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ABSTRACT 

A HALF-PLANE CRACK propagates dynamically, nominally in the x direction. along the plane _V = 0 in an 
unbounded solid subjected to remote loading equivalent to a static stress intensity factor K*. The crack 
front at time t lies along the arc x = c,,t+a_/‘(z, t) where a,) is a constant velocity, J’(z, t) is an arbitrary 
function, and E is a small parameter. The crack front speed thus varies along the z axis and its shape 
deviates from straightness. We address this problem within a model 3D elastodynamic theory involving a 
single displacement variable u, satisfying a scalar wave equation, and representing tensile opening or shear 
slippage, with associated tensile or shear stress u = M du/8~ across planes parallel to the crack, where A4 
is an elastic modulus. The problem is then one of finding a solution to the scalar wave equation satisfying 
4 = 0 on y = 0 within the rupture. When E = 0 the solutions for u, m, dynamic stress intensity factor K and 
energy release rate G are familiar 2D results. We develop corresponding 3D solutions to first order in E for 
arbitrary ,f(z, t). The solutions are used to address in some elementary cases how a crack front moves 
unsteadily through regions of locally variable fracture resistance. When a straight crack front approaches 
a slightly heterogeneous strip, lying parallel to the crack tip along an otherwise homogeneous fracture 
plane, it may be blocked by asperities after some advancement into the heterogeneous region if it has a 
relatively small incoming velocity. If, however, the incoming crack velocity is relatively high, the asperities 
give way and the, now curved, crack front propagates into the bordering homogeneous region. There, the 
moving crack front recovers a straight configuration through slowly damped space-time oscillations. The 
oscillatory crack tip motion results from constructive-destructive interferences of stress intensity waves, 
initiated by encounters of the crack front with asperities, and then propagating along the front. Oscillations 
in response to a heterogeneity that is spatially periodic in the direction along the crack front decay as 1.. I” 
at large t. The slowness of the decay suggests that the straight crack front configuration may be sensitive 
to small sustained heterogeneity of the fracture resistance. This is consistent with results of a related 
analysis (PERRIN and RICE, 1994, in press, J. Mech. Phys. Solids) based upon a strictly linearized form of 
our equations. The persistence of unsteady crack tip motion beyond the immediate region of heterogeneities 
provides an explanation for high frequency seismic radiation, using a lesser amount of heterogeneity than 
what might be naively assumed by strict correspondence of all curved and variable velocity portions of a 
propagating rupture front to asperities. Also, oscillations of crack tip velocity in the presence of sustained 
small heterogeneities, suggested by features of our 3D results for the model theory, may provide a 
mechanism for the generation of rough tensile fracture surfaces when the average (macroscopic) propa- 
gation speed of the crack is relatively small. 

CONSIDER A HALF-PLANE crack propagating in an unbounded solid, nominally in the 
x direction along the plane y = 0 (Fig. 1). The crack front at time t lies along the arc 
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FIG. I Half-plane crack in unbounded solid, propagating on plane y = 0 with non -straight front 

x = a(~, t) which we assume to have the form x = P~,~+EJ’(z, t), where L’” is a constant 
velocity, .f’(-_, f) is an arbitrary function, and 8 is a small parameter. The crack front 
speed thus varies along the z axis and its shape deviates from straightness. We address 
this problem to first-order in c within a model 3D elastodynamic theory. 

The model theory involves a single displacement variable U, representing tensile 
opening or shear slippage, and associated tensile or shear stress c = A4 au/$y across 
planes parallel to the crack, where A4 is an elastic modulus. The problem is then one 
of finding a solution to the scalar wave equation 

&754 = (?’ u/i%’ (1) 

satisfying the boundary condition 0 = 0 on J’ = 0 within the rupture, and meeting 
remote loading conditions equivalent to a fixed static stress intensity factor K*. Here 
c 2 = M/p with p denoting density. There is no direct connection of the model theory 
to actual elastodynamics. The latter involves three displacement components and a 
system of scalar wave equations, coupled by boundary conditions. The model theory 
results from assuming that a medium occupying volume V, with surface S, on which 
a loading of intensity q acts, has the Lagrangian (kinetic minus potential energy) 

(2) 

Hamilton’s principle then leads to the scalar wave equation (1) in V and to 
A4 au/&r = q on S, where n denotes the outer normal direction. Another interpretation 
of the model 3D theory starts with the actual elastodynamic equations but introduces 
workless body force constraints in V, and surface traction constraints on S, so that 
the solid displaces only in a single direction. Then, by an affine transformation of the 
coordinate axes, the p.d.e. and boundary conditions satisfied by that unconstrained 
displacement component can be transformed into the model equations assumed here. 

An argument concerning the relative order of displacement derivatives in a direction 
locally parallel to the crack tip, compared to those in direction perpendicular to it, 
shows that when the crack front arc has a continuously turning tangent, the structure 
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of the singular field at a 3D crack edge is the same as in a 2D version of the formulation 
(DMOWKSA and RICE, 1986). Here we are on familiar ground because the 2D version 
of the model theory involves the same equations as describe states of anti-plane strain 
in actual elasticity, and the latter has been studied by KOSTROV (1966, 1975) and 
ESHELBY (1969a, b). Thus, 0 on the plane y = 0 at distances r ahead of the crack tip 
satisfies 

h2 [Jrrr] = K/J2rc, (3) 

where K is the local dynamic stress intensity factor along the crack edge. Also, the 

relative displacement Au (= U, = ,,+ - uJ = 0 ) of the crack walls at distances r behind 

the crack tip satisfies 

hm,: [Au/Jr] = 2J2/7rK/A4~, with c( = ,,/I -r2/c2, (4) 

where ZJ is the local propagation speed of the crack front and we always assume r < c. 
Similarly, the relation of the energy release G per unit of new crack area to K and 

c can be taken from results of the anti-plane theory and is 

G = K2/2M~. (5) 

The fracture criterion is phrased in this work in terms of G. We consider two problems : 
first, given an arbitrary history of growth of the crack front, x = a(~, t), find the fields 
u(x, y, z, t) and C(X, y, Z, t), and find K(z, t) and G(z, t) along the front. Second, given 
a distribution G,,,,(x, Z) of the critical value of G over the plane to be fractured, solve 
for the crack motion x = a(~, t). 

We find that the second problem has remarkable stability features. Encounter of 
the crack front with a periodic row of asperities (isolated regions of higher G,,,, than 
the surroundings), lined up in the z direction, is shown to lead to continued, slowly 
damped, oscillations of a(~, t) and r(z, t) as the crack propagates over the region 
of uniform G,,,, lying beyond the asperities. The oscillation amplitude decays only 
algebraically in time, as t “’ at large time t, rather than exponentially. In general, a 
crack with a slightly non-straight front at time to, but which propagates for t > to 
into a region of uniform G,,iI, will ultimately straighten out. This shows that the 
straight crack front configuration is stable to isolated perturbations, but the slowness 
of the recovery of straightness suggests a possible sensitivity to sustained perturbations. 
Such sensitivity has been demonstrated in a companion paper by PERRIN and RICE 

(1994) based on what we call the “strictly linearized” version of our formulation. 
They show that a crack with an initially straight front which enters into a region of 
sustained small random variations of G,,,, develops a progressively more disordered 
front as it propagates, so that the dynamic crack is a configurationally unstable object. 
Nevertheless, the instability is a gradually developing one for which the variance of 
the slope of the crack front, and of the deviation of propagation velocity from the 
mean, increase only with the logarithm of travel distance through the heterogeneous 
region. 
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EXACT 2D SOLUTION FOR UNSTEAVV CRACK MOTION 

Let x = a(r) be the crack growth history in the 2D version of the problem (Fig. 2), 
in which a straight front propagates in the I direction. We assume that the loadings 
are such that the static solution of the problem has stress intensity K* for any position 
of the crack front, and that all loadings are applied far from the tip compared to 
distances of interest. Since the 2D version of the model equations are identical to 
those governing anti-plane strain in actual elastodynamics, we can use the general 
anti-plane solution for arbitrary crack motion from ESHELBY (1969a, b) to write 

Here z = T(X,J, t) is the retarded time at which a signal arriving at position (-\-,~a) at 
time t was launched at the crack tip (Fig. 2) ; it satisfies c’(t-z)* = [.x-u(r)] ‘-+-~2’. 
The analysis applies to an actual finite body prior to the arrival back at the crack tip 
of waves reflected from boundaries or from another crack tip. The solution very near 
the tip reduces to 

(7) 

where x is based on z?(t) = du(f)/dt and the dots . . . represent part of the field with 

higher order spatial variation. The stress intensity factor is 

K = K(t) = K*+‘I -z’(t)/c’. (8) 

Thus we refer to K* as the “rest” value of K, i.e. the value to which K reverts whenever 

the crack speed is reduced to zero. The corresponding G is 

G = G(r) = G*J[l --~~(r)lc~j/[i+c(t)/c], (9) 

where G* = (K*)“/2M is the “rest” value of G. 
We derive the 3D solution as a linearized perturbation about the 2D results for a 

crack moving at a steady speed z:~. so that a(t) = rxof, and hence for which 

FIG. 2. For the 2D solution with unsteady crack motion: circles of constant travel time shown. 
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K= K. is K*&Q/c, G = Go = G*,j~O~~[&;~. 

