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Abstract--A theory is proposed for cleavage in the presence of plastic flow, in circumstances which do 
not involve strong viscoplastic retardation of dislocation motion. We build upon recent notions that 
recognize the large disparity between relevant length scales involved in plastic flow processes around cracks 
in metals and on metal-ceramic interfaces. The lengths consist of (1) the Burgers vector, (2) the nominal 
dislocation spacing, (3) the elastic "cell" dimension, and (4) the overall plastic zone size. Of particular 
interest is the phenomenon of "brittle" crack growth in the presence of pre-existing, apparently mobile, 
dislocations, which has been observed in several material systems. A continuum elastic-plastic finite 
element model is utilized that assumes the presence of a dislocation-free strip of elastic material of height 
D surrounding a crack tip, from which dislocations are assumed not to emit. The parameter D is 
self-consistently chosen by identifying a maximum equivalent Mises stress in the plastic zone with that 
predicted by a phenomenological strength law of the type first used by Taylor and Orowan, in which 
strength varies inversely with nominal dislocation spacing or with cell size, either of which is identified 
as D in different interpretations of the model. For steady-state crack growth to occur, it is found that 
the applied energy release rate G must generally be several orders of magnitude larger than the ideal work 
necessary to separate the interface, at least when D is taken as dislocation spacing. Furthermore, this 
"shielding" ratio is found to be strongly sensitive to the ideal work of fracture itself, as well as other 
material properties. Copyright ~ 1996 Acta Metallurgica Inc. 

1. INTRODUCTION 

The mechanical behavior of  structural materials is 
governed by processes occurring over a diverse range 
of  length scales. A specific material model, though, 
usually focuses only on a limited range of  length 
scales. Cont inuum models based on elastic and/or  
plastic constitutive relations, for example, are 
appropriate for analyses of  the macro/micro-scopic 
mechanical response of  solids, but do not accurately 
represent the underlying crystal lattice and its 
associated defects, such as dislocations and grain 
boundaries. At another level, discrete dislocation 
modeling may capture many of the details of  a 
crystal's nanoscopic mechanical response, but is 
limited to the consideration of  nominally elastic 
behavior (i.e. relatively small or  non-existent 
dislocation densities). This multiple-scale approach 
to materials engineering has led to a wealth o f  
understanding within each model 's  domain of  
applicability. Nevertheless, many problems exist 
for which interaction between length scales is of  
central importance. Recent consideration of  the 
competit ion between cleavage decohesion and dis- 
location emission at a crack tip, and its relation to 
ductile vs brittle behavior, exemplifies this duality [1]. 

In this paper, we build upon a recent model by Suo 

et al. [2] that recognizes the large disparity between 
relevant length scales involved in plastic flow 
processes around cracks in metals and metal-ceramic 
interfaces. These consist of  (1) the Burgers vector, 
b ~ 10-~°m, (2) the nominal dislocation spacing 
I/x/~d~, where Pd~ is the dislocation density, (3) the 
elastic cell size within the dislocation structure, 
Dc~, ~ 10 -6 m, and (4) the overall plastic zone size, 
which scales approximately as (KWoY, where K is a 
stress intensity factor and a0 is the yield stress. Of  
particular interest is the phenomenon of  crack growth 
in the presence of  pre-existing dislocations, which has 
been observed in several systems. For  example, a 
sharp crack can propagate along a gold-sapphire 
interface [3]; nevertheless, the gold deforms plasti- 
cally, indicating the presence and motion of  vast 
quantities of  dislocations. Furthermore,  the 
measured fracture energy is orders of  magnitude 
larger than the adhesive energy; when the interface 
contains carbon, a segregant that has been estimated 
to reduce the adhesive energy by about  a factor of  2, 
the measured fracture energy is reduced by nearly an 
order o f  magnitude but is still significantly larger than 
the adhesive energy [3]. Other examples include 
copper bicrystals contaminated with bismuth [4], 
copper-sapphire interfaces [5], copper-glass [6], and 
n iobium-alumina  [7, 8]. 
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A large literature exists on the modeling of cracks 
in plastically deformable materials, both from 
continuum and atomistic standpoints. However, the 
material behavior described above has eluded a 
reasonable mechanistic explanation (see Ref. [9] and 
references therein) except perhaps in cases for which 
strong viscoplastic resistance to plastic flow, i.e. 
strongly limited dislocation mobility, is present at 
deformation rates prevailing over distances of, at 
least, a few dislocation spacings near the crack tip. 
The latter includes situations of dynamic crack 
growth in a visco-plastic continuum, sometimes 
begun through rapid "'crack injection" by failure of 
a brittle phase (e.g. carbide in steel), as investigated 
by Mataga et al. [10], Hart [11] and Jokl et al. [12, 13]. 
Similar consideration of these effects at the discrete 
dislocation scale have been examined by Huang and 
Gerberich [14] and Hirsch and Roberts [15]. We 
believe that other cases of cleavage in the presence of 
high dislocation densities, but without the assistance 
of strong viscoplastic resistance to flow, might be tied 
to the interplay between processes occurring over 
many length scales that naturally arises when 
plasticity is regarded as a discrete or granular 
phenomenon. We let D denote a characteristic 
spacing of barriers to dislocation motion. Then, in 
the one hand, continuum plasticity, whether it be for 
isotropic materials or single crystals, is only 
rigorously valid when the stress variation over a 
multiple of D is small compared to the macroscopic 
yield strength. In other words, the theory takes for 
granted that the relevant length scales of interest are 
large enough so that the medium is free to deform, 
without concern for the dislocation motion through 
barriers with length scale D that actually is 
responsible for plastic deformation. On the other 
hand, processes occurring between length scales b and 
D are extremely important as well; an example is 
dislocation nucleation at a crack tip and its relation 
to the continued stability of the sharp crack [16]. 

