ - 3L/2, + 3L/2], 

This series is defined by the values of S(5, 0) for 5 E] -L, + L[, and these values vanish 
on the part [-L, -L/2] and [ + L/2, + L] of that domain. Hence, since the series sums 
to a periodic function, it sums to zero on [ -3L/2, -L/2] and [+ L/2, +3L/2] as 
needed for (10). 

Thus we may write (9) as 

x+L +m 

d-((k, 0) = &k, 8 ; x) = s ( 1 D,(O) e2’nnr’2L e-lkS dr x~L 
II= --a. ) 

= y D,(e) 2 S;~~~L-;n) e2mnx,2L) e-rkx, 

n= -x 

(1-a 

which is actually independent of x for XE [-L/2, + L/2]. The advantage of this 
otherwise unusual step is that it will lead us to a Fourier series in the same form as 
(11) forf(x, t). That series will be valid only for XE [-L/2, + L/2], which is where we 
needf(x, t) in the numerical algorithm, and has each Fourier coefficient forfdependent 
only on the history of the corresponding coefficient for 6, such now being achieved 
without spatial replications of the rupture event. We give another, fully equivalent, 
route to the same objective in Section 4 below. 

Thus, from (8) we get 

g”(k, t) = g”(k, t ; x) = +f 
s 

I 

WWdt-Q)R@) 
2 sin(kL -n71) &j e-lk.x e21nn.~:2L 

n=-m _m k-m/L 

(13) 

which is likewise actually independent of x, for x on [-L/2, + L/2]. Thus, if we need 
g(x, t) only for XE [-L/2, + L/2], we can write 

67(x, 4 = zl;; s + ‘*I 

g”(k, t;x)elkxdk, XE[-L/2, +~/2]. 
-53 

(14) 

Noting now that T(k, t) = - (pc,/2)k2g(k, t) from (8) is equivalent to ,f(x, t) = 
(pcJ2) a’g(x, t)/ax’, we have the Fourier series representation 
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where 

with 

f(x, t) = y F,*(t) e2innxi2L, XE[-LL/2, +L/2], 
II= -m 

K(n, t-O)&(O) de, 

K(n, t) = (-I)” 
71 s 

+m C(,k(c,r)sdk. 
--ccI 

(15) 

(16) 

(17) 

Thus, unlike in the formulation with replications, in which the expressions for the 
convolution kernels for each spectral mode are given by a single expression, as in 
equation (7), with the mode number n appearing only as a scaling factor for the time 
axis, for the formulation without replication, there is a separate expression for the 
convolution kernel for each spectral mode. This is also what happens in the viscoelastic 
case, even for the formulation with replication, as shown by Geubelle et al. (1997). 

In the numerical implementation, the sums in (11) and (15) extend not from - cc 
to + co, but from -N/2 to + N/2. The procedure is identical to that described after 
equation (7). 

The following section outlines the practical numerical evaluation of K(n, t) for 
mode III. A similar procedure may also be followed for the other rupture modes, as 
will be seen in Section 4 below. 

3.1. Kernel equation for the case of mode III rupture 

For mode III we use C(T) = Cr,,(T), Appendix A. Perrin et al. (1995) determined 
the expression of C,,,(r) = J,( T)/T from an integral representation which is 

Clll(lklc,t) = & 2n~~s2 $eilklc@“ti d$. 
s 

(18) 
0 

Inserting this expression into representation (17) of K(n, t), then writing sin(U) as 
[exp(ikL) -exp( - ikL)]/2i and further noticing that 

eik(~l+c,rsin$) = el(k-““/L)(~L+c~rsin”) e~nn[f I +(c,r/L)sin$,l 
1 

we can perform the integration on k and we get 

(19) 

K(n, t) = & 
s 

2n 

cos2 $ e~(nnc,r/uw [sign(L + c, t sin $) - sign( - L + c, t sin $)] drj. 
0 

(20) 
We can see that the real part of the integrand is even with respect to $ = n whereas 
the imaginary part is odd with respect to $ = n (so its contribution is zero). Also on 
[O,rc], the first sign is always equal to 1 and, noting that the real part is symmetric 
relative to 7c/2, we have 
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[l-sign(-L+c,tsin$)]d$. (21) 

If c,t/L < 1, the present method should agree with the original spectral method (with 
its replications) summarized in Section 2 with il = 2L, since for such t the waves 
coming from the two nearest replication cracks have not yet reached the domain of 
interest. Observing that sign( - L + c,t sin $) = - 1 for such times, we have 

(22) 

which agrees with Cr,,(]k]c,t) of the original spectral method, with k = m/L, as 
expected, and can likewise be computed with polynomial approximations. By contrast, 
if c,t/L > 1, we have to make the sign explicit to get 

K(n,t) =~jO”cosz$cos(!~sin$)d$, (23) 

where $, = arcsin(L/c,t). This can be rewritten as 

K(n,t) = & {I:’ -4jr}cos’$cos rTsin$)d$, (24) 

where (18) is used for the first integral. The integrals with a limit rj, have to be 
computed numerically. When c,tlL = 1, I/I, = 7112 whereas when t + + co, I/J, + 0 so 
formulation (24) is numerically advantageous for small t whereas formulation (23) is 
better for large t. We used a classical integration routine with Simpson’s rule. Figure 
2 shows the variation of the new, non-replicating kernel K(n, t) with time for some 

20 30 40 

7mcJL 
Fig. 2. Convolution kernels for mode III, for the formulation with replication and any mode (full line) 

and for the formulation without replication for mode n = 5 (circles) and mode n = 10 (triangles). 
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mode numbers n, together with its counterpart, J,(~~c,t/L)/(~nc,t/L), in the previous 
formulation with periodic replication. Unlike the replication kernel, the new kernel 
does not oscillate any more when c,t/L > 1 and tends to zero with negative values for 
even modes (like for n = 10 in Fig. 2) and positive values for odd modes (n = 5). The 
new kernel for n = 1 does not oscillate at all, but decays monotonically. 

