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Abstract. We analyze the conditions for unstable slip of a fluid infiltrated fault
using a rate and state dependent friction model including the effects of dilatancy
and pore compaction. We postulate the existence of a steady state drained porosity
of the fault gouge which depends on slip velocity as ¢s5s = ¢o + €ln(v/vp) over the
range considered, where v is sliding velocity and ¢ and vy are constants. Porosity
evolves toward steady state over the same distance scale, d., as “state.” This
constitutive model predicts changes in porosity upon step changes in sliding velocity
that are consistent with the drained experiments of Marone et al. (1990). For
undrained loading, the effect of dilatancy is to increase (strengthen) 07,5/0lnv by
pss€/(o — p)B, where p,s is steady state friction, o and p are fault normal stress
and pore pressure, and [ is a combination of fluid and pore compressibilities.
Assuming € ~ 1.7 x 10~* from fitting the Marone et al. data, we find the “dilatancy
strengthening” effect to be reasonably consistent with undrained tests conducted
by Lockner and Byerlee (1994). Linearized perturbation analysis of a single degree
of freedom model in steady sliding shows that unstable slip occurs if the spring
stiffness is less than a critical value given by ket = (6 —p)(b—a)/dc —epss F(c*)/Bd.
where a and b are coefficients in the friction law and F(c*) is a function of the
model hydraulic diffusivity ¢* (diffusivity/diffusion length?). In the limit ¢* — oo
F(c*) — 0, recovering the drained result of Ruina (1983). In the undrained limit,
¢* — 0, F(c*) — 1, so that for sufficiently large ¢ slip is always stable to small
perturbations. Under undrained conditions (¢ — p) must exceed euss/B(b — a) for
instabilities to nucleate, even for arbitrarily reduced stiffness. This places constraints
on how high the fault zone pore pressure can be, to rationalize the absence of a
heat flow anomaly on the San Andreas fault, and still allow earthquakes to nucleate
without concommitant fluid transport. For the dilatancy constitutive laws examined
here, numerical simulations do not exhibit large interseismic increases in fault zone
pore pressure. The simulations do, however, exhibit a wide range of interesting
behavior including: sustained finite amplitude oscillations near steady state and
repeating stick slip events in which the stress drop decreases with decreasing
diffusivity, a result of dilatancy strengthening. For some parameter values we
observe “aftershock” like events that follow the principal stick-slip event. These
aftershocks are noteworthy in that they involve rerupture of the surface due to the
interaction of the dilatancy and slip weakening effects rather than to interaction
with neighboring portions of the fault. This mechanism may explain aftershocks
that appear to be located within zones of high mainshock slip, although poor
resolution in mainshock slip distributions can not be ruled out.

Introduction

In the past decade there has been a great deal of ex-
perimental and theoretical research on the nucleation
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of earthquake slip. Much of this work has stemmed
from laboratory friction experiments which showed that
the coefficient of friction depends on the history of past
slip as well as current slip rate [Dieterich, 1978, 1979).
These results led to the development of so-called rate-
and state-dependent friction laws [Ruina, 1983]. These
constitutive laws provide a reasonable explanation for
the continuous transition from static to dynamic fric-
tion that must occur in nature. Analyses of elastic
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systems with rate- and state-dependent friction exhibit
both unstable and stable slip depending on elastic stiff-
ness, in accordance with laboratory observations [Di-
eterich, 1979; Ruina, 1983; Gu et al., 1984]. Further-
more, the dependence of frictional strength on slip his-
tory offers some explanation for the restrengthening of
faults between earthquakes, so that models employing
these constitutive relations lead naturally to repetitive
earthquake cycles. For these, and other, reasons, nu-
merous modeling studies have employed rate- and state-
dependent friction laws [T'se and Rice, 1986; Dieterich,
1986, 1987 ; Stuart, 1988; Tullis, 1988; Horowitz and
Ruina, 1989; Dieterich, 1992; Rice, 1993].

A limitation of the aforementioned analyses is that
they do not explicitly account for variations in pore fluid
pressure within the fault zone accompanying fault slip.
It has been suggested by a number of workers that ele-
vated fluid pressures play an important role in reducing
frictional heat production and determining the state of
stress near major fault zones [Lachenbruch, 1980; Rice,
1992; Byerlee, 1990, 1993]. It is well known that in-
creases in pore pressure can destabilize faults by de-
creasing the effective normal stress. On the other hand,
shear induced dilatancy will increase effective normal
stresses and act to stabilize faulting [e.g., Rice, 1975;
Rudnicki and Chen, 1988].

Laboratory experiments at high temperatures and
pressures have shown that shear induced pore com-
paction can lead to high pore pressures and low fric-
tional strengths [Blanpied et al., 1991, 1992]. Sleep and
Blanpied [1992], building on ideas of Sibson [1992] and
Sibson et al [1988], presented quantitative models of
the earthquake cycle with transiently high pore fluid
pressures. During the interseismic period, creep pro-
cesses cause pore compaction and increased pore fluid
pressure within the fault zone. In some models [Sleep
and Blanpied, 1992, model 3, figure 2] the pore pres-
sure within the fault zone may nearly equal the least
principal stress acting on the fault zone. Pore pres-
sures continue to rise until a Coulomb slip condition is
reached and a model earthquake occurs. Dilatancy ac-
companying the rapid slip event causes the pore fluid
pressure to drop and the cycle to begin anew.

There are a number of unresolved issues concerning
models of this sort. Sleep and Blanpied [1992] did not
consider an explicit instability condition; model earth-
quakes were imposed when the Coulomb slip condition
was met. It is not clear in these models, therefore,
whether an inertially limited slip event would occur or
whether the fault would simply creep in a stable man-
ner. There are two factors that tend to favor stable slid-
ing. The first is shear-induced dilatancy, as discussed
above. The second is that low effective normal stresses,
themselves, limit the magnitude of strength drops and
thus promote stable slip.

More recently, Sleep [1995] presents numerical cal-
culations which include slip weakening, following from
rate- and state-dependent friction, frictional dilatancy,
and thermal pressurization due to shear heating [Sib-
son, 1973; Lachenbruch, 1980; Mase and Smith, 1987].
In these models it is assumed that dilatancy continues
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during dynamic rupture at a rate which is just suffi-
cient to neutralize fluid expansion and pressure rise due
to shear heating. Rice [1994] presented crustal scale
instability analyses for a model like that of Rice [1993]
but including pressurization by shear heating in the ab-
sence of dilatancy.

In this paper we attempt to unify the two classes of
earthquake models discussed above. That is, we accept
that stick-slip instabilities occur under fully drained
(constant pore pressure) conditions, as they surely do
in laboratory experiments. We also recognize that fault
zone materials are likely to undergo shear induced di-
latancy. Our goal then is to understand the conditions
for unstable slip in saturated fault zone materials that
exhibit dilatancy and pore compaction. We do not con-
sider shear heating here.