Then the Eshelby solution (6, 7) above for u(x,y, t) reduces to 
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(10) 

u = uo(x,y, r) = ; Ma- Im {(.~-u,t+ia,y)“2) = 
0 

““sin;, (11) 

where 

a” = Jl - l’;/c? (12) 

and the polar coordinates are understood here and later to denote 

r e’” = x-z?,t+&y. (13) 

This 2D solution is coincident with that of actual elastodynamics for anti-plane 
strain when we identify M and c with the shear modulus and shear wave speed. The 
2D results of FREUND (1972a, b) and FOSSIJM and FREUND (1975) for unsteady straight 
mode I and IT cracks are similar in structure to K(t) of (8) with more complex function 
of o(f) vanishing at the Rayleigh speed. 

3D PERTURBATION SOLUTION FOR UNSTEADY CRACK MOTION 

We develop the 333) solution for the crack front motion x = a(z, r) = v,t+ef(z, t) 
in the form of a first order expansion in E about the 20 results corresponding to a 
straight crack (E = 0) propagating along the .X axis with a uniform velocity co. We 
thus write the displacement field as 

z&y, 2, t ; E) = u,(x,y, t) +e&C,y, z, t) + O(EZ). (14) 

where the first order perturbation term ~$(x,y, z, t) = [&A(x, y, z, t ; E)/&],= “. 
The singular part of the field must be of the 2D character of (6) and (7) above, but 

now relative to the local direction of crack growth, so that for arbitrary E 

24(x, y, -7, t ; E) = 

~ 

2 k’(z, f ; E) 

7c McE(z, t ; E) 

ximj([x-{(v,f+~,f(~,t)3]cosy(~,t;~)+ia(=,t;~)y)“~~+.~. (15) 

where a(z, t;E) = [I -~~(2, c;E)/c*]‘!~, u(z, t ; s) = [vo+e d,f(z, f)/dt] cos y(z, t; c), and 
cos y(z, t;r) = l/{ 1 +c”[af(z, t)/Qz]‘j ‘j2, with y being the angle between the local 
normal to the crack front and the x axis. This expression lets us calculate the asymp- 
totic structure as r -3 0 [i.e. as x + a(z, r) and y + 0] of #I = [&,J’&],,~. The result is 

We thus have to find the solution of the scalar wave equation 

c2V2$ = a2cjjat2 (17) 
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satisfying the asymptotic structure (16) and the stress-free boundary condition 
C?$/~Y = 0 onJ* = 0 when x c r:,)f. Note that d, = 0 on _r = 0 when s > c,f by symmetry 
since displacement u vanishes there. Once C#I is found, the displacement field II, correct 
to a first order in C, is given by (I 1) and (14). 

We begin with the harmonic case ,f(z. t) = F(k, w) e I” e’““, and seek a solution in 
the form $(x,J., -_, t ; k, to) = e”ru’ ‘a times a function of the variables (_~-r~~l) and ,t’. 
We extract an exponential term exp [ - iwz,,,(s-- ror)/cc&,‘] from that function, noting 
that such will eliminate any first order derivatives in the resulting differential equation 
for the function, and thus write 

9(X? _I’, -7 f ; k, to) = F(k, w) exp [i(ol - kz)] 

.exp[-iccltl,,(x-r~,t)/cc~c2]ll/(x-r.,,t,J’;k,o), (18) 

where rj is a function to be determined. Requiring that 4 satisfies the wave equation 
we find that ti, must satisfy 

(19) 

where 

q = q(k.w) = (l/?o)(k’-o’/~ac’)“’ = (ljx,,)(k-w/r,c~)“~(k+wj~,,c)“‘. (20) 

To make q(k, (0) definite in subsequent expressions (k - ro/zoc) is allowed a complex 
phase angle between 0 and 2~ and (k+t.u/~,,c) between --TC and +rc, thus defining 
branch cuts in the complex w and k planes. This assures that 4 behaves as icl>/& for 
/ml >> sl,,clkl, and for real k and CL) it allows us to write 

q(k,m) = (Ikl/xo)( I -co’ik’ri;r~“)“‘, for w’ < k’r&~‘; 

q(k,o) = (itu/u(‘,c)( 1 -k’~~c’~tu’)’ ‘, 
7 

for CD- > k”&‘. (21) 

The above expression given for w2 < k’r~c’ corresponds to letting k approach the 
positive real axis through Im (k) > 0 and the negative real axis through Im (k) < 0; 
the approaches are then to the branch-cut portions of the Re(k) axis where 
Ikl > Iwl/xoc. The expression given for CU’ > k’c.c6cL holds for any direction of 
approach. The combination r,,c appears often. and has the following interpretation : 
suppose that a disturbance is initiated at some point along the crack front. That 
disturbance spreads out in the medium over a spherical wave front whose radius 
enlarges at velocity c. The crack front, moving at speed rO, intersects that wave front 
at two points, and those points have velocity components parallel to the crack front 
(i.e. along the 3 direction) of faoc. Hence CL+’ is the speed at which information is 
transmitted laterally along the moving crack front. 

The solution to (18) and (19) satisfying the asymptotic requirement (16) as r + 0, 
and meeting the boundary condition c?c$/c?_~ = 0 on the fracture and the symmetry 
condition, may be taken from an analogous solution by RICF: (1985) as 
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$(x-Uo,t,y;k,w) = ~ sin 

> 0 
i ((1-p)exp[q(k,w)rl+Bexp[-q(k,~)rl}, (22) 

where p is an arbitrary constant. Requiring that (22) be bounded at infinity and 
correspond to only outgoing waves, we set fl = 1. We thus have 

4(x, y, z, t ; k, o) = “” (m ;+ F(k, w) 
J271y 0 

.exp[i(wt-kz)-io~~(x-c0t)/ccic2-q(k,o)r]. (23) 

Any more general crack perturbation .f(z, t) may be represented as a Fourier 
superposition, 

1 +Y. +X 

.f(z, t) = (27c)2 x 
s s 

F(k, w) exp [i(ot - kz)] dk do (24) 7 

such that 

+r +Jr 

F(k,co) = s s f(z, t) exp [ - i(wt - kz)] dz dt (25) 
w, % 

is the Fourier transform of,f(z, t). Thus the general solution for 4 is 

*exp[i(wt-kz)-ioa,(x-t~,t)/cc~c’-q(k,w)r]dkdr~~, (26) 

This solution may be expressed in the space and time domain by evaluating the 
integrals above on k and w, after expressing F(k, w) as a double integral on space and 
time of ,f(z, t), using standard transform methods and analytic function theory. We 
have done so, but find that a somewhat shorter route is provided by the Cagniard- 
de Hoop technique (CAGNIARD, 1939, 1962 ; DE HOOP, 1961; AKI and RICHARDS, 
1980), particularly since our problem has a structure similar to a wave problem solved 
through that technique by BEN-ZION (1989). The derivation is given in Appendix A. 
The resulting general solution for arbitrary ,f(z, t), by either route, is 

where H[ ] is the Heaviside unit step function. Recalling (14), the total displacement 
field, accurate to first order in e, is u(x, y, z, t ; E) = uo(x, y, t) +&4(x, y, z, t), with u. 
and 4 given by (11) and (27) respectively. 
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3D SOLUTION FOR STRESS INTENSITY FACTOR AND ENERGY RELEASE RATE 