3.2. Numerical illustration for mode III 

To illustrate the above methodology, we study the problem of the dynamic loading 
of a non-propagating finite crack of length L under instantaneous spatially uniform 
step loading at time 0, i.e. r”(x, t) = zoU(t), where U(t) is the unit step function. The 
friction is assumed to be zero but when the velocity of a particular point becomes 
negative this point is supposed to “freeze”, i.e. no backward motion is allowed so 
that we can observe the evolution of the stress. 

In the numerical simulations to be presented, we have chosen the parameter 
j3 = c, At/Ax = 0.5 where At is the time step. Also, it has been shown (Morrissey 
and Geubelle, 1997) that the accuracy of the solution for mode III problems 
can be improved by introducing an “artificial” delay E, At, a fraction of At, in the 
discretized version of the time convolution which involves the summation 
EYE0 XK[n,(it-j+s,) At]Dn(jAt). XK(n, t) is the result of an operator on K(n, t) which 
can either simply be identity (i.e. XK(n, t) = K(n, t)) or, as in the present study, a 
more elaborate operator leading to the result that XK(n, t) is a “pre-integrated” value 
of K(n, t) between t-At and t, using a trapezoidal-rule integration (Geubelle and 
Rice, 1995). The optimal value of the delay for mode III is E, = 0.5, which is the value 
that has been used in the simulations presented here.? Finally, the time marching 
scheme used in the present study is fully explicit, i.e. D,(t + At) = D,(t) + Ad,(t). 

Figure 3 illustrates both the effectiveness of the method and the potential com- 
putational gain. The top panel represents the evolution of the stress (normalized by 
the magnitude of the initial step loading) versus normalized time at the center of the 
crack (x = 0). One of the three curves is the result of a simulation using the method 
with spatial replication and a replication period 1 = 2L. Another such simulation 
with A = 8L gives the second curve whereas the third curve has been obtained using 
the method described in the previous section, i.e. without replication in space and 
with 2 = 2L. For the study of a domain in which rupture occurs over length L, this 
is the minimum allowed value if the method is used. The bottom panel is a schematic 
space-time illustration of the problem, showing the replication cracks and the time 
at which they interact with the original crack (the problem is of course symmetric 
with respect to x = 0 but only the negative part has been displayed for conciseness). 
The evolutions computed without replication on the one hand and with replication 
and jl = 8L on the other hand, coincide up to the time (c,t/L = 7.5) where the effect 
of the first replication crack is felt. This shows that our method gives good results (at 
least up to this time). 

Suppose now that we want to compute the evolution of the whole crack (not only 
for the central point) up to time 7L/c,, without having any effects from the replication 

t This delay seems to have an effect very similar to that introduced in choosing time collocation points 
in Cochard and Madariaga (1994). 
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, replication period 2L 

@iCi 

1401 

Fig. 3. Top : evolution of stress versus normalized time at the center of a non-propagating crack submitted 
to an instantaneous spatially uniform step loading at time 0 computed with the spectral method with two 
different replication periods and without replication. Bottom : schematic space-time illustration of the 

problem, showing the replication cracks and the time at which they interact with the original crack. 

ruptures. Then, if we use the method with spatial replication, we have to use a 
replication period A = 8L. The computation thus involves four times as many oper- 
ations as with the new method and, besides, we get rid of the unwanted replications. 
For the analog problem in 3D, the gain would be 4 x 4 = 16. We also see that the 
new formulation becomes advantageous as soon as we want to compute the whole 
crack evolution for c,t/L > 1, i.e. as soon as the waves coming from the nearest 
replication c-rack arrive at x = _I L/2. For smaller times, we could use a replication 
period smaii<,r than 2L with the method with replication and save time. 
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The numerical integration required for computing the convolution kernel would 
not make the method advantageous for only one simulation. However, if the number 
of spectral modes used and time discretization are identical from one simulation to 
the other one, we need not compute the kernel again (one could also use a kernel 
obtained with a different time discretization and interpolate to the time values actually 
needed). 

4. ALTERNATIVE TWO-DIMENSIONAL DERIVATION STARTING FROM 
THE SPATIO-TEMPORAL REPRESENTATION 

4.1. Spatio-temporal convolution 

Let us consider the general problem of representing the relation between the dis- 
placement discontinuity and stress distributions. We begin with (8) and take the 
Laplace transform, defined by 

_f(k,p) = 
s 

+3o eep’f(k, t) dt. (25) 
0 

Then (8) becomes 

hk,p) = - Fk’;(k,p), &k,p) = &%f &k,p). 
s 

Here it has been recalled that a convolution on time becomes a product of transforms 
and the functions A(s), different for each of the three modes, are defined by 

s 

+CC 
&Y(s) = eesTC( T) dT. (27) 

0 

In fact, on their way to deriving the expressions for C(T) summarized in AppendixA 
A, GEubelle and Rice (1995) obtained in their equations (24) the relations between? 
and 6 for the three modes. From those expressions we may read off the expressions 
corresponding to d(s) [except for a misprint : the term in curly brackets in the last 
of their equations (24) should be us--p/lqlc,]. Those functions, all analytic in 
Re(s) > 0, and branch cut so that A(s) + 0 as s -+ + co, are listed in Appendix B. 
Now, let G(x, t) be the function whose Fourier-Laplace transform is 

The significance of this function (actually, one for each mode) is that g(x, t) has the 
space-time convolution form 

r s s +CC 

dx, t) = G(x - 5, t - O)S((, 0) d< de. 
--a) -cc 

(29) 