Experimental Results

It is well known in soil mechanics that when subject
to shear, loose sands and underconsolidated clays com-
pact while dense sands or overconsolidated clays dilate
[Lambe and Whitman, 1969]. It has been observed that
with ongoing deformation the porosity tends to a single
value, sometimes termed a critical porosity, or critical
void ratio [Schofield and Wroth, 1968]. Similar behavior
has been observed for simulated fault gouges by Mor-
row and Byerlee [1989], who noted that the amount of
dilation also depends on strain rate.

Marone et al. [1990] conducted velocity-stepping ex-
periments in which the porosity changes were measured
under nominally drained conditions. In these exper-
iments, water saturated layers of Ottawa sand were
sheared between 45° surfaces in steel cylinders. The
steel surfaces were roughened to prevent slip from lo-
calizing at the sand-steel interface. Three holes into
the gouge layer allowed pore pressures to equilibrate
with an external fluid reservoir. In the experiments dis-
cussed here the gouge layers were 4.0 mm thick. Exper-
iments were conducted at effective normal stresses of 50
and 150 MPa [see Marone et al, 1990; Figures 4 and
11]. In all of the experiments the gouge undergoes an
initial compaction followed by a long-duration dilation.
The long-duration dilation may be due to experimental
set-up or the way in which the artificial gouge is pre-
pared. In either case, it clearly can not continue indef-
initely. To focus on the short-term changes in porosity
accompanying changes in sliding velocity, we fit a poly-
nomial to the porosity-displacement records and remove
the long-wavelength effects (Figure 1). The residual
porosity variations show a systematic response to step
changes in velocity.

Step increases in velocity are accompanied by in-
creases in porosity (dilatancy), whereas step decreases -
in sliding velocity are accompanied by decreases in
porosity (compaction). With continued sliding at con-
stant velocity the porosity tends toward a “steady
state” porosity, although this is less clear in the 50-MPa
experiment. The distance scale over which the porosity
evolves toward the new steady state is comparable to
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Figure 1. Friction and porosity variations accompanying step changes in sliding velocity, from
Marone et al. [1990]. (top) Frictional response at (left) 150 MPa and (right) 50 MPa effective
normal stress. (bottom) Changes in porosity. Residual porosity variations are shown after re-
moving polynomial fits to the data (dashed lines). The absolute level of detrended porosity is

arbitrary.

the distance scale over which the frictional resistance
evolves, suggesting that these processes are linked.

Lockner and Byerlee [1994] conducted similar exper-
iments under both nominally drained and undrained
conditions. In the drained experiments a single hole
allowed fluid communication between the gouge layer
and an external reservoir. The drill hole is not present
in the undrained experiments. Ottawa sand was placed
along a 30° roughened sawcut in Westerly granite cylin-
ders. Gouge thickness was 2.5 mm and the effective nor-
mal stress was 50 MPa. The drained tests conducted
by Lockner and Byerlee [1994] are qualitatively simi-
lar to those of Marone et al. [1990]. With undrained
conditions, however, Lockner and Byerlee [1994] find
a marked increase in the apparent frictional resistance,
which they attribute to decrease in pore pressure within
the gouge. We will return to a quantitative analysis of
these experiments after introducing the theoretical for-
mulation.

Constitutive Models

Drained Frictional Behavior

We will begin by adopting a simple form of the
Dieterich-Ruina friction laws for drained (pore pressure,

p, constant) deformation. In this class of constitutive
laws the coefficient of friction depends on the instanta-
neous sliding velocity v and the history of past sliding.
The later is incorporated through a state variable 6,
that may be interpreted to be the average asperity con-
tact time [Dieterich, 1979]. In particular, we take the
frictional resistance 7 to be given by

v 0
T = (0 — p)[po + aln— + bln—] (1)
Vo fo
where o is normal stress, p is pressure, a and b are con-
stitutive constants, vy and 6y are normalizing constants,

and po is the nominal friction (g = po for v = vy and
0 = 00)

To complete the description for drained deformation,
we must supply an evolution law for the state variable
6. Here we use the “slowness” or “aging” law formalized
by Ruina [1983] and used extensively by Dieterich,

4 __ o @)
dt d.
where d. is the characteristic displacement over which
the state variable evolves. Note that 6 has units of time
and increases linearly when the surfaces are in station-
ary contact. At steady state, 6;; = d./v, the time it
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takes the fault to slide a characteristic distance d.. The
evolution law (2) can be written as

do v

=700, 3
which makes clear that, at constant velocity deforma-
tion, the state evolves exponentially toward steady state
with a characteristic time of d./v. An alternate evolu-
tion law, called the “slip” law [Ruina, 1983], in which
6 — 0 as v — 0 as also been widely used. The slip law
also reduces to the form (3) for small departures from
steady state.

The steady state frictional resistance is given by

vSS
7ss = (7= p)lpo + (a = B)In(T=)]. (4)
For the simple spring slider system (Figure 2) in quasi-
static slip, the driving stress rate is given by

dr o
i k(v™® —v)

(5)
where k is the spring stiffness, v is the load point
velocity, and v is the slider velocity. It is known that the
spring slider system is conditionally stable depending
on the spring stiffness, k. When k exceeds a critical
value kcrjt small perturbations are damped, whereas for
k < ket small perturbations grow in amplitude. For
friction laws of the type discussed here, Ruina [1983]
showed that the critical spring stiffness is given by

1 Or,, _ (b—a)
2o = TP (6)

the latter equality holding for the case in which the
steady state friction is given by (4). This expression can
be modified for inertial effects, which become important
when mv? is no longer small compared to a(o — p)d.
[Rice and Ruina, 1983]; here m is the mass of the slider
per unit area of contact. We are primarily interested
here in cases of steady state velocity weakening (b > a)
since they can lead to instabilities under drained con-
ditions (6), and we wish to see if and how dilatancy
and incomplete drainage might stabilize them. Note
also that the critical stiffness tends toward zero as the
effective stress is reduced. That is, high ambient pore
pressure promotes stable sliding as discussed in the in-
troduction.

kcrit = -

%
Y k
T — AN NN —eL5
—
R R o
= fault pore pressure ,
diffusivity = c* § \p¢ _ porosity |

<+——— p” = pore pressure in
surroundings

Figure 2. Simple spring slider model.
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Governing Equation for Fluid

Continuity of fluid mass in a relatively rigid solid
skeleton implies

% 4=,

7

Bz, (7)

where q is the fluid mass flux and m is the fluid mass

per unit volume of rock. Darcy’s law relates fluid flux
to pore pressure gradient, via

K Op

- e 28 8
& o oz; (8)
where pg is the reference fluid density, k is the perme-
ability, and v is the pore fluid viscosity. The rate of

change of fluid mass can be written as

m = p¢ + ¢p = po + (pBsp), (9)

where ¢ is porosity and 8y = (1/p)(0p/0p) is the fluid
compressibility. Following Walder and Nur [1984], we
distinguish between elastic and plastic pore deforma-
tion and define an elastic pore compressibility, 84 =
(1/¢)(0¢/0p). Here we neglect full poroelastic coupling
and assume that the variation in porosity with respect
to pore pressure is for fixed stress normal to the fault
zone and fixed strain parallel to the fault zone. Writ-
ing the change in porosity as the sum of an elastic and
plastic component ¢ = ¢84p + Pplastic and substituting
into (9), we find

= p[6(B; + Bs)P + Pplastic)-

For undrained conditions, m = 0, (10) gives

(10)

_ d’plastic
o(Bs +Bs)

For compaction, @piastic < 0, the pore pressure in-

creases, and for dilation, @pjastic > 0, the pore pressure
decreases, as expected.

