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ABSTRACT 

Guided by seismic observations of short-duration radiated pulses in earthquake ruptures, Heaton (1990) 
has postulated a mechanism for the frictional sliding of two identical elastic solids that consists in the 
subsonic propagation of a self-healing slip velocity pulse of finite duration along the interface. The 
same type of pulse may be conjectured for inhomogeneous slip along sufficiently large, and compliant. 
technological surfaces. We analyze such pulses, first as steady traveling waves which move at constant 
speed, and without alteration of shape, on the interface between joined elastic half-spaces, and later as 
transient disturbances along such an interface, arising as slip rupture propagates spontaneously from an 
over-stressed nucleation site. The study is conducted in the framework of antiplane elastodynamics ; normal 
stress is uniform and alteration of it is not considered. We show that not all constitutive models allow for 
steady traveling wave pulses: the static friction threshold subsequent to the relocking of the fault must 
increase with time. That is, such solutions do not exist for pure velocity-dependent constitutive models, in 
which the stress-resisting slip on the ruptured surface is a continuously decreasing function of the instan- 
taneous sliding rate (but not of its previous history or of other measures of the evolving state of the 
surface). Further, even for constitutive models that include both the rate- and state-dependence of friction. 
such as the laboratory-based constitutive models for friction as developed by Dieterich (1979, 1981) and 
Ruina (1983), steady pulse solutions do not exist for versions, like one discussed by Ruina (1983), which 
do not allow (rapid) restrengthening in truly stationary contact. For a particular class of rate- and state- 
dependent laws which includes such restrengthening, we establish parameter ranges for which steady pulse 
solutions exist, and use a numerical method stabilized by a Tikhonov-style regularization to construct the 
solutions. The numerical method used for the transient analysis adopts Fourier series representations for 
the spatial dependence of stress and slip along the interface, with the (time-dependent) coefficients in those 
Fourier series being related to one another in a way which obtains from exact solution to the equations of 
elastodynamics. This allows an efficient numerical method, based on use of the Fast Fourier Transform in 
each time step, with the frictional constitutive law enforced at the FFT sample points along the interface. 
Solutions based on a law that includes restrengthening in stationary contact show that spontaneous rupture 
propagation will occur either in the self-healing slip pulse mode (but not generally as a steady pulse) or in 
the classical enlarging-crack mode, depending on the values of parameters which enter the constitutive law. 
This analysis suggests that the strictly steady, traveling wave pulse solutions may either be unstable or have 
a limited basin of attraction. 

1. INTRODUCTION : SELF-HEALING SLIP PULSE ON AN INFINITE 

FAULT SUBJECTED TO ANTIPLANE LOADING 

We consider the problem of an unbounded elastic body containing a weak plane 
(I’ = 0) on which frictional sliding can occur along the direction z. Following Heaton 
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(1990) we define a steady antiplane (Mode III) slip pulse as a sliding wave, independent 
of coordinate z, propagating subsonically along the x axis at constant velocity /3c, 
where c is the elastic shear wave speed of the medium, without alteration of its shape, 
with complete cessation of slip behind the pulse. The stress oYY is uniform and 
compressive, and is unaltered by slip. The only other non-zero component of the 
stress tensor at infinity is gZ,, = orZ = z, (constant). We construct numerically such 
steady, traveling wave, elastodynamic solutions here for frictional constitutive laws 
of a class which allows their existence. We also introduce a new numerical procedure 
for transient antiplane elastodynamics, based on a spectral (Fourier series) rep- 
resentation of the x dependence of slip. This is used to find spontaneous rupture 
solutions which, for appropriate constitutive laws, may involve a self-healing slip 
pulse mode of rupture propagation, or a mode more like that of a classical enlarging 
shear crack, depending on the values of constitutive parameters. 

Heaton (1990) introduced such pulses to explain the short inferred duration of 
seismic slip at particular locations on a fault with respect to the total duration of the 
seismic event. He proposed such self-healing pulses as a dislocation-like alternative 
to conventional enlarging-crack models of rupture. In such crack models, the duration 
of slip at a point on the fault is comparable to the total time of propagation of the 
rupture event, rather than much shorter. We do not argue here the sufficiency of 
the observational basis for Heaton’s conclusions, noting that the strongest seismic 
radiation is generated near the growing front of the rupture, so that it might not 
always be possible to distinguish the enlarging crack mode of propagation from the 
self-healing pulse mode. Also, for background, it may be recalled that healing pulses 
of short slip duration are predicted by 3D numerical elastodynamic rupture models 
based on simple slip-weakening friction laws (in these, strength degrades to a fixed 
residual level after some small slip) in circumstances for which rupture is confined to 
a long but narrow fault zone (Day, 1982). This mechanism of pulse generation is atso 
seen in 2D models that approximately represent a long fault in a crustal plate that is 
elastically coupled to a substrate (Johnson, 1992 ; Myers et al., 1994). Freund’s (1979) 
healing pulse solution in an unbounded solid, discussed by Heaton (1990), requires 
the ruptured surface to support more stress after locking them when sliding, while his 
analysis of a healing pulse in the case of geometric confinement to a narrow strip of 
material with clamped boundaries allows reduction of the stress supported after 
locking and suggests the possibility that self-healing could occur, although that feature 
was not demonstrated. For more equiaxed or unconfined fault zones, however, slip 
weakening laws lead to predictions of rupture propagation in the classical enlarging 
crack mode (Andrews, 1976, 1985 ; Day, 1982). The inferred short duration of seismic 
slip might also be a consequence of strong fault zone segmentation, so that rupture 
involves sequences of crack-like propagation over a small patch, arrest at its borders, 
renucleation on a neighboring patch, etc. (Papageorgiou and Aki, 1983 ; Boatwright, 
1988). Finally, Johnson (1990) notes another mechanism of generation of healing 
pulses. He shows that in some circumstances a rupture may nucleate and propagate 
bilaterally, but arrest suddenly at a strong barrier at one end so that a healing 
wave, arresting slip, spreads back over the rupture surface from that end. Then the 
combination of the healing wave and the still-propagating other end of the rupture 
ultimately form a moving pulse-like configuration. 
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Here, despite these other possible mechanisms, we follow the inference from Hea- 
ton’s (1990) discussion that short slip duration might result from features of frictional 

constitutive response along essentially smooth and unbounded, homogeneous sliding 
surfaces. We thus ask what type of friction laws, in a class with some laboratory 
support, are consistent with the existence of pulses. Also, Heaton considered mode 11 
pulses (in-plane slip, in the x direction) in his modeling conjectures, whereas we 

address here the case of Mode III pulses. This does not bring about qualitative 
differences for the problem of steady propagation, at least so long as conditions are 
met for sub-Rayleigh wave propagation speeds in Mode Il. 

We begin with analysis pulses as steady traveling waves, so that the stress s(.Y, f) 
[ = c,~(.x, _r = 0, t)] and the sliding velocity (i.e. the displacement discontinuity rate) 
V(x, t) take the forms z = z(t--x//?c) and I/ = V(r-xl@). Since each point of the 

rupture surface experiences the same history, just shifted in time, we may focus on 
any particular point, say, x = 0. It is recalled in Appendix A that the following 
relation holds, on the basis of linear elastodynamics : 

i 

+z 

z(t) = z, +gPV 
--x 

v(r+U);. (1) 

where 

g = P&m74% (2) 

p denoting the shear modulus, and the notation PV indicating that the subsequent 
integral is a Cauchy principal value integral. The limit B = 1 corresponds to propa- 
gation at the shear wave speed. The Mode II result is of identical form with g in that 
case being a monotonically decreasing function of propagation speed that vanishes 
at the Rayleigh speed, although more rapidly propagating solutions at speeds between 
the shear and pressure wave velocities are sometimes allowed (Andrews, 1976, 1985, 

1994; Burridge et al., 1979). All of our steady Mode III solutions with fl < 1 have 
exact correspondence to sub-Rayleigh Mode II solutions. 

Let us now specify the kind of frictional constitutive law which is used. We will 

show below that such pulse solutions do not exist for pure velocity-weakening friction 
laws for which the strength (called z,,, below) on the ruptured part of the surface is 
a continuous non-increasing function of I’(t), and of I’(t) only, for V(t) 2 0. We are 
thus interested in using laws of a structure that are consistent with more subtle features 
of laboratory experiments, in particular, with dependence of strength not only on 
v(t) but also on the evolving state of the surface. For specific numerical illustrations, 

we shall use a class of rate- and state-dependent friction laws like those due to 
Dieterich (1979, 1981) and Ruina (1983). However, the beginning of the paper aims 
to establish results for a wider class of friction models. For this reason, we state here 
very few restrictions on the friction law, and one can easily check that the models just 
quoted do fulfill them. First, let us mention that those models incorporate some length 
scale, a characteristic slip distance for slip-weakening or evolution of state, which 
obliterates the crack-like singularity of sliding velocity at the rupture tip, and enforces 
continuity of the sliding velocity. For this reason, we assume that F’(t) is continuous. 
We also assume that the sliding velocity is always non-negative (no back-slip). The 
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current stress is assumed to be limited by a maximal value which can be written as a 
functional of past sliding velocity 

r(t) < z,,,(t) when V(t) = 0 ; t(t) = I,,, when V(t) > 0. (3) 

Here, 

Zmax(f) = F[V(t) ; v(t), -co < t’ < t] (4) 

(the notation means that Fis a function of the instantaneous slip rate, and a functional 
of its prior history) with a positive instantaneous derivative 

aF/a[v(t)] > 0 (5) 

(instantaneous velocity strengthening). The functional dependence on past velocity 
accounts for a fading memory of previous slips. The frictional constitutive models 
which we consider all introduce the “state” of the surface, represented through a set 
of variables (01, with just a single member in the simplest cases, and have the form 

(6) 
with the evolution of the frictional state being given by a set of ordinary differential 
equations 

dM))/dt = {VP’(~), P(0))> (7) 

which ensure continuous evolution of the state variable, and hence that the instan- 
taneous response to a velocity discontinuity be given by (5). 