Since A(s) is the Laplace transform, with factor exp(-ST), of C(T), it is clear that 
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G((k, t) = C(lklC,l) (30) 

is the function whose Laplace transform, with factor exp( -pt), gives &k,p) above. 
Thus 

G(x, t) = & s + m 

eik’C(]k]c,t) dk 
- X5 

1 
= ~ [‘m(eikX +e-lkx)C(kc,t) dk 

271 0 

1 

s 

+% [ei(.~lc,r)T+e-l(r/~,/)T]c(T) dT 

2%t 0 

= ~[.x(-il/c,t+O)+.x(il/c,t+O)] 
5 

= &Re [Jz’(ix/cSt+O)], 
s 

(31) 

with the last form arising since, our situation, C(T) is real for real T and hence 
J&‘(S) has complex conjugate d(s) = A(S). Willis (1973), and Willis and Movchan 
(1995) in their Appendix B, present a related way of inverting transforms like those 

for &k,p) above, and our result is consistent with theirs. 
Hence, defining M(x/c,t) = Re[&(ix/c,t+O)], we report expressions for the func- 

tions M(u) for the three modes in Appendix B. Finally, as we know, from expression 
(8) for g, thatf(x, t) = (pc,/2) a2g(x, t)/ax’, 

(32) 

Equivalently, integrating twice by parts with respect to 5 and assuming that S(r, 0) 
and 8(<, @jag vanish when 4 + + co, we have 

(33) 

This may be shown to be consistent with the form used by, e.g., Cochard and 
Madariaga (1994) and Kostrov (1966) in mode III. 

4.2. Alternative derivation of spectral method without replications 

Now let us formulate the spectral method without replication for a rupture which, 
again, has non-zero 6 only within the domain ] -L/2, + L/2[ (see Fig. 1). Thus, in 

(32) or (33), we want to integrate over < for 5~ [-L/2, +L/2] instead of 
5 E] - CO, + CO[. Then, similarly to what was done in Section 3, changing the domain 
of integration to [.x-L, xf L], inserting the Fourier series representation (11) of 
S(5, 0) with period 2L and finally making the change of variables u = x- 5, we get 
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for x E [-L/2, + L/2]. This is a Fourier series in the form of (15, 16) where now the 
innermost integral provides the expression for K(n, t) as 

K(n, t) = s +L M(“lcst) e-2innu/2L du 

5 

-L rtc,t 

or, taking into account the evenness of M and making the 
p = ulc,t : 

K(n,t) = 2 

s 

L/c,r 

710 
M(p) cos(nnpc,t/L) dp. 

(35) 

change of variables 

(36) 

These expressions for K(n, t) are, of course, equivalent to its expression (17) found 
from a different approach. To see this, one has to write for (l/zc$)M(x/c$) = G(x, t) 
the expression in the first equality of (31), then set x = u and insert into equation 
(35), exchange integral signs and integrate over U, which provides the result. 

If we had implemented the (original) spectral method with replication, i.e. keeping 
] - 00, + co[ as the integration domain instead of changing it to [-L/2, + L/2] in 
expression (33) forf(x, Q, the upper integration limit in expression (36) for K(n, t) 
would be + co. On the other hand, M(u) = 0 for 1~1 > u,_ (u,,, = 1 or cd/c, depending 
on mode, see Appendix B), so that, in this case, the upper limit of integration in 
(36) could be changed to + co. So, for L/c,t < urnax, i.e. a short enough time t, the 
formulations of the spectral method with and without replication are rigorously 
equivalent. 

Let us also note that making the change of variables p = sin $ in (36) when 
evaluated for the mode III case immediately provides expression (24). This approach 
for finding the convolution kernels thus seems to be a very general route to provide 
an efficient way of computing them numerically. 

Finally, it can be seen from (35) that K(n, t) is related to the Fourier coefficient of 
M: 

= & Tf K(n, t) e2’nnu/2L. 
n- pm 

(37) 

We can thus approximate K(n, t) with the discrete Fourier transform (using FFT), so 
that if the summation extends from -N/2 to + N/2 in (11) and (15), the N kernels 
K(n, t) are given in terms of linear combinations of 2LM(x/c,t)/zc,I at the N FFT 
sample points along the Y axis. In the next section we present an illustration of the 
use of this approximation for mode III. 

4.3. Approximation of the convolution kernel by discrete Fourier series (mode III case) 

As suggested above, we can approximate K(n, t) by taking the fast Fourier trans- 
form of (2L/w,t)M(x/c,t) = 2Ly/l_olU(c,t--1x1) for mode III, U being the 
Heaviside function (see Appendix B). 
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CJL 
Fig. 4. Evolution of slip velocity versus normalized time for the same problem as in Fig. 3 and also at the 
center of the crack. Comparison to analytical solution (solid line) of numerical solutions computed for two 
different values of the number N of summation terms involved in the Fourier series, with two different 
versions of the spectral method in which the convolution kernels are rigorously evaluated (N = 64, 
triangles ; N = 1024, stars) or only approximately (N = 64, diamonds ; N = 1024, squares). The advantage 
of the “approximate” method is that spatial replication is avoided without requiring sophisticated evalu- 

ation of the convolution kernels (see text). Inset : blow-up of the rectangular area. 

We use this method for the same problem as studied in Section 3.2 and present the 
results (Fig. 4) for the evolution of the velocity of the central point of the crack for 
q/L < 1. For such small times, the solutions can be compared with the analytical 
expressions obtained by Burridge (1969). Velocity is normalized by 2c,/p times the 
magnitude of the initial step loading. The crack is discretized by 32 or 512 elements 
(number of elements = N/2) in the two cases presented and the numerical solution is 
compared to the numerical solution obtained without any approximation, other than 
numerical integration, in evaluation of the convolution kernels (i.e. as derived in 
Section 3, or equivalently 4.2 and illustrated in Section 3.2) and to the analytical 
solution. 

