
Pergamon 

J. Mech. P/I_v.s. Solids, Vol. 42, No. 6, pp. 1047-1064, 1994 
Copyright c 1994 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 

0022-5096(94)EOOOl-K 
0022-SO96/94 $7.00+0.00 

DISORDERING OF A DYNAMIC PLANAR CRACK 

FRONT IN A MODEL ELASTIC MEDIUM OF 
RANDOMLY VARIABLE TOUGHNESS 

GILLES PERRIN~ 

Bureau dc Contr6le de la Construction NuclCalre, I5- I7 Avenue Jean Bertin. 21000 Dijon, France 

and 

JAMES R. RICE 

Division of Applied Sciences and Department of Earth and Planetary Sciences, 
Harvard University, Cambridge, MA 02138, U.S.A. 

ABSTRACT 

RICE et ml. (1994, J. Mech. Ph_vs. Solids 42, 813-843) analyse the propagation of a planar crack with a 
nominally straight front in a model elastic solid with a single displacement component. Using the form of 
their results for a strictly linearized perturbation from a straight crack front which moves at uniform speed, 
we give the corresponding first-order expression for the deviation of a crack front from straightness as a 
direct integral expression in the deviation of the material toughness from uniformity in the crack plane. 
We then use this expression to analyse the autocorrelation of the crack front position when the toughness 
deviations are random. We find that the root mean square deviation in position diverges logarithmically 
with travel distance across the random toughness region, as do the variances of the propagation velocity 
and slope of the crack front. That is, according to strictly linearized analysis, perturbed about the solution 
for a uniformly moving crack front, the perturbations from straightness and from uniform propagation 
speed should grow without bound in the presence of random deviations in toughness. What is remarkable 
about this result is that, according to the same strictly linearized analysis, if the toughness is completely 
uniform over the remaining part of the fracture plane, after encounter with a region of nonuniform 
toughness, the moving crack front becomes asymptotically straight with increase of time. Nonlinearities, 
not considered here, must control how statistically disordered the crack front can ultimately become as it 
propagates through a region of random toughness variation. Also, because of the logarithmic nature of 
the growth, significant disorder can occur in response to small perturbations only when the crack moves 
over a great distance compared to the correlation length scale in the fracture toughness. 

1. INTRODUCTION 

FOLLOWING RICE et al. (1994), consider a half-plane crack propagating in an 
unbounded solid in a nominal direction s along the plane 4’ = 0. This takes place in 
their model 3D elastodynamic theory involving a single displacement variable u 
representing tensile opening or shear slippage, and associated tensile or shear stress 
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o = Mu,,. across planes parallel to the crack, where M is the elastic modulus. The field 
II is a solution to the scalar wave equation c’Atc = u,,,, where C’ = M/J) with p denoting 
mass density. The boundary conditions on the plane ~1 = 0 are: u = 0 ahead of the 
front, and 0 = 0 behind it. The crack front at time t lies along the curve .Y = (I(:, t). 
The crack propagation velocity in the s direction P(:, t) = u,,(z, t), is assumed to be 
close to a constant velocity 13,~. More precisely, RICE c,t ~1. (1994) write 
U(Z. t) = ~~~t+c,f’(z, t), where ,f is an arbitrary function decribing the deviation from 
straightness of the front and c is a “small parameter” (in other words, only the first 
order perturbation from the E = 0 case is considered), 

The preceding authors show that the local dynamic energy release rate G(z. t) along 
the crack front is given. to first order in P(Z, t) -P,,, in an expression for G’ ’ by 

(1) 

with 

[compare with equations (33b) and (35) in Rice ct (11. (1994)] and where CC,+’ = V 
‘, 1 
L“ ~ I’; 

is the velocity of information traveling along the crack; that is, two points of the 
crack front with r coordinate differing by A: do not influence each other before the 
time delay Az/r,,c. G,, is the energy release rate for the reference problem, and is 
considered as constant. This expression in (I) and (2) is based on what RICE r/ ul. 
(1994) call their strictly lineurixd analysis; they also provide a version of (I), as in 
their equation (33a), which remains accurate for arbitrarily large, but subsonic, 
perturbations of velocity when the crack front is straight. 

At this step, the authors consider the inverse problem to (1) and (2) : suppose that 
the material rupture is ruled by the local energy release rate criterion 

G(z, t) = Gcr,,[N(T, t), z]. (3) 

the function G,,,,(s, -_) being known, and solve numerically for the crack front velocity. 
One notable result they obtain deals with a crack with initial straight front which 
crosses a region of variable toughness of finite width (along axis s) and afterwards 
enters a constant toughness region forever: although the crack front becomes wavy 
in the variable toughness region, it gradually straightens up in the following constant 
toughness region. This shows that straight fronts are in some sense stable. 