As a preliminary result, this instantaneous response property is used in Appendix 
B to show that a pulse with compact support [0, a must have a specific shape at 
onset and arrest of slip for the relatively broad class of frictional behaviors considered 
up to now [(3)-(7)]. We establish there (with supporting calculations in Appendix C) 
the two following asymptotic behaviors : 

i 

V(t) = aP+o(P), t + o+, 

V(t) = a’(T-t)y+‘+o((T-t)Y+‘), t + T-, (8) 

where we use the Q(t)) notation, representing any function g(t) such that g(t)/f(t) 
converges to 0, where the superscript +/- means a right/left limit, and where the 
exponent y amounts to 

1 1 

( 

1 
y = - + -arctan 

2 71 
X[Y(I) = O] G a[v(t)] 

) 
(9) 

and is greater than l/2 and smaller than 1, by positiveness and finiteness of the 
derivative. Notice that, although our later computational results seem to deny it, the 
coefficients tl and ~1’ might happen to be zero. 

In Section 2, we specify two models in the rate- and state-dependent class, which 
we refer to as the Ruina-Dieterich model, or slip model, and the Dieterich-Ruina 
model or slowness model. Both share the state variable framework, but the former 
(Ruina, 1980, 1983 ; Dieterich, 1979) does not provide strengthening in truly station- 
ary (V = 0) contact, whereas the latter (Dieterich, 1981 ; Ruina, 1980, 1983) does ; 
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that is, the latter is a true aging model. It might be thought that any useful friction 
law would have to exhibit restrengthening in truly stationary contact, but as discussed 
more fully in Section 2.3, Ruina (1983) showed that rate- and state-dependent laws 
which did not have that property could, nevertheless, closely simulate the restrength- 
ening observed in experiments by Dieterich (1978). The matter of whether experiments 
do or do not show frictional restrengthening in truly stationary contact remained 
unclear for some time following that observation, but recent experiments (Beeler et 

af., 1994) covering a wide range of stiffness of the loading apparatus, and hence of 
the extent of relaxational slip, show that the Ruina assumption of state evolution 
only during slip is insufficient, and hence argue for restrengthening in stationary 
contact. We make it clear that this factor of restrengthening in truly stationary contact 
is the main feature that allows for steady propagating solutions with compact support. 
that is, for slip pulse solutions. For that reason, we use the Dieterich-Ruina slowness 
model as a basis for illustrating pulse solutions; the Ruina-Dieterich slip model is 
not consistent with their existence, at least as steadily traveling waves. The usual 
formulation of those models is not well-behaved in the vicinity of zero slip velocity ; 
Section 3 hence introduces a regularized version of them. 

In Section 4, we aim to construct solutions to the friction problem in the form of a 
steady propagating pulse of some duration, T. Let us sketch the ideas : we consider 
the velocity as the main unknown : 

V(t) = 0, t d 0; V(t) > 0, 0 < t 6 T; V(t) = 0, T< t. (10) 

It is then possible to compute the stress rSIE(t) obtained from this velocity through 
consideration of elastodynamics only, without regard to the friction law, using the 
integral equation (1) (which superscript IE is meant to recall); on the other hand, 
one can compute the maximal stress allowed by the frictional behavior (4), T,,,!,(t). 
The friction rule (3) then imposes the conditions : 

z ‘Is G ~nlax, t 6 0; TIE = z,,,, 0 6 t < T; 21E < T,,,~~, T< t. (11) 

If we think of using some computational representation of the function V(t), the 
way we have displayed the problem seems to yield the right number of equations, 
plus some inequalities. Yet, things are more involved, and we are in particular unable 
to guarantee existence and uniqueness of solutions. Moreover, when a solution exists, 
a simple equation solving technique happens to yield oscillatory solutions, which 
seems to indicate that the problem is, in some sense, ill-posed. For that reason, we 
resort to a minimization procedure that allows us to keep control of the first derivative 
of the solution. After dimensionless reduction of the problem, Section 4 expounds 
this algorithm and offers a discussion of the dependence of the solutions on the 
dimensionless parameters ; it is shown that pulse propagation is possible above some 
loading threshold, and that the duration and shape of the pulse are fully determined. 
Numerical results for such steady, traveling wave, pulse solutions are provided in 
Section 5. 

Finally, Section 6 considers the general transient elastodynamic slip problem, 
approached numerically based on the spectral representation of slip 6(x, t) [related to 
V(x, t) by I/ = &5/8t], mentioned earlier, as a Fourier series in x that is truncated at 
large order. Representative numerical solutions are shown for spontaneous rupture 
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propagation, with rupture nucleated by over-stressing some section of the frictional 
surface. We do these solutions for the regularized Dieterich-Ruina constitutive law 
of Section 3, and show that ruptures propagate in a classical enlarging-crack mode 
when a characteristic slip rate V0 entering that law is sufficientlly low, but as a self- 
healing slip pulse when V,, is larger. Now the pulses, when found at all, are not 
generally steady, but may grow or decay with distance of propagation. These crack- 
like and pulse solutions are found at the same loading levels for which we have shown 
in Section 5 that a steady traveling wave pulse solution also exists, and lead us to 
conclude that the traveling wave solutions are either unstable or have a limited basin 
of attraction. 

2. OCCURRENCE OF PULSES WITHIN THE DIETERICH AND RUINA 
FRAMEWORK 

From now on, we specify the constitutive frictional law that we use. In particular, 
the “state” (0) is reduced to one scalar : 8. 

2.1. Ruina-Dieterich slip model; no restrengthening in truly stationary contact 

Let us first describe the Ruina-Dieterich model, which was introduced by Ruina 
(1983) as a simplification of an earlier model proposed by Dieterich (1979) used to fit 
laboratory results. Following Beeler et al. (1994), we call this the slip model, since 
state evolves only when there is continuing slip, V # 0. We write $(t) for the state 
variable and specify the choice of Ruina (1980, 1983) for what we call rmaX : 

h,,(t) = zo+AlntV(t)lV,l+~ft), 
W(W = -[~(t)I~l{ICl(t)+~ln[~(t)l~,.l}. 

(12) 

The quantities rO, A, B, V, and L are constants. More precisely, L is a slip length scale 
for state evolution ; A and B, which are positive, account respectively for the short- 
time velocity strengthening and for the steady-state velocity weakening. Sometimes 
(e.g. Beeler et al., 1994) (12) is written with a variable 0, with II/ = ln(V@/L). It is 
possible to introduce in this model an arbitrary number of state variables, (+Ji=,..., 
each of them having specific weakening constant B, and length scale Li. For example, 
Ruina (1980, 1983) and Weeks and Tullis (1985) have used two state variables to 
fit, in different contexts, their experimental data, and Gu et al. (1984) studied the 
non-linear stability problem for a one-degree-of-freedom system based on such 
models. 

2.2. Dieterich- Ruina slowness model; restrengthening in truly stationary contact 

Let us now describe the Dieterich-Ruina model, based on writing calculational 
procedures of Dieterich in an explicit state variable form (Ruina, 1980). Following 
Ruina (1983) and Beeler et al. (1994), this is also called the slowness law ; it includes 
true aging. The law is used in Dieterich (198 1, 1986, 1992) and Okubo (1989) ; Okubo 
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and Dieterich (1986) use a slightly different version of it. The Dieterich-Ruina model 

consists in choosing 

i 

r,,,(f) = 2,-Aln[l+ V,E/V(t>]+Bln[l +0(r)/&], 

de(t)/dt = 1 -e(t)V(t)/L. 
(13) 

One might think of the state variable 0 here in an abstract way as Ruina (1980, 1983) 
does, especially in connection with (12), but Dieterich (1979), and Dieterich and 
Conrad (1984), interpret it as the “average age of the load supporting contacts 
between the sliding surface”. In that case a constitutive law of the form (I 3) is more 
sensible than one of the form (12), since it yields dO/dt = 1 for V = 0. That contact 

time interpretation led Dieterich to use extensively equations (13), although equation 
(13J seems to have been first written by Ruina (1980). The quantities rO. A, B, V, , 
do and L are constants, with the same general meaning as formerly, except that I’, 

and B,, are cut-offs for high velocity and short contact duration. 

2.3. Occurrence of a pulse 

In this section, we examine whether the preceding friction laws allow for slip-pulse 

solutions. We also show that classical laws of a pure velocity-dependent type do not 

allow slip-pulse solutions. 
Let us stress that the two models just described are much akin to each other. In 

particular, they share a low velocity divergence because of the term log[V(t)]. This 
can be fixed by introducing some low velocity cut-off, VO, and replacing that term by 
log[ V0 + V(t)]. We will not say more about it now, and fully address this regularization 

in Section 3 for the Dieterich-Ruina model. Before that time, let us just ignore the 
errant behavior of the function F( I’, 8) for V = 0, assuming it has been regularized 

there. 
Here, we are concerned with the only qualitative difference between the Ruina- 