Pre-existing dislocations are inevitably present in 
abundance in all metals, and to some extent most 
non-metals, except for some prepared under very 
precise conditions (as silicon for electronic devices). 
It is not commonly realized that at a load level great 
enough to meet conditions for either Griffith cleavage 
or dislocation nucleation at a crack tip in a metal 
crystal, the corresponding concentrated stress field 
near the crack tip contains large enough shear stresses 
to move dislocations over distances that are, 
typically, many times the spacings of those pre-exist- 
ing dislocations. Thus, it is very easy to move 
pre-existing dislocations near a crack tip in metals, 
and that is usually expected to occur well before the 
critical loading to either nucleate a dislocation at a 
crack tip or cause Griffith cleavage. Indeed, much of 
the empirical evidence that sometimes leads to the 
conclusion that dislocations nucleate at a crack tip at 
very low load levels [17] may simply signify that 
pre-existing dislocations have been activated. 

To understand the point further, note that the 
standard elastic mode I stress field creates a Mises 
effective stress cr~ [evaluated approximately as 
x / 3 ( ~ , , -  a,~)'-/4 + 3az,, here] near the tip given as 

= S(O)K.p = S(O) [ -4E ' ' '  
o'ar x ~  ~/(1 -- v ) r '  (1) 

where the stress intensity factor K,,p is taken as its 
Griffith value, i.e. G,,p - (1 - v)(K,,p)z/21t = 27,,, with 
2~'~.~ being the ideal work of fracture of the lattice 
plane or grain interface considered. Also, ~ is the 
shear modulus and v the Poisson ratio, and 

]sin 0 ] 
S(O) (2) 

2 X/2~z 

with 0 = 0 on the prolongation of the crack plane. 
We wish to know over what size in the material is aofr 
greater than the yield stress a0. Now, to the neglect 
of a lattice resistance part of a0 that we call a*(T) 
below, it may be assumed that ~r0 scales inversely with 
the spacing Do of barriers to dislocation motion, 
ao = ~,Eb/Do, as in phenomenological strength laws 
introduced by Taylor [18] and Orowan [19]. Here E 
is Young's modulus and, as explained in Section 4, 
the parameter ~, ranges from 0.4 to 0.8 if we identify 
Do as the nominal dislocation spacing 1/x/(pd~)0 
before deformation begins. Alternatively, ~ ranges 
from 5 to 10 if we identify Do as the initial dislocation 
cell size, such being well defined at least at rather 
large pre-strains. Taking 0 = 90 ° and v = 0.3, we 
therefore find that at the Griffith load considered the 
yield stress is exceeded (a,~ > a0) over a distance r 
given by 

r = 0 1 ~  = 0.267,.,/~,aob. (3) 
Do " o~,ao/E 

For metal crystals ~. , /#b ranges from 0.05 to 0.25 
(Table 1) and thus, if we identify Do as 1/x/(pd~)o and 
therefore take ~, -- 0.6, and consider metals with yield 
strength or0 = 10 -3 E, then r is estimated as 8-40 Do. 
That is, there is ample stress at Griffith conditions to 
move quite a few dislocations in materials of such a 
strength level, and the model which we develop here 
is consistent with the empirical evidence that their 
motion and shielding of the tip greatly increases the 
load level for cleavage. Equation (3) also introduces 
the combination of material properties ~,,/~,aob, 
which we shall see to be an important parameter for 
characterizing the intensity of plastic shielding of a 
brittle crack tip. 

A major conceptual problem with bringing 
together continuum and atomistic theories of fracture 
is intimately tied to differences in the various 
characteristic stresses: the atomic cleavage strength is 
known to be orders of magnitude larger than the 
macroscopic yield strength. However, if the ratio 
between the two is assumed to be larger than about 
4, as in a Barenblatt-like decohesion model within the 
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Table 1. Elastic core parameters for simple model of Section 2 and Figs 1 and 2. for cleavage at a non-emitting 
crack tip in a plastically deformable material. These values are based on v= 0.3. :t = 0.55 and 
S(O) = (3/2r?)' -" (its average over 0). with the exception of the final column, a* is assumed to be zero. 
(Materials with the larger values of 7,,,i~b may not actually be consistent with the assumption of a 

non-emitting tip [1.25}) 
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System 7,.,/l~b r.o~, h a.o~./ E o*,,,' E 

Ductile metals: 
Li 0.26 28 0.0195 0.0047 
Au 0.23 32 0.0173 0.0041 
AI, Cu 0.17 44 0.0128 0.0031 
Ni 0.12 62 0.0090 0.0022 
Nb 0.11 67 0.0085 0.0020 
Ta, V 0.10 74 0.0075 0.0018 

Borderline: 
Fe 0.079 94 0.0059 0.0014 

Brittle metals: 
Ir 0.057 130 0.0043 0.0010 
Cr, W 0,040 185 0.0030 0.00072 
Mo 0.036 205 0.0027 0.00065 

Fe grain boundary 
with S or P 
segregation 
Metal-cermaic 
interface 
(e.g. Cu/AI_,O~) 