When the crack front deviaties from straightness, i.e. when u(:, t) = r,,t+cf‘(:, t), 
the stress intensity factor is perturbed from K(t) of (8). Henceforth it is convenient 
to replace c,f‘(z, t) by a(~, Z) - ~,,t, and F a,f’(~, [)/at by ~$2, f) - L!~), in all expressions. To 
find the first order perturbation to the stress intensity factor at some location i along 
the 2 axis, we write the crack front position as a sum of two perturbation terms, 

U(Z, f) = Z’,,fS- [a(<, f) -P,$] + {Q(Z, t) -Q(i, r)j. (28) 

The square bracket term describes a 2D perturbation, solvable exactly to all orders 
by (6)” (8) and (9), while the curly bracket term corresponds to a 3D perturbation 
that vanishes at I’ = [ for all t. The stress intensity factor at such points z = [, due to 
small deviation from straightness in other crack front positions, can be found by 
applying to d, of (27) the operator $m MJ2 rcr ajay. Such a combination of 2D and 

3D perturbations of crack location, with the former chosen to make the latter vanish 
at the point where K is to be evaluated, is the same as developed for elastostatic crack 
pertllrbations (RICE, 1985, 1989). 

The result, using (3), (8) and (10) and ren~~ming [ as z in the final expression, is 

K(:, t) = Jt -LJ,,/CK” + [J-CI’(L, f)lCP - Jl - ‘$CK*] 

+ {Jl -P,,/cK*z(Z,r)}, (29) 

where 

with PV denoting the principal value integral and c(:, t) = &I(=, r)/sr being the local 
crack velocity. The dependency of the stress intensity factor on crack front shape 
deviations from straightness is given in the integral I(-_, t) above as a functional of 
velocity differences along the crack tip during the entire history of the crack motion. 
The part of (29) in square brackets is actually exact for arbitrarily large perturbations 
of P(Z, t), but the curly-bracket part, containing I(;, t), is exact only to first order in 
the deviation of II(Z, t) from z’“. To develop a better understanding of the 3D history 
effects, we discuss in Appendix B various alternative forms of I(,-, t). One of these, in 
which ug does not appear. but a certain travel time expression does, might possibly 
be correct to first order in the deviation of the crack front from straightness, i.e. it 
may not require that G(Z, t) remain near I’~), but only that P(Z, t) remain near t(:‘, f) 
for all z and z’, although we emphasize that this has not been proven. 

The choice of 2’” in the above development is arbitrary as long as it is in the range 
of ‘“first order difference” from the V(Z, t) considered. Using, for example, P,, = ~‘(1, t) 
for the curly bracket term of (29) we get 

K(z. t) = &-T;:@K* [I + I(:, z)]. (31a) 

Alternatively, applying to all terms in (29) a strict linear perturbation about cg we get 
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K(z, r) = &=i&K* 
1 v(z, t) -v() 

1 - 2 --;? +I@, t) . 1 (31b) 

In (31a), cl0 of Z(z, t) can employ any convenient speed consistent with first order 
perturbation [e.g. an average in z or t of v(z, t)], while in (31b), x0 = &t/c2 in 
agreement with a fully linearized analysis and our previous notation. Expressions (29) 
and (31a) are written so as to be exact for 2D perturbations of arbitrary size, since in 
that case Z(z, t) = 0. We note that the term K* [l +Z(z, t)] in (31a) has a similar 3D 
interpretation to that of K* in 2D problems, i.e. the (now time-dependent) value to 
which K reduces when the crack speed reduces to zero (if we allow that within our 
perturbation range), or more generally, the part of K(z, t) which is invariant to 
instantaneous changes in crack velocity. While a choice between (3 1 b) and (3 1 a) may 
seem somewhat arbitrary, we note that (3 1 a) incorporates the known exact response 
to sudden changes in z’ and, by using methods like in RICE (1985), can also be shown 
to be exact to first order in the long time limit for a completely arrested crack (v = 0). 
Thus in our numerical simulations, we use (31a) and, in particular, its consequence 
to follow as (33a) for G. 

Examination of the expression for Z((z, t) shows that when a segment of the crack 
front suddenly slows down relative to neighboring locations along the front, a 
reduction in K radiates outward from that segment at speed LX,+. Similarly, when a 
segment speeds up, an increase of K is radiated. Such elementary slow-down and 
speed-up events occur when a crack front encounters regions of higher or lower 
fracture resistance. Typically, when a localized region of that type is passed by the 
crack tip, a slow-down is followed by a speed-up, or conversely, so that pairs of K 

waves are radiated. As will be seen in subsequent examples, the constructive and 
destructive interferences which result when such waves meet one another, after the 
crack has propagated beyond the local heterogeneities of fracture resistance which 
launched them, can lead to continuing fluctuations of the crack front shape and 
propagation velocity even when the front is moving through material of locally 
uniform fracture resistance. 

The fracture criterion adopted in this work is given by the requirement that 

G(z, t> = Gcrit(X, Z) (32) 

at points x = a(z, t) along the rupture front where v(z, t) > 0. Here G(z, t) is the energy 
release rate per unit of new crack area and the critical energy release rate, G,,,,(x, z), is 
regarded as a material property. This criterion is well known to be consistent as a 
limiting case with elastodynamically analysed cohesive zone tensile crack models, or 
slip-weaking shear crack models, when the zone of strength degradation is small 
compared to other relevant dimensions (e.g. RICE, 1980). Using the energy release 
rate given in (S), and K(z, t) of (31a), we find to the accuracy considered, 

G(z, t) = J 1 - v(z, t)/c 

1 + v(z, tyc 
G*[l +Z(z, t)12, (33a) 

where G* = (K*) 2/2M is the rest energy release rate supplied to a straight crack front. 
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The strictly linearized form of this expression, most conveniently given for JG(,-, t), 

is 

JG(z, t) = JGo { 1 - e;$ +qz, t)}, Wb) 

where G,, is given by (10). 
From (32) and (33a), the space and time varying motion of the (massless, potentially 

non-straight) crack front is governed by 

1 -A2(_,, t) 

P(i, t) = 

i 

c i+A’(,_, t) 
lf A(z, t) < 1 

0 if A(z,t) 3 1, i? 

(34) 

where A(,-, t) = Gcrlt[a(z, t),z]/{[l +Z(z, t)lzG*} and, recalling (30), Z(z, t) is a func- 
tional of the prior history of z.(z, t). 

FOURIER REPRESENTATION OF RESULTS 

For purposes of numerical analysis of spontaneous crack growth, and for some 
stability studies, it is convenient to recast the results above in terms of Fourier 

components, in z, of a(z, t). We rewrite (see Appendix B) the double integral I(;, t) 
of (30) as 

Z(z, t) = 2; 
i ; ss +a,,‘(! f’) c(t - t’)[t’(z’, t’) - r(z, t’)] ~~ d_, dr, 

(35) 
I :P1,,((/m i) (Z_ZI)2JOl~(‘?(t_-t’)?_-(Z-~~)? ‘. ’ 

where the principal value of the integral is assumed implicitly. Using in (35) the 
variable substitution z’ = z + r,,c(t - t’) sin 0 gives 

s ‘,’ c’[; + cr,c(t - t’) sin 0, t’] - z:(z, t’) 
d0 dt’. (36) 

n’? sin’ 8 

We use for a(z, t) and ~(2, t) the (periodic over some large length 2) Fourier 
representations 

a(z,t) = jYj A,,(t)e”““” and u(z, t) = i k,,(t) e”nn’,‘i, (37) 
,I = .V ,I = \’ 

where N is any convenient truncation of the series for the accuracy required, and 
the over-dot denotes a derivative with respect to time. Consistent with a first 

order perturbation, one requires nA,,/i_ << 1 and k,,/(c-v,,) << 1, and we assume 
,4,j( - m) = 0 for II # 0. We thus obtain for the integral I(;, f) the series 

I(:, t) = C Z,,(t) e”“““‘, (38) 

where the coefficients are obtained from (36) and (37) as 
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(39) 

Denoting the integral with respect to 0 above as Q(p), we note that Q”(P) = -nJo(P), 
where Jo is the Bessel function of order zero. Integrating twice with respect to b using 
the conditions Q(0) = Q’(0) = 0 and the relations between the Bessel functions J,,(b) 
and J,(/3), we find 

where the function F[27rna,,c(t- t’)/n], satisfying F(0) = 0 and F((co) = 1, is defined 

by 

(41) 

The Fourier decompositions (37) and (38), and (40) for Z,(t), allow rapid numerical 
conversions between the crack front evolution a(z, t) and the histories of Z(z, t) and 

G(z, t). 

