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Abstract. Numerical simulations of slip instabilities on a vertical strike-slip fault in an
elastic half-space are performed for various models belonging to two different categories. The
first category consists of inherently discrete cellular fault models. Such are used to represent
fault systems made of segments (modeled by numerical cells) that can fail independently of
one another. Their quasi-independence is assumed to provide an approximate representation
of strong fault heterogeneity, due to geometric or material property disorder, that can arrest
ruptures at segment boundaries. The second category consists of models having a well-defined
continuum limit. These involve a fault governed by rate- and state-dependent friction and are
used to evaluate what types of property heterogeneity could lead to the quasi-independent
behavior of neighboring fault segments assumed in the first category. The cases examined
include models of a cellular fault subjected to various complex spatial distributions of static
to kinetic strength drops, and models incorporating rate- and state-dependent friction
subjected to various spatial distributions of effective stress (normal stress minus pore
pressure). The results indicate that gradual effective stress variations do not provide a
sufficient mechanism for the generation of observed seismic response. Strong and abrupt fault
heterogeneity, as envisioned in the inherently discrete category, is required for the generation
of complex slip patterns and a wide spectrum of event sizes. Strong fault heterogeneity also
facilitates the generation of rough rupture fronts capable of radiating high-frequency seismic
waves. The large earthquakes in both categories of models occur on a quasi-periodic basis;
the degree of periodicity increases with event size and decreases with model complexity.
However, in all discrete segmented cases the models generate nonrepeating sequences of
earthquakes, and the nature of the large (quasi-periodic) events is highly variable. The results
indicate that expectations for regular sequences of earthquakes and/or simple repetitive
precursory slip patterns are unrealistic. The frequency-size (FS) statistics of the small failure
episodes simulated by the cellular fault models are approximately self-similar with b = 1.2
and bs = 1, where b and by are b values based on magnitude and rupture area, respectively.
For failure episodes larger than a critical size, however, the simulated statistics are strongly
enhanced with respect to self-similar distributions defined by the small events. This is due to
the fact that the stress concentrated at the edge of a rupture expanding in an elastic solid
grows with the rupture size. When the fault properties (e.g., geometric irregularities) are
characterized by a narrow range of size scales, the scaling of stress concentrations with the
size of the failure zone creates a critical rupture area terminating the self-similar earthquake
statistics. In such systems, events reaching the critical size become (on the average)
unstoppable, and they continue to grow to a size limited by a characteristic model dimension.
When, however, the system is characterized by a broad spectrum of size scales, the above
phenomena are suppressed and the range of (apparent) self-similar FS statistics is broad and
characterized by average b and b values of about 1. The simulations indicate that power law
extrapolations of low-magnitude seismicity will often underestimate the rate of occurrence of
moderate and large earthquakes. The models establish connections between features of FS
statistics of earthquakes (range of self-similar regimes, local maxima) and structural
properties of faults (dominant size scales of heterogeneities, dimensions of coherent brittle
zones). The results suggest that observed FS statistics can be used to obtain information on
crustal thickness and fault zone structure.

Introduction material heterogeneities, temperature, and effective stress
(normal stress minus pore pressure). Since the above

Fault zone properties governing seismic response include,  distributions are complex functions of space (and time), the
among other things, the distributions of geometrical distributions of fault friction and earthquake stress drops can
irregularities (e.g., kinks, jogs, and subparallel strands), be rather involved.

One class of models for the evolution of stress and slip on
faults employs constitutive stress-slip relations based on
laboratory sliding experiments. These include models using
Paper number 94JB03037 slip-weakening constitutive law [e.g., Stuart and Mavko,
0148-0227/95/94JB-03037$05.00 1979; Day, 1982; Andrews, 1985; Stuart et al., 1985; Stuart,
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1986] and rate- and state-dependent friction [e.g., Dieterich,
1986, 1992; Tse and Rice, 1986; Okubo, 1989; Horowitz and
Ruina, 1989; Rice, 1993]. These models are attractive since
they incorporate experimentally derived descriptions of the
frictional process that can be used to simulate stable sliding,
catastrophic failure and, most importantly, the transition
between these two modes of slip. However, it is not yet clear
whether and how laboratory friction results, based on small
rock samples with relatively smooth slip surfaces, correspond
to properties of a natural fault system having a wide range of
geometrical heterogeneities, as well as far larger slips (and
slip rates) during instabilities and longer interseismic
intervals for fault rehealing.

Another modeling approach, employing theoretical
solutions from fracture mechanics, prescribes fault properties
in terms of critical energy release rate, or critical stress
intensity factor, characterizing cohesive material forces that
resist sliding [e.g., Kostrov, 1966; Virieux and Madariaga,
1982; Gao et al., 1991; Yamashita and Knopoff, 1992;
Yamashita, 1993; Rice et al., 1994]. As discussed by Rice
[1980], the description of fault properties in terms of critical
energy release rate (or critical stress intensity factor)
corresponds to a description based on laboratory-derived
constitutive laws in the limiting case when (1) the "critical
slip distance,” characterizing the evolution of frictional
properties with slip, is sufficiently small that the zone of
strength degradation is small compared to other model
dimensions, and (2) the shear stress on the fault is relatively
independent of slip rate or history for slips greater than the
critical distance.

A third modeling approach, not addressing the physics of
the transition in the frictional properties of sliding surfaces,
simply prescribes various distributions of static/kinetic
frictions or earthquake stress drops on a fault. This approach,
formally corresponding to a case of zero critical slip distance
and additional simplifications neglecting the dependence of
fault strength on slip velocity, was used in the past [e.g.,
Andrews, 1980, 1981; Kagan and Knopoff, 1981; Kagan,
1982; Mikumo and Miyatake, 1983; Rundle, 1988; Frankel,
1991; Ben-Zion and Rice, 1993] and is adopted in much of the
present work, in attempts to elucidate general characteristics
of fault response to various complex distributions of
properties. Ben-Zion and Rice [1993] argued that this third
approach could provide a valid approximate treatment of
strong geometrical or material property variations which can
stop ruptures. Using cells of a numerical grid as an
approximate representation of fault segments, delimited by
such potentially arresting heterogeneities, the approach may
be justified when the nucleation size of slip instabilities (e.g.,
h* of Rice [1993]) is much smaller than fault segment size.

A key. conceptual issue is whether the spatio-temporal
complexity of fault slip can be attributed purely to fault
dynamics or whether nonuniformities in geometry, material
properties, effective stress, and/or mode of loading are
essential for understanding the observed complex fault slip.
That is, are seismicity in the crust and turbulent flow in a fluid
of uniform physical properties analogous as advocated by,
e.g., Kagan [1994]7 A number of recent theoretical studies
indicate that the answer may be positive. Horowitz and Ruina
[1989] generated complex spatial and temporal slip events in
a homogeneous model using a rate- and state-dependent
friction law, although their model was chosen to weaken long
range interactions, so that stress concentrations ahead of
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sufficiently long ruptures do not increase with length, and
they selected a model viscosity parameter to limit stress drop
and slip rate ranges during "instabilities." Bak and Tang
[1989], Ito and Matsuzaki [1990], Lomnitz-Adler [1993], and
others modeled earthquake dynamics using cellular automata
governed by simple system evolution rules. Carlson and
Langer [1989], Carlson et al. [1991], and others modeled fault
dynamics with extended arrays of Burridge and Knopoff [1967]
spring-connected blocks and pure velocity dependence of
friction. However, these models are problematic since (1) they
have system dimension the same as that of the fault, rather
than one greater, (2) they employ simplified stress transfer
laws (i.e., nearest-neighbor interactions) that do not scale
with rupture size in a way suitable to represent faults embedded
in elastic continua, and (3) they contain strong implicit
heterogeneities in the form of inherent model discreteness
and/or highly heterogeneous initial and/or boundary
conditions (see below).