Substituting (10) and (7) into (8), we find that pore
pressure satisfies a diffusion equation, in which the in-
elastic pore compaction acts as a source term

p= (11)

2 @ _ ¢ lastic
Vip—o = ————pﬁ (12a)
B = ¢(Br+Bys) (12b)
c = % (12¢)

[Walder and Nur, 1984]. In the lumped parameter
model discussed here, the pore pressure is assumed to
follow

w—

@ _ éplastic

Here p refers to the pore pressure within the fault zone,
p* refers to the pore pressure in the surroundings, and

c*(p



SEGALL AND RICE: DILATANCY, COMPACTION, AND SLIP INSTABILITY

the diffusivity is ¢* = ¢/L? = k/vpL?, where L is
a characteristic diffusion length. This approximation
(13) has previously been used by Rudnicki and Chen
[1988] in an analysis of laboratory experiments. It may
also reasonably apply if the the actively slipping zone
is bounded by a cemented border of thickness L which
has lower permeability than either the fault zone or the
surrounding rock mass. For a homogeneous distribu-
tion of properties, L is most naturally associated with
the size of the slipping patch; however, a more complete
analysis will be necessary to examine this case.

To complete the system, we must have constitutive
equations that describe the plastic pore volume change.
These are discussed in the next section.

Constitutive Equations for Porosity

Following the critical state concept in soil mechan-
ics, we postulate the existence of a steady state poros-
ity, although here we regard that value as a function of
velocity. The experimental data discussed above sug-
gests that at constant slip speed porosity evolves to-
ward steady state over a distance d.. Thus, by analogy
with (3), we consider the simple evolution equation for
porosity

. v
b=—T(6-bu), (14)
c
where here, and in what follows, it is implicit that we
are referring to inelastic changes in pore volume, i.e., ¢
corresponds to @pjastic-

As a starting point, we take the steady state porosity
to depend only on velocity. Rapid rates of deformation
correspond to greater steady state porosities, while slow
rates of deformation correspond to low values of poros-
ity. We postulate the following relation:

¢ss = Po + Eln(:_o) (15)

where ¢ is a “dilatancy coefficient.” Note that the sub-
stitution of (15) and (14) into (13) shows that ¢ and
B influence the stress and slip history only through the
ratio /0.

Equation (15) is incomplete in that it does not limit
¢ to the range 0 < ¢ < 1. A more general expression
for ¢,, incorporating lower and upper bounds is given

by
sy = €ln [—c“’ + CZ]

1
csv+1 (16)

The lower bound on porosity is ¢min = ¢ln(ca), the
upper bound is ¢max = £ln(cy/c3). The porosity “sat-
urates” at a velocity of 1/c3. At this stage we have
not considered a dependence of € on effective stress, al-
though it seems plausible that ¢ might decrease with
increasing effective stress.

We use (15) and (14) in the present study; however,
it should be pointed out that these equations predict
no compaction when the fault slip rate vanishes. On
the other hand, both bare granite surfaces and simu-
lated granite gouge do show continued porosity reduc-
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tion in stationary contact (N. Beeler and T.E. Tullis,
unpublished manuscript, 1995). An alternate formula-
tion, following Sleep [1995], would be to assume that
the porosity is function of state, ¢ = ¢(6), so that the
evolution of § implies an evolution of ¢. If we employ
the “slowness” form of the state evolution equation (2 ),
then ¢ will evolve in stationary contact. In particular,
if we adopt

’000

6= 6o = eln(5) (17)

then the steady state porosity is identical to (15), since
0ss = dc/v. However, from (17) and (2), ¢ decreases
with the logarithm of time when v = 0, which is quali-
tatively different from (15) and (14). Although the al-
ternate formulation is distinct, it leads to identical pre-
dictions when we study small perturbations from steady
state sliding in the section on stability analysis.

Comparison With Experimental Data

In Figure 3 we compare the detrended data from
Marone et al. [1990] at an effective confining pressure of
150 MPa with the simple constitutive model described
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Figure 3. Comparison of observed and predicted re-
sponse to step increase and decrease in velocity. Initial
sliding velocity is 1.0 p m/s. There is a step up to 10.0
u m/s and then back to 1.0 g m/s. (a) Observed and
modeled change in porosity. The “observed” porosity
is after removal of polynomial as in Figure 1. The solid
curve shows the predictions using (14) and (15), while
the dashed curve shows the predictions for (17). (b)
Observed and modeled frictional response.
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above. We model the experiments, using methods de-
scribed in a later section, including the finite elasticity
of the loading system. As discussed above, the porosity
evolves over roughly the same distance scale as the fric-
tion coefficient, that is there is a single d, in (2) and (14)
or (17). Both constitutive forms, either (14) and (15)
or (17), fit the data equally well (Figure 3). By com-
paring the laboratory data to the simulations (by eye)
we infer that the critical displacement d. is roughly 0.02
mm and that the dilatancy coefficient ¢ is 1.7 x 10~%.
We also infer a = 0.010, b = 0.006, and a machine
stiffness of the order of 200 MPa/mm. Improved esti-
mates could be obtained with a more formal data fitting
scheme [Reinen and Weeks, 1993]. Note that the data
at 50 MPa do not clearly approach steady state poros-
ity but nevertheless suggests a somewhat larger value
of €. The drained experiments of Lockner and Byerlee
[1994] are not as easily interpreted but imply a larger
dilatancy coefficient.

We would hope to be able to use the results of mod-
eling the drained experiments of Marone et al. [1990] to
predict the dilatancy strengthening measured by Lock-
ner and Byerlee [1994]. Both studies used Ottawa sand
to simulate fault gouge; however, other features of the
experiments are different, so that we do not expect per-
fect agreement.