If the delay e, = 0 (see Section 3.2), the numerical solution is completely unstable 
for either discretization, unlike the solution obtained without the approximation of 
this section, which is stable for every value of the delay between 0 and 1. 

For the optimal value of E, = 0.5, when the fault is discretized by 32 elements, the 
numerical solution obtained using the approximate kernel evaluation (diamonds) is 
much worse than the solution obtained without using the approximation (triangles). 
The solution is of course better when 5 12 elements are used, but the solution with the 
approximate kernels (squares) is still worse than with exact kernels (stars) especially 
in the vicinity of c,t/L = 0.5, which is the time at which the waves coming from the 
edges of the crack arrive at its center. So the only advantage of using this approxi- 
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mation of the kernel by Fourier series is that the kernel evaluation is much faster- 
to the detriment of accuracy-but could be preferred, for example, if we had to 
perform only a few simulations for some unusual parameter range, such that it would 
not be worth computing the exact values of the kernels. 

5. 2D STATIC CRACK ANALYSIS : SPECTRAL METHOD WITHOUT 
REPLICATION 

The well-known relations between stress and slip for the 2D static approximation 
correspond to 

f(x,t) = -&PV 
s 

+mo 
-_oo x-5 

6,, (520 dg 

and emerge as long time limits of the present formulation. Here PV indicates the 
principal value, cx = 1 for mode III and c1 = 1 - v for modes I and II, v being Poisson’s 
ratio. In the quasi-dynamic simulations by Rice (1993) for mode III, the radiation 
damping term in (1) is retained, so that solutions continue to exist through instabilities 
so that the integral in (38) is regarded as an approximation tof(x, t). 

Thus, similarly to Section 4, representing 6 as the Fourier series with period 2L, 
changing the domain of integration from ] - cc, + co [ to [-L/2, + L/2], and then to 
[x-L, x + L], and finally making the change of variable u = x - 5 gives 

-mu/L 

f(x, t) = - j& _y D.,(l)FPv[+Le+ du e217W/2L 
3 

n- m -L 

(39) 

which can be rewritten, after simplication, as 

for XE [-L/2, + L/2]. The integral within the curly brackets has to be computed 
numerically, its form showing that this can be done recursively for increasing llz]. For 
the original version of the spectral method, in which we would replace 2L by Iz and 
accept a periodic replication of the crack with period 2, the same expression applies 
forf(x, t) but with the curly bracket replaced by unity. 

One can obtain a different formulation for the dynamic expression forf(x, t) [(6) 
and (7)] by integrating the right-hand side of (7) by parts (Perrin et al., 1995), which 
results in the extraction of the static contribution of the stress and which is given by 
f(x, t) in (40) with the curly bracket replaced by unity, leaving a dynamic contribution 
in the form of the convolution of a “dynamic kernel” with the slip velocity (hence the 
terminology of “velocity formulation” by contrast to “displacement formulation” for 
the formulation so far developed). As the long time behavior is embodied in the static 
term, the convolution can be truncated when the truncated part has a negligible 
contribution, allowing both for computational gain and for mixing in a single com- 
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putational procedure dynamic (unstable) rupture sequences with quasi-static ones 
without arbitrariness (Zheng et al., 1995 ; Rice and Ben-Zion, 1996). 

To generalize the velocity formulation to the spectral method without replication, 
one has to integrate the right hand side of (16) by parts, K(n, t) being given by (17). 
The resulting static term is precisely given by (40) whereas the dynamic one involves 
a convolution kernel which has to be made explicit and computed similarly to what 
was done in Section 3 for the displacement formulation. 

6. GENERALIZATION TO THE THREE-DIMENSIONAL FORMULATION 

6.1. Starting with the Fourier representation 

The conceptual simplicity of the spectral method comes from the fact that the 3D 
formulation is obtained rather directly from the 2D formulation, as shown by Geubelle 
and Rice (1995). In that situation, the various components (j = x, y, z) of traction 
stresses zj and displacement discontinuities Sj on the rupture plane (y = 0) are related 

by 

z,(X,z, [) = zp(x,z, [) -Aj,6/,l(x,z, t)+f,(x,z~ f)2 (41) 

where there is summation on the repeated I over x, y, z, where Aj, is diagonal with 
components [p/2c,,(A+2p)/2cd, ~/2c,], and where eachf; is a functional of the prior 
history of the 6,. In fact, for isotropic solids like those considered here, these partially 
decouple in that f, depends only on 6, (mode I), whereas fX and fi each depend on 
both the 6, and a2 histories (shear modes). Indeed, from the Geubelle and Rice (1995) 
equations (32) and (34), we have 

f;“(k m, 0 = - y Ay(k, m)g,Jk, m, t), 

s f hdk m, 0 = Cdqc,(~ - ‘4) 6;k m, 0) do, (42) 
-m 

where there is summation over repeated indices 1 and M, with M summing over the 
modes I, II and III. The expressions for the convolution kernels C, are precisely 
those derived for the 2D formulation and repeated here in Appendix A. The two- 
dimensional wave vector q = (k, m) spans the crack plane and we note that q = 141. 
Finally, A,E:(k, m) are homogeneous quadratic terms in k and m that can be identified 
from Geubelle and Rice (1995) and are summarized in Appendix C.l. In (42) the 
tilde is intended for 2D Fourier transform, defined as 

fnj +or 
&(k, m, 0) = 

s s 
&(5,,53,@eP I(ki’~ +m6,) Q, d,&. (43) 