One possible extension of this analysis is to consider a crack propagating in a 
region of randomly variable toughness, and ask how much the crack front deviates, 
statistically, from straightness. We shall suppose that some statistical properties of 
the random toughness are known, namely the autocorrelation function of 

T(Z, t) = \, ‘G,,Jl’,J, Z)/G(, - I (4) 

and we shall aim at getting the spatial autocorrelation function of the crack deviation 
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2. ANALYSIS IN FOUKIER SPACE 

In this Section, we aim at relating the power spectra of T and A. To do so, we need 
the Fourier transform of the linear relationship (5) between l%- I‘,) = A,, and T. It is 
advantageous to reduce the singularity of the kernel of (5) via integration by parts on 
the variable < (integrating the kernel and differentiating the velocity difference). The 
contribution of the bounds around < = 0 stemming from the principal value integral 
must be handled carefully ; they cancel provided that I‘ I be a continuous function of 
- The result is _. 

which implies in Fourier space 

A^(k, W) = 2c&h(k, cr>)f(k. (0) with /z(k, (11) 

where a1/27r is the frequency, k the wave-number, and ” denotes the space-time Fourier 
transform, e.g. 

+, ii 
&k,(u) = 

1 s 
A(=, t) e “’ e ““’ dz dt. 

I i 

The calculation of /I is involved and offers little interest. 
If we assume that the two point autocorrelation functions of T and A both depend 

only on the relative position of the two points, which implicitly assumes that both 
random functions are stationary in space and time, we are able to use the classical 
ergodic definition of the autocorrelation function of a stationary random function 

X(z, t) as 

and of its power spectrum as S,(k, OJ) = ~,(k.u~). Power spectra S, and S4 being 
defined that way, (7) provides 

Since a realistic power spectrum S, would nol vanish identically on the cone 
WZ = k’(x,,c)‘. it is obvious from (8) that the autocorrelation function of A would be 
nowhere finite. 

The solution to this apparently absurd conclusion is that the hypothesis that A(z, t) 
be a stationary random variable is not fulfilled, as will become obvious from the 
results of Section 5. In that case, the power spectrum of A cannot be defined, and the 
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relationship (8) breaks down. Instead, we must answer our question in two steps : in 
Section 3, we express the deviation from straightness of the crack front, A(z, t), as a 
linear functional of z(z, t), and then in Section 5 we perform statistical analysis of the 
deviation from straightness A. Similarly, the purported power spectrum S,(k, o) of 
the velocity fluctuation, V(z, t) = a,,(~, t) -u,,, can be written, and we find likewise 
that V(Z, t) cannot be a stationary random variable; note that the purported spectra 
are related by S,(k, CD) = o*S,(k, CD). 

3. STRAIGHTNESS DEVIATION AS AN EXPLICIT FUNCTIONAL OF TOUGHNESS 

PERTURBATION 

The purpose of this Section is to invert the integral equation (6) for A(z, t) with the 
additional condition that both A and z are uniformly zero before time t = 0. 

The first step is to deduce from (7) for imaginary o = -is, s > 0, the relation 
between the z-Fourier and r-Laplace transforms of A and T. 

‘tk3 -is> = - G:f& f(k, -is). 
0 . 

This expression is suitable for the Laplace convolution theorem [the transfer function 
decreases as 0( 1 /s) for large s] and results in 

s I 

A(k, t) = -2a;c J,(ka,c@+‘~, t - 0) do, 
0 

where A”(k, t) and z”(k, t) are spacewise Fourier transforms, e.g. 

s 

+I 
A”(k, t) = A(z, t) emlh’ d,-. 

1 

The inverse Fourier transform provides 

(9) 

Notice that the integration kernel is integrable at point 0 = 5 = 0. 

Since the velocity fluctuation V(z, t) = V(Z, t) -u. = A,,(z, t), the solutions for @k, t) 
and V(z, t) are given by the last two expressions, with f and z replaced, respectively, 
with <., and T,,, and with additional terms that arise from the instantaneously induced 
velocity heterogeneity when the random region is first encountered at t = 0 : 

P(k, t) = -24~ ‘/,(ka,&)f,,(k, t-0) do-2&Jo(kz,ct)f(k,0), 
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The first of these is a simple extension of a result given by equations (52) and (53) of 
RIC‘E P? ul. (1994). 

The equations just given seem to suggest that the straight crack front is con- 
figurationally stable. For example, suppose that after some compactly supported zone 
of non-uniform G,,,, has been traversed, that G,,,, reverts to the uniform value G,,; i.e. 
~(2, t) = 0, and hence i(k, t) = 0, for all t greater than some maximum traverse t*. 
Then the crack front is perturbed from straightness as it leaves that zone. but it is 
straightforward to show that, as t + ‘XL. P(k, 1) -+ 0. for all k and A”(k, 1) --f 0 for all 

k # 0. Thus the crack recovers its straight shape and uniform propagation speed l’,,. 
However, stability is a subtle issue here. While the straight shape is indeed recovered 
for propagation through a zone of precisely uniform G,,,,, we shall see that the straight 
crack front becomes increasingly more disordered as it propagates through a region 
of arbitrarily small but sustained random variation in G,,.,, (i.e. in T) and, to the extent 
that we regard such heterogeneity of properties as being inevitable, we then conclude 
that the straight crack front is c~ot?fiyurutiot~ull~~ mstahlr. Such has already been 
anticipated by the lack of existence of stationary solutions for A and V in rcsponsc 

to stationary 5. 