0.06-0.07 105-123 0.0045~).0053 0.00114).0013 

0.02~).03 247-370 0.00154).0023 0.000364).00054 

f ramework  of  con t inuum plasticity, ductile response 
only with no possibility of  cleavage is predicted 
[20-23]. The model  by Suo et al. [2] buil t- in the 
assumpt ion  of  a dislocation-free region of  mater ia l  
su r rounding  a crack tip, f rom which dis locat ions are 
assumed not to emit. Moreover ,  we proceed with the 
unde r s t and ing  tha t  the pa ramete r  D character izes the 
size of  a nominal ly-elast ic  zone whose evolut ion may  
include the nucleat ion of  dis locat ions (from non-  
crack tip sources) tha t  subsequent ly  become incor- 
pora ted  into the plastic zone. Having  made  these 
assumptions ,  a length D over which only elastic 

stresses operate  is built  in to  the model,  and  hence the 
restr ict ion that  the rat io of  a tomic  cleavage s t rength 
to yield stress be no  greater  than  abou t  4 should (in 
principle) not  be present.  The length D m ay  be said 
to cor respond  physically to a so-called dis locat ion 
free zone (DFZ) ,  a l though  such te rminology is also 
used to indicate a zone su r round ing  an emit t ing crack 
tip th rough  which dislocat ions may pass but  which is 
otherwise dis locat ion free [24]. 

Figure 1 il lustrates how character is t ic  stresses are 
expected to vary by orders  of  magni tude  as a crack 
tip is approached .  The compet i t ion  between a tomic  
decohesion and  dislocat ion nucleat ion is not  ad-  
dressed in the current  theory; we simply assume tha t  
the tip does not  emit  dis locat ions in the cases for 
which the theory is intended.  The assumpt ion  of  a 
non-emi t t ing  tip is certainly justified for mater ia ls  of  
relatively low 7,.t/pb [1.25] or in the presence of  
con tamina ted  grain boundaries .  Even then,  it is at  
best only an  approx imat ion ,  in tha t  condi t ions  for 
emission are strongly sensitive to superposi t ion of  
small amoun t s  of  mode  II or  III  shear  on a mode  I 
crack tip [1], so tha t  pe r tu rba t ions  f rom nominal ly  
tensile loading (due to misa l ignment  o f  local cleavage 

planes to the loading direction,  to steps on the crack 
surface or  to asymmetr ies  in the pre-existing 
dis locat ion dis t r ibut ion relative to the crack plane) 
may cause emission events at an otherwise non-emit -  
t ing tip. 

Whereas  the model  of  Suo et al. [2] left the elastic 
strip height  D as an  adjustable  parameter ,  the current  
work int roduces  a self-consistent de te rmina t ion  of  D, 
regarding it as the spacing of  barr iers  to dislocat ion 

Range of validity of continuum plasticity 
stress distribution near a crack tip 

~" 10° I I I I I I I 

• ~ Oeff= SKtip r "-1/'2 ; (1 - v 2) (Ktip) 2/E = 2'Yin I 

, Strength Oflo w = o c t E b / D  - 
x ~  ', / [ D =  1 /~/Pdisl or D=cel l  size] 

~ ' ,  Oef f in plastic zone 
10-2 J 

o 

Oeff = S Kfa r r -1/2 

"-" I I ' " ' " " '  ' "  

~ 10.3 

4r  
10 10 0 101 10 2 10 3 10 4 10 5 10 6 10 7 10 8 

r/b for Mises stress aeff ; solid line 

(D/b for strength Oilow ; dashed line) 

Fig. 1. Conceptual plot of the large stress variation ahead 
of a sharp crack tip in a plastically deforming metal. 
Indicated are: (1) the elastic core region, characterized by a 
classical linear elastic stress distribution with K =  Kt~p 
equated to value for GrittSth cleavage; (2) continuum plastic 
stress distribution; and (3) outer elastic zone with K = Kr,,. 
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motion in the strain hardened state prevailing 
immediately adjacent to the crack tip. That  is, we 
insist that the strip height D be chosen so that the 
flow strength given by equation (4) below, evaluated 
with that same D, is equal to the maximum ao, 
calculated according to cont inuum plasticity in the 
plastic zone adjoining the strip. The model is 
described in more detail in the following three 
sections. 

2. ELEMENTARY ESTIMATES FOR CLEAVAGE 
ACCOMPANIED BY PLASTIC FLOW 

The plot in Fig. 1 conveys the essential physical 
motivation for the model discussed in this paper. We 
begin in this section by making some simple (and. as 
will be seen, not so accurate) estimates using a variant 
of a similar line of reasoning given earlier by 
Thomson [26]. At small distances from a stressed 
crack (i.e. r<<r¢ .... where r¢o,¢ is characteristic of a 
dislocation-free region about  the non-emitt ing tip), 
stresses would be expected to vary according to 
equation (1). 

A pertinent quantity is the length scale beyond 
which the stresses in the crack tip plastic zone will be 
suitably described by cont inuum plasticity. We may 
write the flow strength, a~o~ within the plastic zone as 
being tied to the dislocation barrier spacing D 
through the relation 

anow = ct,Eb/D + a*(T),  (4) 

where now D is reduced from its initial value Do at 
first yielding, reflecting dislocation generation and 
hardening in the plastic flow, and we note that there 
may be an additional part of the flow strength, a*(T),  
that is not related to dislocation spacings and instead 
reflects an intrinsic lattice resistance. Again, one may 
consider two interpretations, with D as the nominal  
dislocation spacing 1/~'pd,~ or as the dislocation cell 
size, and the respective ranges of ct~ are given earlier. 
As suggested by the notation, we consider a*(T)  to 
be temperature-dependent; it is expected to be 
negligibly small for f.c.c, metals, and monotonically 
decreasing with temperature for other crystals. In 
fact, a* also depends on strain rate but we assume 
here that such a dependence is small, our aim being 
to explore explanations of brittleness that do not rely 
on limited dislocation mobility and strong viscoplas- 
tic effects like in Refs [10-13]. 