INTERPRETATION OF THE SOLUTION FOR A PLATE OF FINITE THICKNESS 

Thus far we have assumed that the crack propagates as a half-plane crack in an 
unbounded solid. Suppose instead that the solid is a plate with finite thickness H in 
the z direction. Assuming that the lateral surfaces of the plate are free from loading, 
the boundary condition to be satisfied on those surfaces is au/dz = 0; this follows 
from applying Hamilton’s principle to (2). The solution given here for the infinitely 
thick solid will meet that condition if we define a(z, t) on the range of the z axis laying 
outside the plate such that a(z, t) has mirror symmetry about the two values of z 
corresponding to the plate surfaces. This operation extends a(?, t) to the entire z axis 
as a periodic function of period 2H; such may be represented by a Fourier series like 
in (37) with I. = 2H, which is, by the mirror symmetry, equivalent to a cosine series 

expansion in z over the domain of the plate. 

MODAL ANALYSIS OF RECOVERY OF THE STRAIGHT CRACK FRONT FROM A 

PERTURBATION 

We now show analytically, using a slightly simplified framework, that a crack 
front in a homogeneous region bounding a heterogeneous strip approaches a straight 
configuration through oscillations in time and space that damp only algebraically in 

time, as l/J?, at large time. The fully linearized measure Jc<z,t> of energy release 
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rate is given in (33b). Putting in (33b) the Fourier representations of z(r, t) and I(=, t) 
[see (37), (38) and (40)] we have 

, (42) 

where /I = 2nncr,c(t - t/)/i 
The material property JG,,i,( x, z , assumed to be only slightly inhomogeneous for ) 

consistency with a first-order perturbation, can be written as a Fourier series 

(43) 

In using the fracture criterion (32), we may approximate I as z:,t, as is consistent with 
a strictly linearized analysis in perturbation amplitude. Thus, the equation governing 

the crack tip motion is given by the requirement JG(z, t) = ,/Gcrlt(rOt, z). Using (42) 
and (43), we then get for n = 0 

(44a) 

and for n # 0 

k,(t’)F[2mq,c(t- t/)/l.] dt’ 

(44b) 

Using in (44b) the substitution 7 = 2zlnlaoct/i we have 

[ s 

i 

(l/DE) A,(4 + k,,(z’)F(T-6) dz’ = -y,Jz), (45) 
-1 1 

where l/D,, = JGoxlnl/zol., and where, in this equation and henceforth in this section, 

the over-dot denotes a derivative with respect to the argument T or T’ andg,(t) denotes 
what was called g,,(oOt) evaluated with z;,t = z~oi~/2zlnlaoc. Applying the Laplace 
transform to both sides of (45) and setting k,(t) = B,,(T), we find 

&,(.y)[l +F(s)l = - ~,d/,I(~), W) 

where B,,(s) = L[B,(t)], etc. and L[ ] d enotes the Laplace transform of a function. 

The function F(s) is given from (41) and expressions of ABRAMOWITZ and STECXJN 
(1972) as 

F(S) = (l/,~)L[J,(T)]-L[J,(t)] = ~ 1 +J,F’+ l/S, (47) 

so that (46) gives 
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B,(s) = -D,sg,(s)/Js*+ 1. (48) 

Applying an inverse Laplace transform to (48) we obtain the modal velocity response 

to a toughness heterogeneity as 

.r 

T 
B,(T) = k,(z) = -D, &(z’)Jo(z-7’) dr’. (49) 

0 

For present purposes it suffices to consider now a simple case of a finite-width strip, 
having a single m # 0 Fourier component of heterogeneity, embedded in an otherwise 
homogeneous medium. Specifically, we assume that besides go, which is constant at 
A, only ,9m(~) and g_,,,(z) are non-zero (they are complex conjugates of one 
another). We write 

s,,,(r) = 9 ,x(r) = (pJG,I2)[H(~-~,)-H(z-Z*)1, (50) 

where H is the Heaviside unit step function and p is the (small) amplitude of the 

perturbation in Jm x,z in the heterogeneous strip encountered between the 

(dimensionless) times r, and r2. Thus the fracture resistance in the strip is hetero- 

geneous in the z direction (in a single Fourier mode m) but homogeneous with 
respect to X, apart from discontinuities in resistance upon entering and leaving the 
strip. Putting (50) into (49) we get 

k,,,(z) = k-~,,(5) = -(p~/2)DnZ[Jo(r-r,)H(z-r,)-Jo(z-~2)H(~-r2)]. 

(51) 

That is, writing I for A//ml, the result is that the response to 

JG~it(X,-Z) = JGo[ I +p COS (2~r-/fi)] (52) 

for x within the strip, with Jm = & f or x outside it, is that the propagation 
velocity is 

C(Z,l) = c,-[2a~cpcos(2~z/;lr)][Jo(z-z,)H(z-z,)-Jo(z-S*)H(Z-T.2)] (53) 

to first order in p, where now z = 2naoct/n”. 
Since the Bessel function describes decaying oscillations we see from (53) that 

when a straight crack enters a heterogeneous region its motion is modulated by a 

set of decaying oscillations; when the crack leaves the heterogeneous strip a second 
set is activated with an opposite sign. 

Jo(r) = fl 

Using the asymptotic expansion 
rcr cos (z-n/4), valid for z >> 1, we see that for r >> zz and for t2-t, not 

equal to a multiple of 27r (i.e. the time to transit the strip is not a multiple of the time for 
a crack front wave to traverse the period I), the velocity perturbation is proportional to 

the damped oscillatory function cos (z + constant)/&. The very slow damping of this 
oscillatory motion raises the possibility that indefinitely continuing small random 
fluctuations in the critical energy release rate may lead to a response in which the 
crack front becomes increasingly more disordered with propagation length or time. 
As noted in the Introduction, this has been proven based on the structure of our 
strictly linearized equations by PERRIN and RICE (1994). 
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NUMERICAL PROCEDURE 

In this section the previous results are used to simulate the dynamic growth of a 
crack along a plane having a non-uniform distribution of critical energy release rate. 
The plane of the crack is characterized by a homogeneous “background” critical 
energy release rate, CC,,,,,, from which there are local perturbations where 
Gcrit(.x, -_) # G,.,,,(,. The line s = 0 is located so as to be a lower bound (not necessarily 
the upper-most lower bound) of the heterogeneous (half-plane) region, so that 
Gc,,r(.~ < 0, Z) = G,,,,. and z:(x < 0,:) = ug, i.e. the crack front in the region x < 0 is 
straight (see, e.g. Fig. 3). The (dimensionless) parameters of the problem are zo/c and 
Gc,,,(x, z)/G,,,~” [or the uniquely related pair G,,,,,,/G* and Gcrlt(_x, -_)/G*]. Space is 
discretized into 2N* M cells of size AI, Ax and time is discretized into steps At < ;i/Nr,, 
where ,? is the fundamental periodic length of the problem and 2N is the number of 
uniformly spaced sampling points used in the Fast Fourier Transform (FFT) of the 
space variable Z. 

As stated earlier, the developments of this work are based on first order perturbation 
theory. FARES (1989) examined the limitations of first-order-analysis for a quasi- 
static problem analogous to that of the present work. Comparing Boundary Element 
Method calculations to results of RrcE (1985) based on a linear perturbation solution, 
FARES (1989) found that for a crack front shape in the form of a cosine wave, the first 
order results for the stress intensity factor are within 7% of those given by the 
Boundary Element Method calculations, when the ratio of amplitude to wavelength 
of the cosine wave does not exceed about 0. I. For periodic circular asperities, separated 
by two asperity-diameter, FARES (I 989) found that the first-order quasi-static theory 
is valid for cases having ratios of critical stress intensity factors of asperity and non- 
asperity regions that do not exceed approximately two [the corresponding ratio for 

Periodic array of asperities : 

G crit > G o 
G wit = G o 

t crack t t 

“0 front ’ “0 

FIG. 3. A crack with an initially straight front. about to encounter a periodic row of circular asperities of 
higher fracture toughness. The incoming crack velocity is z’,, and the critical fracture energy G,,,, outside 

the aspcritics is constant at C’ 1,): G,,,, is higher on the asperities. 
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critical energy release rates is four; see GAO and RICE (1989) for more discussion of 

the validity of first-order quasi-static theory]. The cases examined below satisfy the 
criteria of FARES (1989) for validity of first order perturbation quasi-static analysis, 
although those criteria do not, of course, fully guarantee the validity of the dynamic 
calculations done here. 

