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ABSTRACT 

We present a numerical formulation for three-dimensional elastodynamic problems of fracture on planar 
cracks and faults. Stress and displacement components are given a spectral representation as finite Fourier 
series in space coordinates parallel to the fracture plane. The formulation is based on an exact represen- 
tation, involving a convolution integral for each Fourier mode, of the elastodynamic relation existing 
between the time-dependent Fourier coefficients for the tractions acting on the fracture plane and for the 
resulting displacement discontinuities. A wide range of constitutive models can be used to relate the local 
value of the strength on the fracture plane with the displacement and velocity history. Efficiency of the 
code is achieved by using an explicit time integration scheme and by computing the conversion between 
the spatial and spectral distributions through a FFT algorithm. The method is particularly suited to 
implementation on massively parallel computers ; a CM-5 was used in this work. The stability and precision 
of the formulation are discussed for tensile (mode I) situations in a detailed modal analysis, and numerical 
results are compared with existing three-dimensional elastodynamic solutions. The adequacy of the method 
to investigate various three-dimensional dynamic fracture problems involving non-propagating and pro- 
pagating tensile cracks is illustrated, including crack growth along a plane of heterogeneous fracture 
toughness. 

1. INTRODUCTION 

The simulation of spontaneously propagating cracks and faults in three-dimensional 
solids is an important focus of fracture mechanics research in engineering and 
geophysics. The computational issues involved in these simulations are challenging, 
often rendering meaningful investigations prohibitively expensive and extremely com- 
plicated. The computational costs are associated with the following conflicting 
requirements : on one hand, a high degree of refinement in both the space- and time- 
discretizations is needed to accurately represent arbitrarily moving singularities and 
discontinuities associated with the traveling crack tips and elastic waves, while, on 
the other hand, large domains of analysis are required to reduce the interactions due 
to finite boundaries. Furthermore, if the use of non-uniform spatial discretization, 
refined in singularity and discontinuity regions and coarser in the rest of the domain, 

t Current address : Department of Aeronautical and Astronautical Engineering, University of Illinois, 
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1791 



1792 P. H. GEUBELLE and J. R. RICE 

appears as a natural way to reduce the size of the problem, the complexity of remeshing 
procedures needed to cope with continuously evolving geometries is often over- 
whelming, especially in three-dimensional situations. 

Various numerical techniques have been used to investigate spontaneously pro- 
pagating cracks. Due to the aforementioned difficulties, the finite element method has 
been mostly limited to two-dimensional problems with the crack confined to its 
original line. While early work focused on various node release techniques and on the 
development of special singular elements moving with the crack tip (Atluri and 
Nishioka, 1985), recent work has included the introduction of special adaptive h-p 
methods for hyperbolic systems (Safjan and Oden, 1993) and of Eulerian-Lagrangian 
formulations to better cope with the continuously changing geometry (Koh et al., 
1988). To study the spontaneous out-of-plane motion of two-dimensional dynamically 
propagating cracks, Swenson and Ingraffea (1988) used remeshing and interactive 
graphics to control the mesh distortion, while, more recently, Xu and Needleman 
(1994) introduced a cohesive surface constitutive relation allowing for the creation of 
new free surfaces along a family of possible fracture directions. 

Due to its relative simplicity, the finite difference method (FDM) on a uniform grid 
was used in the first three-dimensional simulations of planar cracks under shear 
loading conditions (Archuleta and Frazier, 1978 ; Virieux and Madariaga, 1982; 
Day, 1982), and it has been adapted to non-uniform grids in inhomogeneous media 
(Mikumo et al., 1987; Mikumo and Miyatake, 1993). The technique was however 
shown (Andrews, 1985) to produce an excessive “smear out” of elastodynamic waves, 
which hinders resolution of stress peaks radiated ahead of the crack and may affect 
the overall propagation behavior of faults. FDM has nevertheless seen a recent 
resurgence of interest due to its adaptability to massively parallel computers (Schech- 
ter et al., 1994). 

The most common approach to investigate spontaneous propagation of planar 
cracks and faults has been the boundary integral equation method (BIEM). Various 
formulations have been introduced; some are based on a singular space and time 
convolution integral of the traction acting on the whole fracture plane (Andrews, 
1985; Das, 1980), others convolve the displacement field along the fracture surface 
with a hypersingular kernel (Das and Kostrov, 1987). Geophysical issues such as the 
earthquake slip complexity associated with the presence of barriers and asperities 
(Das and Kostrov, 1988), the existence of super-Rayleigh shear cracks under mixed- 
mode loading (Andrews, 1994) and the effect of heterogeneous stress and strength 
distributions (Boatwright and Quin, 1986) have been investigated through various 
forms of the BIEM. A difficulty inherent in the BIEM is associated with the treatment 
of (hyper)singular terms appearing in the convolution integral (Israil and Banerjee, 
1990 ; Liu and Rizzo, 1993). Bonnet and Bui (1993) and Koller et al. (1992) have used 
an elaborate regularization scheme based on the extraction and separate treatment of 
the static singularity. In their analysis of the two-dimensional anti-plane shear prob- 
lem, Cochard and Madariaga (1994) reduced the singularity of the convolution 
integral by explicitly extracting the instantaneous response, i.e. as a radiation damping 
term. 

Perrin et al. (1994) followed a similar approach of extracting a radiation damping 
term in their anti-plane shear studies of a slip on a planar fault. However, rather than 
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dealing, as in the standard BIEM, with approximations to the space-time convolution 
integral appearing in the relation between the stress distribution and the slip distri- 
bution, they instead adopted a spectral representation of the slip distribution as a 
Fourier series in the space coordinate along the fracture plane. They then obtained 
the corresponding Fourier series for the term normally represented by the space-time 
convolution integral ; the coefficients in its series were derived as a time convolution 
of corresponding coefficients for the slip, so as to exactly satisfy the equations of 
elastodynamics in the adjoining half-spaces. The Fourier series were truncated at 
finite order, and the constitutive law relating stress to slip on the fracture plane was 
enforced discretely at the sample points for Fast Fourier Transform (FFT) evaluation 
of the Fourier series and their inverses. The spectral formulation of Perrin et al. (1994) 
is similar in structure to one used by Rice et al. (1994) for linearized perturbation of 
crack front position in dynamic fracture along a plane in a model three-dimensional 
elastic solid ; that is a problem for which Perrin and Rice (1994) noted an exact 
analogy with two-dimensional anti-plane strain, with perturbation of crack front 
position in the former being the analog of slip in the latter. 

We follow Perrin et al. (1994) in adopting a spectral representation of the relation 
between the tractions acting on the fracture plane and the resulting displacement 
discontinuities, and we extend the context to general three-dimensional problems of 
planar cracks and faults with arbitrary shapes subject to any mixture of fracture 
modes. The conversion between spectral and real domains is again performed 
efficiently through the FFT algorithm. The use of the two-dimensional FFT to 
compute the spatial convolutions has been incorporated in previous numerical work 
by Quin and Das (1989), whose boundary integral formulation involved a convolution 
of the tractions acting on the fracture plane. In addition to the aforementioned 
extraction of the radiation damping term, the approach presented in the present paper 
differs from their numerical scheme by the use of a convolution in terms of the 
displacement discontinuities and by the derivation of the exact spectral representation 
of the convolution kernels. The spectral representation of the elastodynamic equation 
renders the numerical scheme especially suitable to implementation on massively 
parallel machines (such as the Connection Machine 5 used in the present work), 
needed to investigate larger scale dynamic fracture problems. The formulation allows 
for a wide range of constitutive models of the material on the fracture plane. We 
focus in this paper on a simple linear cohesive zone model for tensile loading problems ; 
Perrin et al. (1994) examined shear faulting with rate- and state-dependent friction 
laws. 