Rice [1993] and Ben-Zion and Rice [1993] studied
mechanical instabilities along two-dimensional (2-D) fault
zones embedded in three-dimensional (3-D) elastic solids. The
work of Rice involved a smooth fault surface governed by rate-
and state-dependent friction, while the work of Ben-Zion and
Rice focused on cellular fault structure governed by
static/kinetic friction. The procedures account approximately
for inertial features by incorporating dynamic overshoot or a
radiation damping term. Rice [1993] found that there are
fundamental differences between models of fault instabilities
using separate classes of constitutive laws. When the
constitutive stress-slip relation includes a finite critical slip
distance over which the strength of failing elements evolves
continuously, i.e., a slip weakening or state transition slip
distance, the model has a well-defined continuum limit which
can be approached for small enough numerical cells. When,
however, the strength of failing elements drops
discontinuously with slip (as in the cellular automata models
mentioned above and the work of Ben-Zion and Rice) or is
dependent only on the velocity of slip such that no finite
distance is included in the constitutive law (as in the cited
block-spring simulations), the model is inherently discrete. In
models with a continuum limit, suitably refined cells can fail
only as members of a cooperating group, whereas in
inherently discrete models, cells can fail individually
regardless of how small they are. When a continuum limit
exists, the cell size / of a suitably refined grid must be small
compared to a nucleation size of slip instabilities ~* (see the
analysis section for definition of and additional discussion on
h*). The results of Rice [1993] suggest that the generic
response of models with a continuum limit, using suitably
refined cells and gradual variations of material properties, is a
simple limit cycle of repeated earthquakes without a
Gutenberg-Richter (GR) spectrum of small events. In contrast,
the generic response of inherently discrete systems gives a
spectrum of event sizes with some range of self-similar
scaling. We note that the work done so far does not rule out the
possibility that proper elastodynamic solutions of smooth
uniform fault models with a continuum limit would lead to
residual stress heterogeneity that can sustain complex seismic
response. Recent advocates of this hypothesis [e.g., Cochard
and Madariaga, 1994; Shaw, 1994; Madariaga and Cochard,
1994] have attempted to overcome the model discreteness
problem. However, the Cochard and Madariaga results are still
based on models with strong implicit heterogeneities in the



BEN-ZION AND RICE: SLIP PATTERNS IN ELASTIC SOLIDS

form of highly heterogeneous initial and boundary conditions
(e.g., infinitely strong, wave reflecting, barriers at model
edges), and the Shaw modeling involves truncation of stress
concentration by approximate elastic coupling to a foundation
in a way justifiable only for ruptures much longer than the
seismogenic depth. Recently, Y. Ben-Zion, J. R. Rice and G.
Zheng (manuscript in preparation, 1995) developed a model
incorporating precise elastodynamic treatment of instability
episodes into the crustal-scale framework with depth-variable,
laboratory-constrained, rate- and state-dependent friction of
Rice [1993] and the second analysis section of the present
paper. In contrast to other works on the subject, this model
has natural boundary, (evolving) initial, loading, and arrest
conditions, and it provides a proper framework for simulations
over many earthquake cycles that may give definitive results
on the capacity of inertial dynamics to generate complexity
on a smooth fault. Preliminary 2-D simulations (slip variable
with depth only) with the model of Y. Ben-Zion et al. do not
support the conclusion that dynamics alone could provide a
sufficient generic mechanism for sustained generation of
complexities [J. R. Rice and Y. Ben-Zion, Slip complexity in
earthquake fault models, submitted to Proc. Natl. Acad. Sci. U.
S. A., 1995; hereinafter referred to as Rice and Ben-Zion,
submitted manuscript, 1995]. We also note that 2-D in-plane
calculations of Andrews [1975] for dynamic ruptures along a
uniform surface characterized by a gradual transition between
static and kinetic frictions give, in all calculated cases, final
stress distributions that are more uniform than the initial
states.

In this work we present results based on two modeling
approaches. In the first part of the analysis we employ the
simulation procedure of Ben-Zion and Rice [1993] to study the
distribution of slip, the shape of rupture fronts, and the
frequency-size (FS) and temporal statistics of earthquakes in a
discrete cellular model of the central San Andreas fault (SAF).
The use of a discrete cellular model is motivated by numerous
observations which indicate that crustal rocks are massively
fractured and fault zone geometry is highly irregular.
Examples include interevent distance statistics of earthquakes
[Kagan, 1991], profilometry measurements along exhumed
fault surfaces [Power et al., 1988; Power and Tullis, 1991],
characterization of mapped SAF traces [Aviles et al., 1987,
Okubo and Aki, 1987], and analysis of geophysical logs from
the 3.5 km deep Cajon Pass borehole [Leary, 1991]. In
addition, elementary considerations based on fracture
mechanics theory and simulation results from Rice [1993] and
the second analysis section of the present work indicate that
strong fault heterogeneities, acting as barriers, are necessary
for the arrest (typically involving the resisting of large
rupture-front stresses) of earthquakes of various sizes. Such
barriers are presumably supplied by fault bends, forks and
stepovers, complex fault walls topography, and/or complex
pore pressure variations, and they can divide a fault system
into numerous quasi-independent segments. In the presence of
geometrical irregularities and other fault zone barriers, the
propagation of fault instabilities beyond segment borders
often involves stresses that are operating at finite distances
from the rupture front, where slip can nucleate at weaker
noncontiguous locations (e.g., as modeled by Harris and Day
[1993] for rupture through fault stepovers). An elementary
unit of such finite across-barrier distances is represented by
the size of the numerical cells (a few hundreds of meters) used
in our discrete cellular fault model. We note that while the
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discrete cells may model successfully some aspects of
geometrically disconnected fault segments, they do not
account for the deformation occurring between the segments
and may thus neglect important features of foreshock and
aftershock occurrence.

We assume that earthquake processes are nonergodic on a
timescale of a few thousands of years. That is, over such
periods, temporal sequences of earthquakes from given
regions are not statistically equivalent among themselves,
nor are they statistically equivalent to spatial ensembles of
earthquakes occurring in different seismic zones. This is
motivated by the fact that different crustal regions maintain
distinct physical properties (e.g., distributions of cracks,
pore pressure, fault lithology, stepovers, bends, depth of
seismogenic zone) over similar and larger timescales. We thus
study the evolution of stress and slip along different classes of
heterogeneous fault systems, using property distributions that
are characterized by different ranges of size scales. The mode
of loading and the model properties (geomietry, static and
kinetic frictions) are kept constant in time; we assume that,
on the average, these do not change significantly during a few
earthquake cycles. On the other hand, the models have many
quasi-independent segments, and the assumed (discontinuous)
stress-slip relation is strongly nonlinear. Thus the simulated
fault responses fall on a middle ground between the extreme
behaviors of purely chaotic and purely predictable systems.
All examined model realizations show nonrepeating sequences
of events; however, the times of occurrence of the large model
earthquakes have higher degrees of periodicity than that of a
random Poisson sequence. This is more pronounced in models
with relatively simple distributions of properties; as the
distribution increases in complexity, with large property
fluctuations extending over broader range of size scales, the
times of occurrence of the large events become more irregular.

The simulations indicate that when a fault system is
characterized by heterogeneities spanning a narrow range of
size scales (e.g., a set of more-or-less uniformly spaced en
echelon faults), self-similar frequency-size statistics of
earthquakes can exist only up to a critical rupture area, the size
of which may be used to estimate the dominant length scale
(cell size in our discrete models) of the heterogeneities. In
such systems the rates of occurrence of intermediate and large
size (characteristic?) earthquakes are enhanced with respect to
the self-similar power law distributions of small events. If a
system belonging to this class is further characterized by a
coherent tectonic brittle zone with more-or-less uniform
dimensions, the enhancement of FS statistics beyond the
critical event leads to local maxima, the observation of which
may be used to infer the large-scale tectonic dimensions
(width of the seismogenic layer or length of a fault segment
bounded by barriers). Otherwise, the enhancement of
seismicity beyond the critical event is spread and does not
produce clear local maxima. A separate class of segmented
fault systems is one characterized by heterogeneities
spanning a broad range of size scales. In such systems, the
scaling power law regime of seismicity extends to large
events, and the FS statistics are approximately self-similar
over the entire magnitude range. Recent observations of FS
statistics of earthquakes along faults in southern California
[Wesnousky, 1994] suggest that the combined San Jacinto
fault zone belongs to the latter class of faults, while the
various segments of the San Jacinto fault system and the
Whittier-Elsinore, Garlock, and San Andreas faults belong to
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the former. Other observations of FS statistics showing
features of the first class of faults (narrow self-similar range,
local maxima) are given by Singh et al. [1983], Schwartz and
Coppersmith [1984], Main and Burton [1984, 1989], Davison
and Scholz [1985], Main [1987], and Trifu and Radulian
[1991]. (However, see Kagan [1993] for a discussion on
possible biases and other problems in such data sets.)

In the second part of the analysis we use the simulation
procedure of Rice [1993] to study the distribution of slip
along a fault governed by rate- and state-dependent friction
and subjected to various assumed distributions of pore
pressure. Our aim is to use the more rigorous constitutive
framework to learn what types of property heterogeneity on a
smooth fault can induce responses similar to observations and
those generated by our discrete cellular models. As in the work
by Rice [1993], all cases calculated with cell size small
enough to properly represent the underlying continuum model
lead to periodic large earthquakes, although we note that the
use of different friction laws may lead to aperiodic recurrence.
A very strong pore pressure heterogeneity is needed to
simulate in these models even a modest amount of
complexity. This suggests that pore pressure variations in
fault zone rocks are not the main mechanism responsible for
the observed complex patterns of seismic slip, unless
processes such as those proposed by Byerlee [1993], Sleep
and Blanpied [1992], and Sleep [this issue] create fault zone
compartments with extreme pressure variations capable of
stopping seismic ruptures of various size. Also in agreement
with Rice [1993], calculations done with strongly oversized
cells, so that the model is effectively discrete, show features
resembling the response of the discrete cellular model
examined in the first part of the analysis and observed seismic
behavior. The results of the second analysis section support
the hypothesis that discrete fault models, accounting for 3-D
continuum elasticity, may provide a valid approximate
representation of fault zones having geometric disorder
characterized by size scales much larger than the nucleation
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The simulations of Rice [1993], Ben-Zion and Rice [1993],
and the present work show irregular sequence of earthquakes
and a great diversity in the failure mechanism of model events.
The results indicate that strategies for short-term earthquake
prediction can not be based on simple repetitive precursory
patterns such as accelerated microearthquake slip, although
such occurs before some of the large model events. The studies
suggest that the spatio-temporal complexity of fault slip is
related to strong fault zone heterogeneities, probably due to
geometric irregularities and perhaps also extreme pore
pressure fluctuations, capable of stopping ruptures of various
sizes. We note that our results are based on simulations with
only approximate inclusion (e.g., by radiation damping term
or allowance for dynamic overshoot) of elastodynamic effects.