Stability under drained conditions depends on the
steady state dependence of friction on the logarithm of
velocity (equation (6)). From 7 = p(e — p) and the
chain rule for differentiation, we may express

drys | drys
dinv|, — dinv|,

dp
—H dlnv |,

(18)

where the m subscript indicates undrained conditions
(constant fluid mass) and the p subscript indicates
“drained conditions (constant p). Using (11) and (15),

dp | _ ( dp déss _ —€
dinv |~ (dd),,)m dnv ~ B (19)

This shows that an undrained test will behave like a
drained test; however, the steady state velocity depen-
dence will increase (strengthen) by an amount equal
to pe/B. Dividing both sides by the nominal effective
stress allows us to estimate the dilatancy strengthening

by

dppss | _
dinv |, -

dpss _
dnv |

He
(e —p)o(Bs +B4)

(20)

Lockner and Byerlee [1994] estimate dilatancy strength-
ening to be in the range 8 to 9 x10~2 (dimensionless).
In their experiments, o = 100 MPa, the effective stress
is (0 —p) = 50 MPa, and the nominal friction coefficient
is g = 0.7. The porosity of the gouge is roughly 10%
(D. Lockner, personal communication, 1994). The com-
pressibility of water is f; ~ 4 x 10~* MPa~!, and we
may read from Figure 2 of Zoback and Byerlee [1976]
that the elastic compressibility of Ottawa sand at 50
MPa effective stress is B4 ~ 1 x 1073 MPa™!, so that
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= ¢(By + By) ~ 1.4 x 107%. Using the value of ¢
determlned from the Marone et al. [1990] experiment,
we calculate the strengthening to be 1.6 x 10~2. This
is comparable to, but about a factor of two larger than
the values determined by Lockner and Byerlee [1994].
On the other hand, ¢ inferred from Lockner and By-
erlee’s drained experiments would be consistent with
the undrained results only if the pore compressibility is
considerably greater.

Stability Analysis

In this section we present a linearized stability anal-
ysis of the single degree of freedom system for arbitrary
diffusivity. At equilibrium the frictional resistance and
the spring force are balanced

(0 —p)u(v,8) = k(v™t — u) (21)
where u is displacement, ¢ is time, and the steady state
values of the variables are vy; = v™°; 0,5 = d./v™°; pss =
p®;Tss = (0 —p )u,,, as given by (4), and @55 =
51n(v°°/vo)

Linearizing (21) about steady state, assuming that
normal stress is held constant yields

)
Av+ (0 - p)os

op
(@ =P3, 26|,

88

Af — pg Ap = —kAu

22
where the A notation signifies departures from ste(ad))'
state. The partial derivatives are evaluated from (1)
and considered constants from this point onward in the
stability analysis. The state evolution (2) and porosity
evolution equation (14) are also linearized, along with
the pore pressure diffusion equation (12), as is the rela-
tion between displacement and velocity. This yields

a .. bv> .
(0-p)—Ab = —(0-p 7 Ap
—kAv (23a)
: v 1
6 = L _Ap-—
A A0 — A (23b)
Ad = —ZZAs+ S (23c)
- d. d.
Ap = —% —c*Ap (234d)
Au = Av (23e)

Equations (23) represent five equations in the five un-
knowns: Av,Af, Au,Ap, and A¢. Solutions are sought
of the form Ap = Pe®*, Af = Qe®!, Av = Ve'l A¢d =
®e’t. Substitution of these forms into (23) yields a poly-
nomial equation in s, the roots of which determine the
system behavior. If the real part of the roots s; are neg-
ative for all j, the system is linearly stable. If ®(s;) > 0
for some j, then the system is unstable.
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From Appendix A we find that the system is unstable
if the spring stiffness is less than a critical value given
by

(b—a) epss *
0 gy ()

kerit = (‘7 - p)_ ﬂd

where the function F(c*) is given by

[1+/2\+7 _\/(1+/\4+7)2 _7}25@

y - Blo—pa &

I

F(c")

T pee €41 (25)
Ble—p)(b—a) 1
7= Hss€ £+ 1 (25C)
and
c*d,
£ = = (26)

is the ratio of the characteristic time for state evolution
to the characteristic time for pore fluid diffusion. In
the limit that ¢* — oo, ¥ — 0, and F(c¢*) — 0, which
recovers the drained result of Ruina [1983].

The dependence of critical stiffness on diffusivity
c*d,/v*™ is illustrated for a particular set of parame-
ters in Figure 4. With a stiffness slightly in excess of
the critical value, k/kcriy = 1.05, a small perturbation

1
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10° 10? 107" 10° 10' 10° 10

%
Diffusivity, S-9¢
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Figure 4. Critical spring stiffness dependence on nor-
malized hydraulic diffusivity. Curves represent the ana-
lytical solution given by equation (24) for different val-
ues of €. Open circles represent critical stiffness deter-
mined from numerical simulations for ¢ = 1.0 x 10~3.
Letters refer to solutions shown in Figure 5. Dotted line
approximately locates the boundary between limit cy-
cles and unstable solutions, in the sense of approaching
infinite velocity, for € = 1.0 x 103, Other parameters
are b—a = 0.005, d. = 10 mm, 0 —p = 150 MPa,
B=1.0x10"2 MPa~!, and pu,, = 0.64.

22,161

in velocity causes decaying oscillations in stress (Fig-
ure 5, curve A), as well as sliding velocity, porosity, and
pore pressure. If the stiffness drops below the criti-
cal value, e.g., k/kcric = 0.95, the oscillations increase
in amplitude with time (Figure 5, curve B). The lin-
earized analysis does not predict the behavior of the
system once the amplitude of the oscillations becomes
large. We have conducted numerical solutions of the
full set of nonlinear equations (1), (2), (13), (14), (15),
and (21), using techniques described in a subsequent
section on simulation. We observe that for some range
of k/keit < 1.0 that finite amplitude quasistatic oscil-
lations persist for indefinite time, that is the system of
equations exhibits a limit cycle. The transition from
a stable point to a limit cycle represents a Hopf bi-
furcation at k/kcrit = 1.0. According to the theory of
Hopf bifurcations, the amplitude of the stable oscilla-
tions should increase with decreasing k/kcit, as is ob-
served in Figure 5. If k/kc¢ is sufficiently small, stable
limit cycles can not exist and the slip speed becomes
unbounded in finite time (Figure 5, curve E).

Figure 4 illustrates the three types of possible behav-
ior: a field of damped oscillations, a field of unstable
slip, and an intervening field of finite amplitude oscilla-
tions. For sufficiently low diffusivities (c*d./v>® < 0.1)
the deformation is essentially undrained and finite am-
plitude oscillations can not exist for the one state vari-
able friction law employed here. Interestingly, finite
amplitude stick-slip like oscillations can exist even for
c*d./v>® > 10, conditions that would appear nominally
drained. The reason for this is that fluid flow into the
fault zone can not keep up with dilatancy at the high
slip speeds obtained in these cases. Including inertia we
would find that at sufficiently high diffusivity the finite
oscillations would give way to dynamic stick-slip cycles.