The paper is organized as follows: a derivation of the spectral formulation is 
presented in the next section, starting with a presentation of the two-dimensional case 
before introducing the general three-dimensional formulation. The following section 
describes the numerical implementation in the three-dimensional tensile (mode 1) 
case, and the precision and stability of the numerical scheme are discussed there by 
comparison with existing analytical solutions. Finally, we use the numerical method 
to investigate two typical three-dimensional dynamic fracture problems. In the first 
one, we illustrate dynamic effects associated with the sudden uniform tensile loading 
of a non-propagating elliptical crack, including the creation of complex wave patterns 
and the phenomenon of dynamic overshoot, Then, we adopt a cohesive stress- 
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I 

Fig. 1. Problem geometry. 

displacement model for tensile fracture and study the interaction of a dynamically 
propagating mode I crack front with a row of circular asperities. 

2. FORMULATION 

The spectral formulation is based on a Fourier representation, in spatial coordinates 
along a fracture plane in an infinite, homogeneous, linearly elastic body, of the 
tractions and relative displacements (opening and shear). The formulation embodies 
an exact elastodynamic representation of the relation existing between the Fourier 
coefficients for the tractions and corresponding displacement discontinuities. We 
derive that representation here. A start towards that result can be found in recent 
work of Cochard and Madariaga (1994) for the two-dimensional anti-plane case 
and of Willis and Movchan (1994, Appendix A) for the general three-dimensional 
situation. 

Let Cartesian coordinates be defined such that the fracture plane, i.e. the plane of 
the crack or fault considered, coincides with x2 = 0 (Fig. 1). Hence xi and x3 are 
coordinates in the plane and elastodynamic fields will exist in the adjoining half spaces 
x2 > 0 and x2 < 0. 

Let? ~~,(XI,X~,X~, t) and u,(x,,xz,xJ, t) denote the stress and displacement fields, 
respectively. We shall be concerned with cases for which the traction components of 
stress, 

zj(XI,X3,t) = ~2j(X*r03X3~f)~ (1) 

are continuous across the fracture plane, whereas displacement discontinuities 

dj(XI,X33t) E Uj(X1,0+,X3,t)--~(XL,0-.X3,t) 

may develop on that plane. 

(2) 

In general, either the stresses, or the displacement discontinuities, or a constitutive 
relation between them will be prescribed at positions along the fracture plane. First, 
however, we focus on how histories of the tractions and the displacements must be 

t Conventional notations are used : Roman and Greek indices range over the values (1, 2, 3) and (1, 2), 
respectively, summation on repeated indices is implied and commas denote partial differentiation. 
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related to one another if the equations of elastodynamics are to be satisfied in the 

adjoining half spaces. 

We describe the external loading of the body as r”(,~, , x3, t). Precisely, if we imagine 
that some combination of body forces and incoming wave fields acts, then we shall 
understand the T: to be the values of the T, which would have been created along the 

fracture plane if that plane had been constrained against any relative displacement, 
i.e. if the surfaces had been welded together. Of course, in the applications of the 
formulation to crack and fault phenomena, the r, will differ from the r,” and the j, 
will not all be zero. The non-vanishing of the displacement discontinuities sets up a 
field in addition to the “loading” field in the body, and 

additional field to be consistent with elastodynamics, 

we shall see that for such 

t.@,..\-,,0. (3) 

The representation in (3) may be interpreted in terms of a well-known superposition 

in fracture mechanics, as the sum of a stress field (T:) that the loadings would induce 
in a solid without a crack or fault, i.e. with continuous displacements enforced across 

the fracture plane, plus a stress field (- V,k &/&+J;) generated by opening and/or 
slip on that plane. In (3), V,k is a diagonal matrix with elements 

V, , = Vi3 = ~/2c,; VZZ =(i,+2p)/2cd ; other VI, = 0, 

where i, and p are the Lame moduli in 

(4) 

OIJ = AbIJUk.k + P(4.J + uj.,)3 (5) 

and where ci = (;>+2p)/p and et = ,u/p with p being the density. The V$ may be said 

to represent radiation damping by wave emission. Such an effect is explicitly com- 

mented upon by Cochard and Madariaga (1994) and Rice (1993) and is implicit in 
all boundary integral formulations of elastodynamics (e.g. Das and Kostrov (1987), 

Andrews (1985, 1994)). 
The functions J;(x,,.x~, t) in (3) are linear functionals of the history of the dis- 

placement discontinuities up to the present time. In the next sub-sections, we derive 
expressions for the functionals. In general, the A(.Y,,,Y,, t) depend on the 

cS,(s’, ,x:, f’) for all x’, ,x;, t’ within the wave cone influencing x,, xj, t, and such 
dependence may be written as a space-time convolution integral operator on the is, ; 
an example is provided by Cochard and Madariaga (1994, eqn (8)) for anti-plane 

strain. In this paper, however, we shall want to represent the displacement dis- 
continuities as a series of spectral terms like 

6,(X,) .Yj, t) = DP(f)e’(k’l+“y (61 

and we will see that in response to each such term there is a corresponding set of 
values of the functionals which have the form 

,f,(,Y, ,xj, t) = FJt)e’(k’l+m’+ (7) 

where the F,(t) will be given as convolution integrals in time involving prior values 
of the functions o,(t). 
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2.1. Two-dimensional formulation 

The spectral formulation is best introduced by first considering the special two- 
dimensional case for which the problem is independent of x3. As shown in the 
next section, the two-dimensional results will be directly applicable to the three- 
dimensional case. The first two components of the displacement field u,(x,, t) can be 
expressed as 

u,(x,,t) = ~.,(xl,0+$.2(&,0; %(X,,0 = 4l,,(x,,t)-ICl,,(x,,t), 

where the potentials I$I and $ satisfy 

&k,, = 4,ttt Cfll/,ZE = $,tt, 

while the third displacement component is such that 

c,‘u 3.m = U3.e. 