Analysis

Modeling Based on Discrete Cellular Fault Zone
Structure

Figure 1 shows a model of the central SAF from Ben-Zion
and Rice [1993]. The model consists of an elastic half-space
with a vertical half-plane fault; the half-space has a 17.5-km-
thick brittle upper crust over a lower crust and upper mantle
region where stable sliding occurs. The fault region in the
upper crust contains large earthquake patches (regions I and
IV) representing the rupture zones of the 1857 and 1906 M8
events. On these patches we impose a staircase slip history
with a recurrence time of 150 years. Everywhere along the
lower crust and upper mantle (region V) and in the upper crust
fault segment that is distant from Gold Hill (GH) by more than
70 km (region III) we impose slip at a constant plate rate Vo1 =
35 mm/yr. The upper crust fault segment 0 < x<70km, 0< z <
17.5 km (region II) comprises a computational grid where
space and time evolution of stress and displacement fields due
to the imposed slip are calculated using a variant of
static/dynamic friction law and 3-D continuum elasticity.

size of slip instabilities. Different distributions of stress drops on failing
Ta =Cy,-Ts Ta -, Ts
Ts
MM GH
North (km), 170 70 25 0
< '\l I\/ ! ] J\f
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Earthquake | constant rate L ]  Earthquake
)
Patch Vpi =35 mmjyr | 10 Patch
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Figure 1. A model for the central San Andreas fault (SAF). T, is static strength assumed uniform over the
computational region, T, is arrest stress, C, and Cy, = C, are numerical coefficients, GH and MM mark
approximate positions of Gold Hill and Middle Mountain.
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computational cells are used to model fault regions with
variable frictional properties. One model configuration,
shown explicitly in Figure 1, is that of a fault containing a
large rectangular region having different properties than the
rest of the fault and designated as the "Parkfield asperity."
Consider a failure process involving a fault segment
represented by a single cell of the computational grid. When
the stress T on the fault segment (precisely, at the cell center)
reaches a static strength T, failure occurs and the entire
segment slips uniformly at a dynamic stress level T = 14 (<T5)
until the rupture is blocked by the segment borders. Then, slip
on the cell is brought to a halt, leaving on the failed segment
an arrest stress T, (<Tq). If the stress transferred from the failed
segment increases the stress at other fault regions to their
failure thresholds those regions fail, causing additional stress
transfers which, in turn, may induce or reinduce more slip
events. We assume that reinitiation of slip on an already failed
cell occurs when T 2 14 there. Thus 1T is the failure strength of a
segment which has not yet slipped in a composite event, Tqis
the failure strength of a segment which has slipped in an
earlier subevent, and 7, is the stress remaining on a cell just
after it has slipped and before stress transfers from other
segments failing at the same time have occurred. The static
strength, dynamic strength, and arrest stress are related to
each other as (T, - T,)/(Ts - Tq) = D, where D, set in this work to
1.25, is a dynamical overshoot coefficient. The difference 1(i,
J) - Ta(i, j) gives a transient stress drop on cell (i, j) during a
composite failure episode, where i and j are cell indexes along
the horizontal and vertical directions, respectively, and 1(i, j)
is the stress just before failure. The final stress drop on cell (i,
J) is usually less than 1(i, j) - T,(i, j) due to subsequent failures
of other cells but is always greater or equal to (i, j) - T4(i, j).
The evolution of stress and displacement fields in the
computational region is calculated using the procedure
outlined by Ben-Zion and Rice [1993]. The stress transfer due
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to incremental tectonic loadings and failing grid cells is
computed by a discretized form of a boundary integral
equation, based on the static solution of Chinnery [1963] for
dislocations in a 3-D elastic half-space. The results are
independent of the absolute values of Ty, T4, and T,, and only
stress drops enter model calculations. We model spatial
differences in fault properties by assigning different levels of
Ts - T, to different fault regions. As in the work by Ben-Zion
and Rice [1993], the static strength is kept constant (for a
given model realization), and spatial differences in stress
drops are modeled via corresponding spatial differences of T,.
To prevent confusion, we emphasize that our model makes no
assumptions on the absolute strength of faults; all the
analysis results are invariant with respect to constant shifts in
the level of the assumed stresses. Also, one may reasonably
expect that long-term earthquake statistics, for a given
distribution of Ty —t,, are independent of the individual
distribution of Ty or T,. The simulation procedure generates
large ruptures as aggregates of small subevents on quasi-
independent fault segments, on each of which there are
initiation, propagation and arrest events, and possible
reinitiations or repeated reinitiations. The most important
model parameters are the number and size of grid cells, the
distributions of 74 - T,, and the recurrence interval and failure
timing of the 1857 and 1906 patches.

The calculations are done using 128 x 32 = 4096 square
cells having a dimension of about 550 m. This is close to the
size of the regions (dimension of about 200 m) that contain
clusters of repeated microearthquakes at Parkfield [Nadeau et
al., 1994; Johnson and McEvilly, this issue]. We begin all
simulations with a 150 years of model-conditioning analysis
during which the 1857 and 1906 earthquake patches (regions I
and IV in Figure 1) are locked; the stably sliding zones
(regions III and V in Figure 1) move by the amount V; ¢ = 35
mm/yr X 150 years = 5.25 m; and the stress-slip responses

static strength — arrest stress
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Figure 2a. Case 2 of text. Assumed stress drops representing a fault with an explicit Parkfield-type asperity
and uncorrelated random property variations. The static strength is Tg = 60 bars. In the asperity region the
average arrest stress is Tz = 0.17g. In the nonasperity region the average arrest stress is Ta = 0.875. The

amplitude of the random fluctuations is 0.1tg.
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along the computational grid (region II) are calculated as
discussed above. The fault configuration at the end of the
model-conditioning period provides nonzero heterogeneous
initial states of stress and displacement for the continuing
analysis. At ¢ = 0% year into the analyzed earthquake cycle we
impose 5.25 m of right-lateral slip (equal to the accumulated
plate motion in 150 years) on the 1857 and 1906 earthquake
patches. For simplicity, both earthquake patches are moved
simultaneously. We note that in the present modeling the
computational grid is largely "shielded" from the 1906
earthquake patch by the presence of the uniformly sliding
region III.

We consider five cases of prescribed property distributions.
(1) The first case is a fault with a large rectangular model
Parkfield asperity. We assume that the static strength is T, =
40 bars (4 MPa). In the region 0 < x <25 km,5km <z <10
km (Parkfield asperity), T, = 0.17;. In the other fault regions,

a = 0.9t,. The spatial extent of the model asperity is
compatible with geodetic data [e.g., Harris and Segall, 1987]
and microearthquake distribution [e.g., Malin et al., 1989;
Johnson and McEvilly, this issue] along the central SAF. The
assumption of different stress drops in the asperity and
nonasperity regions is compatible with the observations of
O’Neill [1984] and Malin et al. [1989]. (2) The second case is
another example of an explicit model Parkfield asperity
(Figure 2a). In the region 0 < x <25 km, 5 km <z < 10 km, 1,
= 0.17, + 0.17, uncorrelated random fluctuations. In the other
fault regions, T, = 0.8T3+ 0.1T; uncorrelated random
fluctuations. To increase the model stress drops, we use here a
static strength T, = 60 bars (see discussion below on the
effects of model stress drops). (3) The third case is a fault with
uniform distributions 5 = 60 bars and T, = 0.87;. (4) The fourth
case is a fault with a fractal property distribution (Figure 2b).
The static stress is Ty = 60 bars. The arrest stress is T, = f T,
where f is taken from a fractal distribution generated by a

BEN-ZION AND RICE: SLIP PATTERNS IN ELASTIC SOLIDS

program outlined by Brown [1995]. The distribution is
characterized by a fractal dimension 2.3, mean value 0.5, and
standard deviation 0.2. (5) The fifth case is a fault consisting
of low stress drop segments of variable size, separated by
high stress drop boundaries (Figure 2c). Cells along the free
surface are selected randomly with a probability of 1/5. The
selected cells initiate one-cell-thick segment boundaries;
these are extended to depth by 2-D random walks. In cells
belonging to segment boundaries, T, = 0.17,. In other cells, T,
= 0.97,. The static strength is Ts = 100 bars. This case may be
taken as an example of a fault with multi-size-scale structural
heterogeneities along strike, with the high stress drop
boundaries representing stepovers of the fault plane.
Alternatively, the low stress drop regions may represent fault
sections with high fluid pressure [Byerlee, 1990, 1993; Rice,
1992], while the high stress drop regions may correspond to
high-permeability segments with hydrostatic pore pressure. It
is interesting to compare the fault properties of case 5 with
the overpressurized fault zone compartments separated by
impermeable seals of Byerlee [1993]. In the model of Byerlee
[1993] the overpressurized regions are approximately
equidimensional and the seals extend along both the
horizontal and vertical directions. The fault zone structure of
case 5, on the other hand, contains a range of size scales, and
the high stress drop boundaries are predominantly vertical.
The dominant direction of segment boundaries is not
important for our results; however, as discussed below, the
range of size scales in the assumed fault zone properties is a
key model attribute.