It is reasonable to assert that cont inuum plasticity 
is a consistent theory only at size scales r from the tip 
that are greater than the barrier spacing D involved 
in the flow process; that is, at distances r 
corresponding to values of o,~ predicted by a 
cont inuum plasticity solution (solid line, Fig. 1) that 
lie above and to the right of the dashed-line plot of  
equation (4) in Fig. 1 (for the case a* = 0). Material 
points closer than the intersection of those lines are 
closer to the crack tip than the barrier spacing in the 
plastic flow process. We describe that intersection 

distance as r ..... so that the point of intersection 
corresponds, in this approximate analysis, to 
r = O = / ' core .  

Now, if we assume that equation (1), which 
necessarily applies very close to a non-emitt ing crack 
tip at its cleavage load, also applies out to the 
extremities of the elastic core at the crack tip, then we 
can estimate r .... by setting a~  of equation (1). 
evaluated at r = r¢ .... equal to a,o~ of equation (3) 
evaluated at D = r ..... Calling the common value of 
the stresses a ..... we can therefore solve to obtain (in 
the case of a* = 0) that 

rc°r--a~ = (1 - v")(1 + v)ct~ ( ~ )  b S:(0) 

and 

o .... S:(O) { "~ 7,,, 
(5) 

E = ( l -  v:)(l + v)~,lk~'-b J 

These estimates of r .... and acor~ are tabulated in 
Table 1 for values of the dimensionless material ratio 
7m,/pb characteristic of a range of metals (ductile to 
brittle), iron with contaminated grain boundaries, 
and the Cu-AI203 interface, all for a* = 0. The pure 
metal )'~n,( = 7s) values are from the tabulation in Ref. 
[1], b is for a full (versus partial, for f.c.c.) dislocation, 
v and ~ have been taken as 0.3 and 0.55, respectively, 
and S(O) has been taken as its average over 0, 
(3/2n3) ~-'. Additionally, the stress in the elastic core as 
well as the flow strength given by equation (4) are 
plotted in Fig. 2(a). The results suggest that the core 
is large enough, at least in certain metals or systems, 
to justify the use of a cont inuum elastic theory within 
that region (if one accepts the fact that cont inuum 
mechanics is valid for any length scale greater than 
a "few" atomic spacings). Furthermore,  the basic 
calculation admits the possibility of attaining the 
Griffith cleavage load for a non-emitt ing crack tip 
embedded in a large plastic zone, assuming that the 
material can be strain hardened up to stress levels like 
a .... without the required strains being so large that 
the crack tip region is deformed (at the cont inuum 
scale) into a rounded notch. We will subsequently 
consider this failure mechanism by more suitably 
carrying out the matching of cont inuum elastic and 
elastic-plastic fields, using finite element solutions, in 
a scheme that will additionally account for growing 
cracks in ductile materials. 

We may note, however, that this simple analysis 
suggests that even if materials of relatively larger 
)'m,/#b are assumed to have non-emitt ing tips (in fact, 
the estimates of Refs [1, 25] suggest that only 
materials of lower y~n,/#b will actually be non-emit- 
ting), the amount  of hardening to reach the required 
a .... values found is so unrealistically large that, for 
all practical purposes, those materials could not 
cleave. In that sense there is consistency between the 
atomic scale [1, 25] and present macroscopic plastic 
scale considerations of brittle versus ductile response. 



BELTZ et al.: CLEAVAGE WITH PLASTIC FLOW 3947 

To gain insight into the important  effect of  
temperature on such calculations, we assume that the 
overall temperature dependence of the flow stress 
enters through ~r*. For o* :#0, equations (5) 
generalize to the following 

root in the denominator  of equation (6a) becomes 
non-positive, i.e. when 

o*,, s:(o) ( : " " ) ( ~ ¢ ° ~ ) ° ' ° ° ( 7 )  
= 4 ( 1 - v : ) ( 1  +v) : t .  ~ - 4E 

r¢o,_.~ = b 4(1 - ,,:)(1 + v)~ ( ~ )  (6a) 

S2(O)(l+x/l-4(1-":)(l+")ut(ltbt(a*l) ' S : ( O )  \'/mVk E~ 

.... S:(O) fT . f ] f l /4(1-v") ( l+v)~,hab '~[a* '~  
= 2(1 - v:)(1 + v)a. \~ ' b ]  ~, + ~/ ~ ~ - E ) ) I  S"(O) \,,'m V " (6b) 

Suppose that o* gradually increases as temperature 
decreases. Then, according to this simple model, there 
exists a critical value o*,, above which there is 
fracture without a macroscopic plastic zone. The 
crossover occurs when the argument to the square- 

O 

° ~  

| . . . .  ! . . . .  ! . . . .  ! . . . .  ! . . . .  ~ . . . .  

~::!!!!!!!!!!!!!i!!!!?!::!:::::::::::i:~ ì~:;t::~::~:~:~;~:7::I:;~:;::c~:::::::: 

(D l/qpd~l ~ 0)  
o.ool . . . .  f , ; , , , r  . . . .  i . . . .  i . . . .  
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r / b  for stress ; D / b  for strength 

(a) 

E f f e c t  o f  l a t t i c e  f r i c t i o n  ~* 

::!!:.!:~::!!!: ! ! !!!~ :.!! ! ! !! !!!!!i! !!!!! !! !!!!!!!!:5!:.:.:.!!!! !!:5!!!!! 

i ~  - .................... ............ f 6 f ~ * l E - O i O 0 2 0  
V X ........................ ................... . . . . . . . . . . . . . . . .  ~ o:00~s 

O.OOlO 
• .~ 0.01 !~]~O0ff5!!!!!!!! 