Let us examine one particular spectral component 

[KG, t), t&x,, 0, u3(x,, t)l = erqxl [~‘(x*,t;q),~(xzrt;4),~(xz,t;4)1, 

and introduce the Laplace transform 

(8) 

(9) 

(10) 

(11) 

j(p) = L[f(t)] = 
s 

a: e-“y(t) dt. 
0 

The scalar wave equations (9) and (10) reduce to 

@“(.%P; 4) = q2@“:~(x2,P ; 41, 

wx2,p; 4) = q2eb2JJ; 4), 

fw2,p; 4) = q24QX2,P; 41, (12) 

where ( )’ = a/ax, and 

c?d = J_, CI, = J_. (13) 

We develop the solution for the upper half space (x, > 0) ; a closely analogous 
solution applies for x2 < 0. Bounded solutions of (12) for x2 > 0 have the form 

0(x2,p; q) = 60(p; q)e+“d”2, 

9(x2,p;q) = ~O(p;q)e+a~“2, 

h(x,,p;q) = iio(P;q)e-‘qi”s”‘. (14) 

Combining (8), (11) and (14), the Laplace-transformed displacement field for that 
particular mode is 

ti,(x,,p) = eiqXI(iq~o(~;q)e-1q1~*dx2-(qla,~,(p;q)e-’q’”~”2), 

ti2(x,,p) = eiq”l(- Iqlc@Bo(p ; q)e-1Yl”dX2 - iqqo(p ; q)e+‘a~x2), 

c,(x,,p) = e”“lfio(p; q)e-‘Y’“s”2. (15) 
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We are primarily concerned with the tractions acting along the fracture plane x2 = 0 
and the resulting displacements. To that effect, we define the Fourier coefficients 

u,(r;q) by 

U,(X,,X, = O’,t) = u,(t;q)Pl. (16) 

Relations (15) readily yield 

0, (Pi 4) = @“(Pi d- 141 c&“k 41, G(P ;4) = - 141 dMP~ 4) -+h(P; 9) 

which can be inverted as 

-iq~,(p;q)+Iqla,~,(p;q) 
6’o(p;q) = ~ 

q*(l-a,crJ 
qO(P.q) = 141 %l~&;q)+~qQJ;q) 

’ ’ q2(1 -Q&l) 

(17) 

Substituting (17) into (15) yields an expression of the displacement fields z&(x,,p) for 
the upper half space in terms of the components ~i(p ; q) along the upper side x2 = Of 
of the fracture plane 

c)(x,,p) = @‘I ri,(p; q)ep1+vy2. (18) 

Writing z,(x,, t) as in (1) for the traction components of stress along the fracture 
plane, 

r,(x,, t) = aq(x,,x, = o’-,t) = T,(t;q)e’Y’I, 

and combining the latter with (5) and (18) leads to 

(19) 

~3bl) = -Pl4l4uw?). 
If we rewrite (20) in a matrix form 
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(21) 

where the matrix coefficients are readily identified from (20) and now we write 
U,+ (1; q) for Ui(t ; q) to emphasize that these are the Fourier components of the 
displacements on the upper side of the fracture plane x2 = O+, a simple geometric 
argument yields, with the aid of (19), 

(22) 

where U, (t ; q) are the Fourier components of the displacements on x2 = OW. 
Representing the displacement discontinuities as in (2) by 

sj(XI,t)=U1(XI,X2 =O+,t)-_j(-u,,X2 =O-,t) 

=(U:(t;q)-U,(t;q))e”‘I = Dj(t;q)e”“‘, 

and letting S,(t ; q) = 17: (t ; q) + U;(t ; q), we can rewrite (21) and (22) in terms of D, 
and Si, and then eliminate the latter to express the stresses in terms of the displacement 
discontinuities only as 

MI, -M,2M2,lM22 0 

0 M22-M,2M21lM,, 

0 0 

which, with the aid of (20), leads to 

141 4cr&-(l+c(:;)* ^ 
; T, (Pi 4) = - y 

%(l -ai) 
D,(p;q), 

141 4a,a,-(I +c1,2)2 1 
$7;q) = -I 

%(l -g,‘) 
&(p;q), 

:f3(p;q) = -~.,a,(P;q). (23) 

The right-hand side of (23) can be rewritten by explicitly extracting the instantaneous 
response (Cochard and Madariaga, 1994; Perrin et al., 1994) to give 

C(p;q) = - &PmP;q)-; 141 
4c(,cQ-(l+cXf)* 

s x,(1 -4) 

f22(P;4) = - 
i+2/.f ^ 
XPD&;q)-; 

4a,a,-(l+Cr:)* 2+2/i 

%(l-4) 
- TP B*(p;q), 
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(24) 

The final elastodynamic relations (in the time domain) between the traction com- 
ponents of the stress ri on the fracture plane and the resulting displacement dis- 
continuities di can now be written. Thus far, in this sub-section, we have understood 
the r, as the stresses directly generated by the displacement discontinuities, but more 
generally, we may think of them as r, - ro, where the z, are again the traction stresses 
and the rp are the values that these stresses would have had if the plane had been 
constrained against any relative displacement, as discussed in connection with equa- 
tion (3). 

Thus, in the time domain, we recover the two-dimensional version of (3) 

(25) 

where 

J;(x,,t) = F,(t;q)e@I, 

and the transforms &_J ; q) are linear in Bj(, ; q) and are given by the last set of terms 
in (24). inverting these transforms, as in Appendix A, gives 

F,(t;q) = +1q1 C,(jqlcs(t-t’))Q(t’; q)lqlc, dt’, (no sum on i), 

where the convolution kernels C,(T) (j = 1,2,3) correspond to the mode II (Cr, (T)), 
mode I (C,(T)) and mode III (C,,,(T)) kernels, respectively, derived in Appendix A 
as 

C,,(T) = J, (T)/T+4T[W(cdT/cs) - W(T)I 

-4~J,(c,T:c,)+3J,(T). 
s 



1800 

Fig. 2. 

1.2 / 

1 -I 

0.8 -\ 

P. H. GEUBELLE and J. R. RICE 

I I I I 8 ! I - 
Fl - 

E A II _ 

-0.4 . I I I I I I I 

0 2 4 6 8 10 12 14 
T 

Convolution kernel C,(T), C,,(T) and C,,,(T) entering the displacement formulation of the 
elastodynamic equations in the modes I, II and III, respectively, for v = 0.25 (i.e. 1 = p). 

In these, J,,(T) and J, (7J are Bessel functions and 

W(T) = l- s T JI (4 
-dx. 

0 x 

The kernels are illustrated in Fig. 2 for a value of Poisson’s ratio? v = 0.25. 

2.2. Three-dimensional formulation 

The three-dimensional generalization of the formulation can be obtained by 
assuming a similar harmonic variation of the displacement distribution along the 
fracture plane in terms of the (so far ignored) x,-coordinate, i.e. by replacing (16) 
with 

uj(x,,x2 =0+,x3, t) = Uj(t;k,m)ei(kXI+mx,). 

Similarly, we write 

[Zj,Sj,fj‘] = [Tj(t;k,m),Dj(t;k,m),Fj(t;k,m)]ei’kxlfmx~’. 