Figure 3 shows time sequences of model earthquakes with
magnitude M = 5.5 during 100 years for the five considered
cases. Earthquake magnitudes are calculated using the relation
M = (2/3)log(P) + 3.6, where P is potency (the integral of slip
over the rupture area) in square kilometers times centimeters.
The above expression follows from the moment-magnitude
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Figure 2b. Case 4 of text. Assumed stress drops representing a fault with a fractal property distribution. The
static strength is Ty = 60 bars. The arrest stress is T, = f T,, where f is taken from a fractal distribution
characterized by a fractal dimension 2.3, mean value 0.5, and standard deviation 0.2.
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static strength — arrest stress

% 10 20

Figure 2c. Case 5 of text. Assumed stress drops representing a fault with multi-size-scale heterogeneities.
The fault consists of low stress drop segments of variable size separated by high stress drop boundaries. In
cells belonging to segment boundaries, T, = 0.17,. In other cells, T, = 0.97;. The static strength is 5 = 100

bars. See text for more explanation.

relation of Hanks and Kanamori [1979] upon using a nominal
rigidity of 30 GPa (3 x 10!! dyn/cm?2) and accounting for the
change in units. The results of Figure 3 illustrate a few general
characteristics of the various model realizations. The
magnitude of model earthquakes increases with the average
stress drop on failing cells and the size of the rupture area.
Table 1 lists average values of Tg - T, over the computational
grid for the various model realizations. These values represent
approximately the average stress drops during moderate and
large model earthquakes. The model realizations cases 1 and 2
have two size scales that can affect the extent of rupture areas
associated with moderate and large events. These are the size
of the Parkfield asperity and the complementary remainder
area of the computational grid. In cases 3 and 4 there are no
intermediate size scales between cell size and the size of the
computational grid, while in case 5 there are many such
intermediate size scales. Thus, in cases 1 and 2 the moderate
and large events occur predominantly in two magnitude ranges
associated with the two intermediate areal size scales of the
models, while in cases 3-5 the distributions of event sizes are
broader.

In case 5, where the fault contains low stress drop regions
of various sizes separated by high stress drop barriers,
ruptures are arrested with high probability before they can
grow to a large size (i.e., a size of the order of the
computational grid). Thus, although the average stress drop
over model 5 is relatively large, the size and, consequently,
interevent time interval of most M = 5.5 events are, in that
case, small in comparison to those of the other model
realizations. In case 4, where the property distribution does

not have any intermediate size scale and the average stress
drop is large, the situation is opposite. Here, the size and
interevent time interval of most M = 5.5 events are larger
than in any of the models. In cases 1-3, with a few
intermediate size scales (for cases 1-2) and relatively low
average stress drops, the size and interevent time of most
moderate and large earthquakes are between those of cases 4
and 5.

The earthquake sequences of Figure 3 show various degrees
of periodicity. Table 1 gives the mean W, standard deviation o,
and ratio p/o of time intervals between model earthquakes in
the magnitude ranges M = 5.5 and M = 6.0. As pointed out
by, e.g., Kagan and Jackson [1991], for a random Poisson
sequence the ratio p/c is equal to one, while for quasi-periodic
and clustered sequences the ratios are greater and smaller than
one, respectively. The ratios of /o listed in Table 1 indicate
that the moderate and large earthquakes of all model
realizations are quasi-periodic; the degree of periodicity is
seen to increase with earthquake size and to decrease with
model complexity. Kagan and Jackson [1991] found that
strong events in global and regional (central California)
earthquake catalogs are clustered rather than quasi-periodic.
However, the simulations of the present work are done for a
single (the central San Andreas) fault and not for a large
collection of faults. As shown in Table 2 of Ben-Zion et al.
[1993], observed time intervals between the M = 6 Parkfield
earthquakes of the last century, as well as calculated (layered
elastic/viscoelastic) model slip deficits between the events,
have ratios W/c in the range 2.75-3.20. These values are
similar to those characterizing the large event sequences in
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Figure 3. Moderate and large earthquakes in cellular model realizations. See text and Figure 2 for fault

properties in cases 1-5.

cases 1-2 (a fault with an explicit Parkfield asperity) and to a
lesser extent also in case 3 (a uniform fault).

While the results of Figure 3 and Table 1 indicate that the
large model earthquakes are quasi-periodic, the nature of the
large events is highly variable and the models generate
nonrepeating chaotic sequences. This is illustrated in Figure 4
where we show, for the simple case 1, cumulative rupture area
as a function of time along the asperity region 0 < x < 25 km,
5km £z < 10 km. We note that the character of the large
events varies from one earthquake to the other. The event at
about 180 years is preceded by a period of gradual rupture
formation; the events at about 190, 220, and 240 years are
abrupt; the events at about 210 and 230 years occur as swarms

of smaller events or microearthquake slip; the events at about
200 and 260 years are preceded by "foreshocks"; and the event
at about 280 years is followed by an "aftershock." The
diversity in the failure mechanism of the model asperity may
be a manifestation of the many paths toward a low energy
state, available to a complex nonlinear many-degrees-of-
freedom system. The results indicate that expectations for
simple and regularly occurring diagnostic precursory patterns,
such as accelerated microearthquake slip, are unrealistic; such
patterns may occur before some failures, but they are not very
indicative.

Figures 5a and 5b show time evolution of slip along the
SAF at a depth of 8.75 km for cases 2 and 5 above. In Figure 5a
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Table 1. Parameters of Moderate and Large Earthquakes in Cellular Fault Models
<t —Ta>, WM =55), oM=55), wM=6), oM =26), Wo(M=55) WoM=6)
bars years years years years
Case 1 7.23 1.38 0.53 2.55 0.83 2.63 3.07
(Parkfield-type
asperity)
Case 2 16.24 247 1.48 5.70 2.07 1.67 2.74
(Parkfield-type
asperity)
Case 3 12.00 3.25 1.37 4.39 1.77 2.36 2.48
(uniform
properties)
Case 4 33.16 5.76 4.09 9.36 4.38 1.41 2.14
(fractal
properties)
Case 5 22.82 2.80 2.08 8.49 5.59 1.34 1.52
(multi-size-scale
heterogeneities)

The <Ts - To> is average of static strength minus arrest stress over the computational grid; WM 2 A) and 6(M 2 A) are,
respectively, mean and standard deviations of time intervals between earthquakes with magnitudes M 2 A.

and in calculations corresponding to case 1 (not shown),
where the assumed properties account explicitly for a large
Parkfield asperity, slip in the region 0 < x <25 km is
accommodated in the form of large steps separated by periods
of little or no activity, while slip in the region x > 25 km is
accommodated in a nearly continuous fashion. These results
are compatible with geodetic data and earthquake distribution
along the central SAF. On the other hand, in Figure 5b and in
calculations corresponding to the property distributions 3 and
4 (not shown), time evolutions of slip in the region 0 < x <25
km are not clearly distinguishable from slip histories at other
fault segments.

Figure 6a shows a typical example of a rupture area during a
simulation corresponding to case 3 above. The results

demonstrate that when the fault properties are smooth
functions of space, the shape of the rupture front is also
smooth. When, however, the fault properties vary rapidly in
space, as in cases 1, 2, 4, and 5, the stress field along the
rupture front is characterized by large spatial variations, and a
typical shape of the rupture front is rough. This is illustrated
in Figure 6b for the property distribution of case 5. The results
of Figures 5 and 6 indicate that strong fault heterogeneity is
required, at least in this type of modeling, for the generation
of displacement fields compatible with geodetic and
seismological observations and rough rupture fronts capable
of radiating high-frequency seismic waves. There may also
exist elastodynamic reasons for roughness of a rupture front.
We note that discontinuous rupture areas like that of Figure 6b
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‘Slow’ events ?
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160 180 200 220 240 260 280 300
Time (yr)

Figure 4. Cumulative rupture area at the Parkfield asperity region for case 1 of text. Note the diversity in the

character of the large events.
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Figure 5a. Slip (normalized to the range 0-1) at a depth of 8.75 km as a function of distance along the SAF

and time for the property distribution of Figure 2a (case 2 of text).

=8.75km,t)

Slip(x,z

A20

Figure 5b. Same as Figure 5a for the property distribution of Figure 2c (case 5 of text).
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Figure 6a. Rupture area (dots) with a smooth front in simulation with uniform fault properties (case 3 of

text).

are commonly simulated by the heterogeneous realizations of
our cellular fault model, with stress redistributions during slip
episodes governed by continuum elasticity. Such spatially
discontinuous failure zones are not accounted for by cellular
automata and block-spring simulations, where stress transfers
occur only over a short range (typically over nearest
neighbors).