0 001 [with Tint/i I b: = 0.079 (Fe I i [ 

• 0 50 100 150 200 250 300 
r i b  for stress ; D / b  for strength 

(b) 

Fig. 2. (a) Critical stress distribution ahead of a crack tip for 
several values of 7,n,/pb, as well as flow stress as a function 
of elastic length D. For r < r, oTe (the crossover between two 
types of curves above), the elastic core field is expected to 
dominate. (b) Stress and strength for the case of y,n,/lab 
(appropriate for Fe) and several values of a*, showing the 

strong effect upon r~,. 

Graphically, the sharp onset of the effect can be seen 
in Fig. 2(b), where strength has been plotted for 
several values of a*,  with other parameters estimated 
for a-iron. In this case ag,, ,~ 0•0014 E. Numerical 
values of the critical a* for other materials are 
tabulated in Table 1. Using very similar arguments, 
Ashby and Embury [27] have proposed that for a 
given value of the lattice resistance, there exists a 
critical density of dislocations at the crack tip (i.e. a 
critical value of  I /D:) ,  below which the crack would 
run without interacting with dislocations. They thus 
showed that such a mechanism is a viable explanation 
for the common observation that plastic working 
lowers the brittle-to-ductile transition temperature in 
several b.c.c, metals. 

3.  A FINITE ELEMENT M O D E L  F O R  
STEADY-STATE CLEAVAGE ACCOMPANIED 

BY PLASTICITY 

In order to make more quantitatively reliable 
predictions for a growing crack, assumptions must be 
made regarding the shape of the elastic core. As 
introduced by Suo et al., the strip model shown in 
Fig. 3(b) is adopted• Consider a cleavable, rate-inde- 
pendent, elastic-plastic material with Griffith energy 
27,,~ (which reduces to twice the surface energy for 
homogeneous materials), yield strength ao, Young's  
modulus E and strain-hardening coefficient N. 
Material outside the strip is permitted to yield 
following the standard Prandt l -Reuss  isotropically 
hardening cont inuum plasticity model, based on the 
second invariant of deviatoric stress. The true-stress- 
logarithmic strain curve in uniaxial tension, which 
generalizes in terms of Mises equivalent values, is 
specified by 

O" 

= - -  a / >  o0 .  ( 8 )  E E \Oo] 

Material within the strip remains elastic. The major 
weakness of the model is that the elastic strip 
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is an uncertain proxy for the actual sort of elastic core 
at the tip envisioned in Fig. 3(a). Although some 
calculations have been carried out for a stationary 
crack tip embedded in a circular elastic zone [28, 29], 
the strip model retains the feature that steadr-state 
crack growth may be straightforwardly modelled 
with existing FEM codes. The mesh used for this 
model is shown in Fig. 4. Consider a scenario 
whereby the system, containing the stationary crack, 
is loaded monotonically. The external loading 
parameter may be specified as Gf,~. In certain 
s i tua t ions ,  Gf~r may differ from the crack tip energy 
release rate, G,r: however, the configuration possesses 
material properties which are homogeneous in the 
crack growth direction, hence arguments may be 
invoked in connection with the J integral [30] to 
prove that G,p = Gr~, for the stationary crack case, to 
within the usual approximation in such consider- 
ations of a "deformation plasticity" interpretation of 
the stationary crack field. 

Under the assumptions presented thus far, the 
crack will begin to grow when Gf,,, = G,, r = 27m,. 
Independent results by Mesarovic [31] have suggested 
that, due to interactions between the crack and 
near-tip dislocations swept in from farther distances, 
an effective value of 27,., (greater than but similar in 
magnitude to the Griffith level) ought to be identified 

•ll•••u•••••••••••ll•ul•••l••••••••••••••••••l•••u••l••l•l••l•l••l•ll•ll••••••l•l••ll•••lll•l•••••l 
•li••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••l• 
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I I I  l l l l l l l l l l l l l I S \ \  I I I l l l l l O O O l m B l B O ~ l  
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Fig. 3. (a) Schematic of a crack growing in steady-state 
through an elastic-plastic material, showing the active 
plastic zone, the plastic "'wake" (elastic unloading), and 
possible dislocation arrangements characteristic of plastic 
flow processes. (b) Elastic strip configuration used in this 

note to model the situation in (a). 

2 

(c) \ 
Crack Tip 

Fig. 4. Finite element mesh used to model steady-state crack 
growth for the geometry depicted in Fig. 3(b). "'(c)" fits into 

"(b)" and "(b)'" fits into "'(a)". 

with G,~p. The results to follow have neglected this 
consideration. For continued crack growth, i.e. for 
G,jp to remain equal to 27,n,, Gf~r will have to continue 
to increase, leading to an "R-curve" type of behavior. 
A plastic zone will continue to evolve until some 
steady state is achieved, after which, a constant ratio 
Gr~,/G,~p will be attained, corresponding to a uniform 
crack velocity and an unchanging plastic zone shape. 
It is this steady-state configuration that we model 
using the finite element method, and we assume that 
"small-scale yielding" conditions prevail so that the 
external mode I loading is uniquely characterized by 
Gf~r. Dimensional analysis then requires that the 
(inverse of the) shielding ratio is given by 

= g \ a~D }' (9) 

where the function g, obtained directly from the finite 
element calculation, depends additionally on N and 
weakly on v, as well as very weakly on ao/E, with that 
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latter dependence manifesting itself only within the 
finite (versus "small") strain formulation. 