4. ANAI,OGY WITH AN ANTIPLANE FRICTIONAI. PRORLEM 

In this section, we note an interesting mathematical analogy between our 3D 
perturbed crack front problem and the 2D problem of an “antiplane frictional fault”. 
For the latter, a linear elastic unbounded body contains a weak plane (J, = 0) on 
which frictional sliding can occur. Only displacement along direction 2 is allowed, 
and this is uniform in z, i.e. a function only of .Y, .t’ and t. The elastic shear tnodulus 
is 11 and the shear wave velocity is c,. Time and space boundary integral equation 
methods allow us to condense the problem into a two-dimensional problem in terms 
of two functions, the displacement discontinuity, ii. across the plane j‘ = 0 and the 
alteration of shear stress, o( = a,,). on the plane ~3 = 0 as a function of time I, and of 
the position along the fault, X. For details. see KOSTROV (1966, 1975), KOSTIW~ and 
DAS (1988; page 264). or FREUNI) [1990; page 66. equations (2.3.4) and (2.3.5) with 
his j’,, = 01. 

An analogy between the two corresponding quasistatic problems was uncovered by 
RICE (198X). It appears here that a similar analogy can be constructed in the dynamic 
case: indeed, (6) and (9) hold for the frictional fault, provided we tnake the identi- 
fication : 

Crack front Frictional fault 

%,,(’ (‘\ 

A ii 
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In other words, the solution to the dynamic crack front problem is also the solution 
to a frictional problem where the friction may vary along the fault, and depend at 
each point of time on the accumulated displacement discontinuity 6 only through a 
combination of form v,t+b(x, t). This analogy shows, incidentally, that the long-time 
response to the action of a stationary random shear stress a(x, t) of zero mean on the 
boundary of a half-space is a non-stationary random surface displacement and particle 
velocity. 

5. EFFECT OF RANDOM ENERGY RELEASE RATE 

From this section on, we resume the analysis of deviation from straightness of a 
crack front within the scalar model elasticity framework of RICE et al. (1994). We 
now introduce the following well posed problem : we consider the case of a material 
with critical energy release rate Gcril(_X, z), constant for x < 0, and random for x > 0. 
We assume that the expected value E[r(:, x)] is zero everywhere. Here it is sometimes 
convenient to use 2 and X, and sometimes z and t, as arguments of r, Z(Z, x) = Z(Z, t) 
of (4), once we make the substitution rl,l = X. Notice that if the deviations 6G from 
Go in the x > 0 plane are supposed to be small, so that the approximation r = 6G/2Go 
holds, this assumption is equivalent to assuming that the expected value of G is 
everywhere Go. Let us consider the two point autocorrelation function of r, 
E[r(: ,, x,)z(z~, _Y~)], where E[X] denotes the mathematical expectation, as an en- 
semble average, of random variable X. Tt is reasonable to assume that this function, 
which describes the local properties of a macroscopically homogeneous material, is 
stationary and hence depends only on the differences z>-_;, and X-X,, and is an 
even function of these quantities. Accordingly, we denote 

The corresponding power spectral density is 

In a particular case which we will sometimes use to illustrate formulae, we consider 

R,(-_,-z,,x2-.Y,) = o’exp[-J(xz-.~,)2+(.2-~,)Z/h], 

where h is a correlation length and the statistical distribution of T(X, z) is isotropic in 
the plane ; then 

P,(k,,ks) = 2na’h’/[l+h2(k~+kS)]32. 

Also, we shall need the correlation function and spectrum of 7,,(z, t) which, in the 
notation r = Z(Z, X) with x = t!“t, is the same as ~,,t., (z, x). Thus, by standard methods 
for stationary distributions, we have 

R,,(z,x) = -rI:_$ R,(z,x) and P,,,(k,,k>) = tliklP,(k,,k,). 
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For every realization of the material, in the probabilistic sense, Section 3 provides 
explicitly the deviation from straightness. A formal expression of the mathematical 
expectation E[A(= ,. f)A(z2, t)]. which by statistical invariance on coordinate z depends 
only on the difference Z, -z?, is straightforwardly deduced from (9) : choosing 
(Z ,, z:) = (0, z), linearity of the mathematical expectation EL] and of (9) yields : 

E[A(O, t)A(r, t,] = 

where we used the fact that the unperturbed crack front lies at abscissa -yy, = r.,,O, at 
time 0,. 