The wave number q used throughout the two-dimensional formulation presented 
above has thus been replaced, in the three-dimensional case, by a two-dimensional 

t Recall that (Q/C,)* = 2( 1 - v)/( 1 - 20) and note that C,,,( 7’) is independent of u. 
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Fig. 3. Three-dimensional generalization : local and global reference systems. 

wave vector q = (k, m) which spans the crack plane. As illustrated in Fig. 3, the 
displacement components u,(t ; k, m) corresponding to the general three-dimensional 
situation are obtained by a mere in-plane rotation about the x*-axis of the components 
U;(t; q) which have been derived earlier in the two-dimensional formulation, the 
angle { of the in-plane rotation being determined by the orientation of the wave vector 
q with respect to the x,- and q-axes. In other words, if U, U’ and T, T’ denote the 
displacement and traction vectors in the reference (x,,x2,xj) and rotated 
(x’, , .I$, x;) coordinate systems, respectively, then 

U = AU’ and T = AT’, (27) 

where 

c k 0 -m 

[A] = a I oq 0 
m0 k 

(28) 

with q = IqI = J’w. 
The form of the rotation matrix (28) indicates a coupling between the two modes 

(modes II and III) generating displacement discontinuities parallel to the crack plane 
while the out-of-plane, or tensile, response (mode I) is uncoupled from the other two 
modes. The three-dimensional formulation obtained by combining (23), (27) and (28) 
can thus be split between a purely tensile response, for which 

F2(p;k,m) = -kpq 
4a,a,-(1+C(,2)2 ^ 

%(I -4) 
D2 (P ; k ml, 

with cq, and ~1, still defined by (13) with q2 = k2 +m2, and a shear response for which 



1802 P. H. GEUBELLE and J. R. RICE 

wheref(p ; q) and g(p ; q) are associated with the two-dimensional modes II and III, 
respectively, i.e. 

(31) 

Extracting the instantaneous response terms in (29) and (30), corresponding to 
the wave radiation damping terms - I’,, &5,/8t in (3), we may identify the terms 
corresponding to the functionalsJ;. Thus, for the tensile opening part of the response, 

Fz(t;k,m) = -$q G(qc,(c - t’))& (f ; k, m)qc, dt’, (32) 

in which q = ,/k2 +m2 and the convolution kernel C,(T) has been given by (26). 
The formulation indicated by (32) involves a time-convolution on the previous 

values of the displacement distribution on the fracture plane and is therefore referred 
to as the “displacement formulation”. A different formulation (referred to as the 
“velocity formulation”) can be obtained by extracting the long-term behavior (or 
“static contribution”) from the convolution (see Perrin et al., 1994). This is readily 
done by integrating by parts the right-hand side of (32) 

F2(t;k,m) = --pq D,(t;k,m) 

CI (qc,t”)qcS dt” 
do2 (t - t’ ; k 4 dt, 

at 2 
(33) 

where it has been noted that 

The formulations (32) and (33) are equivalent, but the latter has the advantage of 
explicitly separating dynamic and static terms, which can be very useful when dealing 
with problems involving sequences of quasi-static behaviors (during which the 
dynamic term represented by the convolution term in (33) has negligible contribution) 
mixed with short “bursts” of dynamic instabilities, as are typically observed in inter- 
mittent bursts of acoustic emission at onset of crack growth, in crack arrest and 
reloading experiments, and in earthquake sequences. 

For the shear part of the response, 
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in which the two convolution kernels have been previously given by (26). As was 
the case with the tensile response, the displacement-based formulation (34) can be 
integrated by parts to extract the long-term (static) term and transform the con- 
volution into an operation on the past velocity history. 

The remainder of the paper will be concerned with tensile (mode 1) response. First, 
the numerical implementation of the elastodynamic displacement- and velocity-based 
formulations and the genera! structure of the algorithm will be discussed. Then, the 

stability and precision of the numerical scheme will be discussed through the com- 
parison with simple analytic solutions. Although it is somewhat more complex due 

to the interaction of the two shearing modes, the algorithm for the genera! “shear 
problem” will have a structure very similar to that of the tensile case. The various 
comments relative to the stability and precision of the formulation of the tensile 
problem cannot however be applied as a whole to the genera! shear situation since 

each mode has its own numerical characteristics. For example, those of the anti-plane 
shear case are being discussed in a separate note (Morrissey and Geubelle, 1994). 

3. NUMERICAL IMPLEMENTATION-PRECISION AND STABILITY 
ANALYSIS 

For tensile cracking, (I) becomes 

The plane of the crack (x1 = 0) is discretized by a uniform rectangular grid of 

dimensions X and Z and with K and M elements in the .Y,- and x,-directions, 
respectively. Since (32) and (35) provide the elastodynamic response of a particular 
mode (k, m), we will express the 6, and,f, distributions on the plane of the crack as a 
Fourier series with periods X and Z 

where each Fkm(t) is related to the corresponding L&,,,(t) by (32). Note that, in (36). 
the wave vector q = (2nk/X, 2nm/Z) ; here k and m are integers and 2nklX, 2rcmlZ 
replace the wave vector components called k and m earlier. Also, K and M are even, 
and are conveniently chosen as a power of two so that the Fast Fourier Transform 
(FFT) algorithm provides a rapid and efficient way to perform the conversion between 
the spatial (x,, x3) and spectra! (k, m) distributions. 

The algorithm also requires a time-integration scheme to deduce the evolution of 
the displacement field from the velocity values computed at discrete time intervals by 
(35). A simple explicit scheme is used here, 
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s,(t) = 8&-At)+At&(r-Af). (37) 

Finally, the algorithm is completed with the introduction of a cohesive model 
relating the material tensile strength T’,~, to the opening displacement (and, possibly, 
velocity) through a general relation 

z S,T =.f(&,&,x,,x& (38) 

wherefmay include functional dependence on prior values of &, e.g. to encode the 
previously achieved maximum of 6,. 

In the examples presented hereafter, we use a simple linear relation schematically 
represented in Fig. 4. The model does not, however, allow for rehealing of the surface 
when a decrease in 6, occurs on completely fractured locations, for which the previous 
maximum of 6, is greater than the material parameter 6,. Furthermore, the material 
inside the cohesive zone, for which the previously achieved opening displacement is 
less than 6,, undergoes rigid plastic deformation and cannot have negative 8, (see Fig. 
4). More complex constitutive models, such as rate- and state-dependent friction laws 
(Perrin et al., 1994) can also be introduced to characterize the response of the fracture 
plane. 

The algorithm is implemented as follows for non-viscoplastic materials, i.e. for 
which strength zSt, is independent of 8, : 

(i) Use the velocity distribution 8,(x,, x3, t-At) of the previous time step to obtain 
the current displacement C&(X,, x3, t) and strength z,,,(x,, x3, t) distributions at all FFT 
sample points using (37) and (38). 

