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ABSTRACT

THE ACTIVATION energy for dislocation nucleation from a stressed crack tip is calculated within the Peierls
framework, in which a periodic shear stress vs displacement relation is assumed to hold on a slip plane
emanating from the crack tip. Previous results have revealed that the critical G (energy release rate
corresponding to the “screened” crack tip stress field) for dislocation nucleation scales with y,, (the unstable
stacking energy), in an analysis which neglects any coupling between tension and shear along the slip plane.
That analysis represents instantaneous nucleation and takes thermal effects into account only via the weak
temperature dependence of the elastic constants. In this work, the energy required to thermally activate a
stable, incipient dislocation into its unstable “‘saddle-point™ configuration is directly calculated for loads
less than that critical value. We do so only with the simplest case, for which the slip plane is a prolongation
of the crack planc. A first calculation reported is 2D in nature, and hence reveals an activation energy per
unit length. A more realistic scheme for thermal activation involves the emission of a dislocation loop, an
inherently 3D phenomenon. Asymptotic calculations of the activation energy for loads close to the critical
load are performed in 2D and in 3D. It is found that the 3D activation energy generally corresponds to
the 2D activation energy per unit length multiplied by about 5-10 Burgers vectors (but by as many as 17
very near to the critical loading). Implications for the emission of dislocations in copper, a-iron, and silicon
at elevated temperature are discussed. The effects of thermal activation are very significant in lowering the
load for emission. Also, the appropriate activation energy to correspond to molecular dynamics simulations
of crack tips is discussed. Such simulations, as typically carried out with only a few atomic planes in a
periodic repeat direction parallel to the crack tip, are shown to greatly exaggerate the (already large) effects
of temperature on dislocation nucleation.

INTRODUCTION

WE BUILD on recent advances in the modeling of dislocation nucleation at a crack tip
based on the Peierls—Nabarro concept (RICE, 1992 ; BELTZ and RiIcE, 1991, 1992;
RICE et al., 1992; BELTZ, 1992; SUN et al., 1991, 1993; SuN, 1993). These have
provided a consistent description of the genesis of a dislocation, free of core cut-off
parameters of earlier approaches, and have predicted a critical load for emission in
various materials. The analyses presented thus far, however, have neglected thermal
effects, except perhaps through the weak temperature dependence of the elastic con-
stants which enter the analysis. They thus correspond to instantaneous emission
without the aid of thermal fluctuations. The purpose of this paper is to extend the
Peierls model to calculate the activation energy associated with the nucleation of a
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dislocation, thereby gaining insights on the effects of elevated temperatures. The basic
premise is that, assuming a crack is loaded below the critical load for instantaneous
emission of a dislocation, a dislocation could nevertheless be emitted if thermal
activation supplies enough energy to overcome the predicted activation energy barrier.
Realistically, this is a very localized process, involving the unstable emission of a
dislocation loop, and hence the problem is inherently 3D. Initially, a 2D activation
energy (per unit length of dislocation line) for dislocation nucleation within the
Peierls framework is calculated directly and then via an asymptotic analysis (good for
loadings near the critical loading for emission). Next the asymptotic analysis is
extended to the 3D situation, so as to approximately calculate the activation energy
and shape of the activated slip configuration.

Rice and THOMSON (1974) regarded the ductile vs brittle behavior of materials as
a competition between dislocation emission at an atomistically sharp crack and cleavage
decohesion. In their work, the activation energy was calculated for a crack which had
been subjected to the Griffith load for cleavage (i.e. when G. the “applied™ energy
release rate, attained the value 2y,, the ideal work of fracture defined as twice the
surface energy). A disadvantage is that their analysis considered a pre-existing, fully-
formed dislocation on a slip plane intersecting the crack tip and hence relied on the
uncertain core-cutoff parameter r, from elastic dislocation theory [see Fig. 1(a)] ; that
and other ad hoc energy cut-offs, especially at the near-atomic length scales involved,
provided what are now regarded as very questionable estimates of the activation

(b}

F1G. 1. Atomically sharp crack loaded in mode I1, with a slip planc continuing along the crack plane. (a)