We now want to handle the right hand side of (IO). We first get rid of one integration 
by means of the Parseval bilinear identity for real valued functions of two variables, i ss I .f‘(~l.-dd :,,:,)dz, dz2 = 

; 
j’(k,,k,)ij-k,. -k?)dk, dk,. 

I I 

which allows the curly bracket of (IO) to be transformed into 

x nJ,,(k,~,~~O,)nJ,,(k~r,,~.H~)dk, dk: = ; 
I 

J,,(k~,,~O,)J,,(kx,,c,O?) 
I 

where the notation i?, denotes the Z-Fourier transform of R,, and 6,) denotes the Dirac 
impulse function. Noticing that J,, and R, are even functions of k, WC obtain an 
expression for the autocorrelation function which is equivalent to, but simpler than, 
(IO): 

~cos(k=)R”,[k,r,,(H~--o,)]dkdt~,d02. (II) 

We now focus on the asymptotic value of (I I) for large time t. We will show that. 
under some reasonable assumptions on function R,. this expression diverges at large 
time as (log t)‘. In order to have a preliminary insight towards such :I result. one 
might consider the case where the dependency of R, (thus of R”, as well) on X-.v, is 
a Dirac function, R,[z, x] = R,[z]G,(x), modeling the random variable z as a white 
noise in the .X direction (the notation RT is kept for the new function of variable 3 
only). Mathematically, this assumption results in replacing the (0,. 0,) integration 
over the square (I) ,, 0,) E [0, t]’ with one along the line segment 0 d 0, = 0: < I and 
( I I ) simplifies into 
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4a;c= I x 
E[A(O, t)A(z, t)] = ~ 

ss 
&(ka,,c6,))=cos (kz)&k] dk de. (12) 

nvo 0 0 

The next step is to use the well-known behavior of Bessel functions for large argument, 

(13) 

so that the large 0 integration of its square generates a log t term, accounting for the 
averaging of the oscillating part. It is difficult to pursue the treatment, specifically, to 
explain why integration over k yields a .squared log t in the final result (14), without 
being more rigorous. Yet, dominance of the diagonal 0, = 8? in integration over the 
square (fl,, Q,) E [0, t] ‘, and asymptotic behavior of Bessel Function Jo are the two 
basic elements which we use in the Appendix to derive the following asymptotic 
expression of (1 I) for large times : 

for any fixed z, E[A(O, t)A(z, t)] = $!: Pi(O, O)(log r)‘+O(log t). (14) 

In the process, we must assume that the following conditions (Hl), (H2), (H3) and 
(H4) are fulfilled : 

” x 

ss 
/.x&k, x)1 dk dx < cc. (HI) _ -c -, 

X 
m?x 

f&[k,x]I d.u < m, (H2) 
% 

(H3) % I ss (R”r,k[k,X]( dk dx < co, (H4) 
- TJ 7 

where C2 and E are positive numbers. These conditions are quite realistic; indeed 
they are fulfilled for an autocorrelation function R,(z, x) with absolutely convergent 
integral on the (z, X) plane, which is continuous in z and which decreases faster than 
l/x’+‘:. Expression (14) calls for a comment about dimensionality of the argument of 
the logarithm : notice that whatever the time unit, it merely adds to (14) a term of 
order O(log t) ; the time unit can thus not be determined by the first-order asymptotics. 
For practical applications, it is reasonable to guess that the time unit involved in (14) 
is of the order of the coherence length, like 6, of critical toughness G,,,, divided by a 
relevant velocity (uO for direction x and clot for direction z). 

The striking fact about the result (14) is that it grows unboundedly for large times, 
although E[A(z, t)] = 0. This seems to indicate that the crack front develops random 
waviness of amplitude proportional to log t. This consideration is tempered by the 
remark that, since the result does not depend on z, at least at this order, we have 
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E([A(O,t)-A(z,t)]‘) = E[A’(O,t)]+E[A’(z,t)]-2E[A(O,t)A(z,/)] = O(log t), 

a conclusion to be reinforced by later results for the power spectrum of A(:, t) with 
respect to z, suggesting that (14) evidences a translational perturbation, and that 
waviness is to be looked for with amplitude of order (log t)’ ‘. Yet, the idea that the 
perturbation of order log t is merely a translation is too simple; indeed, it can be seen 
directly in (IO) that, for any < with absolute value greater than 2. 

E[A(O, t)A([a&, t,] = 0 ~ ,z,)(,,,;, I,R,(=J) max (15) 

in which the integral is a bounded quantity for almost any physically reasonable 
function R,. This means that the length of coherent crack segments after traveling for 
duration t in the random material always remain smaller than 2x,,ct. The physical 
argument that explains this feature consists of recalling that a,,~ is the velocity of 
information along the crack front. 