-30 --a 

Now we want to generalize the two-dimensional derivation of Section 3 to three 
dimensions, to avoid spatial replication. Let us note that we may want periodic 
replication of the rupture event along one direction of the rupture plane and avoid 
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such replication along the other as in Rice and Ben-Zion (1996): they simulated 
earthquakes occurring in the earth’s crust and so tried to reduce the effect of spatial 
replications along the vertical direction (or depth), but kept full spatial replication 
along the horizontal direction (or strike) so as to approximately represent an infinitely 
long seismic fault. Let us first assume that we are interested in a rupture confined to the 
region x E [ - L,/2, + L,/2], z E [ - L,/2, + L,/2]. We will thus perform the integration in 
the previous equation on these domains, then change to the domains [x-L,, x+ L,] 

in the 5, direction and [z- L3, z+ L,] in the l3 direction, and insert the Fourier series 

(44) 

where h, = nn,/L, and h, = q/L,, the periods of the series being 2L, and 2L3 along 
the x and z axes, respectively. If, instead, we want to keep periodic replication along 
x (say) and avoid it along z, then in (43) we will keep ] - co, + co[ as the domain of 
integration for t1 (i.e. taking L, = + co) but take h, = 27rm,/A, instead of h, = wz,/L, 
in the Fourier series ; 2, will then be the replication period along x. Then we integrate 
over e, and &, and invert the Fourier transform to get g(x, z, f?) in a form that is valid 
for x E [ - L,/2, + L,/2] and z E [ - L,/2, + L,/2]. Considering the first relation in (42) 
which is equivalent to 

h(x,z,t) =?A? (45) 

we finally get 

where 

where in turn 

Kl4(nl,n3,0 = L 
+m foC s s cA4Gl4 

sinL,(k-h,) sinL,(m-h,) 

rL2 __co k-h1 m-h, 
dkdm, (48) 

-_m 

with q = ,,/w. The above formula is still valid for L, or L3 infinite : if, say, L, + 

+ co, sin Ll(k-h,)/(k-h,) --) dDlrac(k-hl) and the formula can be simplified by 
integrating over k, giving the convolution kernel valid for the spectral method with 
periodic replication along x only. [we can also check that if both L, and L3 

are infinite, we get the convolution kernel valid for the usual spectral method 
(i.e. with periodic replication along both directions) : K,(n, , n3, t) = 

G(J(2mlU2 + w4~,)*cs0.1 K M ( n,, n3, Z) as so defined can in principle be com- 
puted numerically, but the approach of the following sections gives a more suitable 
formula. 
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6.2. Spatio-temporal convolution in the three-dimensional case 

Let GM(x, z, t) be the function whose Fourier transform is GM(k, m, t) = C,(qc,t). 
Then using (42) and remembering that the product of Fourier transforms corresponds 

to spatial convolutions, the significance of GM(x, z, t) is that we may calculate the 
functions,f;(x, z, t) by the space-time convolution 

Now, we may note first that 

s f c,,,,(k, m, z) dr = $ 
s 

951 

C,(T’) dT’ 
0 s 0 

and second, by the definition of J&’ in (27) and some elementary calculations, that the 
integral on the right has the Laplace transform 

where the functions JIM are given in Appendix B. It is desirable to work with the 
integral on the left in (50) since, as well shall see, G, has a Dirac singularity at Y = c,t 
and G,, at r = c,t, where r = Jm. To invert the Fourier transform of (50), we 

multiply by ( 1/27r)2 exp [i(kx+ mz)] and integrate with dk dm. Letting 4 + 71/2 be the 
angle between vectors q = (k, m) and (x, z), we can write kx + mz = - qr sin C/I and use 
a polar representation to write dk dm = q d$ dq. Thus 

s f G&x, z, z) dr = 
0 

--$[o+m/~~e-i9rsin4 [lyC.,(T’)dT’]d$dq. (52) 

The integrals exist, if taken in this order, and indeed give a representation of the result as 

s 

1 

0 

G,(x.z,i)dr=~S:l~o~qr)[~~C~(T)dT]dq, (53) 

where the integral on q exists for all r > 0 because the quantity in brackets has a finite 
limit [equal to JM(O+) ; see (27)] as q ---f + co. However, it is more efficient to put a 
factor exp( - Eqc,t) into the integrand of (52), where E > 0, and to interpret the result 
in the limit as E + 0. Then, interchanging the order of integration in (52), changing 
the C$ range to [-n/2, +rc/2], and integrating on T = qc,t while using (51). and 
defining R = rIc,t, 

s , Gw(x, z, r) dr = 
1 +n:2 ,HM(E+iR sin 4) _lim ~___-._ 

s 
d+ 

0 
3$(3t t-0 

J rri2 e+iRsin@ 

1 

C 

nJY,( +o) 
+pv 

s 

+“I .&?,(iRsin$+O) 

2n?cft R 
d4 . (54) 

-n,‘2 iR sin 4 1 
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For the present case, MM(s) has complex conjugate _/Z,,,(s) = &,,,(S), so the real part 
of JZ,(iRsin 4) is even in 4, and hence contributes nothing to the integral. The 
imaginary part is odd in 4 and hence Im[M(iR sin 4)]/sin 4 is regular at 4 = 0. We 
therefore obtain 

s I AM(O) 1 n/2 

0 
G,(x,z,z)dr = 271cy + __ 

Im[M,(iR sin 4)] 

s 7?C,Y s sin 4 d$, (55) 
0 

where the limit of A,(iR sin 4) through positive real values is always understood. 
Since R -+ 0 as t -+ + co for fixed r, and since the integral involving &,(iR sin 4) 

vanishes in that limit, &G,(x, z, z) dz -+ ~&‘~(0)/2nc,r. This result gives the static limit 
of the stress alteration due to some quiescent distribution of displacement disconti- 
nuity. Values of AM(O) are noted in Appendix C.2. 