An additional output quantity of interest from the 
FEM solution is o . . . .  the maximum equivalent stress 
in the plastic zone (defined as ~ , / 2 ,  where s~, are 
components of the stress deviator tensor). Again, 
dimensional analysis dictates that 

a . . . . .  /EGf~r"~ (lO) 

where f again depends on N and weakly on v and 
ao/E. The final step in this approach is to extract D, 
that is, to regard it as an output of the model, rather 
than an input, by forcing it to be consistent with area, 
via the relation discussed in equation (4) and in the 
following section. 

The steady-state, moving crack problem is directly 
analyzed via the Modified Boundary Layer formu- 
lation, which involves determination of stresses 
within the yielding and wake zones by updating 
through integration in the negative crack-growth 
direction. In such a manner, the stress-strain history 
of a material point is obtained. The functions of 
interest, f(r/) and g(~/), are shown in Fig. 5. More 
details pertaining to this FEM formulation may be 
found in Ref. [32]. In order to obtain accurate 
solutions, it is imperative that the mesh is fine enough 
to resolve stress variation within the elastic strip, 
while at the same time large enough to capture the 
complete geometry, including the fully developed 
plastic zone. Naturally, as the ratio EGf, daoD,  which 
is proportional to the ratio of overall plastic zone size 
to D, increases, then satisfactory convergence of the 
FEM routine for a suitable mesh becomes difficult to 
obtain. This places an upper bound on the largest 
ratio 7to,/aob for which we provide results. 

4. THE DETERMINATION OF SELF-CONSISTENT 
SOLUTIONS 

The maximum stress, a . . . .  from the aforemen- 
tioned continuum model must be made consistent 

2 -  

~-" 1.5 

1 

~" ~ f$ g$ I "  ~=0.01/ 
0.5 • N=0.1 

100 1000 104 105 106 107 

1] --- EGfa r / ~ 0 2 D  

Fig. 5. Output functions f(~) and gO'/) from FEM 
calculations. In all cases, E/a, = 1000 and v = 0.3; there is 

weak dependence on these quantities. 

with the stress associated with a dislocation 
arrangement having a characteristic barrier spacing 
D. Work hardening results when dislocations move, 
interact, and change their distribution and density, 
which generally gives rise to an increase in the flow 
stress. Taylor [18] first recognized that the flow stress 
is related to the stress required to force two 
dislocations on parallel slip planes of spacing L past 
each other against their elastic interaction, which 
leads to the following relation: 

~/xb 
Z~o~ = --~--, (I I) 

where rno,~ is the resolved shear stress on the slip plane 
required for the barrier to be overcome and ~ is a 
constant of order 0.1. It is known, however, that 
dislocations do not interact as simple pairs and that 
they form a complex entangled network. Further, in 
later stages of work hardening they typically arrange 
themselves into highly-packed regions or "walls", 
resulting in elastic cells of effectively negligible 
dislocation density. The incorporation of these 
aspects into theories which can explain how the 
evolving dislocation arrangement changes with 
increasing stresses and strains has been undertaken 
by several researchers in the past three decades, 
notably Kuhlmann-Wilsdorf [33], Mughrabi [34], and 
more recently Argon et al. [35-37]. It has been 
broadly recognized that an equation of the above 
form remains valid for these more complex 
dislocation arrangements where, in the range of cell 
structures at large strains, L may be identified with 
D,~, (the characteristic cell dimension) and ~ then lies 
in the range 5-10 for metals, and in the range 25-80 
for ionic crystals and oxides [38]. Also, throughout 
the entire range of  plastic flow studied, it appears that 
L can be identified with the nominal dislocation 
spacing l/x/~d,~, regardless of whether the actual 
dislocation distribution is relatively homogeneous or 
clustered into cells, and then ~ is in the range 0.3-0.7 
[39, 40]. When cells do form. their size seems to scale 
with 1 / ~  and be 10-20 times larger. 

In order to properly express equation (11 ) in terms 
of a macroscopic Mises equivalent tensile flow 
stress associated with a polycrystal (keeping in mind 
the isotropic behavior on larger length scales that 
the finite element model is designed to model), znow 
must be multiplied by the Taylor factor, M. Recall 
that 

ono~ = Mz~o~, (12) 

where M ~ 3.06 for f.c.c, and b.c.c, crystals [41]. 
Combining equations (11) and (12), and noting 
E = 2p(l + v), the tensile flow stress can be written 
a s  

McxEb oc, Eb 
anon.- 2D(1 + v) D ' (13) 

where ~, is the analog for ~, appropriate for 
tensile quantities (~, ~ 7a/6). Finally, including a 
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temperature-dependent term a*(T) gives the form 
used in Section 2 of this paper 

~,Eb 
o'~ow = ~ + a*(T). (14) 

The final stage of the model involves calculating ~. 
the particular shielding ratio and cell size D that 
make O-~o~ identify with a . . . .  the maximum O-o~ from 
the FEM model. Doing so gives 

O-of ( EGr,~ 7,Eb 
• \ ~/,O ) = --D-- + O- * 

(15) 

but note that the first term on the right-hand side of 
equation (15) can be broken up into several 
dimensionless groups 

\G,~./ ~ ~ a'TD ) ~'a° + ~*" (16) 

Thus, we are left with 

f(r/) = ~,g(q)q~ + o*/'o-~, (17) 

where q is shorthand for EGf,,/a~D. After slight 
rearrangement, with Grip replaced by its Griffith value, 
27m,, we arrive at 

~g(~) - '""' (18) 
2[.f(~) - o*/o0] o,,~,b' 

where the q which solves this equation yields the 
self-consistent value of D that is sought. It is 
important  to bear in mind that the FEM model can 
be, and is, completely solved for a range of values of 
)7. The value that solves the problem, however, is the 
one that satisfies equation (18). Once the proper value 
of r/is determined (we refer to it as q0), equations (9). 
(10) and (14) can again be used to obtain the output 
quantities of interest: 

lo000g- ..... 