Dieterich model (Section 2.1) and the Dieterich-Ruina model (Section 2.2), which 
lies in that, for a non-slipping fault, the threshold I,,, remains stuck at its value at 

arrest, rmax(T), in the former, whereas it climbs upwards, r,,,(t) > rmnx(T) in the 
latter. Ruina (1980, 1983) considers this as a drawback of his model, but sensibly 
alleges that the low velocity behavior is however non-measurable from the experiments 
he and Dieterich performed. More precisely, these experiments consisted of measuring 

the frictional force on a sliding surface with a driven velocity, imposed elsewhere in 
an elastically deformable system (e.g. as oil inflow to a hydraulic cylinder), which is 
a piece-wise constant function of time. In particular, Dieterich (1978) measured the 
force in an experiment where, after previous sliding, the driving was stopped from 
time -t to 0, and resumed with a uniform non-zero velocity for positive time. The 
force increases to some maximal value and afterwards decreases. Dieterich found that 
its peak value, interpreted as the static friction, for a particular quartzite varied with 

waiting time, t, approximately as 

r<,at,c = {0.55+0.02log,,,[l + t/s&~ (14) 

where u is the normal stress. But Ruina (1983) noted the following. First, what is 
controlled in Dieterich’s experiments is not the motion of the slip surface, but the 
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motion of some load point, connected to the sliding surface by means of some 
deformable device, which can be modeled as a spring. Second, the load point was 
moved at constant rate, 1 pm/s, then stopped for successively longer times, t, and 
motion was afterwards resumed at the original load point speed. Ruina remarks that 
these procedures do not imply that the surface is motionless during the “waiting” 
period. Specifically, Ruina (1983) considers a spring rigidity consistent with Diet- 
erich’s (1978) experiments, assumes that the friction law is of a form similar to (12) 
(but with two state variables, with evolution laws that he estimated independently 
from “velocity jump” tests), and numerically integrates the set of equations. Although 
the friction law would predict no change of state for V = 0, the computed static shear 
stress fits very well Dieterich’s (1978) empirical relation (14) [see Fig. 6 of Ruina 
(1983)]. Ruina (1983) concludes that, in the computation, “the apparent static friction 
is due entirely to small amounts of slip that take place while the load point is still, not 
[due to] time of contact.” He adds, however : “I do not want to claim that no healing 
is ever possible when there is no slip, but that static friction cannot necessarily be 
characterized by a single number like time of stationary contact”. This discussion has 
remained unsettled up to the time of experiments described by Beeler et al. (1994), 
which studied the restrengthening during relaxational slip over a wide range of elastic 
stiffness of the loading apparatus. Smaller stiffness means greater relaxational slip. 
The Beeler et al. (1994) results are fit only moderately better by the Dieterich-Ruina 
slowness law than by the Ruina-Dieterich slip law, but they do suggest that the 
assumption that state evolves only during continuing slip is an inadequate one, and 
argue for evolution of our z,,, in truly stationary contact. 

When one wants to apply a model of the Dieterich and Ruina framework to 
examine the possibility of self-healing pulses, the behavior of r,,,(t) after slip arrest 
is of paramount importance. More precisely, a pulse cannot occur in the steadily 
traveling wave context considered if rmaX(t) remains stuck when velocity returns to 
zero, which we show by reductio ad absurdo. Suppose that, in the Ruina-Dieterich 
model, there exists a pulse-like solution, that is a continuous slip velocity with support 
[0, r]. On the one hand, from the constitutive law, because the state variable remains 
frozen from t = T on (12,), because both z,,, and riE are continuous, and because the 
velocity is positive at time arbitrarily near T, we have 

rlnax(t) = Lax (T) = zIE(T) fort 3 T. 

On the other hand, from the elastodynamic integral equation, for t > T, 

s T 

z’E(t)-T,,,(t) = z’“(t)-TIE(T) =(t-T)g V(u) 
,, (t-u)(T-u) 

du > 0 

since V k 0. This inequality is contradictory with the requirement 

r,,,(t) k r’E(t), 

which thus proves that a slip-pulse solution does not exist in the absence of restrength- 
ening in truly stationary contact. 

While the argument has been given in terms of rate- and state-dependent friction 
laws, its conclusion is readily extended to laws in which friction is purely rate- 
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dependent. For such laws, z,,, is a unique and, we assume, continuous function of P’ 

of velocity weakening type (i.e. dz,,,/dV d 0), for V > 0 and hence z,,, does not 

change with time when Y = 0. That is, the laws do not allow further strengthening in 
stationary contact. The same argument as above leads to the inconsistent inequalities 
in z,,, and 71E, and hence disallows a slip-pulse solution. Two further comments are 
in order : first, a pure velocity-dependent law contains no length scale and thus allows 
for no feature like a slip-weakening zone or fracture energy at the advancing front of 

the rupture. Any propagating slip distribution would then have to move at the shear 
wave speed (or Rayleigh speed in Mode II) to avoid a singularity of stress at the 

advancing edge. Thus, when we refer here to pure velocity-dependent laws, we include 
the case for which some special feature, e.g. a fracture energy allowing for singular 

stress ahead of the rupture, is invoked to describe the start of rupture, and for which 
the pure velocity-dependent law applies once the rupture front has passed and slip 

has begun. Our proof that no slip-pulse solution exists assumes only that V > 0 
everywhere and that the friction law makes 7,,,ax a continuous function of V only, at 
least in the vicinity of the hypothesized trailing edge where slip is arrested. Second, 

our non-existence result can be avoided if r ,,,( V) is discontinuous at V = 0 and if 

2,,,,(O) (= C, say) is then sufficiently greater than 7,,,(0+) (= D, say). However, such 
is a mathematically questionable form of a pure velocity-dependent law, in that 

conclusions drawn from it (the existence of a pulse solution) are lost as soon as the 
discontinuous z,,, ( V) IS “regularized” to one which changes rapidly but continuously 

with I/near V = 0, from z,,,&~ = Cat I/ = 0 to z,,, = D at small V > 0. The regularized 

form disallows a slip-pulse solution. 
Thus to the extent that Heaton’s (1990) seismic observations credibly support his 

inference of traveling slip-pulse-like solutions, they might be regarded as arguing for 
restrengthening in truly stationary contact. The existence of Heaton pulses would 

also provide further evidence for the physical inadequacy of using pure velocity- 

dependent friction laws, without additional dependence on the evolving state of the 

surface, for modeling frictional slip between elastic continua; we have noted above 
that such laws are inconsistent with the existence of pulses. The computational part 
of this study, in the subsequent sections, deals only with the Dieterich-Ruina slowness 
model which, of the models considered here, allows slip-pulse solutions to exist in 
some parameter ranges. Tullis et al. (1992) and Beeler and Tullis (1995) have done 

numerical studies of spontaneous dynamic rupture in which slip evolves with position 

and time, analogous to what we present in Section 6 here, for the in-plane (Mode 11) 
case. They use a boundary integral program devised by Andrews (1985) and previously 
adapted to the rate- and state-dependent context by Okubo (1989), and find consistent 

results in that the simulations which evolve into a slip-pulse mode of rupture propa- 

gation are those which are based on laws allowing strengthening in truly stationary 

contact. 

3. A REGULARIZED VERSION OF DIETERICHPRUINA MODEL 

As pointed out by Dieterich (1992), the model presented offers non-physical 
behavior for extremely low slip velocities. It does the same for (perhaps unreasonably) 



1470 G. PERRIN et al. 

long “contact times” 8. To overcome these drawbacks, we introduce two cut-off 
velocities V, and I’, in the following way : 

h+,(f) = zo+A ln([Vo+ ~(W[V,+ v(t)]} +Bln[l +@(Wol, 
d&t)/dt = 1-0(t)[V,+ I’(t)]/L. 

(15) 

Notice that the state variable is confined in [0, L/V,]. This might not seem wise if 9 is 
to be interpreted as a contact time. However, considering a cut-off precisely means 
that we are getting outside of the measurable range and is by nature artificial. Another 
way of regularizing the Dieterich-Ruina model will be briefly discussed in Section 5. 
The cut-off velocities just introduced seem to be arbitrary. Still, let us consider the 
case of a steady state friction with velocity V; then 

which suggests that there would be two different physical cut-off mechanisms, at low 
as well as at high velocities, unless we choose 

I’, = V, and V,+L/Oo = V,, 

which we do. The regularized Dieterich-Ruina model which we shall consider in the 
following is thus given by equations 

r,,,(t) = ro+Aln([Vo+ v(Ol/[Vm+ ~(t)l}+BlnP +Q(O(v,- Vo)ILl, 
de(t)/dt = 1 -e(t)[&f V(t)]/L. 

c16j 

4. PULSES WITH THE REGULARIZED DIETERICH-RUINA 
MODEL : ALGORITHMS 

4.1. Choice of dimensionless parameters 

If it can be solved, the mathematical problem will yield a solution (I’(t), r(t), e(t)) 
which depends on 12 parameters and on the number N of discretization elements 
used which sets its accuracy. The 12 parameters can be sorted into three families: 
constitutive parameters of the elastic medium and of the friction rule (p, c, ro, A, B, 
L, V,, V,), initial state and loading of the fault (initial value of the state variable 
e(O), r,) and response of the fault (duration T, velocity DC of the pulse). 

A first remark is that 0(O) is in fact not free if a strict traveling wave solution, with 
x-/Ict dependence, is to result : indeed, if it is different from L/V,, 8 tends expo- 
nentially towards f cc for t + -co, which is unpleasant. For this reason, we fix 
0(O) = L/V,, which is reasonably assumed for a surface which has been in contact 
without sliding for a much longer time than that of typical laboratory studies. 

Now, analysis of the way the mathematical problem varies with the remaining 
parameters allows an attempt to solve it for only five free reduced parameters: I?, 
and A^ related to the friction rule, ?,, related to the loading, and F and B, related to 
the pulse duration and velocity. More precisely, we consider the problem, derived 
from (l), (2) and (15), 
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f(i) = ‘Iv s ’ P(u) 
P 

-dU, 
,I u--t (17) 

Z,,,(i) = -c,+aln{[l+ P(t^)]/[VV. + P(f)]} +ln[l+ F&i)(P, - I)]. 

d&i)/di= 1 - F’e(t^)[l + p(i)] 

(18) 

together with the transcription [denoted (3) hereafter] of system (3) to variables with 
a h, the solution of which is related to the physical solution through : 

v, = V”Q,, A= Ba, z, =T,+BQ,, T= LF/V,, 

/jid\lll = pVOPj(271cB), t = LF’t^lV,:,, V(t) = V,, P(f), 

s’(t) = r,+B(~‘(i)+f,) (bothforr’ = zlEands’ E z,,,), H(t) = Lfff(i)/V,. 