Depicts a fully formed Volterra dislocation. as analyzed in the Rice Thomson model, and (b) denotes the

incipient dislocation modelled as a Peierls-type shear profile. The crack surfaces are assumed to be free of
tractions.
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energy (ARGON, 1987). With this limitation in mind, various crystals were classified
as ductile or brittle based on the outcome of this calculation. In general, dislocations
in fcc metals were found to become unstable when the fully formed dislocation was
within one core radius of the crack tip, and since the elastic forces considered in this
calculation are ill-defined on the length scales considered, it was argued that dis-
locations were spontaneously emitted in these materials. The bcc metals, as well as
the covalent and ionic crystals considered were found to have positive activation
energies with an activated dislocation loop that was sensibly large. Examples include
Fe, with an activation energy of 2.2 ¢V (which is small enough for thermal activation
to be important, as will be discussed later), and Si, with an activation energy of 111
eV (which is prohibitively high for thermal activation to occur at room temperature),
but which is much higher than what is found here.

Through extensions by MasoN (1979), ANDERSON (1986), and ANDERSON and RICE
(1986), the Rice-Thomson model evolved to a state where the competition between
dislocation emission and cleavage was evaluated not in terms of an activation energy
but rather via the separate calculation of G, the energy release rate associated with
the emission of a single dislocation and G,.., the Griffith cleavage energy. The former
depends not just on the geometry of the slip system relative to the fracture plane, but
also on the ratios of stress intensity factors (modes I, II and II) to one another. If
Goit < Gueave- then it is assumed that a dislocation would be spontaneously emitted
before decohesion, and vice versa. The calculation of the activation energy for dis-
location emission has been additionally considered within the Rice-Thomson frame-
work by Li (1981, 1986) who calculated the activation energy as a function of the
applied energy release rate, rather than evaluating it at the Griffith cleavage level. Li’s
result, valid for a mode 11 load and a slip plane coplanar with the crack plane, gives
the activation energy (per unit dislocation length) to emit an edge dislocation and can
be written as

(1-1AU,. _ —1 < G >
ub* Rt n G;rit | M

where ¢ and v are the shear modulus and Poisson’s ratio, respectively. This result will
be seen to overestimate the more exact 2D results calculated here.

Calculations of the activation energy for dislocation emission in silicon have been
of interest recently because this material undergoes a relatively sharp brittle-to-ductile
transition at a temperature dependent on loading rate, e.g. at approximately 562°C
at a strain rate of 1.3 x 10"%s "' [see experimental work by SAMUELS and ROBERTS
(1989), CHiao and CLARKE (1989), WARREN (1989), MicHOT and GEORGE (1986),
and references therein]. Dislocation motion below the transition is not observed, and
the transition temperature increases with strain rate ; increasing the strain rate by a
factor of 20 increases the transition temperature by about 100°C. As mentioned
before, however, the Rice-Thomson estimate of the activation energy at the fracture
stress for Si was 111 ¢V, making thermally activated dislocation nucleation at the
transition temperature impossible. HAASEN (1983) has estimated the activation energy
in Si at the Griffith load to be as low as 0.5 eV, taking into account the fact that the
stacking fault energy in Si is relatively low and hence nucleation of a partial dislocation
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with Burgers vectorb = (a/6)[112]is favored. Additionally, I.-H. Lin and R. Thomson
(private communication, 1992) have carried out a calculation of the activation energy
for a rectangular partial dislocation loop in Si and obtain values between 0.5 and 1.0
eV. making thermal activation possible; the difference between these numbers and
the one calculated by Rice and Thomson is attributable to the fact that a partial
dislocation is considered, and a much different saddle-point configuration was
assumed (rectangular vs circular). The aforementioned numbers seem too low to
account for the ductile-to-brittle transition in silicon, especially in light of recent
atomic calculations by DUESBERY ez al. (1991) and Kaxiras and DUESBERY (1993),
which reveal anomalously large values of the unstable stacking energy y,, (= 1.91
J/m? for relaxed shear, commonly referred to as y&2, on the so-called ““glide-set” and
1.67 J/m? on the “shuffle” set), the parameter which controls dislocation nucleation
within the Peierls framework (RICE, 1992) and which will be discussed in further detail
below. It has become increasingly evident in recent years that it may be lattice friction
against motion of dislocations, not the nucleation event itself, which controls the
brittle-to-ductile transition of siticon (MICHOT and GEORGE, 1986 ; BREDE and HAASEN,
1988 ; CHia0o and CLARKE, 1989 ; WARREN, 1989 : HIRSCH ef al., 1989 ; HIRSCH and
ROBERTS, 1991 ; Hsia and ArGoON, 1993). However, the issue remains incompletely
resolved. Further discussion of the instantaneous nucleation of dislocations in Si may
be found in recent work by Sun er al. (1993) based on parameters for Peierls modeling
of Si from Kaxiras and DUESBERY (1993) and HUANG er a/. (1991) ; additionally, the
detailed application of the ideas presented in this paper to the understanding of
thermal activation in the brittle-to-ductile transition in silicon is the subject of a
follow-up paper (BELTZ and RICE, 1994).