1000 ~- 

r- 
i 

1 0 0 ~  
7- 

1 
o 

S h i e l d i n g  R a t i o  f r o m  S e l f - C o n s i s t e n t  
F E M  F o r m u l a t i o n  (o'* = O) 

50 100 150 200 

Tint/~tb~0 

Fig. 6. Shielding ratio necessary for steady crack growth 
(~* = 0). 

5. RESULTS AND CONCLUDING REMARKS 

Results for shielding ratio. D and O'ma x are shown in 
Figs 6-8 by plotting results of equations (19a-c) for 
the special case a* = 0. The plots are for v = 0.3 and 
ao/E= 0.001; we recall that there is only weak 
dependence of)q, f2 and .~  on those variables. For  a 
more direct representation of the dependence of the 
shielding ratio on 7,.daob, Figs 9 and 10 show the 
variation of Gf~/G,,, as well as Kr~dK¢,, for specific 
values of ~,: 0.6 in Fig. 9, which then applies for the 
version of the model with D being nominal  spacing 
in the random dislocation network, and 8 in Fig. 10, 
which applies with D being cell size. Also, N ranges 
from 0 (perfect plasticity) to 0.2. Only the version of 
the model with D being nominal  spacing is consistent 
with large shielding, and our further discussion 
focuses on that case. Although the material 
parameter 7m,/aob varies significantly for materials in 
general; a rough rule of thumb is that it falls in the 
range 10-50 for high-strength steels as well as 
metal-ceramic interfaces (the former due to high 
yield strengths and the latter due to values of 7,,~ less 
than 1 J/m-'), and in the neighborhood of 100 for 
softer f.c.c, metals. The self-consistent elastic cell size 

c,,, l :" >,,o, N.00-*  
G,r g(~,~) -.1; \o-o~,b""E'o-oJ (19a) 

Da(, [ / ",',,. o,, a*) 
:qbE -.[(q(,) ='~ la-~,b ;N'E'-~(, (19b) 

o,,,,a0 =f(r/0) ~ f ,  o(,~,h""E'ooJ (19c) 

To summarize the principal implication of this 
section, the shielding ratio G,,,/G,r and the elastic 
spacing D are primarily dependent on the material 
parameter, 7,ndaob. 

m 
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Fig. 7. Self-consistent strip height D (o* = 0). 
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M a x i m u m  Effective Stress  in Plastic Zone 
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Fig. 8. Maximum effective stress in plastic zone. 

Shielding Ratio from Self-Consistent FEM 
Formulat ion  ( ~  = 8.0 and ¢Y* = 0) 
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(a) 

ranges from 300 to 600 b for ~t, = 0.6, several times 
greater than those suggested by the simple calculation 
presented earlier in this paper, and indicates that the 
elastic region at least is large enough to be treated 
with a continuum, rather than an atomistic, theory. 
Furthermore,  the dimension D is not inconsistent 
with observations of  dislocation arrangements in 

Shielding Ratio from Self-Consistent FEM 
Formulat ion  ( ~  = 0.6 and o* = 0) 
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Fig. 9. Shielding ratio (expressed as the ratio Gf, dG,p as well 
as Kr, dK,,p) for ~t, = 0.6 (consistent with interpretation of D 

as nominal dislocation spacing 1/x~d,~ and a* = 0. 
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Fig. 10. Same as Fig. 9, but for ct, = 8.0 (consistent with 
interpreting D as cell size) and a* = 0. The shielding effect 

is substantially decreased. 

moderately hardened metals: whereas a well-annealed 
crystal is expected to have a dislocation density of  
about  l0 H m -2, corresponding to D/b ~, 10,000, a 
strongly hardened metal might have a density of  
l0 ~5 m--', corresponding to D/b-~  100. The conver- 
sions here assume D = l/x/' p. 

Of particular interest are the phenomenally large 
shielding ratios predicted by this model, as seen in 
Figs 9 for ~, = 0.6 and tr* = 0. The applied G needed 
to maintain stable crack growth must range up to 
four orders of  magnitude in excess of  G at the tip. 

For  the purposes of  making contact with one of  the 
types of  experimental observations that motivated 
these calculations, consider the case of  gold-sapphire 
interfaces. Al though 27,,, for the interface has been 
estimated to be approximately 0.6 J /m 2, the actual G 
associated with crack propagation is observed to be 
in excess of  200 J /m 2 [3]--implying a shielding ratio 
of  at least 300. When 7m,/aob decreases by a factor o f  
2 (which is what is approximately expected to occur 
when, for example, carbon is introduced into the 
gold-sapphire system [3]), the present calculations 
predict that the G to maintain steady crack growth 
decreases by slightly less than one order of  
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magnitude. Such a behavior is actually observed in 
the gold-sapphire system [3]. While we do not suggest 
that the mechanism analyzed in this paper is entirely 
responsible for the observed mechanical response of  
the gold-sapphire system, it does raise the possibility 
that an elastic-cell mechanism for cleavage in the 
presence of  plastic flow is possible and may be 
relevant for certain systems. Although the theoretical 
result is not yet directly applicable to metal-ceramic 
interfaces (e.g. the model presented thus far is applic- 
able to homogeneous material loaded in mode I). the 
result is encouraging and suggests, in a quantitative 
way, a formalism with which to calculate the various 
dissipation mechanisms in bimaterial fracture. More  
details pertaining to the potential application of  ideas 
in this paper to metal-ceramic systems may be found 
in Ref. [42] and references therein. 