6. SPATIAL POWER SPEC'TRUM OF THE CRAW FRONT POSITION, SLOPE ANI) 

VELWITY 

To get some more insight about the growth of random waviness of the crack front. 
let us consider (I I) again. When we replace cos kz with e”‘. extending the integral 
on k from - CC to + 1~ at the expense of a factor of 2. the correlation E[A(O, t)A(r. t)] 
is then expressed as an inverse Fourier transform of a quantity which we may call 
tj,(k, t). That quantity is thus the power spectrum for the spatial dependence of crack 
front position at time t, and is given by 

For k > 0. following a method analogous to, but much simpler than, that used in 
Section 5. we are able to show that 

for any fixed k. $.,(k, t) = 
4r;cP;(k, cock/r,,) log ((kl a,,~) 

~(.o/kl 
+0(I), (16) 

this holding for t >> l/lkjr,,c,. 
To see the origin of (16), we use the association .\- = r,,t, writing .v, = r,,O, and 

.v, = 1~~~0,. and then make the change of v,ariables K = (s, +.u?)]2. s = X--.Y,, so that 
the boundaries of the square over which one integrates extend from -S,(T,.\.) to 

+.r,(r. X) where .s,(r, s) = 2 min (r, S--T). Thus 
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where /I = q,kc/zl,,. Notice now that since R”,(k,s) becomes effectively zero for 1.~1 
greater than some correlation scale h, the effective domain of this integration is, for 
z’“t >> h, a narrow strip of length o,,t in the r direction but only of order 2b in the s 
direction. Considering now values of t such that pz’(,t = a,,kct >> 1, the asymptotic 
behavior of Jo then leads to 

at large /lr and s << r. The sin 2/h term makes only a bounded contribution to the 
integral as rot + cc and can be neglected. Also, the effective limits on .r can now be 
extended to infinity and, integrating in r, 

t+hA(k, t) - 4g2 
s 

+ n Cog &k,.s) ds log (qlklct), 
0 7 

the lower limit in r being chosen as that for which fir = 1. The cos /Js can be replaced 
by e I@, and this second Fourier transform of R,(z, s) [the first changed R,(z, s) to 
/?,(k, .s)] now produces the power spectrum P,(k, j?), and we obtain the formula (16) 
when we recognize that p = xock/z:,. 

In the particular case of an isotropic fracture plane discussed earlier, with the 
exponential decay of correlation over length scale h, the divergent part of the spectrum 
is thus 

The coefficient of log (a,lklct) is divergent near k = 0 and its decay with increasing 
Ikj, as l/lkl for small Ikj, becomes much more rapid for Ikl > v,,/bc. 

Since we always expect the spectrum P, to be relatively constant for large wave- 
lengths (i.e. small k) compared to lengthscales in the correlation function, result (16) 
suggests that the long wavelength wiggles grow proportionally to their wavelength. 
This is consistent with the following naive view of their development : on one hand, 
random wiggles are generated at small lengthscales, of the same order as the coherence 
length of the toughness homogeneities. On the other hand, one must remember that, 
at all scales, the crack front tends to straighten back. This can be viewed as a tendency 
to average locally the perturbation A. But averaging the perturbation of A on a patch 
of some length L takes some time, during which new perturbations are generated on 
lower scales; on the other hand, the averaging creates a relatively straight fault 
segment of length L, one among many uncorrelated ones, all of them appearing as 
perturbations on larger scales. This view recalls vaguely the model of turbulent flow 
in which energy from bigger eddies feeds smaller eddies, down to a scale where 
viscosity dominates inertia. In the crack front case though, disorder from smaller 
scales feeds that on larger scales. This feature is not surprising, since perturbation from 
the straight crack front is created on the small scale of the toughness inhomogeneities. 

The autocorrelation function for crack front slope S(;, t) = ih(z, t)/dz = dA(z, t)/dz 
is obtained by differentiating E[A(-,, t)A(-,, t)] = E[A(O, t)A(z?-z,, t)] with respect 
to Z, and z>. We thus have 
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, 

HS(O. tN=, r)] = - ;;> E[A(O, t)A(z, r)] 

and hence the power spectral density tis(li, t) for the slope is k2tiA(k, t). This is 
logarithmically divergent in t, from (16). but the spectrum for S is integrable over 
k = 0. 

Expressions for the velocity perturbation l/‘(r, 1) and V(/C. t) were given earlier. At 
long times the transient terms. representing the initial effect of entering the randomly 
heterogeneous part .Y > 0 of the fracture plane, become statistically uncorrelated with 
the driving terms ?_, or r.,. Thus to calculate the long time divergent part of the spatial 
power spectrum $,,(k, t), defined by 

i 
+’ $,(k,t) = E[ V(0, t) V(z, t)] e IhI dz, 
i 

we can use the result (I 6) for $ ,(k, r), changing the forcing power spectrum from 
that of r to that of r,, as discussed earlier. so that Pi of (16) gets replaced by 
vl?,(cc,ck/z’o)‘P,. Thus 

when x,lklct >> I, and in the case of the statistically isotropic fracture plane with 
exponential correlation decay over lengthscale h, 

The coefficient of the logarithm is as large as possible at the wavenumber (kl = z’,,;2hc. 