(ii) Use the FFT to evaluate (36) for the spectral coefficients &,(t) of&(x,, xj, t). 
(iii) Perform the convolution on time described by (32) to find the spectral 

coefficients &,(t) of the convolution functionalf,(x,, x3, t). 
(iv) Use the inverse FFT to get from (36) the functionalf,(x,, x3, t) at all sample 

points. 
(v) Evaluate the new velocity distribution &(x1,x3, t) at each sample point by 

comparing the current strength distribution z,,,(x,, x3, t) obtained in (i) with the sum 
of fi(x,, x3, t) and the current loading stresses z;(x , , x 3, t) entering (35), suggesting 
three distinct possibilities: If the material has not yet completely failed and 
~~~~ > zi +fi, set 8, = 0, but if zSt, < T! +f2, then set z2 = zSt, in (35) and solve for the 

strength 

t 

5 crack opening displacement 

Fig. 4. Cohesive failure model showing a linear variation of the strength 5Str with the crack opening 
displacement 6,. Rigid plastic response to unloading is assumed for 6 < 6,. 
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(positive) 8,. If the material has already completely failed, so that it is unable to 

sustain any load, the (positive or negative) 8, is computed by setting the left-hand 

side of (35) to zero.? Then recycle to (i) for the next time step. 

For viscoplastic constitutive laws as in Perrin et al. (1994), the algorithm is modified 
so that (35) and (38) are used to solve simultaneously for A2(x,, .x3, t) and T,,(x,, .x3, t) 
whereas (i) updates only those terms in z,,, which depend on the displacement history, 
including a frictional “state” term in their case. 

Various schemes can be used at different stages of the algorithm: for example, 
a semi-implicit time-integration scheme can be used instead of (37) to derive the 
displacement history, or various integration algorithms can be introduced to perform 

the convolution integral in (35). In order to choose the most appropriate com- 
putational method and assess the precision and stability of the general algorithm, two 
test cases have been studied and are presented in the remainder of this section. The 

first one deals with a purely modal analysis, i.e. studies the response of a particular 
mode to a sudden step loading. The second test case consists of the three-dimensional 
Lamb’s problem, i.e. the sudden normal loading at one point on the surface of an 

otherwise stress-free half space. 

3.1. Modal anal_vsis 

The modal analysis is concerned with the response of one particular mode (k, m) 
to a sudden step-loading. The interest of such analysis is to extract from consideration 
the impression associated with the truncated spectral representation (such as Gibbs’ 

phenomenon and spurious oscillations as will be shown later). It allows precise 
assessment of the stability and precision of each individual mode by direct comparison 
with a simple analytic solution derived as follows. Let 

z”(x, ) xj, t) = T,,H(t)Pl+““?), 

where z,, is a constant and H(t) is the Heavyside step function, and let us find the 
motion 

6,(x, ,x3, t) = D?(t; k,m)e’(hr~+““~), 

when we insist that there be no stress rZ along the plane _Y~ = 0. Substituting the 
Laplace transform 

into (29) yields 

p&(p; k,m) = 2t, 
&I(1 -4) 

P4 4M,ad-(1+C(,2)2’ 
(39) 

where q = dw and ad and CX, have been defined in (13). Note that the response 
of a particular mode (k, m) depends only on the magnitude q of the wave vector. The 

+Note that negative velocities (corresponding to crack closure) are allowed as long as they do not 
generate a local overlapping of the crack faces (i.e. negative crack opening displacements). 
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left-hand side of (39) is the transform of Liz(t ; k, m) which can be normalized by the 
initial velocity to define the non-dimensional ratio r(t) as 

Combining (39) and (40) results in 

r(Q = L-1 

[ 
5 L Q(l -a:> 

c, qcs 4cX,a,j-(1 +c# 1 

(40) 

(41) 

A closed form expression of the inverse Laplace transform is rather complicated, but 
the long-term behavior of r(t), which involves a Rayleigh wave train, can be deduced 
(see Appendix B and Fig. Bl). 

The discretized version of the displacement formulation of the modal elastodynamic 
equation (35) and (32) can be expressed in a simple dimensionless form as 

where r, = r(t,, = nAt) = b,(t,)/d,(O) and y = qc,At. In the velocity formulation cor- 
responding to (35) and (33), the discretized modal equation is 

(43) 

where Lt, = DZ(tn = nAt)/(b,(O)At) is the dimensionless crack opening displacement 
at t = t,. Note that y = qc,At is the only relevant parameter entering the discretization 
of the modal elastodynamic equations. It combines the effect of both the wave number 
q and the time step At. 

The expression of the discretized convolution terms (S”, in (42) and S; in (43)) will 
depend on the choice of the convolution algorithm. In the displacement formulation, 
it will take the general form 

S”, = i; xkjd”_j, 
J=O 

where xk, corresponds to the discretized convolution operator. Two basic methods 
can be used to derive xkj. In the first approach (henceforth referred to as the “dis- 
cretized kernel” approach), the convolution kernel C,(T) is discretized at the same 
time values as the displacement, then multiplied (backwards) to the discrete dis- 
placement values before the resulting function is integrated in time using, for example, 
a trapezoidal rule, yielding 

xk, = C,(O)/2, xk, = C,(yj) (j = 1,. . . , n - l), xk, = C,(yn)/2. (45) 

In the second approach (referred to as the “pre-integrated kernel” method, and 
corresponding to the procedure used by Perrin et al. (1994)), the convolution kernel 
C,(T) is “pre-integrated” before undergoing the backward multiplication with the 
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discrete displacement values. The pre-integration can be performed using a trapezoidal 

rule 

-xk, = ~[G(Y~)+G(Y(~+ l))l? (46) 

or a more precise Simpson scheme 

1 ) (47) 

where N is the number of sub-intervals used in the pre-integration and ck are the 
corresponding weighting factors. 

In the velocity formulation, the convolution operator can be discretized in a similar 
fashion 

So = i: Xk,Y”_j, 
1=0 

where the discrete “convolution function” Xkj can be derived by any of the three 
aforementioned methods but with a different convolution kernel (i.e. C,(T) has to be 

replaced by Z,(T) = 1,” C, (T’) dT’ in (45))(47)). 
The discretization of the modal problem is completed by a time-integration scheme 

which is either explicit 

or semi-implicit 

d ntl = d,,+r,, (49) 

d ,,+I = dn+&+r,+,h (50) 

The relations (42))(50) thus provide 12 possible implementations which, although 
very similar in their basic concept, yield sometimes very different results. Finally. the 

initial conditions of the modal analysis are 

do = 0, r. = 1. 

As mentioned above, the effects of the wave number q and of the chosen time step 
At are combined in the modal analysis through the dimensionless parameter y = qc,Ar. 

In other words, for a given mode, varying y is equivalent to changing the value of the 
time step, and, for a given At, each y corresponds to a particular wave number. 
In actual simulations, however, the value of the time step will be dictated by the 
characteristics of the spatial discretization, such as to satisfy 

At = /? 
min (Ax,, Ax,) 

c s 
(51) 

i.e. such that a shear wave travels a fraction 1 of the smallest FFT sample point 
spacing. The choice of the parameter /I is imposed by various considerations pertaining 
to the stability, precision and efficiency of the numerical scheme. If B is chosen too 
large, the solution corresponding to the higher modes may be incorrect or even 
unstable ; but if chosen too small, it will degrade the efficiency of the numerical 
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Fig. 5. Modal analysis; velocity response associated with one implementation of the displacement for- 
mulation is shown for three values of the non-dimensional parameter y. 

scheme.? The relation between fi and the value yM of the non-dimensionai parameter 
y = qc,At corresponding to the maximum wave number q can be obtained by a simple 
inspection of the series representation (36) 