The most serious drawback to the Rice—-Thomson model is that it treats a fully-
formed dislocation on a slip plane intersecting the crack tip, as depicted schematically
in Fig. 1(a). The activation energy analysis proceeds by considering a given set of
applied loads and then finding stable and unstable configurations which satisfy equa-
tions of equilibrium, in terms of r (the radius of the pre-existing loop). As pointed
out by ARGON (1987), and more recently SCHOCK (1991), a dislocation is likely to
emerge from a crack tip as a Peierls-like shear distribution of atoms across the slip
plane, and hence the Burgers shear displacement of the loop, as well as the radius of
the loop, should be considered as the activation parameters. A simple argument given
by Argon shows that the consequences for the activation energy should be appreciable :
the primary scaling factor for the energy analysis (as will become apparent later in
this work) is ub” (1 is the shear modulus and b is the magnitude of the Burgers vector) ;
hence, if the incipient dislocation configuration involves slip of less than a full atomic
spacing, then the activation energy should be strongly reduced due to the power of 3
[the same argument applies as well to the HaaseEN (1983) analysis of partial dis-
locations in silicon]. SCHOCK (1991) has treated the nucleation from a crack tip within
the Peierls framework in an approximate fashion for a straight dislocation and a
dislocation loop has been similarly treated by Scuock and PUschL (1991). The
activation energy analysis in this paper follows procedures within the Peierls frame-
work set out by RICE (1992), and further developed by BELTZ and RicE (1991, 1992).
RICE et al. (1992), BELTZ (1992), SUN et al. (1993), and SuN (1993). in which exact
2D solutions for incipient shear distributions at a crack tip are determined.
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THE PEIERLS-NABARRO FRAMEWORK FOR NUCLEATION

To review the Peierls, or Peierls—Nabarro, model for dislocation nucleation, suppose
that one of the possible slip planes in a crystal intersects a crack tip. Here we assume
that the material is an isotropic elastic solid, that the emergent dislocation is of edge
character relative to the crack tip, and that there is negligible effect of tensile stress
on the shear response along slip planes (analyses that remove all these simplifications
are given in the works cited above). If the solid is loaded, an incipient dislocation may
begin to form on a slip plane [see Fig. 1(b)]; under increasing load the dislocation
may be emitted if the load reaches a critical value. Alternatively, cleavage decohesion
could occur, causing the crack to propagate; this scenario is not addressed in this
paper but it is important when evaluating the ductile vs brittle behavior of materials.
The shear stress T on the potentially active slip plane is taken to be a periodic
function of 6 (= d, = J, for the mode II case to be discussed), the shear displacement
discontinuity across the plane. Once 1 = 17(J) is known, the shear displacement profiles
& = 6(x) (x is the distance from the crack tip) as a function of the applied stress
intensity factors can be determined via the solution of an integral equation to be
introduced below. In the simplest case, when the slip plane is taken to be coplanar
with the crack plane, RicE (1992) showed that an incipient edge dislocation becomes
unstable when G, the “applied” Griffith energy release rate associated with the mode
Il component of loading, given by G = (1 —v)(K;)*/2u, attains the value of the
unstable stacking energy, corresponding to the first maximum undergone by the
energy per unit area of the slip plane, ® = ®(J) = [1(6) dd. Emission criteria for the
case when the slip plane is inclined at some angle # may be extracted from the same
type of integral equation solution, assuming that a suitable function 7(J) is known,
chosen to at least approximately include the effects of tension normal to the slip plane
(RICE et al., 1992 ; BELTZ and RICE, 1992 ; SUN e al., 1993).