Figure 7a shows cumulative frequency-size statistics of

rupture area and earthquake magnitude in the computational
grid 0 < x <70 km, 0 <z < 17.5 km during 150 analysis years
for the stress drop distribution of case 1. The units of rupture
area are square kilometers; log = log;o. The FS statistics are
discussed with a reference to the Gutenberg-Richter power law
distribution N(S) = aS®. In cumulative statistics, N(S) is the
number of events with size, measured by magnitude M or
rupture area A, larger than S; in noncumulative statistics, N(S)
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Figure 6b. Rupture area (dots) with a rough front
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in simulation with nonuniform fault properties (case 5 of

text, Figure 2c). Note that the rupture area is discontinuous.
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Magnitude

Log10(N)

EoglO(A)

Figure 7a. Cumulative frequency-size (FS) statistics of
earthquake magnitude (squares) and rupture area (triangles)
during 150 analysis years in the computational grid for a
stress drop distribution like in Figure 2a but without random
fluctuations (case 1 of text), having two characteristic size
scales (cell size and the size of the asperity). Units of rupture
area are square kilometers.

is the number of events in a given interval around S. The
constants a and b express the general level of seismic activity,
and the relation between seismicity rates at different
magnitude ranges, respectively; the exponent b (a slope in the
log-log presentations of Figures 7-9) is commonly referred to
as the b value. The FS statistics of Figure 7a show three clear
event groups: small events characterized by b~ 1.2 and b, = 1
(b and b , are b values based on earthquake magnitude and
rupture area, respectively), intermediate size events having b,
b, < 0.5, and a final steep fall off. A region b, b, =1is
commonly observed and simulated, indicating that small
events are self-similar. The intermediate region results from a
supercritical rupture growth beyond a critical event size. This
is better seen in Figure 7b where we show corresponding
noncumulative FS statistics of rupture area. The small events
fall more-or-less on a self-similar curve, but beyond a rupture
area of about 80 km? events usually continue to grow to a size
that is limited either by the upper layer thickness (= 17.5 x
17.5 km?) or the entire model dimensions (= 70 x 17.5 km?).
As discussed by Ben-Zion and Rice [1993], the deviation of
the simulated FS statistics from a power law (self-similar)
distribution for events larger than a critical size is a direct
consequence of continuum elasticity. More specifically, it is
due to the fact that the stress concentrated in an elastic solid at
the edge of an expanding rupture grows with the size of the
failure zone. When the assumed fault properties are
characterized, as in case 1, by a narrow range of size scales
(representing, e.g., a narrow range of geometric disorder), the
scaling of stress concentrations with the rupture area
introduces a critical event size terminating the self-similar
earthquake statistics. In such systems, events reaching the
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Figure 7b. Same as Figure 7a for noncumulative FS
statistics of rupture area. Region 1 is a self-similar domain
with b, = 1; region 2 shows enhancement in frequency of
intermediate size events with a peak at a rupture area having
the dimension of the upper layer thickness; region 3 is a final
steep decay ending with a peak for events the size of the
computational grid.

critical size become (on the average) unstoppable, and they

continue to grow to a size limited by a characteristic system

dimension. We note that the simulated FS statistics of Figure 7

are compatible with the observed Parkfield seismicity, where
Magnitude

4 Area
= Magnitude

ioglO(A)
Figure 8a. Cumulative FS statistics of earthquake magnitude
and rupture area during 150 analysis years in the
computational grid for the fractal stress drop distribution of
Figure 2b (case 4 of text), having a single characteristic size
scale (cell size).
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Figure 8b. Same as Figure 8a for noncumulative FS
statistics of rupture area.

the rate of occurrence of five M = 6 Parkfield earthquakes in a
century is strongly enhanced with respect to the self-similar
distribution of small events [Ben-Zion and Rice, 1993].

The statistics of Figure 7 are generated by a model with a
simple property distribution and two characteristic size scales,
namely, the size of the computational cell and the size of the
model asperity. Figures 8a and 8b show, respectively,
cumulative and noncumulative FS statistics for the fractal
property distribution of case 4 (Figure 2b). Since the property

Magnitude

s+ Area ]
= Magnitude

Log10(N)

1
Log10(A)

Figure 9a. Cumulative FS statistics of earthquake magnitude
and rupture area during 150 analysis years in the
computational grid for the stress drop distribution of Figure 2¢
(case 5 of text), having many size scales.
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Figure 9b. Same as Figure 9a for noncumulative FS

statistics of rupture area.

distribution, although more complex than the model leading
to Figure 7, is characterized by a single size scale, the range of
self-similar statistics in Figure 8 is terminated at a critical
rupture area similar to that of Figure 7. However, the highly
heterogeneous (fractal) property distribution in the model
corresponding to Figure 8 simulates barriers that can stop
events at various stages between the critical rupture area and
the size of the computational grid. Thus the statistics of Figure
8 do not show the clear local maximum observed in Figure 7
for events with rupture area the size of the upper layer
thickness. Instead, Figure 8 exhibits a general enhancement of
seismicity beyond the critical rupture area and a single
maximum for events the size of the whole system. Figures 9a
and 9b show FS statistics for the property distribution of case
5, where the model represents low stress drop fault regions of
variable size and high stress drop intervening barriers (Figure
2¢). Here, the assumed fault properties are characterized by
many size scales and, consequently, the range of self-similar
FS statistics is broader than those of Figures 7 and 8. The
average b and b, values of the FS statistics in Figure 9 are
about 1. We note that owing to the scaling of stress
concentrations in elastic solid with rupture size, the rate of
occurrence of intermediate and large size events in all of
Figures 7-9 is enhanced with respect to self-similar lines
defined (strictly) by small events, regardless of the shape of
the simulated statistics.

Modeling Based on Rate- and State-Dependent
Friction With Nonzero Critical Slip Distance

We now describe some calculations in the framework of
Rice [1993], with the aim of understanding how pore pressure
distributions affect the earthquake cycle. Particularly, we
examine how severe heterogeneities of pore pressure p may
provide barriers adequate for stopping some ruptures and hence
lead to a complex seismic response. The results are also used
to examine possible connections between our discrete and
continuum models. Such connections are important since the
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numerical difficulties of accurately implementing the rate- and
state-dependent friction are formidable, and thus it is
advantageous to use simpler but compatible modeling
approaches when appropriate. We limit attention here to
distributions which are constant in time, and hence we do not
evaluate such mechanisms as proposed by Sibson [1992],
Sleep and Blanpied [1992], Byerlee [1993], and Sleep [this
issue] where p is time dependent. Those mechanisms would
require further model developments to represent, e.g., in the
Sleep and Blanpied case, creep compaction, sealing off of
permeability, and re-creation of porosity in rupture; and in the
Byerlee case, pore fluid communication between fault
compartments when a seal between them fails. All the reported
results are based on analysis of the model shown in Figure 10,
from Rice [1993], in which slip is imposed at Vpl = 35 mm/yr
on the portion of a half-plane fault lying below 24 km in an
otherwise homogeneous elastic half-space. Slip 0 is calculated
on the fault section between O and 24 km depth, and over that
range a Ruina-Dieterich "slip" type of rate- and state-
dependent constitutive law applies (later we note differences
of results when the Dieterich-Ruina "slowness," or "ageing,"
law is used). Thus, over the depth range 0-24 km the shear
stress T satisfies

T/ (On—p)=f=fo+aln[(dd/dD)/Vyl+b ¥
d¥ /dt=-[(dd/dr) /L] {¥ +In [(d5/dt)/Vp1] }. (@))

Here f is a coefficient of friction, 6, is the normal stress
(equated to depth times 28 MPa/km), f,, is a constant which is
irrelevant for the results to be shown, ¥ is a state variable, L
is the critical slip distance for state evolution, and a and b are
functions of temperature which are converted to functions of
depth just as done by Rice [1993, Figure 3], based on the data
of Blanpied et al. [1991] for granite under hydrothermal
conditions. The assumed fault properties correspond to
velocity strengthening regimes (a > b) for the depth sections
0-3 km and below 14 km, and a velocity weakening regime (a
< b) elsewhere; in all calculated cases, b —a = 0.004 over
depths between about 4 and 13 km. The fault zone in the depth

yal

X
4
24 k
R’
\ Fault
/ zone

—24 km <z < 0:

Rate- and state-
dependent friction
law applies; depth-
variable properties.

- <Z<-24 km:
Slip imposed at
uniform rate, 35 mm/yr

Figure 10. Elastic half-space with vertical half-plane strike
slip fault. Slip imposed at 35 mm/yr below 24 km and
calculated above 24 km according to rate- and state-dependent
friction law, like in the work by Rice [1993]. The cases
calculated in this work constrain slip to vary only with depth.
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range 0-24 km is divided into numerical cells (Figure 10), and
the system of equations is completed by writing from elastic
theory

T== 2Ky 8= Vi 1)~ 4/ 20) dd; /. 2)

The subscripts in (2) refer to cell indices and Kj; is calculated
from the Chinnery [1963] static solution as in the previous
section. The last factor on the right side of (2) is a seismic
radiation term with a damping coefficient u/2c, where W is
shear modulus of 30 GPa and c is shear wave speed of 3 kmy/s.
As discussed by Rice [1993], this term is a feature of exact
elastodynamics and it allows solutions to exist during
instabilities, when purely quasi-static calculations lead to
unbounded slip velocity. For that reason the procedure may be
called quasi-dynamic to distinguish it from approaches like
that of Tse and Rice [1986] which do not calculate solution
details during dynamic instabilities.