In these fomulae, p, c, z,,, B, V,, and L are fixed materials parameters ; they will depend 
on the temperature (not considered here) and at least r. and B will depend (linearly 
if AmontonCoulomb-like) on the normal stress on the fault, constant here. 

4.2. A tent&se numerical algorithm 

The aim of this sub-section is to construct a simple algorithm which hopefully will 
find a solution, at least if any exists, of the dimensionless problem for given I’, , A^. 
f,, fand B. 

We follow the scheme sketched in the introduction. The first step is to discretize 
the velocity as a piece-wise constant function in the following way : we cut the interval 

[0, l] into N consecutive sub-intervals of length At?, the centers of which are denoted 

t;, on which the velocity is 

il’(N+ 1 _ i)Y+ 1 
r’, = y-- LIP, 

a<1 - l/LQfi 

,g, j;‘(N+ 1 -j)?+’ 

where “J = k + k arctan - -~~, 
71 

the (di), c iGN being considered as the fundamental degrees of freedom ; the sub-interval 
lengths are chosen uniform both in the vicinity of c= 0 and of i= 1, which ensures 

at both pulse tips, without singular variation of the (d,), GiGN, the power law behaviors 
noted in Section 1 and Appendices B and C. The second step is to compute the value 
of 

at the center c of the intervals. Such choice of collocation points for (17) allows us to 
address the problem despite the discontinuous numerical representation of the 
velocity. The third step is to integrate analytically (18) to get ?,,,(tl) (this is straight- 
forward, since P is assumed to be piece-wise constant). The fourth step is to find 

values of (d,), G,sN which ensures that (3) is fulfilled, both inside interval [0, I] and 

outside of it. 
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To perform step four, we first tried to find the solution of (3) by means of a classical 
Newton method. Two problems appear : 

(0 

(ii) 

Convergence is not realized : the family (L&), GiGN, initially uniform, turns wavy 
and even chaotic in a few cases. 
Besides, it is to be expected that, once the characteristic of the medium and the 
loading ?, are known, there is only one (or a few isolated) pulse solutions 
possible ; knowledge of the loading conditions hence determines, among other 
things, the pulse duration and the pulse velocity, or in other terms the couple 
(f, 6). If this intuition is true, the dimensionless problem, in the way we 
have stated it, would almost never have a solution. In other words, for given 
characteristics of the medium a and v,, we expect that the set of values of 

(L, f, 6) for which a solution exists lie along a curve in three-dimensional 
space. 

One way to overcome problem (ii) would be to consider the couple (f, $) as 
two additional unknowns and add them in the Newton formulation. However, this 
improvement did not solve problem (i) : indeed, even when the couple (f, 8> was set 
to a value consistent with Q,, oscillatory divergence of the solution was observed. 

4.3. A suitable numerical algorithm 

As a resolution, we address primarily problem (i) with a regularization technique 
inspired by Tikhonov procedures (Tikhonov and Goncharsky, 1987). The solution to 
problem (ii) will follow from use of the technique. The previously decribed steps one, 
two and three are unchanged. 

Regarding step four, we consider that the oscillations observed are a sign that some 
additional regularity condition should be imposed on the solution. We hence turn the 
solving of equations (5) into a minimization problem : we define the criteria 

J1 = f AQ?E(o-f,,,aX(Q)2, J2 = 
i=l 

x& ;;,I (d,;‘Nd.)t J, = J,+pJz, p > 0, 

[notice that J, = 0 is equivalent to fulfillment of (j)] and we denote by J(p, N, p,, 
2, z^, , f, 6) the minimal value of J, over all positive (dJ LSiSN (for simplicity, this set 
will now be denoted {d}) and {d*} (p, N, v,, a, z^,, p, /I) the value of the degrees_ of 
freedom for which the minimum is reached. In that way, we keep a control of the 
regularity of d, as a function of i, this control being all the stronger as p is increased. 
On the other hand, too large a p diverts us from the physical problem. The idea here 
is that, because N is finite, the problem of minimization of J, does not make sense. In 
non-computational words, it is compulsory to take the limit N + cc before the limit 
p -+ 0, or at least to make N large enough before reducing p, and the numerical 
solution then regulary converges towards the smooth physical solution 

of the limit minimization problem 
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(19) 

This solves the smoothness issue. However, the solution of problem (19) is a solution 
to our physical (dimensionless) problem (17, 18, 3) only in the case when the solution 
of (19) also fulfills I= 0. This is generally not the case for arbitrary p,, 2. f,, , Lf and 
ii, and the problem (ii) raised at the end of Section 5.2 is not solved yet. 

The way to solve it, however, is now straightforward: we must tune the five 

parameters to solve the equation 

J( P,) a, f,, ) F, 6) = 0. (20) 

The nicest way would be to use the Newton method in the five variables. However. it 
is a long (computational) way to J, and even its first derivatives are too irregular to 
give a good result. Instead, a more basic but robust method, of mere scanning, was 

used. In the end, for various given values of p,, a and p, we observed that we were 

able to (and that we had to) tune Q, and p to fulfill (20), therefore following the 

mentioned curve in the three-dimensional space of (f r, f, 6). 

5. PULSES WITH THE REGULARIZED DIETERICH-RUINA MODEL : 
COMPUTATIONAL RESULTS 

The problem was first studied intensively for a set of values for the materials 
parameters : 

a = 0.1, 8, = loJ. 

Then some computations were also performed for 

a = 0.2, P, = 103. 

We have made computations with N = 50 and N = 100. The latter proved to be a 

good trade-off between computation time and accuracy. Now, for a given value of 
the penalty parameter p (say lo-“), when scanning the three-dimensional space (Qx , 
p, p^) and computing J, one realizes that this non-negative function is rather small in 

a region that follows a curve, like a rope of slowly varying section, and offers large 
gradients in the section plane. This feature is all the more pronounced when N is 
larger. When p is diminished, the minimal value is somewhat lowered, but, if p is too 
small, the rope region becomes unclear, and the solution, in terms of d, as a function 
of i, becomes unstable ; our method might even not be able to find a minimum 
anymore, so that apparently Jsometimes increases with p decreasing! In practice, p 

was adjusted along the rope to get a good trade-off between a minimal value for 9 
and a smooth solution. Figure 1 shows the degrees of freedom (id}) for each of the 

15 computed solutions in the case A^ = 0.1. The regularity of their behavior for low i 
and for high i (corresponding to the tips of the pulse) is a good verification of the 
power law behavior of r’(f) predicted analytically in (8). 

Figure 2 shows a(f), f,,,(i) and f’“(i) for three of the solutions we constructed, 
corresponding to the lowest (4.623), intermediate (5.519) and highest (6.175) value 
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0 20 40 60 80 100 

position i 

Fig. 1. Display of degrees of freedom (dJi= ,,,,,oo for each of the 15 solutions computed in the case a = 0.1. 
Each curve is normalized by division by its maximal di, and shifted vertically so that they do not cross ; for 

each curve, the horizontal segment shows the origin of the vertical axis. 

of the remove stress ?, . Table 1 lists all the solutions which we computed for the case 
a = 0.1, sorted by increasing remote stress 2,. For all the solutions, the slip velocity 
increases towards a peak value fmax, and more gradually decreases towards 0. We 
also computed the total amount of slip caused by the pulse, that is 

One can use it to compute the amount of work dissipated by friction per unit of crack 
length and of material thickness by the passing of the pulse. In terms of dimensioned 
quantities it amounts to 

D= a 
I 

z(t) V(t)dt 
--m 

which can easily be related to the dimensionless quantities as 

D = Lz, (5%&) + LB(z”, PILta,) (21) 

because (17) makes the integral over dimensionless time of the product ?(t^)p(i) 
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Fig. 2. Solution computed for a = 0. I, li7 = 1000 and (a) 2, = 4.623, (b) f, = 5.519, and (c) f = , 6.175. 

vanish. Table 1 also provides the values of the dimensionless parentheses appearing 
in (21). Table 2 gives analogous information in the case a = 0.2. 

It must be stressed that the finding of triplets (?, , f, 6) which allow for minimum 
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Tablel.A=O.l 

1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

4.623 0.252 60.0 41.4 0.058 18.46 4.652 21.51 
4.692 0.271 55.0 36.0 0.23 16.46 4.461 20.93 
4.7685 0.295 50.0 31.1 0.59 14.42 4.254 20.28 
4.798 0.3063 48.0 29.3 0.097 13.65 4.181 20.06 
4.848 0.325 45.0 26.4 0.66 12.45 4.046 19.62 
4.9435 0.362 40.0 21.9 0.22 10.47 3.790 18.74 
5.178 0.4662 30.0 13.4 0.22 6.761 3.152 16.32 
5.519 0.6896 20.0 6.03 0.15 3.188 2.198 12.13 
5.769 0.916 15.0 2.91 6.1 1.600 1.466 8.455 
6.02475 1.226 11.2 0.938 6.2 0.543 1 0.6658 4.012 
6.097 1.356 10.3 0.539 4.7 0.3115 0.4224 2.575 
6.1053 1.3645 10.2 0.497 4.7 0.2889 0.3942 2.407 
6.114 1.378 10.1 0.453 4.4 0.2644 0.3643 2.228 
6.151 1.44 9.7 0.280 11.0 0.1638 0.2359 1.451 
6.175 1.495 9.4 0.173 4.7 0.1013 0.1514 0.935 

Table 2. A = 0.2 

Index 2, 

1 4.525 0.55 30.85 19.92 0.7 7.115 3.91 17.71 
2 4.7 0.70 24.0 10.24 2.4 4.721 3.30 15.53 
3 4.8 0.777 20.76 7.778 1.8 3.798 2.95 14.16 
4 4.98 0.914 15.0 3.600 2.5 1.874 1.71 8.53 
5 5.4 1.81 9.1315 0.587 1.0 0.3321 0.601 3.25 
6 5.478 2.049 8.235 0.200 5.0 0.1160 0.238 1.302 

J, is tedious. This makes the numbers given in the corresponding columns of Tables 
1 and 2 valuable. Graphic presentation of these quantities (together with g,,,,,) is 
interesting too. Figs 3, 4 and 5, respectively, show evolution of ?‘, /? and v,,, versus 
I,forA=O.l,anda=0.2. 