Implications

In the limit of low hydraulic diffusivity, ¢* — 0, A —
0, and the function F(¢*) — 1. In the undrained limit
the critical stiffness is thus given by

Efss

1
kcrit—undrained = d— (‘7 - p)(b - a) - (27)

c

Since the critical stiffness must be nonnegative for un-
stable slip to occur, equation (27) places strong limits
on the conditions under which fault slip instabilities can
nucleate under undrained conditions. For example, if
we take (o0 — p) = 180 MPa (lithostatic minus hydro-
static load at 10 km); b — a = 0.0025 [Kilgore et al.,
1993], pys = 0.64, and B = 5 x 10~* MPa™! (see be-
low), then ¢ < 3.5 x 10~* for unstable slip to occur.
Interestingly, the critical dilatancy coefficient is twice
that estimated from Marone et al.’s [1990] experimen-
tal data. If € from such data is appropriate for crustal
faulting, then instabilities can occur under undrained
conditions. If € exceeds this critical value, then insta-
bility will be suppressed. It may be that this occurs at
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Figure 5. Numerical solutions showing the response to a small perturbation in velocity for
different values of k/kerit. 7 is in units of megapascals; the curves have been offset vertically

for clarity. Letters are keyed to the points in Figure 4. Curve A, k/key; = 1.05;

curve B,

k/keric = 0.95; curve C, k/kerit = 0.75; curve D, k/kcrit = 0.4; curve E, k/keit = 0.3. Solutions
B, C, and D approach a limit cycle. Solution E is unstable. The diffusivity is ¢*d./v>™° = 2.0,
and the other parameters are as specified in Figure 4.

shallow depth on some faults and thus promotes stable
afterslip in some earthquakes.

To estimate 8 = ¢(B; + ), we choose By ~ 5x 10~*
MPa~! and ¢ = 0.05. This value of ¢ is at the
lower end of the observed range for well-sheared Ot-
tawa sand gouge in the laboratory for effective stresses
up to 150 MPa [Marone et al., 1990], but we use it be-
cause solution transport and mineralization processes
at seismogenic depths may lead to greater densification.
Bs[= ¢7104/0p] is estimated from data of David et al.
[1994], as the ratio of two parameters they call v and
a. They show in their Figure 7 that 84 ~ 1 x 1072
MPa~?! for crystalline rocks and tight sandstones con-
taining crack-like porosity, and 84 ~ 1 x 1073 MPa~!
for porous sandstones. We expect the former to be more
representative of fault gouge at seismogenic depths and
take B ~ 1 x 1072 MPa~! and ¢ = 0.05 which yields
B=5x10"* MPa~!.

Note also that for a given value of ¢, and other con-
stitutive parameters, pore pressure must be less than a
critical value for instability to occur at all, that is for a
sufficiently reduced k. Using (27), we find

p €p
s < 1 oB(b—a)
Assuming values given above appropriate for 10 km
depth, then the bounds on p/o are as given in Figure 6.
For example, assuming b — a = 0.0025 and ¢ estimated
from the Marone et al.’s [1990] data, the ratio of pore
pressure to normal stress must be less than 0.69 for in-

(28)

stabilities to nucleate under undrained conditions. For
¢ greater than 5.5 x 10™* the system is linearly stable
for all p/c > 0. Stated differently, equation (27) im-
plies that epu,, /(b — a) is the smallest value of (¢ — p)

1.0

08}

Stable

alo

0.6+
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0.0 .
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Figure 6. Limits on effective stress for slip instabilities
to nucleate in the absence of pore fluid flow. See equa-
tion (28). Values of parameters are u,, = 0.64, ¢ = 280
MPa, 8 = 5.0 x 10=* MPa~!. b—a = 0.0025 (solid
curve), b—a = 0.001 (dash dotted curve), b—a = 0.004
(dashed curve). Arrow marks the value of ¢ estimated
from the data of Marone et al. [1990].
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for which instabilities can occur under undrained con-
ditions. For the aforementioned parameters, c —p > 87
MPa for undrained instability to be possible. This cor-
responds to the difference between overburden and hy-
drostatic pore pressure at about 4.8 km, a depth above
which earthquake nucleation is rare. This is also in the
depth range of stable after slip, although this may also
result from a change in sign to b — a < 0 at low effec-
tive stress or in unconsolidated sedimentary cover, as
suggested by Marone et al. [1991]. If ¢ appropriate
for crustal faults is less than that for Ottawa sand, the
depth is correspondingly shallower.

Note that numerous workers have called for high pore
pressures to explain the apparent low frictional strength
of the on the San Andreas, including the lack of a mea-
surable heat flow anomaly. It was noted by Lachenbruch
[1980] that hydraulic fracturing limits pore pressures to
the least principal stress. Rice [1992] more recently
pointed out that the pore pressure within a mature
fault zone can exceed the least principal stress in the
crust outside the fault. It is worth noting that stability
considerations (equation (28)) also place limits on the
magnitude of the pore pressure in regions where earth-
quake slip can nucleate without fluid exchange with the
surroundings. Once dynamic slip is initiated it is pos-
sible for ruptures to propagate into regions where the
effective stress is low. Low effective stress (high fault
zone pore pressure) remains a viable explanation for the
general behavior of the central creeping zone of the San
Andreas, although some process must allow nucleation
of small earthquakes there.

Simulations

We can describe the system behavior in a set of cou-
pled first-order differential equations. We simulate iner-
tial effects using a radiation damping term [Rice, 1993],
so that the equation of motion becomes

ot —u) = (0= pu(v,0) =nv  (29)
where = G/2v,, G is the shear modulus and v, is the
shear wave velocity [Rice, 1993]. This radiation damp-
ing term is an alternative to use of mdv/dt. The latter is
correct for a lumped mass, but neither is fully suitable
to simulate faulting in a continuum; the former pre-
dicts no dynamic overshoot, but the latter greatly over-
predicts overshoot. In the simulations we sometimes

employ a larger value of ) for computational efficiency.
Differentiating (29) with respect to time leads to

o—p v

where 7 is given by (5) and # by (2). Note that pos-
itive stressing rate and increasing pore pressure cause
the fault to accelerate, as does decreasing contact time
(negative #). In addition to these equations we include
the state evolution equation (2), the elasticity equation

T+pp  bo
oc—p 0

l (30)
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(5), porosity evolution (14), and the diffusion equation
(13). We thus have the following system of equations
in the variables 6, 7, v, ¢, and p

% = 6(6,v) (31a)
% = i) (31b)
R ) (31c)
%’tf = p(p,¢,v) (31d)
% = i(pé0,0). (31e)

These coupled equations are solved using Gear’s [1971]
algorithm for stiff systems within MATLAB.

Figures 7, 8, 9, and 10 illustrate simulations in which
the only parameter that varies is the hydraulic dif-
fusivity c¢*, which is expressed in units of reciprocal
years. Parameter values are given in the captions; re-
call that slip and stress response depends on § and ¢
only through €/3. The parameters are specified such
that k/kcrit—drained = 0~1; but k/kcrit—undrained = 625’
that is the system is unstable to drained deformation
but stable to undrained deformation.