While Figure 10 suggests slip variation with depth and
distance along strike, 8 = 8(x, z, f), we simplify matters here
by constraining the slip to vary only with depth, i.e., 8 = 8(z,
). We discuss results of six calculations denoted as cases I to
VI. Cases I to V are done with a cell height # that is small
enough to assure that the calculations represent the continuum
limit of the rate- and state-dependent friction law (1). Case VI
illustrates results for an oversized 4, i.e., a discrete system; as
discussed in the introduction, the results for this case are very
different in character from the results of cases I to V
representing continuum systems. Rice [1993] defined a
nucleation size h* as the cell size & such that the "single-cell
stiffness" 2u/mh becomes equal to the "critical spring
stiffness" (b — a) (6, —p) /L, the equality marks a border
between stable and unstable sliding for velocity weakening
behavior of the adopted friction law.

In cases I to V we use 512 cells through the 24 km
thickness, so that 2 = 0.047 km. The critical slip distance L is
variable from cell to cell, but it is never smaller than 1 mm. In
velocity weakening regions, L is chosen larger as necessary
to make the local value of A* = 2L p/n (b — a) (6, — p) coincide
with 84 = 0.375 km. More specifically, in cases I to V, L/mm
=max [1, 19.6 (b — a) (6, — p) / MPa]. In contrast, for case VI
we take 64 cells through the thickness, so that 2 = 0.375 km,
and we choose L so that in velocity weakening regions h* =
h/4, unless such requires an L smaller than 1 mm (this is again
the minimum allowed value). Since the nucleation size in case
VI is much smaller than cell size, the corresponding model
behaves as an inherently discrete system with response
features comparable to those of our cellular model having the
simplified static/kinetic friction law and L = 0.

Figure 11 shows various pore pressure distributions used in
the following calculations. The thin line in each of the four
panels corresponds to a hydrostatic pore pressure (equal to
depth times 10 MPa/km). The first example, designated as
case I, simply assumes p is hydrostatic. This case, like all
other calculated examples except case VI, leads to a periodic
slip history. This is shown in Figure 12a where we plot slip
versus depth; slip curves are drawn every 5 years and the total
14000 mm range of the slip axis corresponds to 400 years at
35 mm/yr. The recurrence interval for this case is about 140
years.

Case II involves the pore pressure distribution of Figure
11a; this consists of a hydrostatic pressure gradient above and
below 8 km, a depth where a severe pressure step elevates p to
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Figure 11. Pore pressure distributions used in calculations (cases I to VI) leading to Figures 12 and 13. Thin
lines show hydrostatic pore pressure p; this pressure is used in for case I (Figure 12a). (a) Step to 10 MPa offset
from lithostatic pressure G, at 8 km; case II (Figure 12b). (b) Lithostatic gradient with 50 MPa offset at depth;
case III (Figure 12c) and case VI (Figure 13). (c) Step at 6 km with lithostatic gradient to 10 km and 10 MPa
offset from ©,,; case IV (Figure 12d). (d) Four steps, each to 10 MPa offset from o, at 4, 8, 12, and 16 km; case

V (Figure 12e).

10 MPa below o,,. This case represents a narrow but very low
permeability layer that caps a deep high-p zone below 8 km.
The resulting slip history is shown in Figure 12b, and, quite
remarkably, even this very strong heterogeneity in p is
insufficient to stop ruptures and generate a complex sequence
of events. Slips are again shown every 5 years but now over a
shorter total slip range of 6125 mm corresponding to 175
years of model evolution at 35 mm/yr. Since the pore pressure
in this case is generally higher than in the previous example,
the recurrence interval is shortened to 65 years.

Case III involves the pore pressure distribution of Figure
11b. Here the gradient begins as hydrostatic but changes to
lithostatic [dp/d(depth) = do,/d(depth)] such that p is offset by
50 MPa from o, beyond some shallow depth range. This type
of distribution was considered by Rice [1993] as an example
for a pore pressure with asymptotically lithostatic gradient,
shown by Rice [1992] to result in a fault zone that is

overpressurized at depth and has a permeability which
decreases strongly with increasing 6, — p. The slip history is
shown in Figure 12c, where now there are 1-year intervals
between the curves and the 3500-mm slip range corresponds
to 100 years. Here the recurrence interval is further shortened,
in accord with the generally higher p, to 41 yr.

Case IV corresponds to the p distribution of Figure 1lc;
after beginning with a hydrostatic gradient, p jumps at 6 km
(e.g., a horizon of very low permeability), then continues
between 6 and 10 km with a lithostatic gradient such that p is
offset by only 10 MPa from o, and finally continues with a
hydrostatic gradient below 10 km. This pressure distribution
is finally sufficient to induce some modest complexity in the
earthquake history, as shown in Figure 12d; curves are again
drawn every year and the slip range corresponds to 100 years.
We now see that moderate events, rupturing below 6 km and
inducing nearly coincident slip above 4 km, occur between
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Figure 12a. Slip versus depth at 5-year intervals for case I, hydrostatic pore pressure.
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Figure 12b. Slip versus depth at 5-year intervals for case II; step in p to 10 MPa offset from G, at 8 km
(Figure 11a).
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Figure 12¢. Slip versus depth at 1-year intervals for case III; p has lithostatic gradient at depth and is offset
50 MPa from o, (Figure 11b).
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Figure 12d. Slip versus depth at 1-year intervals for case IV; p has step to 10 MPa offset from &, at 6 km
and lithostatic gradient to 10 km (Figure 11c¢).
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Figure 12e. Slip versus depth at 1-year intervals for case V; four steps of p, each to 10 MPa offset from o,

at 4, 8, 12 and 16 km (Figure 11d).

larger events that rupture the entire brittle crust. The
recurrence interval for the large events is 38 years, and the
moderate events occur 16 years into the large event cycle.

Case V corresponds to the four-step p distribution of Figure
11d. This might be thought of as a discontinuous version of
the distribution in Figure 11b, in which permeable fault
compartments, each 4 km deep and with hydrostatic gradient,
are separated by very low permeability horizons at 4, 8, 12
and 16 km; each step raises p to 10 MPa below G,. The slip
history is shown in Figure 12e, once again with 1-year
intervals and slip range equivalent to 100 years. Now a
complex sequence of earthquakes occurs. The large events
have a 52-year recurrence interval, but around 1 year into their
cycle the compartment between 12 and 16 km ruptures as a
large aftershock. Then, 17 years into their cycle, a complex
rupture occurs causing slip, or rapid afterslip, in all four
compartments but with nodes at the bottom of the most
shallow compartment and, surprisingly, 3/4 of the way down
in the compartment below. At 30 years, the compartment
between 12 and 16 km ruptures again. This case shows how
strong heterogeneities of p, distributed over a fault zone, can
induce complexities of rupture, although the matter is not very
simple since the much stronger pressure step in Figure 1la
(case II) was insufficient to induce complexity. One viable
(but still unproved) working hypothesis is that the expedient
of using oversized cells, or setting L = O like in the
static/kinetic analysis discussed earlier, may represent the
type of heterogeneity effects modeled in case V and other
heterogeneities (presently too difficult to analyze) involving
strong geometric disorder in the fault zone.

Figure 13 shows results for case VI, describing a fault model
with strongly oversized cells. The calculations are based on
the p distribution of Figure 11b, but general characteristics of
the response with oversized cells do not seem strongly
sensitive to details of the p distribution (e.g., the distribution
of Figure 11d leads to roughly similar response), in contrast
to the calculations which capture the continuum limit. Figure
13a shows the slip distributions at 5-year intervals; the range
of the slip axis corresponds to 300 years at 35 mm/yr. Figure
13b shows distributions at 1-year intervals for a range of the
slip axis corresponding to 110 years. This case involves an
inherently discrete model and, consequently, the results are
very different from those of cases I to V. Figures 13a and 13b
show features like the cellular model discussed earlier with
static/kinetic friction and L = 0. We note again that the results
of Figure 12e, for the strongly heterogeneous but continuum
model of case V, suggest a way in which the two classes of
models might be reconciled.

For the small L values used in the calculations leading to
Figures 12 and 13, essentially all slip over the velocity
weakening range occurs as rupture instabilities. Figure 14
shows the average slip over 4 to 13 km depth as a function of
time for case VI (oversized cells); the results are qualitatively
similar to those shown in Figure 4 for the cellular
static/kinetic friction model. The large model earthquakes are
quasi-periodic, but the character of the events is variable.
Modest bursts in seismicity occur sometimes but not always
before the large ruptures, and not every burst in seismicity is
followed by a large event. Figures 13a, 13b, and 12e suggest
that a brittle zone at the border of an aseismically slipping
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Figure 13a. Slip versus depth at 5-year intervals for case VI; oversized cells (2* = h/4 in velocity

weakerning region); p has lithostatic gradient at depth and is offset 50 MPa from ¢, (Figure 11b).
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Figure 14. Average slip over the depth range 4-13 km versus time for case VI

region can be a candidate for sequences of repeated small
similar seismic events. The absence of small events in Figures
12a to 12d emphasizes the necessity for strong heterogeneity,
adequate to stop seismic ruptures, for the occurrence of such
sequences.