The time dependence of G.&x, z, z) is given by 

1 8 
G,&,z,t) =zr 

Im[A,(i(r/cJ) sin 4)] do 

s sin 4 

and, as shown by the evaluation of the integrals in Appendix C.2, the integral has a 
discontinuity at r = cdt for A4 = I and at r = c,t for M = II; those contribute Dirac 
singularities to G, and Gii, as indicated in (C.6). Recalling that U(t) is the unit step 
function of time, with derivative o(t) = GDirac(t), we get 

(Xx, z, t) = 
-cd(l-2c,2/c;)2 

2nc,3t ‘ni~=(‘-~)+&“(‘-$ 

-S[u(t-;)-u(t-:)I, 

GII (~2 Z, t) = 2 hDirac 

s (t- :)+ dp(t- :) 

+$[u(t-;)-u(t-;;)I, 

(57) 

For the scalar, or model, elastodynamic theory as used by Rice et al. (1994) and 
Perrin and Rice (1994), and discussed in Appendix C. 1, G(x, z, t) = GIII(x, z, t). 

6.3. Convolution kernels for the 30 spectral method without replication 

Let us finally use the expressions just derived for the spatio-temporal kernels GM to 
derive the convolution kernels for the three-dimensional method without replication, 



A spectral method for numerical elasiodynamic fracture analysis 141 I 

similarly to what has been done in Section 4.2 for the two-dimensional case. 
We begin with (49). The rupture has non-zero S,(<,, t3,0) for 
5, E] - L,/2, + L,/2[, I& E] - L,/2, + L,/2[ so that in (49) we want to integrate over this 
domain instead of over the whole plane. Then, changing the ranges of integration to 
[x - L,, x + L,] and [z - L3, z + L3], inserting the Fourier series representation (44) of 
S,(<,, c3, 0) and making the changes of variables U, = x - 5, and u3 = z - c3, we get : 

which is valid for x E [ - L,/2, + L,/2] and z E [ - L,/2, + L,/2]. [We recall that we allow 
the possibility for L, (resp. L3) to be + cc, thus keeping spatial replication along x 
(resp. z). In this case, in the Fourier series, h, = 27rn,/;l, (resp. h3 = 27cn,/&), A, (resp. 
A,) being the replication period along x (resp. z).] This is a Fourier series in the form 
of (46) and (47), where the innermost integrals provide the expression for K,,,(n,, n3, t) 
as 

LI L3 
&4(n, 3 123, f> = 

s s 
GM(ul, u3, 0 e- l(h~u~+h?u,) du, du3, (59) 

--L1 -L, 

It is much more natural and easier to compute these integrals in polar coordinates. 
Then, taking symmetries into account, we can check that, as expected, the K,,, are real 
and that we therefore have 

tiq+n 2(S) 
K+,(n,,n,,0 = 2 

s s 
G,,,(r, t) cos [r(h, cos I,!I +A3 sin Il/)]r dr d$, (60) 

*4 0 

where $, can be chosen arbitrarily, and for expressions below is chosen on [ - 7r/2,0]. 
tan $ = z+/u,, .c%($) is the distance from the origin to the rectangular boundary (see 
Fig. 5) and r = dm. We must now evaluate the expressions for KM for the 
particular expressions for G,. Equations (57) show that this involves three terms: 
G@)(r, t) = SDirac(t-r/c), GCb’(r, t) = U(t-r/c) and G@)(r, t) = U(t-r/c)r3, c denoting 
c, or cd. Integration over r is straightforward to perform. Noting K”‘(c), the terms 
corresponding to G(‘) (i = a, b, c), we have 

K’“‘(c) = 2c2 t 
s 

*,+n 
W+JQ$) - 4 cos Met, $11 d$, 

*Y 

KCb’(c) = 
s 

*‘/+n 
C(min [ct, %($>I, $1 W, 

*q 

K”‘(c) = s ti,+n 
D(min [cl, W($)l, $1 W, 

*u 
(61) 

where we define 
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L3 

rupture domain 

Ll 
,/ 

Ul 
__________ ._________ ~ 

< 

-L1i,L1- 
Fig. 5. Rupture domain (inside dashed rectangle) and integration domain (inside full line rectangle) of the 
function whose integral gives the convolution kernels for the spectral method without replication in three 

dimensions. 

B(r, $) = r(h, cos $+A, sin Ic/), 

w, II/) = 
2r2 (cos [B(r, rl/)] - 1) + 2r2 sin [B(r, ij)] 

P(r, 11/>1* B(r, $1 ’ 

W,(I/) = 
- 2 ~0s [B(r, $>I 2B(r, $MW, $11 

f 
r r 

S(x) = sine integral = 1 
~?yft, (62) 

Note that K@) is not obtained, as for KC”) and K (b), by inserting G@)(r, t) into (60) 
(since it would not be defined). Instead, one must integrate on r the term depending 
on c, together with the one depending on cd. We have : 

2714 t 
K’“‘(c,) + &K’b’(Cd)- ~[K’“‘(Cd)-Kis’(C~)], 

s 

Kn(n,,n,, t) = &IQ”) (c,) + 
s 

-&K(b)(&)+ ~[K“‘(c,)-K’“‘(r,)]; 
s 

(63) 
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where the K”‘(c) are given in Appendix C.3, for the different possible values of ct with 

respect to L,, Lx, and ,/m. 
Those formulae are valid for infinite L, (resp. L3), which corresponds to the case 

where we want spatial replication along x (resp. z) only. We can check that, if 
cdt < /J?($) for every $ (i.e. for a small enough time or if L, and L3 are both infinite), 

&.&, n3, t) = C,(q,,c,t) with ql 3 = Jm and where the C,,,,(T), given in Appen- 
dix A, are the convolution kernels for the spectral method with spatial replication. 