Our simulations begin with a straight crack propagating with a uniform velocity u0 
in the region x < 0. The calculation of space and time varying dynamic crack propa- 
gation in the heterogeneous region x > 0 (correct to first order) is done using the 
following procedure. 

(1) Having crack front positions and velocities at a general (discrete) time step rlzdt, 

use the FFT procedure to calculate from current velocities o(z,mAr) the Fourier 
coefficients ~,j(mAt) of (37) ; verify that first order perturbation conditions k,,/z~, 
<< 1, nk,AtjJ. << 1 are satisfied. 

(2) Calculate local crack front velocities for the next time increment as follows : 
(2.1) use (40) and history of k, to calculate the coefficients Z,(mAt) ; 
(2.2) use FFT to invert Z,,(mAt) to I@, mAt) ; 
(2.3) use (34) and current crack front positions to calculate velocities 
~(2, (m+ 1)At) during the next time step. 

(3) Calculate the local crack front positions at the end of the next time step as 

u(z, (rvl+ l)At) = a(z,mAt)+zi(z, @n-t- I)At)At. 

(4) Write output; check exit criteria (location of crack front or violation of first 
order conditions) ; increase time index pn by 1, go to step (1). 

We note that the above procedure employs the simplification that the fields are 
constant within (and hence change discontinuously between) the discrete time steps. 

Row OF CIRCULAR ASPERITIES 

As a basic configuration for calculated examples we consider the case studied quasi- 
statically by GAO and RICE (1989) and FARES (1989). Figure 3 shows a periodic array 
of circular asperities with radius R and center-to-center spacing L. Following the 
conditions of FARES (1989) for the validity of quasi-static first-order-analysis, we 
choose R/L = 0.1 and G~~,~~/G=~i~” f 4. where Gciits and Gcrito denote the critical energy 
release rates in the asperity and non-asperity regions, respectively. 

Figure 4 shows crack front profiles in the region x > 0 at successive times, calculated 
for the case vo/c = 0.3 and Gcrita/Gc,lto = 4 for both left and right asperities in a 
fundamental wavelength I. = 2L. The computations are done using M = 2N = 256 
and At = I_N,jSc where 2,, = n/N is the Nyquist wavelength of the spatial Fourier 
decomposition. For the ratios v,,/c and Gcrita/Gcri,o of Fig. 4, the asperities block the 
crack advancement after it penetrates into the inter-asperity Gccilo region a maximum 
distance of about 0.2L. Figure 5 shows results for vOjc = 0.3, G,,,,. (left)/Gcrlto = 4 
and Gciirit (right)/G,,i,, = 3, where G,-,ir. (left) and G,,i,. (right) denote, respectively, 
the critical energy release rates of the left and right asperities in a fundamental 
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FIG. 4. Positions a(~, t) versus z at successive times. separated by constant intervals, For a crack at incoming 
speed I‘,~ = 0.3~ hitting an infinite row of asperities with G,,,, = 4G,,. The crack is trapped hy the asperities. 

wavelength. For this case, the energy release rate induced by the shape deviation due 
to the inter-asperity crack penetration reaches the value G,,,,;, (right), thus breaking 
the weaker right asperity toward the end of the computation time. Figure 6 shows 
calculations for G,,,,, (right)/G,,.i,, = 2 and the other parameters as in Figs. 3 and 4. 
Here, the right asperity breaks when the inter-asperity penetration distance is about 
0.18L. Then, after some further crack front motion, the left asperity gives way too 
and the crack propagates into the homogeneous G,,,tci region where it approaches a 
straight configuration through damped oscillatory motion. 

The mechanism by which the crack front straightens itself with oscillations of 

I I I I I I I II I / I I /_ 

FE. 5. Positions a(-_. i) versus z at successive times, separated by constant intervals. [or a crack at incoming 
speed I’(, = 0.3~ hitting an infinite row of asperities with alternating toughnesses, G,,,, = JG,, (as on left) 
and CC,,, = 3G,, (as on right). The crack is again trapped but now penetrates slightly into the less tough 

asperities. 
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FIG. 6. Positions a(=, i) versus z at successive times, separated by constant intervals, for a crack at incoming 
speed u0 = 0.3~ hitting an infinite row of asperities with alternating toughnesses, G,,,, = 4G, (as on left) 
and C;,,,, = 2G, (as on right). The crack nearly arrests but is able to propagate through the less tough 
asperities, after which it is able to further load the tougher asperities and break them too. Note the 
pronounced oscillations of the crack velocity, evidence by the variable spacing between the curves, as it 

propagates onward into material of uniform fracture toughness, G,,,, = G,,. 

velocity may be understood as follows. The stress intensity factor K(z, t) is, in general, 
higher at the retarded parts of the crack than it is at the advanced positions [transient 
exceptions to this may occur due to the dependency of K(z, t) on the whole prior 
history of the crack motion]. Since the energy release rate G(z, t) is an increasing 
function of K{z, f) and a decreasing function of z’(z, t) the retarded parts of the crack 
acquire, in a homogeneous region, higher velocities than the advances segments. Thus, 
the retarded parts of the crack approach the advanced positions with higher velocities 
than those of the advanced parts, This leads to space-time damped oscillatory crack tip 
motion in the homogeneous region bounding the heterogeneous strip. The oscillatory 
motion may also be interpreted in terms of constructive-destructive interference of 
stress intensity waves initiated by encounters of the crack front with asperities and 
then propagating along the front, 

Figure 7 shows crack front positions for the case U& = 0.5 and GcriCa/Gcrito = 2 for 
both asperities. At this relatively large incoming crack velocity, the asperities break 
after causing a small retardation in crack front positions. Further crack tip motion 
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0 .5 1 1.5 2 
z/L 

FIG. 7. Positions ~(2, I) versus 2 at successive times, separated by constant intervals, for a crack at incoming 
speed I’,~ = 0.5~ hitting an infinite row of asperities with G,,,, = ZG,,. The crack easily moves through the 
asperities. Pronounced velocity oscillations occur as it propagates onward into material of uniform fracture 

toughness, G,,,, = G,,. 

in the homogeneous Gc,,,o region is marked by damped oscillations. Figure 8 shows 
calculations for the case Gc,,t./G,,,t,, = 4 and other parameters the same as in Fig. 7. 
Here, as expected, the initial shape deviation caused by the asperities is larger than in 
Fig. 7. This is followed by oscillatory crack tip motion decaying at a large enough 
distance from the asperities into a uniformly propagating straight crack. The results 
shown in Figs 7 and 8 were obtained with At = iNY/lOc, but resulting plots are not 
visibly different from those obtained using At = iN,,/5c or I_,,/1 5~. 

Since there is mirror symmetry along the z direction relative to z = 0 and z = L in 
Figs 7 and 8, those figures also represent results for crack propagation in a plate of 
thickness H = L containing a centered asperity, or in a plate of thickness H = nL 
containing a row of n asperities, where n is some integer. 