With infinite diffusivity (¢* = 10® years™!), the de-
formation is drained and repeating stick slip events with
a repeat time of roughly 80 years (Figure 7). With a
diffusivity of (¢* = 10 yr~!) there are stick slip events;
however, the stress drops are considerably smaller and
consequently the repeat time is reduced to roughly 30
years (Figure 8). Notice that the pore pressure drops by
nearly 15 MPa, which transiently strengthens the fault,
however for this diffusivity the pore pressure rapidly
recovers. With a diffusivity of ¢* = 0.1 yr~! the dila-
tancy strengthening effect is further enhanced and the
recurrence time is decreased to approximately 15 years
(Figure 9). Notice that following the “initial event”
the pore-pressure never significantly exceeds the far-
field value of 100 MPa. Finally, when the diffusivity
drops to ¢* = 0.01 yr~! (characteristic diffusion time
of 100 years) the system becomes effectively undrained.
Because of the choice of starting porosity, the fault ini-
tially undergoes a period of compaction. This causes
the pore pressure to rise and triggers a stick slip event
(Figure 10). However, following this initial event, the
system evolves toward stable sliding, as predicted by
the linearized stability analysis.

The transient dilatancy strengthening effect causes
the magnitude of the stress drop during the stick-slip
event to depend on the hydraulic diffusivity. Because
the coefficient of friction itself is coupled to pore pres-
sure, through dependence of the latter on slip speed, it
is not possible to separate the frictional resistance into
a drained component and a time-varying effective stress
as is the case for slip-weakening friction [Rudnicki and
Chen, 1988]. To see this, write the normalized shear
resistance to slip as
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Figure 7. Simulation of stick slip cycle for drained conditions (¢* = 108 yr—!). (a) Slip speed
(m/yr) versus time. (b) Fault stress (MPa) versus time. (c) Pore pressure (MPa) versus time.
(d) Porosity versus time. k/kcrit—drained = 0.1, k¥/kcrit—undrained = 62.5. pss = 0.64, 0 —p*> = 150
MPa, p® = 100 MPa, ¢ = 1.17 x 10~3, 8 = 1.0 x 10~3 MPa~!. b—a = 0.005, d, = 0.01 m,

and v*® = 0.03 m/yr.

(t)

o —p>®

= ‘(’7 ‘_‘;(Q u(t).

(32)

In Figure 11a we see that the effective normal stress
increases by ~ 10 % during a stick slip event. The fric-
tion coefficient p decreases by a slightly greater amount
(Figure 11b). The product of the two yields the nor-
malized shear stress variation (32), which is shown in
Figure 11c. Notice that the normalized stress drop is
only a few percent, which is much less than the drop in
u. Furthermore, both the drop in frictional resistance
and the drop in the coefficient of friction are less than
the drop in friction under drained loading conditions
(Figure 11d).

Dilatancy strengthening can have some interest-
ing consequences, including one or more repeated slip
events or “aftershocks” (Figure 12). In this case the
diffusivity is sufficiently high that the pore pressure re-
covers soon after the “main shock,” initiating a sec-
ond stress drop event. It is noteworthy that these “af-
tershocks” are caused by rerupturing the same surface
rather stress transfer to an adjoining part of the fault.
Altering the diffusivity changes the magnitude of the di-
latancy hardening effect and the timescale for the pore
pressure transient to decay. Increasing the diffusivity
diminishes the time to the aftershock as well as the
stress drop in the aftershock. In some cases, multiple
aftershocks occur (Figure 12). For very low diffusivities
the time for the pressure transient to decay is too long
and no aftershock occurs. For large diffusivities there

is no dilatant hardening and thus no residual stress left
to drive an aftershock.

Discussion

The simulations conducted here do not exhibit large
transient pore pressure increases between earthquakes
as could be attributed to the creep compaction mech-
anism discussed by Sleep and Blanpied [1992]. Rather,
we observed pore pressure drops associated with the
stick-slip events followed by recovery to values near to,
or slightly greater than, the far-field pressure. If the
initial porosity is greater than the equilibrium value,
an initial period of compaction may raise the pore pres-
sure significantly over the far-field pressure, triggering
an unstable slip event (e.g., Figure 9). However, this is
limited to the first stick-slip event and is not repeated
after the system stabilizes. o

While we are confident that the model presented
here represents laboratory results for smooth gouge-
filled faults with small displacements between instabil-
ities, there are a number of effects that may occur in
natural faults that are not accounted for. The consti-
tutive relations employed here do not explicitly include
viscous pore compaction as modeled by Sleep and Blan-
pied [1992]. Nor do we explicitly consider chemical ce-
mentation of faults between instabilities [Fredrich and
Evans, 1992; Blanpied et al., 1992]. Simulations using
the alternate constitutive law for porosity (17), which
does allow for (nonlinear) pore compaction under sta-
tionary contact, are qualitatively similar to those pre-



SEGALL AND RICE: DILATANCY, COMPACTION, AND SLIP INSTABILITY

a b
10° 105
100
> /
o0
e T
95
5
10 90
0 50 100 150 200 0 50 100 150 200
Time (year) Time (year)
c*=10/yr
c d
105 0.1
100
0.09
95
p ¢
0.08
90
85 0.07
0 50 100 150 200 0 50 100 150 200

Time (year) Time (year)

Figure 8. Simulation of stick slip cycle for hydraulic diffusivity ¢* = 10.0 yr~—!. (a) Slip speed
versus time. (b) Fault stress versus time. (c) Pore pressure versus time. (d) Porosity versus time.
Other parameters are as given in Figure 7.
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Figure 9. Simulation of stick slip cycle for hydraulic diffusivity ¢* = 0.1 yr~!. (a) Slip speed

versus time. (b) Fault stress versus time. (c) Pore pressure versus time. (d) Porosity versus time.
Other parameters are as given in Figure 7.

22,165



SEGALL AND RICE: DILATANCY, COMPACTION, AND SLIP INSTABILITY

a b
10" 105
100
10°
> 95
&
T 90
— 10°
85
10° 80
0 50 100 150 200 0 50 100 150 200
Time (year) Time (year)
c*=0.01/yr
c d
125 0.1
120
0.09
115
P 110 ¢
0.08
105
100 0.07
0 50 100 150 200 0 50 100 150 200

Time (year)

Time (year)

Figure 10. Simulation of stick slip cycle for hydraulic diffusivity ¢* = 0.01 yr=!. (a) Slip speed
versus time. (b) Fault stress versus time. (c) Pore pressure versus time. (d) Porosity versus time.