Hence, writing Ikl = 27c/L, the wavelength L on which the strongest variations of 
velocity are expected is L z 47-&/23,, zz 2% when z\,,jc = l/2. Thus the most active 
dynamical scale is greatly enlarged over the heterogeneity scale in the material. Note 
that the logarithmically divergent parts of $,(k, t) and $,y(k, t) are proportional to 
one another, tiy _ a~~‘$,~. 

Using $,(k, t) above for the statistically isotropic surface with exponential cor- 
relation decay, let us now estimate the variance E[ V’(I, f)] of the deviation of propa- 
gation velocity from the mean (note that this variance is independent of z) by 

1 

s 

i / 
E[V’(r, t)] = 2n , $,(k.r)dk 

Thus, with the $,, above at large t. and with the substitution J = k/y/c,, in the 
integration, 

The factor (4x;f~‘a’) has been isolated because this is what we would have predicted 
for E[k”(r, t)] from a purely local model, e.g. neglecting the 3D effects of wave 
propagation along the moving crack front as contained on the right side of (5). and 
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instead of just writing (5) as V(z, t) = - 2c(~c2r(z, t). That procedure corresponds to 
predicting V in terms of G,,i, at each moment of time as one would do for a purely 
2D, straight-front crack model with GcrIt(x, z) having no dependence on -?. 

Thus the coefficient of 4c($?a2 is an amplification factor on the variance due to the 
3D and wave effects. That amplification factor is determined by our present con- 
siderations only to within an additive constant at long time, and thus has the asymp- 
totic form : constant+ (2cr0c,/7cc) log (2a0u,r/h). The amplification does ultimately 
diverge but that happens very slowly in time and the growth actually realized may be 
small in many practical cases. That is, if t , and tz are times within the range for which 
the asymptotic form of the amplification factor is valid, then in order for the variance 
to increase between t, and t2 by an amount equal to its unamplified value, ~LY~c’o’. 
it is necessary that 

E[V+, t,)] -E[V’(s, t,)] = (4~&%‘)(2~,v,,/7cc) log (t,/t,) = 4c(;c20’, 

and thus that t2/t, = exp (7rc/2c(,t~,). This t2/t, ratio becomes unbounded as z’,, -+ 0 
and as P,, + c, whereas t2Jt, = exp (2n/J3) z 38 when P,, = c/2 and the lowest poss- 

ible ratio, t?/t, = exp(n) z 23, results when c,, = c& z 0.71~. Recalling that the 
coefficient of the log term in tiV is greatest when k = v,/2hc, and that the expression 
with the log term is valid when cc,kct >> 1, we require aouot/2h >> 1 for validity of the 
log term in the asymptotic expression for E[V’(z, t)]. If we interpret that as, say, 
a,cot/2h > 5 and thus choose t, as the minimum time to meet that, ccou,t,/2h = 5, 
then for c0 = OSc, t, corresponds to a crack travel distance tl,t, e 1 I .5h and the 
further travel distance, for E[ V2(:, tz)] to have increased by an amount equal to the 
unamplified variance, is v,,(t,- t,) z 425h. To achieve yet another increase by the 
unamplified variance requires travel zr,(t,- t2) cz 16,17Oh, and one more increase 
requires z10(t4- tJ z 614,400h. Thus, even for very small correlation lengths h, the 
required growth to amplify significantly, or perhaps even noticeably, the variance of 
propagation speed may become greater than the size of the cracked body or of the 
range of crack growth through it for which the half-plane crack model can be justified. 

Note that since $,(k, t) - $,.(k. t)/cric’ at long time, the variance E[S’(z, t)] in 
crack front slope will behave asymptotically like E[V’(Z, t)]/aic’ - 
(8a&‘o,,/nc) log (2ccuzlot/h) at large t. 