We now discuss results when, in place of (1), the Dieterich-
Ruina "slowness" law is used. That law retains the first of
equations (1), for f, but replaces y by In (V}; 6/L) and rewrites
the evolution law of state variable, i.e., the second of
equations (1), as

de/dr=1—0 (dd/dr)/L . 3)

This is a true "ageing” law, in that here the state variable, and
hence fault strength, continues to evolve even in the absence
of slip, whereas the Ruina-Dieterich "slip" law (1) requires
continuing slip for state evolution.

Numerical calculations were performed, with slip
constrained as before to vary just with depth, 8 = 8(z, t), using
the Dieterich-Ruina "slowness" law (3) for all the pore
pressure distributions of cases I to V. The results are found to
be generally similar to those obtained earlier. Extreme pore
pressure variations are required to induce complexity into the
simulated event sequences. As expected, the large earthquake
recurrence times tend to lengthen. In addition, we do not
always obtain periodic solutions; for example, case III (Figure
11b) leads to an apparently chaotic sequence of large events.

A more significant difference between predictions of the
two friction laws was recently found in 3-D solutions, with
slip & =0 (x, z, 1), for the configuration of Figure 10 [Rice,
1994]. In these calculations, the modeled region consists of a
given distance along strike (taken variously as 240, 480, or

960 km) with the slip pattern repeating periodically in x over
that distance. The study was done for a pore pressure
distribution like in Figure 11b but with a 100 MPa offset of p
from 6, at depth. The assumed distribution of a and b with
depth was similar to that used before but with +5-10%
variations in different segments along strike to induce
possible complex response.

In all 3-D cases considered, simulations based on the Ruina-
Dieterich law (1) show a sequence of large, nearly identical
ruptures which span the entire distance modeled along strike
and repeat in a nearly periodic manner. Such is consistent with
the results of Rice [1993], who used the same law. In contrast,
simulations based on the Dieterich-Ruina law (3) show highly
variable rupture lengths that rarely or never span the entire
region modeled, and the history of events at any given
location along strike is strongly aperiodic. On the other hand,
events with length along-strike shorter than about 20 to 25
km, and with depth extent less than the 15 km depth range of
the "brittle" crust, are never observed in the modeling. In
agreement with our previous discussion, some representation
of geometric disorder of fault zones at smaller scales is
presumably necessary to explain smaller events. One may
not, however, conclude that law (1) can never give complex
slip in a continuum fault model; Horowitz and Ruina [1989]
found complex response using that law, albeit with an added
viscous term that prevented large variation in slip velocity.

Discussion

Variations of fluid pressure in fault zone rocks have long
been recognized as being important for fault dynamics [e.g.,
Nur, 1972; Sibson et al., 1975; Rice, 1979; Rudnicki, 1986].
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Recent field, laboratory, and theoretical works [e.g., Byerlee,
1990, 1993; Blanpied et al., 1992; Sleep and Blanpied, 1992;
Sibson, 1992; Rice, 1992] generated renewed interest in the
effects of fluid pressure on frictional properties of faults. In
this paper we simulate fault instabilities in models
emphasizing the dependency of fault friction on complex
spatial distributions of geometrical irregularities, material
heterogeneities, and pore pressure variations. The simulations
are done using two separate categories of models. The first
category, taken as an approximate representation of strong
fault heterogeneity due to geometric disorder or other abrupt
property variations, involves inherently discrete systems.
This is modeled using both a cellular fault governed by
static/kinetic friction [Ben-Zion and Rice, 1993], and a fault
obeying rate- and state-dependent friction [Rice, 1993] but
having numerical cells that are larger than a nucleation size
for slip instabilities. The second category involves a
continuum system representing a smooth fault surface
subjected to various degrees of pore pressure variations. This
is modeled by a fault satisfying rate- and state-dependent

constitutive law, using numerical cells much smaller than the .

critical nucleation size. In both categories of models, stress
transfers due to slip episodes are governed by 3-D continuum
elasticity.

The results indicate that gradual pore pressure variations
cannot explain the observed spatio-temporal complexity of
seismic slip. It is possible, however, that the formation of
seals [Byerlee, 1993] and localized zones that compact toward
lithostatic p [Sleep and Blanpied, 1992; Sleep, this issue]
could create strong and abrupt pore pressure fluctuations (e.g.,
of the type shown in Figures 2c and 11d) leading to complex
seismic response. The simulations show that strong fault
heterogeneity of the form envisioned in our models with
discrete (quasi-independent) numerical cells is required for the
generation of slip complexities, rough rupture fronts capable
of radiating high-frequency seismic waves, and FS statistics of
earthquakes having a wide range of event sizes. The large
earthquakes simulated by the models are quasi-periodic;
however, the character of the large events varies greatly from
one sequence to the next. The results suggest that
expectations for regular repeating sequences of earthquakes are
unrealistic. This is supported by recent inversions of geodetic
data along the central SAF, indicating that the 1934 and 1966
Parkfield earthquakes had substantially different rupture
histories and/or distributions of slip [Segall and Du, 1993].

In the present work we are interested in the seismic
response of a fault system over a time scale of hundreds to
thousands of years. We assume that the first order mechanical
properties of a fault system do not change much, in a
statistical sense, over such periods. The above statement is
equivalent to associating the first order mechanical properties
of a fault system with first order structural features (fault
bends, forks, stepovers) created by many earthquakes over
many thousands of years. Fault properties are, of course,
constantly evolving with time due to processes such as fresh
fracture formation near geometrical incompatibilities [King,
1983; Andrews, 1989], gouge compaction [Sleep and
Blanpied, 1992; Sleep, this issue], permeability reduction
[Moore et al., 1994], seismic fluid pumping [Sibson, 1992],
pressure solution [Hickman and Evans, 1992], and a variety of
other fluid-assisted mechanical and chemical processes
described in this special section. In the current paper,
however, we assume that the effect of such time-dependent
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processes on the strength of faults is, on the average,
secondary to that of major structural discontinuities reflecting
the overall deformational history of a fault. We thus keep the
geometries, frictional properties, and tectonic loadings of the
models constant in time. The time invariance of the above
parameters leads to the existence of basic seismic cycles,
manifested in quasi-periodicity of large events. On the other
hand, the large number of quasi-independent fault segments
(discrete numerical cells) and nonlinearities in the assumed
friction laws produce variabilities in the timing and character
of the large events. Thus our models generate quasi-periodic
random sequences which may be viewed as resulting from a
compromise between tendencies toward seismic cycle and
predictability and tendencies toward randomness and chaos.
This is illustrated in Figure 3 and Table 1, where the simulated
results show a transition between fault behavior dominated by
ingredients leading to periodicity, and seismic response
dominated by ingredients leading to chaotic occurrence.

The frequency-size distribution of earthquakes is an
important topic for both theoretical studies of earthquake
dynamics and practical considerations of seismic hazard
assessments. It is controversial whether FS statistics follow,
in principle, a power law Gutenberg-Richter distribution,
implying self-similarity over a broad range of earthquake
magnitude, or whether earthuake statistics are characterized,
intrinsically, by systematic strong deviations from self-
similarity. The FS statistics of earthquakes observed along
given faults or in seismogenic zones with uniform width and
one (dominant) mode of faulting show in many cases [e.g.,
Singh et al., 1983; Schwartz and Coppersmith, 1984; Main
and Burton, 1984, 1989; Davison and Scholz, 1985; Main,
1987; Trifu and Radulian, 1991; Wesnousky, 1994] strong
deviations from self-similarity and local maxima in the rate of
events having "characteristic” rupture dimensions. On the
other hand, the FS statistics of observed earthquakes
"sampling" irregular seismogenic zones such as southern
California [Hileman et al., 1973] or the entire Earth [Pacheco
et al., 1992; Kagan, 1993, 1994] show a broad power law
distribution. The observations suggest the existence of a
"fundamental” FS distribution of earthquakes with features
(and information) not accounted for by the simple GR
relation, and that the latter broad power law GR statistics
result from a secondary "averaging" process. This hypothesis
is supported by the analysis of Ben-Zion and Rice [1993] and
the present work.

Our results indicate that in a system characterized by
geometric disorder (i.e., strength heterogeneity) spanning a
narrow range of size scales, with stress transfer governed by
3-D continuum elasticity, the FS statistics of earthquakes can
be self-similar only over a narrow range of events smaller
than a critical size. This is due to the fact that the stress
concentrated in a 3-D elastic solid at the edge of an expanding
rupture grows with the rupture size. Thus, when the fault is
characterized by a narrow range of geometric disorder, as in
cases 1-4 of the analysis, the scaling of stress concentrations
with the rupture size introduces a critical event size
terminating the range of self-similar earthquake statistics. In
such systems, events reaching the critical size become (on the
average) unstoppable, and they continue to grow to a size
limited by a characteristic system dimension (see Figures 7
and 8). When, however, the system is characterized by a broad
spectrum of geometric disorder, as in case 5 of the analysis, a
corresponding broad spectrum of critical event sizes exists,
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and the phenomena discussed above are suppressed (Figure 9).
The simulations indicate that rupture areas terminating the
self-similar range of FS statistics are related to dominant
length scales characterizing the system heterogeneities, and
that local maxima in FS statistics correspond to dimensions
of coherent brittle zones such as the width of the seismogenic
layer or the length of a fault segment bounded by barriers.
Thus observed FS statistics can be used to derive information
on crustal thickness and fault zone structure. Our analysis
offers a coherent explanation for both the GR statistics and
the characteristic earthquake distribution of seismicity. The
results suggest that the frequency of occurrence of moderate
and strong earthquakes is enhanced with respect to self-similar
distributions defined by small events, whether local maxima
are observed in the FS statistics or are averaged out.