Finally, let us consider the effect of  (r*(T), which 
is critical to understanding the brittle to ductile 
transition with increase of  T predicted by the present 
model. Figures 1 l(a)-(c) show the shielding ratio for 
the three hardening exponents N = 0.0, 0.1 and 0.2, 
respectively, for a range of  ratios a*/ao, necessarily 
less than unity since a* is one of  the components  of  
a0[ = a,o~ of  equations (4) or (14) at the start of  
deformation]. 

The effect of  decrease of  T, hence increase of  a*, 
is twofold: first, because a*/a,, increases, one moves 
to a lower curve in Fig. 11, i.e. to less shielding. 
Second, because increasing a* increases a0 equally, 
the value of',,,,,/~,aob is reduced, and hence one moves 
to the left along the horizontal axis, which further 
diminishes the shielding. 

This is further illustrated by a set of  points, A, B 
and C marked on Figs l l(b) and (c). Point A 
corresponds to a high enough temperature that a* 
makes a negligible contribution to the yield strength, 
a*/a0 ~ 0. It has been located for this illustration at 
7~°,/~aob = 100: such would, for example, correspond 
to ~, = 0.6 and to a material with 7m,/pb = 0.079 (like 
for ~-Fe, Table 1) and with a dislocation content 
such that its high-temperature yield strength is 
a0 = 5 x 10 -4 E(i .e.  pd,~ ~ 10 ~3 m--'). Let us write this 
high temperature strength a,, as 0.6 Eb/Do. Then, if 
the temperature is reduced enough so that a* rises to 
0.6 Eb/D,,, ~ has been doubled and the conditions 
correspond to point B in the figures, at which 
a*/ao = 0.5 and ;,~o,/~,aoh = 50. Thus for the case 
N = 0.1, Fig. l l(b), this temperature reduction has 
reduced the shielding ratio G,~/2;',,, from ~3000 at 
point A to ~ 9 0  at point B: for N = 0.2, Fig. 1 l(c), 
the reduction is from ~ 1000 at A to ~ 50 at B. These 
are substantial reductions and indicate a strong effect 
of  temperature change. Point C corresponds to a yet 
more substantial temperature reduction at which 
there is assumed to be a 3-fold greater increase of  a*, 
to 1.8 Eb/Do. Then ~0 is doubled again, to four times 
its high-temperature value, so that a*/a,, = 0.75 and 
7,,,/e~aob = 25; the shielding ratio drops to ~ 5  for 
N = 0 . 1  and to ~ 7  for N = 0 : 2 .  

Data on relatively pure Ti-gettered Fe and F e - C o  
alloys presented by Leslie [43] shows (his Figs 5. 13 
and 26) that in the range where ~, begins to show 
pronounced temperature dependence, a reduction of  
temperature of  roughly 40-50 K would suffice to 
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Fig. 11. Shielding ratios as a function of a*; note the 
associated dramatic decrease in apparent toughness with 
increase of g*. Transition from A to B corresponds to 
doubling of yield stress a0 through an increase of its 
temperature-dependent part a* by an appropriate reduction 
of temperature. Transition from B to C corresponds to a 

further doubling of yield stress. See text for details. 
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accomplish the increase of  yield strength of  a* 
envisioned in going from point A to B. e.g. a* 
increasing by about  5 × 10-~E to double the yield 
strength. Thus the predicted behavior does seem to 
have the relatively rapid variation with T that one 
generally associates with the brittle to ductile 
transition in metals. 

In considering the T dependence of  this predicted 
response, it is good to remember that the present 
model is based on the assumptions that: (a) the crack 
tip is non-emitting; (b) the failure mechanism is by 
cleavage: and (c) failure takes place under plane 
strain small-scale yielding conditions. While all of  
these assumptions may in some cases be valid at low 
enough T, one or more may fail with increasing T, 
so that the increase of  G,~, implied, e.g. by change 
under increasing T from point B to A in Fig. 11, will 
not necessarily be realized. This is because: (a) 
dislocation generation from non-emitt ing tips is 
prohibited by an energy barrier which may be 
breached by thermal activation at higher T; (b) at 
such high Gf~/G~,p values as predicted at higher T, 
failure by hole nucleation and growth may occur 
before the cleavage condition is met; and (c) the 
larger Gf,~ values may be inconsistent with small-scale 
yielding and plane strain constraint, so that failure 
occurs by general yielding. 

We conclude that our present self-consistent 
elastic-plastic analysis of  the elastic strip model leads 
to qualitatively, and perhaps quantitatively, sensible 
descriptions of  cleavage cracking in metals with large 
densities of  relatively mobile dislocations. For  the 
future, it will be important  to find more realistic 
representations than the elastic strip of  the potentially 
elastic cores existing near a crack tip due to the 
discreteness, or granularity, of  the plastic flow 
process, and to bridge between the present type of  
cleavage model and models based on viscoplastic 
resistance to flow. 
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