7. FOURIER SERIES REPRESENTATION OF CRACK GROWTH 

A computational approach to crack growth through regions of locally variable G,,,, 
is given by RICE et al. (1994) based on a Fourier series representation of crack front 
position a(~, t) with respect to Z. We note that there are four differences between those 
computations and our treatment of the linear case here: (i) they consider that the 
random physical characteristic is G,,,,, but that merely changes the average value of 
T to a non-zero value; (ii) we replaced ~(2, vot+,4(z, t)) by t(~, f’ot), which is consistent 
with their strictly lineurized first-order approximation ; (iii) we have neglected terms 
of order (zI-zI~)~ and higher when linearizing their formulae, which are chosen to 
replicate exactly the solution for a straight crack front with an arbitrary growth 
history ; and (iv) for numerical reasons, they use a periodic crack front. Difference (i) 
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is not serious. On the other hand differences (ii) and (iii) might hinder the present 
results from the beginning if the perturbation z is not small enough. Even if r is small, 
our linear analysis predicts that A and V will grow unboundedly; at some time. 
(~~-P,,)’ and products of the form Az will not be negligible any more. It seems that 
disorder may begin to grow and then saturate because of the nonlinear terms. If this 
is confirmed, it might be possible to look for an average level of disorder on the crack 
front as a balance between the chaogenic influence of the random toughness and the 
truncating effects of the nonlinear terms. 

Difference (iv) has to be carefully taken into account. Let us represent the toughness 
variation on .Y > 0 and its correlation in the Fourier series 

where the T,~~(_Y) are a set of statistically independent stationary random functions. 
with independent but identically distributed real and imaginary parts. with T 1,1 = f,,, 

(the over-bar denotes complex conjugate), and with I.,,,(.Y) = E[t,,,(cr)t,,,(~+.~)]. Thus 
the toughness variation is truly random in a strip along the s direction with width i. in 
the ,- direction, but is periodically replicated into adjoining strips. In this circumstance 
R?(r, x) is necessarily periodic in j, but we will generally want to choose L >> h. where 
h is a correlation scale in the underlying non-periodic random toughness variation. 
Then, by letting N --f x and using standard methods of Fourier series. we may choose 
the v,,,(.Y) to make the R(z..Y) given by the series agree exactly with the underlying 
R,(z.s) in the strip -i/2 < ; < A/2. We let 

1 

/ 

P,,,(k) = e I” Y,,,(S) d.y 
i 

denote the power spectral density of T,,,(.v). i.e. of mode 171 of the toughness variation. 
One then readily shows that the Fourier series coefficients r,,,(x) are such that 
p,,,(k) = P,(2nnr/A,k)/R, provided i. is much greater than h so integrals over 
(-X, +i/2) of R;(z. _Y) 
integrals over (-a, + x’). 

times trigonometric functions of r may be replaced by 

The resulting crack front perturbations may be written as 

where A ,li = A,,, and V,,,(t) = dA,,,(t)/dr. One readily shows that A,,,(r) and C’!,,(I) are 
related to T,,,(P,,~) by the same expressions of Section 3 which relate A”(li, t) and p(k. 1) 
to i(k. t) for h- = 2rrrn/i. Thus E[A,,,(t)] = E[V,,,(t)] = 0 and one finds 

The same equation holds for E[l V,,,(t)]‘] at large 1. when memory is lost of the initial 
velocity distribution induced by entry into the heterogeneous region at t = 0, provided 

that we replace v,,(x) by -2); d’r,,(x)/dx’. 
For Fourier modes nz 2 I the results are like those obtained for the power spectral 
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densities tiA(k, t) and Il/,(k, I) of the infinite width case in Section 6; the mean square 
modal amplitudes diverge as log t for 2xmct,ct/l >> 1 : 

m4n(0121 - 
2c& 
1 ~pm(2~maoc/h0) log (2nma,cr//2), 
n mv, 

aI Vm(t>121 
8mcl’c’ 

- pj-$ ~p,(2xma,c/h0) log (2xmct,ct/~_). 
0 

However, the mode m = 0, corresponding to the average of the perturbed motion 
over the periodic repeat distance A in the z-direction, has different behavior: first, 
V,(t) is a pure/~* stationury process for t > 0 with statistics scaled to those of the 
average, r”(c,t), of the fracture energy heterogeneity ~(2, cot) over distance 1; 

E[Vi(t)] = 4a~c2r,(0). 

Second, although this averaged-in-z velocity fluctuation V”(t) from z’” is stationary, 
its integral process A,(t) is not. Rather, 

, , 
E[A;(t)] = 4&* 

ss 
r&,(0, -d,)J dH, da2 - 4a;c2p,(0)t/v,. 

0 0 

We may note that ,!?[A;([)] coincides asymptotically, at large t, with E[A(O, t)A(,-, t)], 
since the z-varying fluctuations grow only as log t. Also, for 1 large compared to the 
correlation scale, we have 3,p0(0) = P,(O, 0) and hence for the i-periodic case 

E[A(O, r)A(z, t)] - 4c&?P,(O, O)t/t~“i. 