The notion that earthquakes are dynamically self-similar is
very attractive on grounds of simplicity and analogy to other
natural systems. However, the observations and analysis
mentioned above indicate that continuum elasticity, coupled
with a given segmented (discrete) fault zone structure, can
produce a length scale (event diameter about 164 in our
simulations [Ben-Zion and Rice, 1993, Table 1]) terminating
the self-similar regime of earthquake dynamics. The range of
the self-similar regime can be extended by the existence of
barriers that can stop ruptures at yet larger scales (see, e.g.,
Figures 2c and 9). As discussed by Ben-Zion and Rice [1993],
a lower length scale that may limit self-similarity of
earthquakes is the width of fault zones. This size scale is a
natural unit for measuring structural fault zone discontinuities,
and it may thus provide a basis for choosing # when using the
inherently discrete fault models. Analytic waveform fits of
seismic fault zone trapped and head waves [Leary and Ben-
Zion, 1992; Ben-Zion, 1993; Hough et al., 1994] indicate
that the width of mature fault zones is of the order of a few
hundreds of meters. Numerous seismological observations for
small earthquakes, including the constancy of their radiated
corner frequency [e.g., Chouet et al., 1978; Fletcher, 1980],
the strong variation of their stress drops [e.g., Sacks and
Rydelek, 1992; Hough et al., 1992], and their deviations from
self-similar FS statistics [e.g., Aki, 1987; Malin et al., 1989;
Rydelek and Sacks, 1989; Sacks and Rydelek, 1992], may be
related to the width of the corresponding fault zone and may
hence also be used to estimate the size of 4 (we note that these
observations may also result from site and recording effects;
see related discussion and references of Ben-Zion and Rice
[1993]). A third length scale that is an obvious candidate for
disrupting self-similar seismic response is the width of the
brittle seismogenic zone (about 10-15 km for the SAF; 30-
100 km for subduction zones). Pacheco et al. [1992], using
least squares analysis, claimed to have identified a break in the
slope (power) of observed FS statistics of global earthquakes
related to an average size of the seismogenic zone. However,
Kagan [1993, 1994], using the presumably superior maximum
likelihood procedure, found that FS distribution of global
earthquakes in the high-quality Harvard catalog does not show
a break of slope corresponding to the seismogenic layer.

Our analysis indicates that the range of size scales
characterizing fault zone properties has various
manifestations in the seismic response of a fault. The
significant enhancement in the rate of occurrence of the M = 6
Parkfield earthquakes with respect to power law extrapolation
of the low-magnitude background seismicity [Ben-Zion and
Rice, 1993, Figure 15], and the ratio mean/standard-deviation
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events (as well as the corresponding ratio of calculated time-
dependent slip deficits between the events) [Ben-Zion et al.,
1993, Table 2] suggest that the structure of the San Andreas
fault at Parkfield is characterized by a narrow range of size
scales. This is compatible with high-resolution borehole
seismic observations of Johnson and McEvilly [this issue],
showing that the spatial distribution of Parkfield seismicity
(over the 1987-1993 period of high-resolution borehole
measurements) exhibits a fairly regular pattern consisting of
alternating regions, 3-6 km in dimension, of high and low
seismic activity. These regions of alternating seismic activity
may reflect structurally dominated hydrological fault zone
compartments. Fault-trace-complexity analyses of
Wesnousky [1988, 1994] indicate that the geometry of fault
zone structures becomes progressively more regular with
cumulative slip. Since the central SAF experienced a
cumulative slip of a few hundreds of kilometers, the fault-
trace-complexity data of Wesnousky provide an additional
support for our suggestion, based on statistics of earthquakes,
that the SAF at Parkfield is characterized by a narrow range of
size scales. A process competing with the smoothing of
geometrical fault zone irregularities with cumulative slip
[Wesnousky, 1988] is that of "block rotations," making a
fault system progressively missaligned with respect to the far-
field plate motion with age or cumulative slip [e.g., Freund,
1974; Ron et al., 1984; Nur et al., 1993]. Thus there can be
transition times (e.g., the recent period for the central-
Mojave/eastern-California-shear-zone [Nur et al., 1993])
during which old geometrically ordered but unfavorably
aligned faults become deactivated, new geometrically
disordered, favorably aligned fault systems are formed (e.g.,
the rupture zone of the 1992 Landers, California, earthquake),
and a new evolution cycle of fault zone structure begins.

It is worthwhile to close the discussion by mentioning a
few shortcomings of our work. The simulations of Ben-Zion
and Rice [1993] and the first section of our analysis model all
slip episodes as brittle failures. This ignores time-dependent
effects due to viscoelasticity in the lower crust [e.g., Li and
Rice, 1987; Ben-Zion et al., 1993], and aseismic slip in
creeping fault sections and in small slip patches within the
computational grid [e.g., Dieterich, 1986; Tse and Rice, 1986;
Rice, 1993]. As shown by Ben-Zion et al. [1993], however,
slip velocities in the lower crust, and hence loading rates on
the upper seismogenic layer, are expected to vary in time
throughout an entire great earthquake cycle. Shortly after an
1857-type earthquake slip rates in the viscoelastic lower crust
are higher than the far-field plate velocity, while later in the
cycle they are lower. High loading rates early in the cycle may
result in clustering of earthquakes in space and time, while low
loading rates late in the cycle may result in an overall decrease
of activity. Similarly, time-varying stress concentrations due
to aseismic slip in small slip patches (i.e., patches with size &
< h*) and in creeping fault sections can have important effects
on foreshock-mainshock-aftershock sequences. The modeling
of these time-dependent effects can be achieved by
incorporating features of rate- and state-dependent friction
and/or creep law into the constitutive stress-slip relation.

The simulations of Rice [1993], Ben-Zion and Rice [1993],
and the present work model inertial effects during seismic slip
only approximately (e.g., by a seismic radiation damping
term for rapid slip along the fault, or by allowance for dynamic
overshoot in rupture arrest). Thus calculated final states of
stress on the fault after failures can be correct only in an
approximate sense. It is important to examine whether a more
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precise treatment of elastodynamics during instabilities would
qualitatively modify critical features of the modeling results,
in a way that would change our conclusions on features
responsible for slip complexity. As suggested by, e.g.,
Cochard and Madariaga [1994], Shaw [1994], and Madariaga
and Cochard [1994], it is perhaps possible that the wave-
mediated arrest of a dynamic slip event will leave a
heterogeneous distribution of residual static stress on the
ruptured surface. Such heterogeneity, if strong enough, could
affect the nucleation and arrest locations of subsequent
ruptures and may become a mechanism for sustaining complex
seismic behavior. However, dynamic simulations [Anrndrews,
1975; Rice and Ben-Zion, submitted manuscript, 1995; Y.
Ben-Zion et al., manuscript in preparation, 1995] in uniform
models without strong implicit heterogeneities (due to, e.g.,
inherent model discreteness and/or highly heterogeneous
initial and boundary conditions), and with proper calculations
of stress concentrations, have not generated realistic complex
slip sequences for parameter ranges examined so far, and they
thus contradict the hypothesis that seismic complexities are a
generic outcome of inertial dynamics. On the other hand,
recent analysis of a dynamic crack growing spontaneously
over a plane in a 3-D elastic solid [Rice et al., 1994; Perrin and
Rice, 1994] indicate that dynamic processes may interact
strongly with a small amount of heterogeneity, leading to
large spatial and temporal fluctuations in crack front
velocities and positions. As another example, seismic P head
waves propagating along fault zone material interfaces [e.g.,
Ben-Zion, 1990; Ben-Zion and Malin, 1991; Hough et al.,
1994] can create an oscillatory normal stress regime,
modulating dynamically the (possibly homogeneous)
frictional properties of a fault. (Other mechanisms for normal
stress variations, some involving material contrast across a
fault, e.g., Schallamach [1971], are discussed by Brune et al.
[1993].) Finally, the large off-fault stresses generated near a
rupture front as it accelerates toward its limiting speed [e.g.,
Rice, 1980] could promote non planar rupture features and be a
further factor inducing complex response.

Our results indicate that strong fault heterogeneities,
probably due to geometric disorder and possibly also extreme
pore pressure fluctuations, are responsible for the complexity
of observed fault behavior. We have used planar cellular fault
zone models to simulate different types of strong
heterogeneities, assuming that a 3-D network of geometrical
fault zone disorder can be mapped onto a 2-D plane. It is
important to rationalize such a mapping in future work.
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