yM = max (sin ij, cos q) ’ (52) 

where tan? = AxJAx,. The latter relation thus allows us to directly translate the 
maximum acceptable value of y derived from the modal analysis into the time step 
parameter fi to be used in actual simulations. 

A typical result of the modal analysis is illustrated in Fig. 5 for the displacement 
formulation (with pre-integrated kernel method (46) and the explicit scheme (49)). 
As shown there, the velocity response is very well captured for small values of y (such 
as y = 0.1) but the numerical solution experiences an artificial damping for larger 
values of y. This indicates that, in an actual simulation (i.e. for a given time step 
determined by (51)) the higher modes of the spectral decomposition will not be 
captured as precisely as the lower modes, and imprecision is expected in situations 
involving singularities and abrupt changes, as discussed in the next paragraph. A 
further increase of the parameter y leads to instability related to the time-integration 

t Note that the number of arithmetic operations involved in the convolution process increases quad- 
ratically with the number of time steps. 
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scheme. This particular formulation also introduces an artificial phase shift (which 
can be shown to be proportional to 7) associated with the pre-integration scheme. 

The behavior illustrated in Fig. 5 is characteristic of four of the six numerical 
schemes related to the displacement formulation ; the other two schemes do not show 
any damping and lose stability for fairly small values of y. To quantify the artificial 
damping associated with each method and the stability limits of each scheme, we have 
introduced a “precision factor” defined as the ratio of the maximum value obtained 
for the 10th period of r(t) by the numerics and that given by the analytical (long- 
term) solution derived in Appendix B. The variation of the so-defined precision factor 
with respect to y is given in Fig. 6, showing the existence of the two intrinsically 
unstable schemes, the response of which increases monotonically with y. The other 
methods present a behavior which can be assimilated to that of a “low-pass filter” 
with a cut-off frequency depending on the numerical scheme. For small values of ;‘, 
the various methods provide equally precise results, but, as 7 increases, the afore- 
mentioned artificial damping affects the accuracy of the numerical scheme. The most 
precise method for which the cut-off frequency associated with the artificial damping 
is the highest is the explicit time integration scheme used in Fig. 5 and represented by 
a solid curve in Fig. 6. 

Even though the artificial damping associated with the various stable schemes limits 
the precision of the computed response of the higher modes, this seemingly undesirable 

1.8 

1.6 

1.4 

1.2 

0.8 

0.6 

0.01 0.1 1 
gamma 

Fig. 6. Precision of the various discretizations of the displacement formulation : variation of the precisron 
factor computed during the 10th period with respect to y. The solid line, corresponding to pre-integration 
of the convolution kernel by trapezoidal rule of (46) and explicit time stepping as in (49), provides optimal 

solution. 
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phenomenon has a very beneficial effect on the solution of actual simulations which 
involve the Fast Fourier Transform algorithm used to compute the conversion 
between the real and spectral domains. As will be illustrated in the next paragraph, 
the damping of the higher modes limits the detrimental effects of discrete series 
representation of fields with non-limited spectral content (Gibbs phenomenon) such 
as singularities and discontinuities. 

The various discretized versions of the velocity formulation (33) are much less stable 
than their counterparts in the displacement formulation (32). Of the six expressions 
investigated here, only one is stable: it combines the semi-implicit time-integration 
scheme (50) with the discretized kernel convolution method (45). Its behavior can be 
shown to be very similar to that of the most precise displacement-based scheme, as 
illustrated in Fig. 7 which presents, for the two methods, the variation of the precision 
factor defined for the 10th and the 50th periods with respect to the parameter y. Note 
that, even though it uses a semi-implicit time-integration scheme, the discretized 
elastodynamic equation (43) associated with this particular implementation of the 
velocity formulation is completely explicit since the various contributions of the 
unknown velocity r, appearing in the right-hand side of (43) cancel each other. The 
two methods suggested by the modal analysis (and represented in Fig. 7) present 
similar characteristics of precision and efficiency and allows us to use fairly large 
values of y (about 2.3) which, in actual simulations, would correspond to a value of 
the time step parameter b (introduced in (51)-(52)) of approximately 0.5 when 
Ax, = Axj. 

displacement formulation - 10th period 
velocity formulation - 10th period 

displacement formulation - 50th period 
velocity formulation - 50th period 

gamma 

Fig. 7. Comparison between the optimal displacement and velocity formulations, showing precision factors 
for the 10th and 50th periods. 
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The boundary integral algorithm has also been tested in the case of the Lamb’s 

problem of step loading of a half space by a concentrated normal force on its 
boundary. In addition to the fact that it allows for a direct comparison with an 
analytical solution (Pekeris, 1955), this test problem is of interest because it provides 
the opportunity to visualize the distinctive effects of dilatational, shear and Rayleigh 
waves, is characterized by a highly localized loading distribution and contains a 
singular solution in displacement. The ability of the numerical scheme to capture 

these features accurately will be examined in this sub-section. 
Let s’(.Y,,.Y~, t) = PG(x,)G(x,)H(t) be generated by a pair of point loads P acting 

just above and below the plane x2 = 0. We solve for the opening 6? of the interface 
(ignoring interference if 6? < 0), when no stress z2 is allowed on .Y? = 0. The analytical 
solution is, for I’ = 0.25. 

/ 
if 1 < r < d3+,$2. 

where t = c,t/r is the reduced time and r = Jm is the distance to the point of 

application of the force. 
The numerical simulation was performed with the displacement formulation on the 

square domain [0, X] by [0, X] using a 512 by 512 spatial discretization, so that 
Ax, = Ax, = X/512, and a value of /? = c,AtlAx, = c,AtlAx, = 0.5. The point load 
of amplitude P was applied at the FFT sample point located at the center of the square 
by writing r0 = P/Ax,Ax3 at that node and TO = 0 elsewhere. A three-dimensional view 

of the displacement field after 200 time steps is presented in Fig. 8, clearly showing 
the “dilatational precursor” which creates a small displacement in a direction opposite 
to that of the applied force, the singular Rayleigh wave expanding radially from the 

point of application and the l/v singularity of the displacement field after the passage 
of the various waves. A direct comparison between numerical and analytical solutions 
is presented in Fig. 9 which illustrates the evolution of the displacement component 
1.4~ normal to the free surface at a point located 64 elements away from the point of 
application of the force. A good agreement is observed between the two solutions: 
the numerical simulation is able to capture the arrival of the dilatational wave (P), 
the change of slope associated with the shear wave (S) and the strong effect of the 
Rayleigh wave (R). Note how, in the latter case, the numerical solution “smoothes 
out” the singularity and experiences a Gibbs effect after the passage of the wave 
before settling down to the final constant value. The latter effect is an expected 
consequence of the discrete Fourier representation of the fields. unable to capture 
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displacement(x,z,cs*t=O. 195.X) 

2 

Fig. 8. Tensile Lamb’s problem : displacement field on the surface of the half space after 200 time 