This means that (E[A(O, t)A(z, t)Jj ‘:I grows proportionally to ,,,h/A instead of log t, 
for the L-periodic system versus the infinite system, although the statistics of 
[A(z, t) -A(O, t)] are essentially identical in both cases. 
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APPENIIIX 

The first step is to show that the contribution to (I I) of the diagonal 0, = 0: is dominant. 
and that the integration domain (0 < II, < t, 0 < 0, < I) can be replaced by the more forth- 
coming one (0 < 0, +(Iz < 2t) with merely adding a bounded term. Indeed, let us define 

The integrals in (I I) and (Al) differ in that: (i) the change of variables 0, = 0-u. II, = Otlr 
has been performed ; (ii) symmetry in II has been used ; and (iii) the integration domain of (A I ) 
consists of that of ( I I) plus the region II > max (0. /-(I). Considering the coarse upper bounding 
of the norm of Bessel and cosine functions by unity, WC get the upper bound 

which is further bounded by 

We encounter the first condition on autocorrelation function R for our analysis to be carried 
on : the last integral must be finite : hereafter. this is called hypothesis (H 1). 

The second step is to consider the derivative of cp, with respect to I to get 

where i. = 2~,,,‘(s(,,c). At this point. WC notice that, provided that the following hypothesis (H2) 

holds. we can define 

I I 
q12(z. x) = 

i‘ j 
./,,(k.\-+k?.).l,,(liu-~~,) cos (X:)&k, i,v) dl, dj. (A?) 

i-2, 0 

which verifies 

We shall claim that the quantity (pz behaves as (log xf 0( I))/.*_ for large x. We now want to 
approach the Bessel functions by formulae analogous to ( I3), which is interesting only if the 
arguments are bounded from below. For that reason. we need to reduce the interval 01 
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integration on variable y so that k_x - ky remains greater than, say, 1. For the error introduced 
in doing so not to affect the result, a sufficient condition is that there exist some exponent 
0 < E < 1 such that 

I 

s s 

1 

h=-r I -I,’ 
Ii?,(k,y)I dk dy < ;’ , 

where I has dimension (length) ’ ’ and C, is a constant ; this is equivalent to hypothesis (H3) 
in the main text, provided C’?.and E appearing here be rewritten Cz/- ’ me and l/(1 +R) with 
c > 0. Then, if we define function cpz(z, X) as the double integral of equation (A2), except for 
the upper bounds of integration on variable y which are set to I.K’, we have the upper bounding 

For .V large enough, namely .V > (21) ’ ’ ’ -“, all arguments of Bessel functions appearing in the 
definition of ‘pz are greater than 1, allowing for the use of upper bounds 

(J,(k.w-k~)~J,(k.*_+k~)) - - ~- rc- <c’- 
sin 2kx + cos 2ky 

klu’ 
nkJAy’ , 

(-43) 

[derived from formulae I, 7 and 8 of paragraph 8.451 of GRADSHTEYN and RYZHIK (1987)] 
where C, is a constant, so as to obtain 

in which we partition both integrals to build the upper bound : 

x I 

+ s s lR”,(k, lyY)l dk dy. 
i-2 I ,=I,’ 

64% 

More precisely, the first and second integrals of the right hand side appear when splitting the 
integration over k at point k = k ,, and using I/k < k, in the second one. The third and fourth 
terms appear when replacing l/(l -J*/.u’) ‘!’ by I in the integral of the left hand side of (A4), 
and bounding the difference by Y’/.x’; this holds because y < lu” and x > (21) “(‘-‘), whence 
yL/.~ < l/4. The k-integration domain is then split at the point k = k,. The fifth term appears 
when further expanding the integration domain from (2/x < k; y < Ix’) to (2/x < k; y < cm). 
To obtain the last three integrals, we also bounded the trigonometric functions by 1 and 2 by 
rr. Hypothesis (HI) guarantees that the second term is O(l/.x’) and that the fourth one is 
O(s”- ‘), hypothesis (H2) that the first term is 0(1/x) and the third term O(_X?~ log x), and 
hypothesis (H3) that the fifth one is 0(1/x). Finally E < 1 makes the right hand side of (A5) 
O( I/X). 

Let us now concentrate on the integral of the left hand side of (A5), and first consider the 
term containing sin 2kx : 
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Let us define 

Y(U, W) = 
” sin Y cos (VW) 

dt. = 
I 

” sin [r( I + w)] fsin [r( I - tt,)] d ,, 

2r 
I 

I 0 

The last equality makes it clear that the function Y is bounded, for instance by 37-r/2. Integrating 
the definition of cpJ by parts yields 

cp4(z, .Y) = 
Y(2k.x,rj(2.r))F(k) 1 1 J 

1 j 

_ 
.\- .Y 2, 

Y(2k.r,1!‘(2.\-))~‘(k) dk = O( I/-Y) 
11 

using hypothesis (H2). and provided that the following hypothesis (H4) holds 

I I 

ss 
Il?,,,(k. _u)\ dli d.x < 8%. (H4) 

/ , 

Secondly, we consider the cos 2k~~ of the left hand side of (A5), and easily show that, ,for,fi.rrd 
:. it amounts to 

where Pr denotes the double Fourier transform of R,. which is rephrased 

and yields (14) through integration of I 