RANDOM FLUCTUATIONS IN FRACTURE RESISTANCE 

Here we describe some results for a case in which the fracture energy Gcrlt(x. z) is 
constant at G,, for x < 0, but is a stationary Gaussian random function of position in 
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I 
0 5 1 1.5 2 

z/L 
FK. 8. Positions a(~, t) versus z at successive times, separated by constant intervals, for a crack at incoming 
speed L’” = 0.5~ hitting an infinite row of asperities with G,,,, = 4G,. The crack is nearly stopped by the 
asperities but ultimately moves through, with velocity oscillations occurring as it moves onward through 

material of uniform fracture toughness, G,,,, = G,. 

the x, z plane, with mean G,, for x > 0. The random fluctuations from G, are assumed 
to be correlated such that 

where E denotes an ensemble expectation, crmr is the root mean square fluctuation 
in fracture energy and b is a correlation length. We generate sample functions of G,,i, 
over distance 1” (the periodic repeat distance for the FFT-based numerical method) 
in the z direction, and over the total distance to be fractured in the positive x direction, 
by representing Gc,it(_~,~) as a double Fourier series in x and z. The complex series 
coefficients are chosen from a random number generator as independent Gaussian 
variables, each with a variance that corresponds (at least for an infinite number of 
terms in the series) to the correlation function (54). Each coefficient has identically 
and independently distributed real and imaginary parts. The sample so generated is 
replicated periodically in the z direction. Fuller details of the methodology and its 
application to study the statistics of the associated disordering of the crack tip are 
intended for presentation in a subsequent paper. 
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FE. 9. Positions u(z,l) versus ; at succcssivc times, separated by 2.0/4/c, for a crack at incoming speed 
I’~, = 0.5~ which enters into a region I > 0 of random variation of fracture energy. The fracture energy 
Gcr,,(.v-. z) in x > 0 retains the mean value G,,, the same as it had in the uniform toughness region z < 0. 
and is chosen from a Gaussian random distribution with root mean square deviation of o,,,,, = 0.2X,, from 
that mean, and with an exponentially decaying correlation on the X. z plane with correlation length h. The 
G,,,, distribution is truncated at extreme deviations of *0.75G, from the mean. A sample of G,,,,(.r.-_) 
generated over a strip of length i in the z direction is replicated periodically in z for consistency with the 
FFT-based numerical method. Here j. = 32h. Symbols x mark sample points along the crack front at 
which the propagation velocity has momentarily dropped to zero: their clustering is a dynamic, not a 

statistical. effect. 

Figure 9 shows results for successive positions of the crack front in a case for 
which or,,,\ = 0.25G,, and the incoming velocity is P,, = 0.5~. Actually the Gaussian 
distribution has been truncated in this case so that those rare G,,,, values (of order 1 
sample in 500) which deviate beyond i 0.75G,, ( = + 3a,,,) from the mean of G,, are 
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re-assigned values of + 0.75G0 from the mean. Distances are normalized by h and we 
have taken I_ = 32b and 2N = 256 in the case shown, and used At = i,,/lOc = b/40c. 

There are many intervals in the history for which some segment of the crack front 
has momentarily stopped propagating. A symbol x has been printed at each sample 
point of crack front position when such an interval begins. Note that the x symbols 
tend to cluster over distances that grow to several correlation lengths. This is a 
dynamical effect triggered by encounter of high G,,;, locations, particularly when they 
coincide with locations where the crack is already vulnerable because of a diminished 
rest value of G (e.g. where the crack front locally protrudes ahead of neighboring 
segments), and not a statistical effect due to G,,,, being abnormally high over the entire 

cluster width. For the scale of the axes shown, wave fronts spread along the moving 
crack tip at a rate corresponding to lines inclined at f 30” with the horizontal axis. It 
is seen that there is a tendency for later clusters to lie along wave fronts from earlier 
ones. 

The example shown in Fig. 9 represents a mild perturbation of GCri, compared to 
the cases of circular asperities discussed earlier. According to the 2D crack analysis, 
the representative G,,,, deviations of +0.25G,, in this case would correspond to 
U = (0.50f0.18)c. The greatest deviations in the sample, of +0.75G, (i.e. 
G,,,, = l.75G0), are just sufficient to stop a 2D crack. That happens when 
G,,,, = J3Go = 1.7326,, a value exceeded with probability of about l/500. The simi- 
larly rare deviations of -0.75G0 (i.e. G,,i, = 0.25Go) allow the 2D crack a propagation 
velocity of 0.96~. The randomly oscillatory velocity history is shown in Fig. 10, where 
V(Z, r)/c+n is plotted as a function of z/b at the specific times given by ctjb = 8.5n, 
where n = 0, 1,2,3,4,. . This amounts to showing v(z, t)/c within each panel of unit 
height, displacing the curves for different times from one another. We see that very 
significant fluctuations in ~(2, t) are induced. Occasionally the velocity drops to zero, 
as already noted, and occasionally very large fractions of c are seen. 

DISCUSSION 

We have used a model elastodynamic theory, involving a single displacement 
variable satisfying the scalar wave equation, to study the propagation of a crack along 
a plane in an unbounded solid. The solution is derived for a crack front whose shape 
a(~, t) and velocity history v(z, t) is perturbed from that of a straight line moving at 
uniform speed, and is used to study the effects of spatial variations in fracture energy 
on perturbing the crack motion. Prolonged oscillatory effects in crack motion are 
found to follow encounters of the crack front with regions of variable toughness, and 
these may be explained in terms of interference of stress intensity factor waves radiated 
along the moving crack front following localized perturbations of crack motion. 

The results show remarkable instability features. An initially non-straight crack 
front which propagates over a plane of strictly uniform fracture energy G,,,, does 
asymptotically straighten out. However, our equations have been shown in a related 
work (PERRIN and RICE, 1994) to imply that small but sustained random fluctuations 
in G,,i, over the fracture plane induce a gradually increasing disorder in the crack 
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11 

10 

FIG. IO. Same case as Fig. 9. The quantity c,(z, /);c.+n is shown as a function of z at specific times 
chosen as crib = 8.5. where n = 0, 1,2,3,4,. , I?. Thus each horizontal panel of unit height shows the 

dimensionless velocity 111~ at a given lime. 

front position and motion, so that the straight crack front configuration is. essentially, 
unstable. 

It is clearly important to learn the extent to which such results remain valid in the 
context of actual elasticity theory, rather than the model theory. Also, while we have 
rigorously derived 3D results which are valid as first-order perturbations of P(Z, I) 
from uniformity with respect to t and z (what we refer to as the “strictly linearized” 
formulation), the numerical procedure is based on an extension of those equations 
which incorporates known exact response to a sudden, finite alteration of P(Z, t), and 
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which exactly replicates the 2D solution for arbitrary crack motion v = v(t). We think 
this extension is unlikely to result in significant error, but it is important to derive 
exact results for small perturbations in z about a history v = v(t) of motion that has 

arbitary time dependence. 
Previous investigators, concerned with 3D elastodynamic shear fracture models for 

earthquake ruptures, have studied the effects of arrays of asperities (DAS and KOSTROV, 

1988) and of random distributions of fracture properties (BOATWRIGHT and QUIN, 
1986) on the rupture process. These analyses were done by representing the plane 
over which fracture may spread, in an unbounded solid, as an array of square cells, 
each sustaining a shear stress that is uniform but unknown (except initially, before 
the rupture event begins or waves arrive from it), and by representing the cor- 
responding slip displacements on the fracture as those at cell centers. The stress 
histories are computed by requiring that stress and slip be related by a constitutive 
relation, allowing no slip until a threshold “yield stress” is reached and then allowing, 
in the DAS and KOSTROV (1988) case, slip at an abruptly lower, and constant, dynamic 
friction strength. BOATWRIGHT and QUIN (1986) allow a continuous degradation of 
strength from the threshold to the dynamic friction level, with increasing dis- 

placement; this slip-weakening feature means that their algorithm should converge, 
with reduction of cell size, onto a well-defined continuum fracture model of slip- 
weakening type, with a finite fracture energy. The same is not a feature of the DAS 

and KOSTROV (1988) procedure which, if it has any continuum limit with cell reduction, 
would correspond to a surface on which sliding takes place with zero fracture energy ; 
that limitation may possibly be repaired by letting the threshold strength increase 
with the inverse square root of cell dimension. 