showing the concentric waves expanding from the point of application of the point load. 

ste :I% 

perfectly a discontinuity. Note also the presence of very small amplitude oscillations 
in the region prior to the arrival of the dilatational wave (magnified in the insert of 
Fig. 9). This is another effect of the approximate representation with a finite number 
of harmonic functions of a loading distribution having a non-limited spectral content.? 
This effect is however very limited, especially for larger values of j3 (such as the value 
of l/2 used in this simulation), which, as shown in the previous section, tends to 
slightly damp the higher modes. 

A final and important consequence of the use of the present spectral algorithm is 
that it automatically introduces a periodicity in both the x1- and x,-directions. This 
fact can be useful when studying the behaviors and interactions of periodic arrays of 
cracks (as will be the case in the last example presented below), but can be a limiting 
factor in the investigation of problems involving a unique crack in an infinite body, 
for which a large spatial domain has to be used to limit the interaction with neigh- 
boring cracks. 

4. PARALLEL IMPLEMENTATION AND SPONTANEOUS CRACK 
PROPAGATION 

The main motivation behind the development of the numerical method has been 
to provide a simple numerical tool to study accurately and efficiently the spontaneous 
propagation of cracks and faults of arbitrary shapes through regions of arbitrarily 
heterogeneous fracture resistance. The size of the spatial discretization is dictated by 

7 Recall that the Fourier transform of the Dirac 6(x) is equal to a constant. 
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Fig. 9. Evolution of the displacement component normal to the stress-free surface at a point located at a 
distance c,*t = 0.125 X from the point of application of the force: comparison between numerical and 
analytical results. P, S and R denote the arrival of the dilatational, shear and Rayleigh waves, respectively. 
The insert presents the detail of the solution prior and at the arrival of the dilatational wave, showing the 
existence of the small amplitude spurious oscillations associated with the truncated spectral representation. 

the combination of various factors. First, the size of an element must represent a small 
fraction of the shortest wavelength characterizing the spatial variation in fracture 
toughness (i.e. of the size of asperities) in order to capture accurately the evolution 
of the crack front as the fault propagates through the heterogeneous region. Second, 
a spatial element must be small compared to the extent of the cohesive zone associated 
with the constitutive model schematically described in Fig. 4. This constraint is made 
more severe by the Lorentz-like contraction of the cohesive zone characteristic of 
propagating cracks (Rice, 1980). Finally, as was mentioned in the previous section, 
the discretized domain must be, in some cases, large enough to avoid the interaction 
of neighboring cracks introduced by the discrete FFT. 

All these factors often lead to spatial grids containing from 256 to 1024 elements 
in each direction. In order to cope with these large scale problems, the code has been 
adapted on a parallel machine, the Thinking Machine Corporation CM-5, where it 
has been optimized to take full advantage of the parallel architecture. The parallel 
implementation is favored by the Fourier domain representation of the convolution 
integral entering the elastodynamic equations. Since the convolutions are expressed 
in terms of each individual mode independently from the others, the general solution 
can be computed simultaneously in parallel and the amount of costly communication 
between the various processing nodes is extremely limited. The details and per- 
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formance of the parallel implementation has been reported elsewhere (Geubelle, 
1994). Let us just mention here that a typical problem involving 512 by 512 elements 
and 1000 time steps requires approximately 30 min on a 5 12-node partitioned CM-5. 

More detailed analytical and numerical investigations of elastodynamic effects 

associated with the spontaneous propagation of a crack through a region of hetero- 
geneous fracture toughness are currently underway and will be reported subsequently. 
However, in order to demonstrate the potential of the present numerical scheme, two 
fracture problems are presented here. 

In the first one, an elliptical non-propagating crack is suddenly loaded by a uni- 

formly distributed constant pressure normal to its faces. The discretized domain size 
has X = Z and we use 512 elements in both directions. The elliptical crack has an 
aspect ratio of 2, its major and minor axes are discretized by 256 and 128 elements, 
respectively, and the crack is located at the center of the domain with its major axis 
parallel to the x,-direction. The resulting crack opening displacement distributions at 
three different time steps are shown in Fig. 10. In the first figure (Fig. 10(a)), the 
displacement distribution is uniform on the part of the crack surface that is “unaware” 

of its finite size, i.e. in the region that has not been reached yet by the Rayleigh waves 
emanating from the crack edges and moving toward the center. In the second figure 
(Fig. 10(b)), the waves traveling along the minor axis have already crossed at the 

center of the crack surface while the waves coming from the ends of the major axis 
are still moving toward each other, forming a complex wave pattern. The final shape 

of the crack obtained after 900 time steps is shown in Fig. 10(c). The overshoot 
characteristic of dynamic problems is illustrated in Fig. 11 which presents the evo- 
lution of the opening displacement distribution along the major axis of the elliptical 

crack (xj = Z/2). 
The last series of figures illustrates the behavior of a spontaneously propagating 

crack encountering a row of periodic circular asperities with a fracture toughness 

three times higher than that of the surrounding material. The symmetry of the problem 
about the fracture plane makes it pure mode I. The crack front is originally parallel 
to the x,-axis and the crack propagates in the positive x,-direction. The row of circular 

asperities is parallel to the x,-direction and, taking advantage of the aforementioned 
periodicity introduced by the Fourier representation of the various fields, we perform 
the simulation on one period Z containing only 2 asperities. The extent X of the 
domain in the x,-direction is chosen as 22 and a uniform grid of 512 by 256 elements 
is used to discretize the domain. The size of the time step is given by (51) with /I = l/2. 

The circular asperities have a diameter of Z/S and are centered at xi = 0.578 Z, 
xj = 0.25 Z and xi = 0.75 Z. The crack initially covers the region defined by 
0 < x, < lo = Z/4 and - cc < x3 < co. In order to ensure a constant propagation 
velocity prior to the interaction with the asperity, the amplitude of the uniform loading 
z0 applied on the fracture surface is inversely proportional to square root of the 
average length of the crack (i.e. the loading corresponds to a constant nominal applied 
stress intensity factor). The static (available) fracture energy Go = ~(1 -v)z~1,/2~ is 
25% higher than the energy G, = r,6,/2 required to propagate the crack through the 
material surrounding the asperities (i.e. G, is the surface under the curve represented 
in Fig. 4). The fracture resistance of the two circular regions corresponding to the 
asperities is obtained by tripling the value of the critical strength r, while keeping the 



Three-dimensional elastodynamic fracture 

Crack opening displacement 

(a) 

Crack 

Crack openin 

0.1 
0.09 
0.06 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

0 

0.3 

w 

Fig. 10. Sudden step loading of a non-propagating elliptical mode I crack : spatial distributions of the crack 
opening displacement (COD) after 40 (a), 80 (b) and 900 time steps (c) showing the interaction of the 
Rayleigh waves emanating from the limits of the crack and propagating along the crack surface, and the 