5.1. Discussion of steady pulse solutions 

These curves suggest that slip-pulse solutions exist only for 

z^, <a, Q < z^, < z^; (a, VW). 

It is easy to show that the upper bound must be 

Indeed, this value is the threshold for slip initiation on the virgin fault. Hence, if the 
remote applied stress exceeds it, there cannot exist a slip pulse with finite duration. 
Moreover, the smaller the difference 
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Fig. 3. Evolution of dimensionless pulse duration-f as a function of dimensionless remote applied stress 
2, for V, = 1000; cases A = 0.1 and A = 0.2 are shown. 
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Fig. 4. Evolution of dimensionless coefficient b as a function of dimensionless remote applied stress f , for 
p, = 1000; cases a = 0.1 and a = 0.2 are shown. 

(1 -A)ln V,-r^7. (22) 

is from the upper bound, the smaller the stress build-up precursor to the slip initiation 
must be. Now, the latter is given by 

which indicates that p(I) should scale with quantity (22). Our numerical computations 
show that both f and fl converge to a finite value when (22) approaches 0. This 
remark allows us to linearize without difficulty (4) and prove that 



1478 
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Fig. 5. Evolution of maximal dimensionless slip velocity VW,. as a function of dimensionless remote applied 
stress f, for ?a = 1000 ; cases 2 = 0.1 and a = 0.2 are shown. 

V(2) = [(l-&In P,--~,]LP(i)+o[(l-A)ln P,-PJ 

where I$’ is a solution, positive on the open interval 10, 1 [ and null outside, of 

bv s ’ ti(u) 

B 
-du+(l -l/f%) 

o u--t s 
’ @‘((u)ei(‘-“‘du 

0 1 
< 1 when i < 0, 

is =l when O<i<l, 

~1 when t^> 1. 

Our numerical findings support the idea that this system has a solution only for one 
precise value of (f, 6) which depends only on a and pi, ; for f, = 1000, extrapolation 
of our results predict (1.57,9.12) in the case a = 0.1, and (2.4,7.6) in the case a = 0.2. 

Discussion of 2, approaching the lower bound ?;(A, v%) is more difficult. Our 
computations seem to reveal that p tends to zero, and that p, p,,, and stota, tend 
to infinity corresponding to quick pulses with large offset. However, the maximal 
dimensionless slip velocity used was 41.4, which is much less than the high velocity 
cut-off. Unfortunately, it seems difficult to consider any limit problem because the 
product f(l + P(i)) which determines the rate of evolution of the state variable 
changes by an order of magnitude over the pulse duration. Further work is hence 
necessary on the limit case in which f, approaches the lower bound ?;(A, pm). 

We emphasize that the non-dimensional steady pulse solutions constructed here, 
for given values of A and p,, and for remote loading 2, in a range which allows 
their existence, are valid for any value of the dimensionless parameter ,LAV~/BC. That 
parameter determines the actual, dimensional speed Vr,,rupture of rupture propagation. 
Using the identification of fi above, where fl values for given loadings are shown in 
the Tables 1 and 2 and Fig. 4, the dimensional speed is 
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This has c as an upper limit, but for sufficiently small pV,/Bc, Vrupture becomes 
negligible compared to c and the fact that our analysis framework is elastodynamic 
becomes irrelevant. That is, the pulse solutions derived exist also as purely quasistatic 
solutions of the elastic equations, an interpretation that is physically justified when 
pLI/O/Bc is small enough. However, we will see in the next section that the value of 
p V”/Bc will control whether a self-healing pulse, or instead an enlarging-crack, mode 
of rupture propagation actually results in transient analyses of slippage produced by 
sudden over-stressing of a region of fault surface ; we will see that the pulse solutions 
associated with sufficiently small values of PI’,/& appear to be unstable. 

6. TRANSIENT ANTIPLANE ELASTODYNAMICS ANALYSIS : 
SPONTANEOUS RUPTURE PROPAGATION 

6.1. Transient elastodynamic relation between stress and slip distributions 

Let 6(x, t) and r(x, t) be the antiplane slip and stress histories along the plane y = 0 
separating two elastic half-spaces. The equations of elastodynamics require that these 
histories be related by an expression in the form (e.g. Cochard and Madariaga, 1994) 

r(x, t) = zO(x, t) +J‘(x, t) - (p/2cM.,(x, t). (23) 

Here ,f(x, t) is a linear functional of prior slip 6(x’, t’) over all x’, t’ satisfying 
c(t - t’) > Ix--.x’\, and rO(x, t) is the loading stress, i.e. the stress history that would 
have been created by external loading (e.g. as incoming waves or as a dipole layer of 
body force along the plane y = 0) if the interface had been constrained against slip. 
The highest order time derivative appears in the term (~/2c)6,, representing “radiation 
damping” (e.g. Rice, 1993). The relation of .f(x, t) to 6(x’, t’) can be expressed as a 
double convolution integral given by equation (8) of Cochard and Madariaga (1994), 
but is simple to express, and convenient for the numerical method we present, in the 
spectral domain. 

To evaluate the relationship in that domain, consider a full space at rest for t < 0, 

and with r”(x, t) = 0 for all t, but with the interface forced to slip for t > 0 according 
to 

u(x,y = O+, t)-u(x,y = O-, t) E 6(x, t) = D(t)elk-’ (24) 

Here k is an arbitrary wave number and D(t) is an arbitrary continuous function with 
D(t) = 0 for t < 0. We seek the solution of the wave equation (A.2) for which 
u,.~(x, y, t) is continuous at y = 0, where it corresponds to z(x, t)/p, i.e. to the stress 
history which would have to act to be consistent elastodynamically with the imposed 
slip. Writing u(x, y, t) = U(y, t)elkx and defining 

s x 

QYJ) = e-,‘* U(y, t) dt 
0 

as the Laplace transform on time, one satisfies (A.2) if 



1480 G. PERRIN et al. 

- kW(y, s) + 8, c_v, s) = (s’/c’> Lj(y, s), 

for which the solution must meet 0 + 0 as ]y] + co. That solution is 

Tj(y, s) = sign(y)[d(s)/2]exp( - I y lJk2+s2/c2). 

From this we find the Laplace transform of the stress that would have to act on the 
interface as 

?(x, s) = ~u,~(x, 0, t) = fiO,Y(O, S)eikli = - [,&(s)/2]JZK@e”’ 

Since the functional f(x, t) = r(x, t) + (P/~c)~,~(x, t) in these circumstances, we may 
write f(x, t) = F(t)erkr where F(t) is related to D(t) in the Laplace domain by 

g(<s) = - (/~]k]/2)A?(s)@s) where A(s) = Jl +s2/k2c2--~/]k]c. 

Since sA?(s) is bounded ass -+ + co, there is a bounded function M(t) whose transform 
is A?(s), and the convolution theorem allows us to write 

I;(t) = - (,u]k]/2) 
s 

’ M(O)D(t- @de, (25) 
0 

To find M(t) we extend A!?(s) to the complex plane with branch cut on the imaginary 
axis between s = -i(kJc and s = i]k]c, and then use the Bromwich inversion formula 
to write 

M(t) = & (dw-z/lklc) e” dz 

where the contour r can be distorted to circle once around, and shrink onto, the 
branch cut. Thus letting z = ilk/c sin $, with $ varying from 0 to 271, 

M(t) = lklc s *IL 
271 0 

(cos $-i sin rl/)exp(i]k]ct sin Il/)cos $ d$ 

cos((k]ctsin$)d$+ i s ozcos((k]crsin$-2$)d$ 1 
The two terms within the brackets are just the well known integral representations of 
the Bessel functions Jo and J2, respectively, so that 

M(t) =~I~l~/~~~J~~l~l~~~+J~~l~l~~~l = J,Wl4lf. (26) 

Thus (25) above for F(t), when evaluated with this convolution kernel M(t), gives the 
functional f(x, t) of (23), in response to slip history 6(x, t) = D(t)eik” of (24), as 
f(x, t) = F(t)elkv. 

6.2. Numerical procedure for spontaneous slip rupture 

For our numerical method, we choose some length A along the x axis and represent 
the slip 6 and the functional f as the Fourier series 
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N/2 Iv? 