We can also see that &&I,, n3, t) is zero when t is equal to or greater than 

t, = 4=/c, (since, for those times, K Q) = K”’ = 0 and K”‘(c) does not depend 
on the velocity c), t, being the time required by the shear wave to cross the largest 
rupture domain dimension, i.e., the static limit of the kernel is obtained for t > t,. 
This property, specific to 3D problems (contrary to 2D problems for which the 
static limit is reached asymptotically, i.e., in infinite time), allows for substantial 
computation gain : the time convolution involved in the evaluation of the functional 
f can be written as 

s 

I 
K,~(n,,n,,t-B)D~,.1(8)de = K,(n,,n,,t-B)Db,,l(B)dB. (64) 

-X 
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APPENDIX A : CONVOLUTION KERNELS IN THE FOURIER DOMAIN 

This appendix gives the expression for the convolution kernels in the Fourier domain for 
each mode. They have been derived in Geubelle and Rice (1995) for modes I and II and in 
Perrin et al. (1995) for mode III : 

C,,(T) =J,(T)/T+~T[C~‘(~,T/C,)-W(T)]-~~J~(~~~~~,)+~J~(T), 

G,(T) = J, U-)/T 

where J,(T) and J,(T) are Bessel functions and 

(A.11 

W(T) = l- s = JI t-4 
---dx. 

0 x 
64.2) 

[The factor -4c,/c, in C,,(T) has been wrongly written -4cd/c, in equation (26) of Geubelle 
and Rice (1995) ; also, in their Fig. 2, the scale along the T axis for C,(T) and C,,(T) is not 
correct and should instead range from 0 to approximately 47 ; finally, still in that figure, the 
labels F,, F2, F3 should read, respectively, C,, C,,, C,,,.] 

APPENDIX B : CONVOLUTION KERNELS IN THE SPATIO-TEMPORAL 
DOMAIN 

The expressions for the functions AM(s) for the three modes are (Geubelle and Rice, 1995) : 

4@z + (2+sZ)2 s 
=,@l(S> = - 7 -- 

szJy2s2fl Y’ 
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An(s) = 
(2+s2j2 4Jy2sI+1 

s2fl- s2 --s7 

1415 

A?,,,(s) = Jr2 + 1 -s, (R.1) 

with J%? and Jyzszfl cut on the imaginary s axis to behave like s and ys, respectively, at 
large s; here y = c-/cd. Thus the function M(u) = Re[J(iu+O)] of (32) and (36) are 

: 

4&&/w-(2-u2)‘_ 

u2JW 

if ,u, < , 

M,(u) = -(2-u2)2 

U’J_ 
if 1 < ]u] < cd/c,, 

I 
~J~-U’J--(~-U~)~ 

lI’Ji7 

if,tr, < , 

M,,(U) = 4JW 

U2 

if 1 < In] < cd/c,, 

M,,,(u) = 
{ 

Ji7 if ]u] < 1, 

0 if ]u] > 1. 
03.2) 

APPENDIX C : THREE-DIMENSIONAL EXPRESSIONS 

C. 1. Quadraticforms 

The quadratic forms AF(k, m) enter (45). Of these, Ai, = 0 except when j = I = y, in which 
case 

A:, = q2 = k2+tn2. (C.1) 

Also, A:: = 0 and A::’ = 0 when one or both ofj and I is y. The non-zero members are 

(C.2) 

Another case of interest is for the “model” elastodynamic theory used by Rice et al. (1994) 
and Perrin and Rice (1994). This is based on a scalar wave equation, and in that case there are 
no componentsj, 1 or modes M to sum over in the relation between stress and displacement. 
With such indices removed, the equation here describes the case where p and c, are interpreted 
as the modulus and wave speed [called M and c in Rice et al. (1994)] of the model theory. Then 
the radiation damping factor is A = ,u/2c,, A(k, m) = k’+m*, C(T) = C,,,(T) and 
JV(s) = J@,,,(s). 
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C.2. Three-dimensional space-time convolution functions 

To evaluate the functions G,&,z, t) of (55), we first note that A’i(+O) = 
A,,( +0) = 2( 1 - y’), and A,,,( +0) = 1. Here y = c,/c+ Next we must evaluate the integrals 

QM@) = s n’2 Im[A,(iRsin &+O)] 
dti 

II sin 4 (C.3) 

appearing in (55). The imaginary parts of &&)[ = &,,,&+O)] are : 

i 

- U/Y if0 < u < 1, 

lm[A,(iu+O)] = -u/y+4JU2_I/u2 if1 <u< l/v, 

-uly+4JUZ_1/~~+(2-~~)~/~*~~ ifu > l/u, 

i-U if0 <u < 1, 

Im[A!,,(iu+O)] = 

i 

-u+(2-uZ)‘/u2JuZ-l if 1 < u < l/r, 

--u+(~--u~)~/u~~+~~~/u* ifu > l/y, 

i 

-U if0 < u < 1, 
Im[A,,,(iu+O)] = 

-u+F ifu> 1. 
(C.4) 

Let us write Q,,JR) = Qfi)(R)+Q$(R)+Q!#(R), where Q&)(R) comes from the first term in 
Im[A,,&)], equal or proportional to -u, which enters at u = 0 and persists for all u > 0, 
Qc)(R) describes the effect of the new terms that enter Im[A,&iu)] at u = 1 and persist for all 
u > 1, and Q!$(R) describes the effect of terms that enter Im[A,(iu)] at u = l/v and persist 
for u > l/v = cd/c,. Thus Q%)(R) = 0 for R < 1, Qf$(R) = 0 for R < l/v; Q{:/(R) = 0. 