Other parameters are as given in Figure 7.

a b
o- - ool
SP o
o 0.65 | L
G_plos
| n |
0.6
1
0.95 0.55
150 160 170 180 190 150 160 170 180 190
Time (year) Time (year)
c d
0.68 0.75
T Udrained
T 067 0.7
po.ss 0.65 [ : A
|
0.65 0.6 : -1
n
0.64 0.55
150 160 170 180 190 150 160 170 180 190

Time (year)

Time (year)

Figure 11. Dilatancy strengthening. (a) Effective stress (o — p(t)) /(o — p™); (b) coefficient of
friction p(t); (c) normalized frictional resistance 7(t)/(o — p>); (d) comparison of normalized
frictional resistance and p(t) on the same scale. Note that dilatancy strengthening causes the
normalized shear stress drop to be much less than the drop in the coefficient of friction. The

drained behavior is shown for comparison.
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Figure 12. An example of model aftershocks induced by dilatancy strengthening. Dilatancy

strengthening limits the stress drop in the “mainshock”.

Rapid diffusion into the fault re-

stores the pore pressure and induces an “aftershock”. d. = 0.001 m, k/kcrit—drainea = 0.01,
k/kcrit ndrained = 6.25. Other parameters are as given in Figure 7. (left) The stress, pore pres-
sure, and slip speed for ¢* = 10? yr~!. (right) The effect of increasing the hydraulic diffusivity
c* by a factor of 10. Notice that the time axis is expanded to show the events clearly.

sented here. Inclusion of linear viscous pore compaction
is unlikely to alter our principal conclusions concerning
stability of fault slip. Viscous pore compaction could
slightly counter the effects of dilatancy, but only if the
characteristic time for pore compaction Bv, where v is
viscosity, is comparable to the characteristic time for
state evolution d,/v™. The latter is of the order of 1
year or less, for d. < 1 cm. Large-scale pore com-
paction during the interseismic period has the effect of
raising pore pressure and promoting stable sliding.

An alternate formulation for dilatancy , examined by
Marone et al. [1990] and N. Beeler and T.E. Tullis (un-
published manuscript, 1995), derives from an old, but
imprecise notion in soil mechanics that in the presence
of dilation the effective friction coeflicient is augmented
by the ratio of normal strain rate to shear strain rate
[e.g., Schofield and Wroth, 1968]. These strain rates are
#¢/(1—¢) and v/h, respectively, where h is the thickness
of the fault zone, so that

p=pa(v,0) + v—‘hL"

-9 (33)

where pj is some hypothetical coefficient of friction in
the absence of dilatancy, that is described in the form
of (1) but in which we replace a and b with a; and b;.
It is interesting to note that when combined with the
first formulation for ¢ and ¢, equations (14) and (15),
when there is a sudden change in velocity from say vg
at steady state to a new value v, the term h¢/v(1 — ¢)
changes suddenly by [he/dc(1 — ¢o)]ln(v/vg) and then
decays toward zero with ongoing slip. This is qualita-
tively similar to the basic friction effect described by
equations (1) and (2) with a = b = he/d.(1 — ¢p), so
that some aspect of the direct and evolutionary response
may be related to dilatancy. Nevertheless, the relation
is not simple, and does not explain steady state changes
in friction. Furthermore, for gouge, Marone et al. [1990]
and N. Beeler and T.E. Tullis (unpublished manuscript,
1995) suggest that he/d.(1 — ¢o) overestimates a by
several times, whereas the latter workers find that a is
reasonably estimated for bare granite surfaces. Note
that h¢/(1— ¢) is just the opening rate across the fault
layer. With this friction law (33) we have the remark-
able result that for linear perturbations about steady
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state, it yields identical predictions to the one based on
equations (1), (2), (14), and (15), so long as we identify
a=ay+ he/d.(1 — ¢o) and b = by + he/d (1 — ¢o).

Earthquakes for which coseismic slip at depth ex-
ceeds the slip at the Earth’s surface often exhibit stable
afterslip. Decelerating creep following the 1966 Park-
field earthquake is one example of this phenomenon.
Marone et al [1991] propose that earthquake afterslip
results from inherent velocity strengthening behavior
(a = b > 0) of shallow fault zone materials. To this
we add the possibility that shallow fault zone materials
may tend to be more dilatant, due to low lithostatic
stress at these depths, than the fault zone at seismo-
genic depths. The shallow fault zone response to rapid,
undrained, coseismic loading may be stabilizing if the
dilatancy coefficient is sufficiently large (see equation
(27).

Up to this point we have assumed that changes in
pore pressure alter the frictional resistance only through
the effective stress. That is, we have assumed that
changes in pore-pressure have no effect on the coeffi-
cient of friction, p. Linker and Dieterich [1992] show
that step increases in normal stress at fixed load-point
velocity cause transient decreases in y, followed by an
evolution back to steady state. They interpret this as
due to a normal stress effect on state and suggest evo-
lution laws of the form

do Ov

do af(o - p)
dt d,

b(o - p)

[Dieterich and Linker, 1992; equation (5)], where « is an
experimentally derived constant which takes on values
0.2 < a < 0.5. While this effect has yet to be demon-
strated for gouge-filled faults, the Linker-Dieterich nor-
mal stress effect can be expected to slightly increase the
critical spring stiffness as computed by (24). Dilatancy-
induced increases in effective stress cause a transient
decrease in state and thus in friction coefficient. This
weakening effect slightly, but never completely, counter-
acts the effect of dilatancy strengthening, as illustrated
in Figure 13. This shows that for given €, kcrit—undrained
does not vary significantly over the allowable range of
a, 0 < a < 0.5. An expression for the critical stiffness
under undrained loading (¢* = 0) including the Linker-
Dieterich effect is given in Appendix B.

Finally, it is clear that we do not accurately model
all processes active at high slip speeds. We have not,
for example, considered the effects of a high-speed “cut-
off” in the steady state weakening, nor the possibility
of undulations in normal stress from rapid sliding on
a rough surface. Furthermore, we have not considered
the effects of shear heating and thermal pressurization
of pore fluids. High-speed phenomena will not alter the
stability analysis which considers perturbations about
steady state. However, these phenomena could have a
profound effect on the simulations of the earthquake cy-
cle. In particular, dilatancy strengthening effects may
be completely negated at large slip by shear heating in-
duced thermal pressurization. This could considerably
alter the simulations exhibiting aftershock like behav-

(34)
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Figure 13. Influence of Linker-Dieterich normal
stress effect on critical stiffness for undrained loading.
Undrained critical stiffness normalized by drained value
is plotted as a function of dilatancy coefficient € for
a =0 and a = 0.5. Other parameters are b— a = 0.005,
d. =10 mm, c—p = 150 MPa, 3 =1.0x10"3 MPa™!,
and pss = 0.6

ior. A more fundamental problem (which we leave to a
following paper, but have partially discussed elsewhere
[Rice, 1994; Segall and Rice, 1995]) is to determine un-
der what conditions shear heating is capable of nucleat-
ing unstable slip in the absence of steady state velocity
weakening. Our considerations thus far suggest that if
d. is in the range of laboratory values, and thus consid-
erably less than the characteristic slip distance associ-
ated with shear heating, unstable friction as discussed
here will nucleate instabilities. Following the onset of
unstable slip, shear heating comes into play and may
control behavior for large slip magnitude.