6(x, 1) = C Dn(t)e2nir’r,‘i, f(x, t) = C Fn(t)e2”i”~y:’ 
n= -N/2 a= - WV,‘2 

where N is some large even number. Here D,, and DNjZ are real, and D-, is the complex 
conjugate of D, so that the set {D,(t)} involves N real functions, and similar remarks 
apply to the set {F,(t)). This repeats the slip distribution, and hence the entire 
elastodynamic rupture process to be modeled, periodically in .Y with interval 2. N is 
chosen as a power of 2 and the Fast Fourier Transform (FFT) technique is used to 
rapidly relate the {D,,(t)} and {F,(t)} to the values of 6(x, t) and .f(x, t) at N sample 
points s = xi 5 j/l, where j = 0, 1, 2,. , N- I and h = I./N is the sample point 
spacing. Thus, to convert the histories S(jh, t) at the N sample points to histories of 
f(,jll, t), we first FFT the set {6(,jh, t)} to get 

b,(t) = 1 G(.jh, t)e-““““,‘; 
/=O 

this coefficient set {b,(t)} . IS related to {D,,(r)} by D, = b,,/N for n = 0 to N/2 - 1, 
DNjZ = BN!2/2N, and D, = aN,,/N f or n = -N/2 + 1 to - 1. Next, we calculate the 
jF, (t)} by the convolutions, from (25, 26) above with k = 2nn/i., 

F,(t) = -(n,ulnl/3L) s ‘J,(2nInlc@/1)N-‘D,(r-N)dH. 
0 

Finally we rearrange the {F,(t)} into a new set {p,,(l)}, following the same rules as 
for rearrangement from (5, (t)} to {D,(t)) above, and use the inverse FFT to evaluate 

j’(jh, 0 as 

[In some cases it may be convenient to explicitly extract the elastostatic term in 

F,,(t): 

I 1; 
F,(t) = - (w44/Wn(O+ (wl4l4 

SLS 
J,(q)q-‘dq d,(t-0)d0; 

0 ?nInl&i I 
(27) 

this is obtained from integration by parts, noting that the integral within the brackets 
gives unity when 0 = 0. A “quasistatic” approximation used by Rice (1993), perhaps 
better called “quasidynamic”, is equivalent to retaining only the first, static elastic, 
term in (27), but still retaining the radiation damping term in (23) so that the 
formulation is capable of dealing with frictional instabilities during which a con- 
ventional quasistatic solution would not exist. That approximation effectively 
amounts to instantaneously propagating the final static stress changes, associated 
with slip, along the frictional surface, whereas the convolution term of (27) which is 
then neglected incorporates the proper wave-mediated radiation of those stress chan- 
ges. For simulations that span many unstable events, with long intervals between 
them for which no dynamic effects occur, like in the modeling of sequences of crustal 
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earthquakes (Rice, 1993), it may ultimately be possible to devise a numerical method 
that does just retain the static term of (27) during most of the history but calls on the 
convolution integral of (27) too as instabilities approach, and during unstable slip.] 

Our numerical procedure thus consists of requiring that the z and 6 histories at the 
N FFT sample points in x be consistent with elastodynamics, i.e. satisfy (23) with 
f($z, t) related to the prior 6(jh, t) history as just described, and that the z and 6 
histories at those sample points satisfy the friction law. 

The procedure is explicit in time. Suppose 6 (and hence f) and tI are known at 
times up to the current time t at the FFT sample points and, of course, that the 
“loading” r” is given at time t at those points. In the notation of Section 1, (6) 
and (7) with a single state variable, let the constitutive law be z,,,_ = F( I’, 0) with 
atl/dt = c$( V, 0). Then we solve for V at each of those sample points by setting 

F( V, e) + (~12~) v = ~0 +J (28) 

The left side is monotonic in V, by (5) so that there will be a unique solution V > 0 
when r” +f> F(0, e), whereas the solution is V = 0 when the inequality is violated. 
We let the V distribution at the sample points prevail over time step At, updating 
each 6 by VAt, using the above FFT-based procedure to update eachf, and update fJ 
by integrating the expression for atI/& over At with V fixed. Then we solve (28) 
again for V at each FFT sample point and repeat the process. This procedure, with 
performance of the elastodynamic convolution on time in the spectral domain and 
use of FFT in each time step to go back and forth from real space, where the 
constitutive law is enforced, is closely analogous to the numerical procedure of Rice 
et al. (1994) for perturbed dynamic crack growth. 

6.3. Numerical results for friction law of Section 3 

We have used the friction law of Section 3, the same used in the steady pulse 
analysis, as the basis for several transient analyses of spontaneous rupture. The time 
step is chosen as At = 0.25 h/c in examples to be shown. In addition, to properly deal 
numerically with the friction law we must simultaneously assure that the slip in any 
time step remains modest compared to L. Since a representative unstable slip velocity 
is expected to be of the order of a few times (B-&/p [e.g. set the radiation damping 
term in (23) equal to a sudden stress drop, expected from the friction law to be of 
order of a few times (B-A)], this means that (B-A)cAt/p < L or, since At is order 
h/c, that h < pL/(B--A). In fact, this last condition is essentially coincident with a 
criterion for numerical accuracy formulated by Rice (1993), who noted that the spatial 
resolution h of his numerical grid had to be small compared to the coherent slip size, 
or nucleation patch size, h* associated with the friction law and obtained from 
quasistatic analysis of stability of slip (Ruina, 1983 ; Rice and Ruina, 1983) ; h* is 
the cell size h at which the single-cell stiffness, 2p/nh for Rice’s (1993) method of 
discretization, is equal to the critical stiffness for stability of steady sliding. He showed 
that h* = ~/JL/~c(B---A) for the Ruina-Dieterich-type law that he used; the same 
formula applies approximately for h* with the friction law of Section 3 used here, at 
least at slip rates which are intermediate between our low and high speed limits, I’,, 
and V,. Here, to meet h < h*, we have chosen parameters so that h = h*/24, which 
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seems to be small enough to make the actual size h of the discretization essentially 

irrelevant to the results. 
To perform the convolutions, the coefficient set {D,,(t)} for all modes was stored 

and the kernel set {M,,(8)} E {J,(~z~Pz]c~/~)/~} calculated for all previous time steps. 
We first evaluated pre-integrated kernels {Mn(B,)}, defined so that {n;i((e,)} At is the 
1 l-point Simpson integration of each M,(B) over tIi to 0,+ At, where 8, = ,jAt and 
j=o, 1,2 ,...) t/At- 1. Then the convolution integrals were evaluated as sums of 
A?, (O,)D,, (t - 0,) At over that range ofj. [Subsequent studies (Geubelle and Morrissey. 

private communications, 1994) showed that a simpler 2-point trapezoidal sum, 
n;l,(@,) = [M,(8,) +M,(0,+At)]/2 is somewhat preferable not just for efficiency but 

also for numerical stability, particularly when our scheme is extended to tensile crack 
problems.] Consider the mode with shortest wavelength, for which In] = N/2. The 

argument 27r1n]c0/3. of J, becomes n0/(h/ c so that if we choose our time steps as ) 
At = y/z/c with some small y, the argument will change by rcAt/(h/c) = ~71. In our 

examples to be shown we chose q = 0.25, which corresponds to eight At-intervals 
within the shortest period of J, encountered. On the other hand, for the modes with 
InI = 1, we have totally 4N At-intervals per period. While there are fewer intervals 

per period for modes associated with the shorter wavelengths, the errors introduced 
in this way are made less significant by the fact that the amplitude of J,(q) decays as 

4 -I” so that the shorter wavelengths dampen more rapidly. We tested our algorithm 
with y = 0.25 against analytical solutions for cracks under step-loading of their faces 

and the results corresponded well. The smooth, oscillation-free nature of our results 
shown here also suggests that the procedures with q = 0.25 are suitable. In some cases 
q = 0.5 can be used with good results. An option for future exploration is to choose 
the integration points more sparsely for the longer wavelength modes. Also, it should 
be pointed out that by working in the spectral domain the convolutions are evaluated 
separately for each Fourier mode, rather than as a matrix convolution in the spatial 
domain. This feature is very useful, especially in combination with the FFT. and 

makes the computations suitable for massively parallel computer architectures; we 

used Connection Machine 5 computers. 
Results discussed here are for a E A/B = 0.2 and p’, = V, /If,, = 1000. We take 

N = 2048, i.e. 2 = 2048h. As noted above, we choose L and numerical FFT sample 
spacing II to make 12 = h*/24 (and hence i. = 85.3/z*). That leaves a single free consti- 

tutive parameter ,uL,,/Bc on which solutions may depend, the parameter being the 
ratio of V, to a characteristic dynamic slip velocity (cB/p) in a continuum sustaining 

stress reduction of order B. We consider a fault everywhere in initial state 8 = LI’ I’,,, 
as it would be after a long time at rest, and imagine that a uniform applied stress ?. 
slightly below the static strength threshold rmax, acts for t < 0 everywhere along a 

central section of the fault spanning the length 1024h (=42.7h*). We keep r” very 
much lower outside that central section, so that the borders of the section act as barriers 
to rupture, allowing us also to study the arrest process. In subsequent plots. Figs 

6(a)-9(a), we show stress measured relative to rss,V_X, the steady state value of r,,,, 
at arbitrarily high slip rate, which is just r. of (15). The threshold strength rmax before 
rupture is nucleated is 5.526B larger than z,,,~_=, and the figures show (r-rz,+_ .)/ 
5.526B, which corresponds to 4J5.526. The value of Y(.Y, t < 0) in the highly 
stressed central section is taken as 0.7262B smaller than the threshold strength before 



1484 G. PERRIN et al. 

rupture. This corresponds to the case of non-dimensional stress f, = 4.8 in Table 2 
and Figs 3-5, looking at curves for a = 0.2, and is evidently a case for which a steady 
traveling wave pulse solution exists. (We have confirmed that our transient numerical 
formulation can indeed reproduce a steady traveling wave pulse solution by con- 
sidering a uniformly stressed fault and pre-conditioning by specifying the slip versus 
time history of a known steady pulse solution at FFT sample points within a small 
section of the fault, then allowing rupture to develop spontaneously on the rest of the 
fault. The transient solution closely reproduced the steady pulse solution up to times 
when interference effects from the periodic repetition of the fault intervened.) 