Causality requires that all G, = 0 for t < r/cd, i.e. for R > l/v, which means that the 
Q;(R) should sum to a constant in that range, a condition which may be explicitly checked. 
The constant can be obtained from (55), which thus must vanish for R > l/v, so that Qf,)(R) 
for R > l/y can be determined (or checked) from 

Q;)(R)+Q!,?,‘(R)+Q~)(R)+(~/~)JZ,,,(O) = 0, R > l/y. (C.5) 

Some of the Qg(R) start from non-zero values on their range R of definition, which makes 
QM(R) discontinuous and puts Dirac singularities in (56). Remembering that increasing R 
means decreasing t at fixed r, we therefore have from (56) that 

1 dQg’ 
G&x, z, t) = - ____ 

n2c,2t2 dR 
U( t - r/c,) 

1 

[ 

dQ$’ 

n?c,2t’ dR 
+ dQ%’ 

do 1 [U(t-r/cd)- r/(t-r/c,)] 

- LQ’$(l)~,,,,,(t-r/c,)- 
7c2c,Zt 

&Qi?(lhl ~D,,,,(t-rlcJ. (C.6) 
.S ‘d 

The last three terms are absent for the mode III part of the solution, G,,,, and also for G for 
the scalar “model” elastic theory mentioned above. 

The es)(R) are defined for R > 0 and calculated from the part lm[ fl*,(iu)] = -u for 
M = II, III, and -u/v for M = 1, so that 

Q;‘)(R) = ---7cR/2y. Qj,‘)(R) = Q&)(R) = -nR ‘. (C.7) 
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The terms entering Im[A,,,(iu)] when u > 1, and defining Q$f’(R) for R > 1, contain a factor 
m. We write those terms as ~‘h,&u~)/~ where 

h,(P) = 4(P- l)/P2, h,,(P) = l-40-- 1)/P’, hill(P) =(P- 1)/P. (C.8) 

Thus 

Q$(R) = “’ S’ (R’sin’ 4)h,(R2 sin’ 4) 
d@ 

arcsl”( I R, sin &/F&jEi 

Making the change of variable R cos C/I = Jm sin(wj2) then leads to 

(C.9) 

(C.10) 

which can be extended to [0,2rc], have its integration variable changed to r~ = exp(iw). and 
evaluated by methods of analytic function theory (residues). Thus we obtain 

Qi2’(R) = rt(l-l/R’), Q{:‘(R) = xR/2-rr(l- l/R’), Q;::(R) = n(R- 1)12. 

(C.11) 

Note that Q!#( 1) is non-zero, thus corresponding to a Dirac function at r = c,t in G,+,. only for 
M = II. We also need Qc)(l/y) to give the amplitude of Dirac functions at r = c,t. By using 
(C.5) 

Q$l(l/r) = -QC’(l/r)-Qg’(l/y)-rc,d,,(0)/2. 

This is relevant only for M = I, II and we find 

(C.12) 

Q!“(l,‘y) = +2y2)‘. Q$‘(ljy) = 0 (C.13) 

C.3. Further detuils 

Letting L,,, = min [L,, L3], L,,, = max [L,, Ll and 

L 
$J= = arcsin $ ( > , *ii = arcos L,,, , 

( 1 ct 
*s = arctan 2 , 

( > 
(C.14) 

nl‘lx 

all confined to [0, rr/2], and defining the functions S($) and T($) such that 

S and T having been determined using the Muthematica software (Wolfram, 1993) as 

-4sin$ 

‘(‘) = B(h, , $) 
-sm2 [B(&,$)]. 

we finally have the following, assuming L,,, = L, :t 

(C. 15) 

(C.16) 

f For the expression to be valid if L,,, = L,, one has to replace $z, cLs, $; by $. + n/z. ia+ n/2, $; + n:2, 
respectively. 
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if 0 < ct < L,,,, 
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K’“‘(c) = 27rcZtJ0(q,,ct), 

KCb’(c) = 24ct)2J, (4,3ct)l(q, 3ct), 

K”‘(C) = 2~q,l[~(ql~Ct)-J”(913Ct)l(q,,Ct)--l, (C.17) 

with q13 = J’. h, +h3 The first two equalities above are deduced rather directly from 
the definition of K’“) and fib) in (61). As for the third, one can check that K”) 
and 2nql,W(q,,ct)-2nJ,(q,,ct)l(q,~ct) obey the same differential equation 
d’X/dqf, = (2n/q,,)S,(q,,ct), so that they differ only be an extra term which either does not 
depend on q,, or depends on it at first order. Then, as li” cos [B(ct, $)]/ct d$ = 7tJ,, (q, ,ct)/ct, 
and ji”B(ct, t,b)Si[B(ct, $)]/ct d$ = 0 for ct = 0, we find the extra term 2nq,,[ = 27tq,, W(q13 x 0)] ; 

if L,,, d ct < L,,,, 

K’“‘(c) = 2c*t 
j 

+. 
~0s P(ct, J/)1 dlC/, 

-*, 

j 

*, 
K@‘(C) = C(cts II/) d$ + S(- ICI.) - S($.), 

-QJz 

*, pyc) = s -*, D(ct,II/)d$+ j~~+$,+): (C.18) 

if L,,, d ct < Jm, 

K’“‘(c) = 2c2t{i:“+ j+:;}cos[B(ct,$)]d); 

KYC) = {j;*Y+ j*;} Uct, $) dti + S( - ti.) - s($.) + WB) - T( - tiB), 

D(ct,IC/)dlC,+ j;;D(&$)d$+ jI;flD(+>‘/‘)d4”; (c.19) 

(C.20) 

The remaining integrals in (C. 18)-(C.20) must be computed numerically. They are one-dimen- 
sional integrals with finite limits, to be compared with the two-dimensional integrals with 
infinite limits appearing in (48), with the restriction, however, that some of them involve the 
sine integral function. 