These approaches to fracture modeling have an uncertain relation to continuum 
crack theory. The slip-weakening approach of BOATWRICHT and QUIN (1986) should 
correspond to a G,,;, crack criterion when the weakening zone is small compared to 
overall rupture size (e.g. RICE, 1980), but numerical accuracy requires that small 
weakening zone to extend over several cell widths. Their work, as that of DAS and 
KOSTROV (1988), was restricted by computer limitations such that the grid patch 
which was allowed to slip had a radius of only about 3&50 cell widths, so that cell 
size problems could not be fully overcome. Still, the results do show a crack-like 
rupture propagation over the grid, and BOATWRIGHT and QUIN (1986) report strong 
non-uniformities in rupture velocity, similar to our results here, when moderate 
random heterogeneity is introduced in their distributions of initial stress and critical 
breaking stress. DAS and KOSTROV (1988) examine the effects of an array of square 
asperities on the distant wavefield radiated by the rupture. They expected, and found, 
that local peaks in the radiated waveform correspond to the rupture of asperities, but 
they report also that “additional peaks not related to the failure of any asperity were 
found.. [and that] . . . no simple correlation was found between the number of 
asperities fracturing and the number of peaks” (DAS and KOSTROV, 1988, p. 8049), 
although those peaks directly attributable to asperity failures were the most prominent 

on the waveform. While Das and Kostrov do not show the history of rupture velocity 
or successive positions of the rupture front, it seems that the type of oscillatory crack 
motion that we document here, from the interference effects of stress intensity waves 
radiated by earlier asperity failures, could be the basis for their observations. For 
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natural earthquakes the lesson may be that not all the source complexity inferred 
from recorded waveforms is to be regarded as corresponding to material or geometric 
heterogeneity along the rupture surface. 

The effects that we have reported in this paper may also be relevant to a puzzle of 
long duration in the tensile cracking of brittle solids such as glass and PMMA, the 
phenomenology of which is summarized by KNAUSS and RAW-CHANDAR (1985). In 
such materials, a fracture surface which is optically smooth and planar at low speeds 
develops pronounced roughness, sometimes accompanied by macroscale crack bran- 
ching, as speed increases. Careful recent measurements by GROSS et al. (1993), 
extending techniques reported by FINEBERC; ef ul. (1992), show that this roughness 
transition takes place at speed I: = 0.42-0.49c, for soda lime glass and c = 0.42-0.47c, 
for PMMA. Here cK is the Rayleigh speed; cR z 0.92~~ for Poisson ratio of 0.3, as 
used in the subsequent discussion, and c, is the shear wave speed; cR is the limiting 

speed, analogous to c of the model theory, for a tensile crack which propagates in a 
plane. 

Previous attempts to explain this roughening transition have led to significantly 
larger predicted transition speeds. Such began with YOFFE (1951) observing that the 
hoop tensile stress at a given small radius from the crack tip attains a maximum on 
the plane prolonging the crack plane for z’ < 0.6Oc,, but that the maximum shifts to 
about 60” from that plane at higher speeds. The same transition speed 2’ z 0.60~~ was 
recently shown by GAO (1993) to be the speed above which G for a direction of crack 
growth that does not prolong the crack plane is greater than for one which does. GAO 
(1993) also presents a significant result for 2D dynamic cracking along a slightly non- 
straight crack path, in the presence of loading by what would be, in the straight- 
cracked solid, a locally uniform crack-parallel tensile stress T which acts in addition 
to the Y- ‘, ’ singular stress field. It has been shown (COTTERELL and RICE, 1980) that 
T < 0 is necessary for configurational stability of a straight tensile crack path under 
quasi-static conditions, assuming that the crack grows under pure tensile mode con- 
ditions at its tip. KNAUSS and RAW-CHANDAR (1985) show from experimental results 
that the same criterion holds good in the early stages of dynamic crack growth. GAO’S 
(I 993) result, the implications of which he does not discuss, is that the same T < 0 
which allows an initially straight crack path to exist at low speeds destabilizes that 
straight path when c’ > 0.75~~ ; any small deviations from straightness then get ampli- 
fied, according to Gao’s dynamic linearized stability analysis. Such amplification of 
small initial deviations from straightness is a description of roughening, and ultimately 
macro-branching, which is supported by the observations of KNAUSS and RAVI- 
CHANDAR (1985). Thus it would seem that u = 0.75~~ is a definitive upper limit to the 
possible speed of planar crack growth in an isotropic brittle solid, although factors 
compatible with non-planar growth are identifiable at z: > 0.60~~. 

Why, then, does the roughness transition occur for ZJ z 0.45~~‘~ Our results here 
suggest a possible answer which has some observational support : the experimentally 
reported crack speeds at the roughness transition are averages over finite space and 
time intervals. If our results carry over to tensile cracks, then it must be recognized 
that inevitable small fluctuations in fracture energy of the material drive a disordering 
of the crack front, ultimately showing as a highly variable local velocity, perhaps like 
in Fig. 10. In order for roughness to appear on the previously mirror-like fracture 
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surface, it is necessary only that the fastest moving parts of the crack front reach 
the high speeds of the YoffeeGao range (0.60-0.75~~) and trigger micro-branching 
instabilities, which can happen when the average speed is much lower. It is unknown 
at this point if this conjectured oscillation mechanism could explain the observed 
speeds of order 0.45c,, but there is definitive experimental evidence that crack vel- 
ocities in such brittle materials do indeed become severely oscillatory. That is a 
pronounced effect during the stage of propagation with a roughened surface (KNAUSS 

and RAM-CHANDAR, 1985; FINEBERC et al., 1992), and the results of FINEBERG et al. 

(1992) show also that the velocity has already become oscillatory, in consistency with 
expectations from our work, well before the roughness transition, when the fracture 
surface is still optically smooth and planar. 

Another perspective on the roughness transition follows ESHELBY (1970) who posed 
the question of how large must v be so that, by decelerating, there is enough energy 
available to supply to two crack surfaces the same G as was being supplied to one. 
The least v before deceleration corresponds to v = O+ just afterwards, and the simplest 
branched configuration to analyse, and quite plausibly the one which maximizes 
energy flow after branching, is the idealized limit case when the branches subtend a 
vanishing angle and both prolong the original crack plane. Thus the minimum L’ is 
that for which the “rest” value of G, i.e. G* for the 2D crack, is twice that for 
propagation at u. From the v dependence in (9) and (33a), which is of the same structure 
as for ESHELBY’S (1969a, b) anti-plane shear analysis if c = cS, ESHELBY (1970) reported 
v = 0.60~~ z 0.65~~ as the minimum v which could allow branching or surface rough- 
ening. This value is sometimes reported in the literature. However, ESHELBY (1970) 

wrote before the FREUND (1972a) solution for unsteady crack motion in the tensile 
mode became available and, writing the tensile analog of equation (9) as G = g(v)G*, 
FREUND (1972a, pp. 138-l 39) plots the function g(v) and notes that the corresponding 
speed, solving g(v) = l/2, is v z 0.45~~. Thus, although the Yoffe-Gao explanations 
of how non-planar roughness features can form and grow require greater speeds of 
0.60-0.75c,, the Eshelby-Freund minimum speed of 0.45~~ for the requisite energy 
to be supplied for roughening is in good agreement with the speeds at roughness onset 
found experimentally (GROSS et al., 1993). 
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APPENDIX A: DERIVATION OF SPACE-TIME FORM OF SOLUTION FOR 4 FROM 
TRANSFORM SOLUTION 

To derive (27) from (26) let us note that iff(z, - co) = 0 we may write 

(AlI 

where H is the Heaviside unit step function and 6, is the Dirac unit impulse function. 
Hence to solve for $(x,v, z, t) for a general f(z, t) we can superpose, by integration over 
z’ and t’ with weighting af(z’, t’)/at’, the solution 4(x,y, z, t; z’, t’) corresponding to 
f(z, t) = H(t-t’)&,(z-z’). The Fourier transform of H(t-t’)&(z-z’) is 

F(k,w) = (l/io)exp[-iot’+ikz’]. 

We insert this F(k, o) into (26) to get the kernel solution for the superposition, 

(A2) 

exp [iw(t-6) -ikz, -q(k,w)r] 2 dk, (A3) 

where 

sin(Q/2) K, 1 
6 = t’+v,(x--v,t)/cc~c2, z, = z-z’, A = _________ G MCC, G and q(kw) 

is defined by (20). 
This solution for 4(x, y, z, t ; z’, t’) is in a form amenable for a Cagniarddde Hoop inversion. 