However, in the transient solutions shown here we nucleate rupture by a step 
increase of the loading stress r”(x, t) at t = 0 to make z”(x, t > 0) in excess of z,,, 
over a small section of the x axis of size 80h (3.4/z*) within the highly stressed central 
section. This sudden perturbation is shown for four cases in Figs 6(a)-9(a), where we 
have chosen ,uVo/Bc = 0.50 for Fig. 6, pV,/Bc = 0.23 for Fig. 7, and pVo/Bc = 0.10 
for Figs 8 and 9. Figures 6(a)-9(a) also show the stress in that central section following 
arrest of rupture propagation at the barrier ends of the section ; that corresponds to 
the stress a few At after all slip has ceased, and will be modestly different from the 
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Fig. 6. Transient rupture propagation results for 2 = 0.2, $, = 1000 and pCO/Bc = 0.50. (a) Stress r 
measured relative to r’rs,Y_ai, the steady state value of r,,, at arbitrarily high slip rates; the threshold 
strength rmar before rupture is nucleated is 5.526B larger than z,,,~,, Initial stressing r”(x, t < 0) is high 
and uniform over a central section spanned by 1024 FFT sample points, of spacing h = h*/24, between 
x = 512h and 1536h, where the periodic repeat distance I = 2048h = 85.3h*. A perturbation of 5” is applied 
over a section of length 80h at t = 0 to nucleate rupture, so that the loading stress P(x,t > 0) corresponds 
to the rectangular distribution shown, with r” reduced far below r,,,+, outside the central section to form 
barriers to rupture. The final stress distribution over that central section, once rupture has ceased, is also 
shown. (b) Slip versus distance during rupture propagation over the central section, with curves drawn at 
time intervals 140At = 35h/c. In this case rupture propagates as a self-healing slip pulse but the pulse is not 

a steady traveling wave. 
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Fig. 7. Same as for Fig. 6, but with p V,/Bc = 0.23. This p V,jBc is in the range of transition from the relf- 
healing pulse mode of propagation like in Fig. 6 to the enlarging-shear-crack mode as in Fig. 8. 
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Fig. 8. Same as for Figs 6 and 7, but with pV,/Bc = 0.10. In this case rupture propagates in a mode hke 
that of a classical enlarging-shear-crack. 



1486 G. PERRIN et al. 

5.526B 

Fig. 9. Same as for Figs 68, but with pVo/Bc = 0.10 and now with the loading perturbation applied 
towards the left border of the highly stressed central section. The conditions favor the enlarging-shear- 
crack mode of propagation but effects of arrest at the left barrier propagate towards the rightward moving 

front of the rupture and create a self-healing pulse by the mechanism discussed by Johnson (1990). 

final static stress distribution. The slip histories over the central section are shown 
in Figs 6(b)-9(b), where the curves are separated by uniform time increments of 
140At = 35h/c. 

We observe the following from the results in Figs 69 : 

(1) Although the constitutive parameters and loading over the central section are 
consistent with a steady traveling wave pulse, that solution is not observed when 
ruptures are started by suddenly over-stressing a small region as described. Thus the 
steady traveling wave pulse solution is either unstable (but not violently so because, 
as noted, we can reproduce that solution with specially chosen preconditioning) or, 
in the language of dynamical systems, the solution has a limited basin of attraction. 

(2) Examining Figs 6(b)-S(b), which correspond to identical loading but decreasing 
values of pL,,/Bc, we see that there is a transition in the mode of rupture propagation. 
Relatively high values of pV,/&, like 0.50 as in Fig. 6, lead to a self-healing pulse 
mode of propagation, although it is not steady but grows (and, with other loading 
conditions, may decay) with propagation distance. But low values of pVo/Bc, like 
0.10 as in Fig. 8, lead to an entirely different mode of propagation, like that of a 
classical enlarging shear crack. Figure 7 shows a case in the vicinity of the transition 
between these two modes, and is for pV,,/Bc = 0.23. Thus we have a transition, 
at this loading level, from a self-healing slip pulse mode for pV,/Bc greater than 
approximately 0.2330.26, to a crack-like mode for pV,/Bc less than approximately 
0.234.26. The transition range does depend on the loading level, and another series 
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of calculations that we did (results not shown) at a higher loading level, corresponding 
to the case ?, = 5.40 in Table 2, gave the transition from a self-healing pulse to a 
crack-like rupture mode around pVO/Bc = 0.50. Similar transitions, dependent on a 
characteristic slip rate for velocity weakening, were reported by Tullis et al. (1992) 
and Beeler and Tullis (1995). Using the values of p in Table 2 for the two values of 
Z % considered in our transient analyses, and using the expression for Vcurupture at the end 
of Section 5, we find in both cases that the crack-like mode of rupture propagation is 
observed when the propagation speed for the steady, traveling wave pulse solution 
falls below about 0.6~. 

(3) Figures (8) and (9) are for the same value 1_1V,,lBc = 0.10, and same magnitude 
of loading perturbation, but that perturbation is applied at the middle of the central, 
highly stressed, section in Fig. 8 and towards a border of that section in Fig. 9. We 
see that arrest effects from the barrier at the left in Fig. 9 then chase the rightward 
running front of the rupture, thus also producing a short-duration slip pulse (although 
not so short as in Fig. 6) even though the conditions would otherwise favor the crack- 
like rupture mode. This provides an example of the mechanism of self-healing pulse 
generation discussed by Johnson (1990). 

(4) Extremely non-uniform stress distributions are left after the end of rupture. A 
large positive concentration of stress would also show outside the barriers, had our 
assignment of r” to values very much lower than r,,, ,,_ X outside the central section 
not suppressed it. An important issue for future work is to understand whether such 
strong non-uniformity would still result with less abrupt ways of starting and stopping 
the rupture, e.g. by gradual development of an initially quasistatic frictional insta- 
bility, and by rupture arrest due to smooth variation of rheological properties towards 
stable velocity strengthening with increase of crustal depth, like in the modeling of 
repetitive earthquakes by Rice (1993). A further issue of importance to seismological 
theory is that of whether such inertial dynamics-based heterogeneity of stress on 
essentially smooth faults is sufficient to sustain spatio-temporal complexity of seismic 
response, including observed frequency-magnitude statistics of smaller earthquakes, 
or whether appeal to geometric disorder to provide local rupture-stopping barriers, 
like fault bends or offsets, is necessary. See Rice (1993), Cochard and Madariaga 
(1994), Shaw (1994), Myers et al. (1994), and Ben-Zion and Rice (1995) for related 
discussion. 

7. DISCUSSION 

We remark that at present there does not seem to exist constitutive data for any 
material to characterize the state-dependent part of the friction law, which we have 
shown to be critical to whether or not slip-pulse solutions exist on a smooth 
unbounded fault, over the full range of slip rates experienced in an instability. This is 
a critical issue, since we have shown that not all plausible forms of the constitutive 
law allow such pulse solutions. For example, in the case of granite, recent summaries 
(Kilgore et al., 1993 ; Weeks, 1993) of extensive laboratory studies give results suitable 
to characterize constitutive response for slip rates V between lo-’ mm/s (3 mm/yr) 
and 1 mm/s. These are focused on a V range critical for understanding the nucleation 
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of rupture but may possibly be largely irrelevant to whether pulse-like rupture propa- 
gation occurs, since average slip rates during natural earthquakes seem to be of order 
lo3 mm/s (Heaton, 1990), and are expected to be larger near the advancing front of 
the rupture. 

The low speed granite results can be fit, approximately, with a E 0.7, L z lop5 

mm, v, ;2: 0.1 mm/s, and V, N” lo-’ mm/s or smaller. This 2 is much larger than the 
two values (0.1 and 0.2) that we have considered here. However, serpentine (Reinen 
et al., 1992) in a similar low speed range shows, at slip rates faster than about lO-3 
mm/s, a values of 0.1. 

Technological materials do not seem to be similarly well characterized at present 
within the rate- and state-dependent constitutive framework, but Prakash and Clifton 
(1992, 1993) have recently reported results of the sliding of a hard steel and a titanium 
alloy on tungsten carbide that they were able to partially characterize within that 
framework. Further, those were obtained by a shock wave technique with oblique 
impact and involve slip speeds from about 2-30 x lo3 mm/s, a range which would 
also be interesting for earthquakes. We have chosen values of our constitutive par- 
ameters here largely on the basis of computational feasibility; it is possible that the 
numerical difficulties would be yet more challenging if realistic constitutive 
parameters, once known for the entire slip range involved, were to be used. 

To examine further the slip rate range V,, z (0.2550.50)(&/~) reported in Section 
6.3, in which there is the transition, dependent on loading level, from the self-healing 
pulse to the classical enlarging-crack rupture mode, let us tentatively assume that B 
is of order 0.0158, where 8 is the effective normal stress on the sliding surface. This 
sort of B value is consistent with the data from the low speed tests on granite and 
quartzite discussed above and earlier. Then, with ,U = 30 GPa and c = 3 km/s, the 
transitional range is V0 = 23345 mm/s at 8 = 60 MPa, and scales with a. The obvious 
problem is that such values of V,, lie outside the range of speeds for which the 
constitutive data, leading to the estimate of B, was taken. This points to the necessity 
of friction experiments at higher slip rates to confirm whether short duration slip 
pulses can be explained on the basis of frictional constitutive response. If we used 
only the low speed laboratory data that provided the experimental basis for the 
logarithmic forms in the Dieterich-Ruina class of constitutive laws, then we would 
conclude that n V,,/Bc is sufficiently small that the steady, traveling wave pulse solution 
represented a slow quasistatic disturbances, but one that is very likely unstable and 
would develop under perturbation into a crack-like dynamic rupture. 

Again, we emphasize that slip-pulse solutions will not exist at all for some parameter 
ranges or for some classes of constitutive laws within the rate- and state-dependent 
framework. They do not exist at any sub-sonic propagation speed when one attempts 
to describe friction on the ruptured surface within the classical, purely rate-dependent, 
constitutive framework. 

In future work it might be useful to address the pulse problem with other reg- 
ularizations of the Dieterich-Ruina model, more respectful of the contact time 
interpretation of the state variable 8. Indeed, we somewhat altered this interpretation 
in Section 3 and it might be preferred to let 13 diverge towards infinity like the time 
spent in stationary contact. Then, for rmax to remain bounded, we have to introduce 
a cut-off in its t3 dependency. A candidate to replace (13 ,) is : 
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If we keep the (state evolution) ordinary differential equation (13J though, a problem 
arises when one considers a fault that is stuck in stationary contact for a very large 
(infinite) duration, so that O(t) = co : when slipping starts, the differential equation 
would not change 8 in a finite time. Now, if 0 is very large instead of infinite, the state- 
dependent part of z,,, evolves very slowly. This defect can be solved by introducing a 
state evolution equation of the form 

dti(t)/dt = I - [O(t) V(t)/2L]‘. 