final shape of the crack. The COD is normalized by r,X/n where t0 is the uniform load applied on the crack 

surface and X is the size of the domain of simulation. 
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Fig. 11. Evolution of the crack opening displacement distribution (normalized as in Fig. 10) along the 
major axis of the suddenly loaded elliptical crack, showing the resulting dynamic overshoot. 

critical stress opening displacement 6, constant. Upon sudden loading, the crack starts 
to propagate in the positive x,-direction and quickly reaches a uniform speed of 0.56 
c,. Propagation in the negative x,-direction is prevented by introducing a region of 
very high fracture toughness (i.e. a “barrier”) behind the crack. Under the steady- 
state conditions prevailing prior to the interaction with the asperities, the extent of 
the cohesive zone in the x,-direction is approximately 0.06 Z (i.e. 14 sample point 
spacings). 

The interaction between the (initially) straight crack front and the two asperities is 
illustrated in Fig. 12(a)-(f) which presents a three-dimensional view of the crack 
opening displacement distribution along a portion of the fracture plane at various 
steps of the simulation, showing how the crack front progressively surrounds the 
asperities (Fig. 12(a) and (b)) until a complete wrap-around is achieved (Fig. 12(c)). 
At this point, the crack front is almost completely arrested and the central portion of 
the asperities remain unbroken, until dynamic stresses build up which eventually fail 
them with a “snapping” effect (Fig. 12(d)). The wave created by the failure of the 
asperities then propagates along the surface of the crack (Fig. 12(e)), resuming the 
propagation of the crack (Fig. 12(f)). Note the evolution of the crack. front shape as 
it passes through the asperities : the previously retarded part has now jumped ahead. 

The evolution of the average crack length is presented in Fig. 13, for the uniform 
(asperity-free) situation (solid curve) and for the heterogeneous case (dotted line). 
The positions in time corresponding to the previous figures (Fig. 12(a)-(f)) are 
denoted by arrows. The figure shows how the crack propagation is affected by the 
presence of the asperities, which slow down and even stop the crack temporarily 
before eventually failing. 

5. CONCLUSIONS 

A spectral elastodynamic method has been presented, which allows one to inves- 
tigate the three-dimensional mechanics of spontaneously propagating planar cracks 
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Fig. 12. Detail of the interaction of a spontaneously propagating tensile crack with a row of circular 
asperities having a fracture toughness three times higher than their surrounding. Two asperities are modeled 
in this simulation and the crack propagates in the positive x,-direction. The series of figures show how the 
crack progressively progressively encircles the asperities (Fig. 12(a))(c)) which eventually fail with a 
snapping effect (Fig. 12(d)), generating a wave which travels along the fracture surface (Fig. 12(e)) while 

the crack resumes its unsteady propagation (Fig. 12(f)). 
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Fig. 13. Evolution of the average crack length for the simulation presented in Fig. 12(a)-(f) (dotted curve) 
and for the “uniform” (without asperities) situation (solid curve), showing how the asperities affect the 

overall speed of the tensile crack. The times corresponding with Fig. 12(a)-(f) are indicated by arrows. 

and faults of arbitrary shapes, moving through regions of heterogeneous fracture 
toughness. The method is based on an exact representation, in the Fourier domain, 
of the elastodynamic relations existing between the tractions acting on the plane of 
the crack and the corresponding displacement discontinuities. Although the present 
paper has focused on the special tensile (mode I) case, the method is applicable to 
other types of loading and is based on a treatment of antiplane shear fault dynamics 
by Perrin et al. (1994). The precision and stability of the numerical scheme have been 
investigated through a detailed modal analysis and by comparison with existing three- 
dimensional analytical solutions. 

The main advantages of this formulation are its simplicity, stability, efficiency and 
the fact that it is readily adaptable to concurrent computation. Its limitations are 
associated with the use of the FFT algorithm, i.e. the artificial periodicity on the crack 
plane and the approximations associated with the finite series representations of 
discontinuities and fields with non-vanishing spectral contents, including Gibbs 
phenomena. 
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APPENDIX A 

The various steps of the derivation of the convolution kernel C,(T), the Laplace transform 
of which is given by the terms in curly brackets in (24) are described in this appendix. Let 
s = p/\qlc, and a = cd/c,. With the aid of (13), the Laplace transform of the kernel can be 
rewritten as 

LMcsGMcst)l = 
s4+4?+4 4Jl+s2 

.s’JW - 7 -as. 

Noting that 

and using the following properties of the Laplace transform 

L-f,,:,1 = bJo(bT)> 

-bs 1 = b3J;(bT), 

bJo@T”)dT”dT’, 



yields 
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[aJ,(aT”)-J,,(T”)]dT”dT’+4[aJ,(aT)-J,(T)]+a”JS(aT). 
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The latter expression can be further simplified by noting that (J. Morrissey, private com- 
munication) 

hJ,,(hT”)dT”dT’ = 7-(I - B’(h7)). 

J,(T) 
J;;(T) = 27 -J”(r). 

where 

W(T) = c ’ J, CT’) 
0 

-T’dT’, 

leading to the final result (26). The reasoning leading to C,,(T) is very similar and the expression 
for C,,,(T) has been derived in Perrin et al. (1994) 

APPENDIX B 

In this appendix, the long-term behavior of the non-dimensional velocity ratio r(f) appearing 
in the modal analysis and defined in (40) is derived. As was shown in (41), r(t) is the inverse 
Laplace transform of 

1 N(P) Qp) = “d _ ~ 
(‘, 4”b D(P)’ 

where 

N(p) = x,(1-r:-), 

D(p) =4cr,x,-(ltcc;)‘, 

with ad and a, introduced in (13). Defining .s = p/qc_ we can rewrite (B. 1) as 

-.s’~~~4J1_ts’~~+(2+.~‘)‘) N(s) _ 
D(s) - 16(i +s’)(l +.?/a’)-(2+.~‘)~ . 

(I-3. I) 

(B.2) 

where u = ~.~/c,. The denominator D(s) can be factored as 

where sR, s, and .s2 are the roots of the Rayleigh polynomial obtained by replacing s by is in 
the denominator appearing in (B.2) (Eringen and Suhubi. 1975. p. 519). The latter thus reduces 
to 

(B.3) 

Since f is, and f is2 are roots of the factor of N(s) enclosed in curly brackets and therefore 
constitute removable singularities, the only poles of interest are f &. Note that sR is equal to 
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0.8 
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long-term approximation 
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Fig. B I Long-time approximation of the velocity ratio r(t) entering the modal analysis. 

the ratio of the Rayleigh wave speed cR to the shear wave speed c,, and is a dimensionless 
function of 21. (B.3) can thus be rewritten as 

N4 G(s) __=__ 
D(s) s2 +s; ’ (B.4) 

where G(S) is analytic everywhere (except along the branch cuts associated with the square 
roots appearing in N(s)). Noting that G(&) = G( - isR), (B.4) can be further decomposed as 

N(s) G( f k) G(s) - G( + z&J G(+ &) p= 
D(s) 

-------+ 
S’+S; s* + s; 

= p + H(s). 
s2 +.s; 

The newly introduced function H(s) has no singularity on the complex plane and satisfies 

hi sH(s) = 0. 

By virtue of the limiting value property of the Laplace transform, its inverse transform is 
expected to vanish for large times. The large time behavior of r(l) is therefore approximately 
given by 

r(t) - z G( & isR) sin (qcR t) = f(v) sin (qcR t), 

where G(s) has been defined by (B.3) and (B.4) and sR = cR/c,. 
For the Poisson material (v = 0.25 , one has a = cd/c, = ,,/?,$ = 2-2/,,/? (i.e. 
cR/c, z 0.9194), s: = 4 and .$ = 2+2/ J) 3, which yield, for large times 

r(t) - 0.5844sin (qcRt). 03.5) 

The evolution of r(t) and its long-time approximation (B.5) are presented in Fig. Bl for the 
case v = 0.25, showing a good agreement after only a few periods. 