The first step in the Cagniardde Hoop method is to write an integral solution in the Laplace 
domain, the integration corresponding to an inverse Fourier transform. The integration path 
is then deformed in a complex ray parameter domain until the solution resembles a forward 
Laplace transform, from which the time domain solution can be identified. The complex 
domain manipulation is, in effect, a cancellation process between the inverse Laplace and 
Fourier transforms. Thus, making the substitution o = -is, the above solution can be written 

6(&Y, Z, t; z’, f) = & 
s 
-Ia exp (st)@(s; 6, z,, r, A) ds, 

15 
(A4) 

where 

@(s;&z,,r,A) =3 
s 

+ia 
exp [-s6-ikz, -q(k, -is)r] dk. W) 

m 

Treating 6, z,, r and A as given parameters (note that three of them are actually functions of 
time, in that they depend on x--v,,& we can regard &x,y,z, t; z’, t’) as the function of t of 
which the Laplace transform is @(s ; 6, z ,, r, A). Writing k = - isp, with s regarded henceforth 
as a real positive number, we have 

s 

lie 
@(s;a,z,,r,A) = -iAexp(-s6) exp 1 -s[pz, +&W~d dp, (‘46) --ICC 
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where n(p) = J(a,c) * -p’ 1s descended from the expression for q(k,o) given in (20). Fol- 
lowing the discussion of the branch cuts of q(k, CO), the positive square root is implied for q(p) 
when p lies on the imaginary axis. 

The integrand in (A4) can be written as Int (p) = E(p) + O(p), where E(p) and O(p) are 
even and odd functions of p, respectively. Since the range of integration in (A6) is symmetric 
in p we have 

I 

II 
Int (p) dp = 2 

17 s 

II 

E(p) dp = 2 
0 s 

I? $1 
Re [Int (p)] dp = 2i Im 

s 
Int (P) dp (A7) 

0 0 

or explicitly 

Q(s;a,z,,r,A) = 2Aexp(-s@Im 
s 

exp i --S[PZ, +rl(~)rl41 dp. (A@ 
0 

Changing now the integration variable from the “ray parameter” p to the “travel time” z 
along the ray, by defining z = pz, +q(p) / r LYE as the coefficient of s in the integrand above, we 
write 

i 

p(r) =I I 

@(s;&z,,r, A) = 2Aexp(-s6)Im exp (-~)[dp(r)/dz] dz. (A9) 
p(T) = ” 

Using q(p) in the expression for r above, p can be expressed in terms of z to give the functions 
P(T) and dp(r)/dr [they can also be obtained from results of BEN-ZION (1989) by variable 
substitutions]. Using the fact that the positive square root is implied in q(p) when p lies along 
the imaginary axis, p = 0 corresponds to 7 = r/E:,. If we now let z increase monotonically 
through real values from z = r/ctic to 7 = m, the path followed byp which terminates at infinity 
in the region Im (p) > 0 is 

R 
<T< , and 

X(1(’ 

(AlO) 

where R = Jz: +~‘/a;. Note that the range over which the first expression for p(7) applies 
shrinks to zero when z, = 0. This path is deformed away from the imaginary p axis, but crosses 
no singularities and leaves the integral invariant. [See Fig. 2 of BEN-ZION (1989) for a sketch 
of such a path in his analysis of a wave problem that involves a function q(p) of similar 
structure.] Since the first expression for p(7) gives real dp(z)/d? over the range of 7 for the 
expression, that range of 7 will not contribute to (A9). Rather, we have the entire contribution 
from the range of the second expression, over which 

Upon substitution in (A9), we retain only the imaginary part, and thus obtain 

Now, making the substitution 7 = t - 6 for the variable of integration, this becomes 

which can evidently be interpreted as the Laplace transform of the function of t given in the 
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square brackets times the Heaviside unit step H(t-&R/cc,+). Remembering that 
4(x, y, z, t ; z’, t’) is the function of t whose Laplace transform is Q(s ; 6, z ,, r, A), when 6, z ,, r, 
A are regarded as given parameters, we find that the desired solution is 

c#~(x,y,z,t;z’, t’) = 2AH(t-h-R/a,c)[(t-a)*-(R/cr,~)*]~”*r(t-6)/(a,R*) (A14) 

where all of A, r, R, S and z, have been defined above. 
Rearranging terms with the aid of rather elaborate algebraic manipulations, we write the 

solution in the more explicit form 

~(x,y,z,t;z’,t’) = 
K,sin(O/2) c(t-t’)-u,(x-v,t)/aic 

MCQ7L (z-z’)*+y*+(x-u,t)‘/Cc,2 

.H[c(t-t’)-J(z-z’)‘+l’*+(x-uOt’)*], (A15) 

2(t-f’)*-(z-z’)*-y*-(X-u0t’)* 

As remarked at the start of this Appendix, to obtain the solution for 4(x, y, z, t) for an arbitrary 
f(z, t), this solution for &x,y, z, t;z’, t’) is to be weighted with af(z’, t’)/&’ and integrated 
over the variables z’ and t’. Such is the origin of the general space-time solution given in the 
text as (27). 

APPENDIX B : ALTERNATIVE FORMS FOR THE HISTORY INTEGRAL I(z, t) 

The expressions for stress intensity factor and energy release rate derived in the paper contain 
the integral 

I(z, t) = & PV 

30 ss i-,i--i’,ko< c(t - t’) [u(z’, t’) - u(z, t’)] 
dt’ dz’ (Bl) -x --I (z-z~)2JC(~C*(t-f’)~-(Z-z~)* 

where v(z, t) = &z(z, t)/at. Considering the domain of integration (Fig. Bl) and changing the 
order and limits of the integrals in (Bl) we have 

t’ 

FIG. Bl. Domain of integration in (Bl) ; only points within the shaded region influence the crack response 

at (2. t). 
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I(z, t) = :, PV 
(Z_z~)*JCI~C2(t_t~)L(Z_z~)2 

W 

Referring to Fig. B2 we note that the recurring term 

a;c2(t-t’)2-(z-z’)2 = [c(t-t’)]2-[v,(t-t’)]2-(z-z’)2 (B3) 

corresponds at first order to [c(t - I’)] ’ - [a(~, t) - a(~‘, t’)] ’ - (z -z’) 2 which has a clear 
interpretation in terms of travel times, t’ being the moment of release of a signal at z’ along 
the front which arrives at z along the (then advanced) crack front at time t. A portion of the 
integrand in I(z, t) can be written as 

c(t- t’) 0’ 

(Z-z~)~J~~Z(t~-f’)~_(Z-z~)~ = -32 [ 

J0LilCZ(t_t’Ji (z _ z’) 2 

a&T(t-t’)(z’-z) -4 

= -2 

1 

Jac~c2(t-t~)‘-(s-z~)2 
at’ I %;c(z-z’)2 

Using the first version of (B4) and integrating by parts in (B2) leads to 

(B4) 

whereas recognizing that -a/az’ can be replaced by i?/Zz in (B4) gives 

Similarly, based on the second form of (B4) with -d/at’ replaced by d/at, 

and integration of that result by parts after using a(z, t) = aa(z, t)/at leads to 

I(z,t) =&PVk ss , 
I-/r :-,.‘3,,1 d+t’)b(z’? f) -a(? 01 dt, dz,, 

Wb) 
x -r (z-z’)c&C;(t-t’)7_0? 

Finally, we observe [see (B3) and Fig. B2] that the upper integration limit on t’ is the latest 
time t’ for which a signal launched at the crack front at (z’, t’) will reach (z, t) along the then 

X 

x = a(z, t) 

------- x = a(z’, t’) 

1 I I 

Z' Z 

FIG. B2. Geometrical relationships between wave speed c, crack speed u,, and speed of propagation IX,,C 
along the crack front. 
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advanced front. That value of t’ is the first order perturbation representation of the time 
r = T(Z, z’, t) satisfying 

c’(t-z)* = [a(z,t)-a(z’,z)]2+(Z-z’)2, (B7) 

and thus we may write 

qz, t) = & PV 
m ss T(i.S.f) c(t- t’)[v(z’, t’) -v(z, t’)] 

dt’ dz’. (Bg) 
-r -I (z-z~)2JC2(t-t’)*-[a(z,t)-Lz(z’,t’)]~-(z-z~)~ 

Expression (B8) for I(z, t) contains no reference to a uniform velocity II,, about which a 
perturbation is made, and it might possibly be valid for arbitrarily large variations of v(z, t) 
with t, as long as l&z(z, t)/Zz[ << 1 (i.e. for small deviations from straightness but arbitrary 
deviations from a uniform propagation velocity). We caution that such has not been proven. 