Even with bounded V(t), the squared term allows for otherwise finite solutions t)(r) 
starting with initial condition 0(O) = co. This comes from the well known finite 
time divergence f3(+ co) = + co of the backward equation, which reads 
dQt)/dt = - 1 + [t?(t) V/2L]*, with any initial condition 8 greater than the repulsive 
critical value 2L/V. The factor 2 leaves unchanged the characteristic length L of the 
model in the vicinity of the long term limit for stationary velocity, 0 = 2L/ I/. Further 
analysis based on this law is left for future work. 
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APPENDIX A : ELASTODYNAMIC REPRESENTATION FOR STEADY PULSE 
AS A TRAVELING WAVE 

This Appendix aims to establish relationships (I) and (2). The displacement of the upper 
half of the medium {J? > 0) along axis z is a steady traveling wave, and it can be written by 
means of a function of two variablesf(x,, _Y*) as 

(A.11 

The displacement is a solution of the elastodynamic equation : 

1 

Straightforward algebra then shows that f’ is an harmonic funtion on { .r > 0) Classical results 
on such functions then yield (see e.g. Rice, 1968) 

~co.x,=o+)-~Pv (A.3) 

Identifying 

t(t) = pa” (x = 0,y = Of, t), 
3Y 

v(t) = 2:(.x = 0,y = o+, t), 

using representation (A. 1) finally yields (1) and (2). 
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APPENDIX B : ASYMPTOTIC SHAPE OF A PULSE NEAR ITS TIPS : 
DERIVATION OF (8) and (9) 

B. 1. Case of’ the slip initiating tip 

We first address the problem around t = 0. In fact, the result we are able to prove is slightly 
weaker, because we assume that V(t) is a power law with positive (for continuity) exponent. 
We consider the case when the frictional state is stationary before sliding begins (at t = 0). 
This is reasonably consistent with the slip velocity being constant (null) for negative time, so 
that the state variables, would it be otherwise at some remote past time, converge to a stationary 
solution {Q(O)} of (7) written for V(t = 0) = 0 : 

(0) = (6) = {dV = 0, {e(o)})}- (B.1) 

Then, at first order, the state variables evolution equation (7) provides 

{B(t)} = 0 ( a{dv = 0, {NY},) cct; 

av 
> 

[the notation O(f(t)) is now introduced, meaning any function g(t) so that g(t)/f(t) be bounded 
in the t-limit considered] and, through time integration, 

{Q(t)} = {e(o)} +O(ti’+‘). 

Expanding definition (6), we finally obtain from the frictional behavior the asymptotic 
expression oft,,, for small t > 0 : 

T,,,(t) = F(0, {o(o)})+ aF(o$f(oJ}) aP+o(P). 

On the other hand, the properties of generalized function PV( l/x) proven in Appendix C allows 
us to derive easily, from the elastodynamic (1) and (2), the following asymptotic expressions : 

case (i) : 0 < y < 1 *P(t) = z, +g s T V(u) 
0 

udu+orgt’ntan(n(y- 1/2))+o(ts), 

case(ii): y = 1 -TIE(t) = r,+g 
I 

r V(u) 

0 
Tdufclgtlln tI +0(t), 

case (iii) : y > 1 *“E(t) = Tm +g 
s 

7- V(u) 

0 
U2du+o(t). 

Notice that V(u)/u is integrable at point u = 0 because y > 0. Now, because velocity is positive 
for t > 0, the equality TIE(t) = tmax(t) necessarily holds, which implies, first, that case (i) be 
encountered, second, that (9) be fulfilled, and third a new condition 

zn_x(t = 0) = F(0, {O(O)}) = z,+g s T vu> 
pdu, 

” u 

which has the following transparent physical meaning: sliding begins when the frictional 
threshold is reached by the sum of the remote stress, t,, and of the stress pulse created by the 
steady propagating sliding pulse. 

The following remarks may be added : (i) If the stationary frictional state hypothesis (B. 1) 
does not hold, then the case of the initiation tip would be treated in the same way as the slip 
arresting tip (see Section B.2 below) and the critical exponent in (8,) would be y+ 1. (ii) In 
more mathematical words, we encountered an asymptotic eigenvalue problem: some fixed 
functional operator A (here given by equations (1) and (2)) and real number i [here given by 
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the instantaneous derivative (5)] being given, what condition(s) should any function V(t). null 
for negative argument, fulfill which would respect 

((A V)(t) - (A V)(O)) = IV(j) + o( V(r)) 

in the vicinity of t = O+‘? 
The treatment which we presented does not ensure uniqueness because we considered only 

the particular case when the unknown function V(t) behaves like a power function near the 
origin. 

B.2. Ctrse of’ the slip wresting tip. We now address the problem uround t = T 

Let y’ be the exponent on (T-t), in an expression for V(t) like in (8,). Let us first obtain 
some information from considering the region t b T, just after the arrest. Notice that there is 
no reason for the state to be stationary, so that, unlike in the case of the initiating tip. 

{d} = jcp(V=O, (fl(T)j)J # (0). 

Then, expansion of (6) for t + T+ yields 

r,,,,,,(t) = F(f), {B(T)j)+E,(t- T)+O(t-T)*), withy, = dF(o;;;;~T)‘) {O’(T)). (B.2) 
I I 

Besides, the integral in (1) is regular for f > T. and 

c(f) =g 
s 

T V(u) ,, (Ududu. 

which would tend towards +x for t + T+ if y’ < 1. Such is not compatible with 
TIE(t) d s,,,,(t), which proves that ~1’ > 1. 

Let us now consider the region t < Tin a way similar to that used in the case on the initiation 
tip. On the one hand, expanding (6) yields 

?F(O. {Q(T))}) 
h,,(t) = fm (O(T)))+a,(t-T)+------ i;v cc’(T-t), +O((t-T)‘)+o((T-t).‘). 

with tl, as given in (11). On the other hand, the method used in Appendix C can easily be 
adapted to the right bound of the interval, f + Tm (on t < T); see the remark ending that 
Appendix. Thus. provided that I < y’ < 2, one gets : 

I 
case (i) : 

I < :” < 2 =+ ryt) = 7, +g 

s 

r Vu) 
~ 

” u-T du+g(t- T) 

+ r’g( T- t)“n tan(rr(y’ - 3/2)) + o( (T- t)’ ), 

case (ii) : 

;” = zap(t) = tL+g 

I +cdg(T-t)2~ln(T-t)~+O((T- t)‘). 

As in the case of slip onset, the equality zlE(t) = rman(t) forbids case (ii) and results in y’ = 7 + I, 
plus two additional conditions : 
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tnx,x(t = T) = W, {WV)) = zco+g s T Vu) 
o u-Tdu, 

with a meaning similar to that for 7max(t = 0), and : 

where the last integral is regular because y’ > 1. 
We remark that a more detailed analysis shows that in fact, the exponent y’ might be any 

n + y, n being a positive integer. However, the cases with n greater than or equal to 2 are regular 
enough not to raise numerical complications, as does the case with 12 = 1. For this reason, the 
numerical algorithms presented in the following take explicitly the latter case into account, and 
are a fortiori able to treat the former ones. 

APPENDIX C : SUPPORTING CALCULATIONS 

This Appendix is devoted to calculating the asymptotic behavior of 

f(t) = PV 
s 

+=g(t+z4)$, 
-n 

(C.1) 

for t + O+, assuming that the support of g is [0, T], and that g(t) = P/z(t), with y positive and 
h(0) = 1, and h being a Holder continuous function of exponent E > 0; that is, there exists a 
constant C such that 

The result is 

V (%Y)> Ih(x)-hCv)I < Clx-Yl”. (C.2) 

I 
case(i): 0 <y < 1 *f(t) = 

s 

Tg(4 

0 
udu+t’rrtan(n(y-1/2))+o(ty). 

case (ii) : y = 1 *f(t) = 
s 

‘g(u) 
~du+tllntl+O(t), 

case(iii): y > 1 -f(t) = i$)du+t[:@$)du+o(t). 

Let us begin with cases (i) and (ii). First, we perform the change of variable u = w-t in 
(C. 1), and, noticing that 

we transform (C. 1) into 

1 1 t 
I 

w-t w W(W-t)’ 

f(t) = 
s 

rg$dw+tPV 
0 s 

'sdw, 
0 

In this equation, the first term of the right hand side is a convergent integral. In order to 
compute the principal value integral of the second term, we write 
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and remark that function w~~‘/z(w) fulfills the hypotheses of paragraph 29, Chapter 4 of 
Mushkelishvili (1953). This reference gives, when - 1 < ?/ - 1 < 0 : 

cos( - y7r) + i sin(yn) 
-----h(r)(=-f),‘+O((~-r):‘ll) withy,) > ;‘. 

2i sin( -7x) 

so that expression (C.4) amounts to 

n tan(n(y- l,i2))h(O)t, 

For y - I = 0, Mushkelishvili (1953) provides 

1 

s 

x h(w) - 
2ix 

---drr = &h(r)ln&, 
~I M‘-_= 

which leads to express (C.4) as 

h(O)llnrl. 

Establishing the result in case (iii) easily follows from noticing that the polynomial division 
leading to equation (C.3) can be iterated to get 

where E(i) denotes the largest integer strictly smaller than ;J. The last integral can be estimated 
thanks either to case (ii) or (i) depending upon y being integer or not, which ends the proof for 
case (iii). To adapt these results around the right bound t = T, one just has to use the identity : 

1 (t-T),*' ’ 
-cc 

u-t (u-t)(u- T)“+’ 

which holds for any non-negative integer N. 