There is evidence for aftershocks occurring within
mainshock slip zones. While aftershocks tend to be
concentrated around areas of high mainshock slip [Men-
odza and Harizell, 1988; Beroza and Spudich, 1988],
there are usually some aftershocks located within these
zones. For example, in the 1989 Loma Prieta earth-
quake, right-lateral aftershocks are found within the
zone of high mainshock slip southeast of the hypocen-
ter determined from the inversion of strong motion [e.g.,
Beroza, 1991; Steidl et al., 1991; Wald et al., 1991] and
geodetic [Arnadottir and Segall, 1994] data. Beroza and
Zoback [1993] found that 20% (191 of 979 events stud-
ied) of the Loma Prieta aftershocks fall into the cate-
gory of “delayed mainshock rupture” (G. Beroza, writ-
ten communication, 1995); that is, events for which the
mainshock reduces the shear traction and for which the
change in shear traction and aftershock slip vector act
in opposite directions. It is, of course, possible that the
slip inversions are inaccurate, although the general sim-
ilarity between inversions based on geodetic and strong
motion data suggests the overall slip pattern is signifi-
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cant. It is also possible that these aftershocks occur in
slip deficient zones that are too small to be resolved by
either data set. Nevertheless, the best available data do
suggest that aftershocks do occur in regions of signifi-
cant coseismic slip. Such events, if they occur, are not
easily explained by conventional models of aftershocks.
Dieterich’s [1994] analysis based on drained rate and
state dependent friction explains Omori’s law, assum-
ing that aftershock nucleation sites experience a static
increase in shear stress (or decrease in normal stress)
at the time of the mainshock. His specific calculations
are restricted to fault segments that were unruptured
in the mainshock. Nur and Booker [1972] discussed a
model for inducing aftershocks off the mainshock rup-
ture plane, by pore fluid flow, but again do not address
aftershocks within the mainshock slip zone. With the
caveats of the previous paragraph in mind, we suggest
that aftershocks within the mainshock rupture might
occur by a combination of mainshock dilatancy and sub-
sequent rapid repressurization of fault zone fluids.

Conclusions

Dilatancy of a fluid-saturated fault favors, but does
not require, stable sliding. Whether slip is unsta-
ble or not depends on the relative magnitude of fric-
tional (steady state velocity) weakening and dilatancy
strengthening. Creeping zones along faults, as well as
the tendency for shallow afterslip following moderate-
sized earthquakes, may reflect dilatant fault zone mate-
rials, low effective stresses, and/or steady state velocity
strengthening behavior. If ambient pore pressures ex-
ceed some fraction of the fault normal stress, or if effec-
tive stress is low enough, earthquakes cannot nucleate
under undrained conditions. Thus, while near litho-
static fault zone pore pressure may resolve the “weak
fault” problem, extreme pore pressures may at the same
time prohibit earthquakes from nucleating without fluid
exchange with the surroundings. If pressurized fault
zones are effectively isolated from adjoining crust, then
extremely high fault zone pore pressure may be a bet-
ter explanation for the central creeping zone of the San
Andreas fault than for the presently locked zones that
experience large earthquakes.

Our simulations with rate- and state-dependent fric-
tion and dilatancy exhibit complex behavior, including
rerupturing of the same fault surface due to dilatancy
strengthening during rapid slip followed by fluid flow
and recovery of pore pressure is observed under some
conditions. This may explain the apparent occurrence
of aftershocks within zones of substantial mainshock
slip. In general, many aspects of the system behav-
ior, including stress drop and recurrence time, depend
on characteristic time for fluid diffusion.

Appendix A: Stability Analysis

Substituting exponential forms Ap = Pe®!, Af =
Oe®?, Av = Ve®', Ag = ®e®! into the linearized equa-
tions (23) yields a cubic equation in s,
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( Jas = (o — p)b TS M rs? krd
g-p)as= P r+s B (c*+s)(r+s) rde
(A1)

where r = v /d.. The roots of (A1), s;, determine the
critical stiffness. First, note that in the limit that kd,
becomes infinite, that R(s;) < 0 for j = 1,2,3, so that
all perturbations from steady state are damped in finite
time. The critical stiffness is determined by the largest
value of kd. for which R(s;) > 0 for some j. Since no
root s = 0 exists with nonzero k, we assume that the

first root to cross to the real half plane does so at s = ip.
Thus, (A1) becomes

i(c —p)ap =
2
. Tp Hss€ rp
—p)b - - ;
o Y G
-Tr kcrit dc- (Az)

Equating the real and imaginary parts of (A2),

0 =
2 2 * 2
rp Bss€ _ rpi(re” — p?)
—p)b
I T T ) +
- r kcrit dc (A3a)
(60 —p)ap =
7°2P Hss€ TPS(C* + 7')
—p)b - :
(o P) 2+ p? 3 (r2+p2)[(c*)2 +p2]
(A3b)

Equations (A3a) and (A3b) give the solution for p, the
frequency of oscillation at neutral stability, and k.
Equation (A3a) can be put in a simpler form by dividing
the first by 7 and the second by p and then adding

2
Hss€ 4
keritde = (0 — p)(b— a) — —_—
critbc ( p)( ) ,B (C*)2 + p2
In the undrained limit ¢* = 0 this yields the result in the
text; p? is determined by (A3b). To do so, we introduce
the variable

(A4)

P

(C*)Q + p2 ’

Z =

(A5)

Introducing z into (A3b) yields a quadratic equation in
z

2Z2-(1+A+7)z+7=0, (A6)
where
_ Blo=pa)? .
A= /"3357"(0* + 7') (A7 )
v = ﬁ(o—p)(b—a)r. (A7b)

Hss€(c* + 1)
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Note that A > 0 as long as the effective stress is
compressive, and that ¥ > 0 if the system can exhibit
unstable slip under drained conditions (b—a > 0). Thus
solutions are

2

z:”“"i\/(l“”) — (A8)
2 4
It can be shown that term under the radical is always
positive and thus z is always real. Because ks de-
creases with increasing z the relevant root is the small-
est. Thus the critical stiffness is given by (24) of the
text.

Appendix B: Normal Stress Effect on
Critical Stiffness

In replacing (23b) with the linearized form of the
evolution law (34), we assume that the applied normal
stress is held constant, leading to

ag- Lapy 0% Ap.
bv(o — p)

Ab=—Al-75

(B9)

Following the procedure outlined in Appendix A
leads to an expression for the critical stiffness includ-
ing the Linker-Dieterich normal stress effect on state.
In order to keep the analysis tractable we restrict at-
tention to the undrained limit ¢* = 0. In this limit we
find

kcrit—undrained =

1 Elss
d—c{(f’—P)(b—a)— 5

«E

g

1-¢  [c=1)y )
X [ 7 T T tx (B10)
where
:6(‘7 _ p)b Hss
¢ 2ae 2a (Blla)
B(o — p)(b— a) Hss
X = 2ae 2 (BI1b)
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