The shear stress 7 on a slip plane is typically expressed as a function of A, the
relative atomic displacement undergone by atoms on opposite sides of the cut, which
differs from ¢ due to an elastic shear strain t/u acting over a distance /4 normal to the
cut, where 4 is the interplanar spacing. The simplest modeling assumes that the
function 7(d) is given parametrically by the relations (RICE, 1992)

T = (myu/b) sin 2rA/b), (2)
with
0 = A—(b/27) sin 2rA/b). 3)

An extensive literature exists [see RICE et al. (1992), SUN er al. (1993), and references
therein] concerning more realistic forms for t vs d, most of which include a coupling
effect due to tensile stresses normal to the slip plane. Equation (2) is commonly
associated with the Frenkel model, in which the initial slope of 7 vs A is identified
with the shear modulus, giving

Vus = b*/2n°h, 4)

thus within the model vy, is fully determined by g, b, and A.
Results from atomic calculations (RICE et al., 1992 ; SUN et al., 1993) suggest that
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(4) overestimates the unstable stacking energy for a wide range of materials, or
underestimates it, in the case of Si. In this analysis it is convenient to note that until
now the parameter /2 appears only in (4) ; hence it may be regarded not as the true
interplanar spacing but rather as a fitting parameter which allows p and 7, to be
independently specified for a given material. To be more specific, if /4 is literally
interpreted as the interplanar spacing, h/b = \/2 for a Shockley partial in the fcc
lattice, \/2,/4 for a Shockley “glide™ partial in the diamond cubic lattice, and sz/z
for a full dislocation ({111} type slip direction) in the bcc lattice, then the Frenkel
model rigorously states that, for the three lattices, 7v,, should be 0.036ub, 0.143ub,
and 0.062ub, respectively. If, however, it is known that y,, differs from the Frenkel
prediction, for example in the glide planes of Si, where the atomic calculation ref-
erenced earlier gives 7\ = 0.142ub an “effective” value of h/h, determined from (4),
would then be 1/(0.142)2x* ~ 0.357 (vs the actual value of 0.354). It is interesting to
note that the Frenkel theory overestimates % in Si by only about 1%.

The energy per unit area quantities W(A) and ®(9) are defined such that 1 dA = d¥
and 7 dé = d®. Combining with (3) reveals that ®(8) = W(A) —ht’(A)/2u, and inte-
grating the same equation gives

V= Tus Sinz (nA/b)~ (S'd)
® = 3, sin* (wA/b). (5b)

The latter is expressed in terms of d by (3). Figure 2 shows plots of ®(d) as well as
7(9). Assuming that the slip plane is coplanar with the crack plane and there ts mode
IT loading, RICE (1992) showed that the slip at the crack tip d;, [= 6(x) at x = 0] is
given by

2ip

G = d(,,) = f 7.dé, (6)

0

in any solution which renders stationary the energy functional U, the total potential
energy of a slipped configuration per unit distance along the crack front. When gy,
lies along the branch of the curve labeled A4 in Fig. 2, the instability state is one of
locally minimum energy and corresponds to a stable configuration of an incipient
edge dislocation. When G reaches y,,, an instability occurs, and the dislocation is
emitted. Note that for a given G less than G, (G = 7. in this simplified case of
coincident crack and slip plane under mode Il loading), additional solutions cxist.
Points 4’, A", etc. correspond to stable incipient dislocations after one, two, etc.
dislocations have been emitted from the crack tip. When &, lies along the portion
labeled C, the stationary state represents a saddle-point configuration—the slip dis-
tribution corresponding to C is unstable due to the fact that the equilibrating load
decreases as the distribution expands outward. For a given applied energy release rate
G < Gy (= y,.) the activation energy is defined as

A U:ll.‘l = U[ésud(x)] - U[(Smin (X)] ° (7)

where §,,4(x) denotes the solution for é(x) having 6(0) (= d,,) on branch C and
Smin(X) is the solution on branch 4. As mentioned earlier. the saddle configuration is
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FIG. 2. Shear stress 7 and the slip plane potential @ vs displacement discontinuity & on the slip plane. Points

A and C correspond to values of & at the crack tip in the stable (minimum energy) and saddle-point

solutions, respectively, at a given load level. The intensity of the mode II loading is characterized by the
crack tip energy release rate G.

first analyzed by constraining the field to be 2D, so that AU, is an energy per unit
length.

DirREcT CALCULATION OF THE 2D ACTIVATION ENERGY PER UNIT LENGTH
AU’iCl

The functional U giving energy of a 2D field per unit length along a crack front
may be written for a linear elastic solid under a mode II load as (Ricg, 1992)

o

ULs(x)] = Uy + f " O[] dx+ %J S[3(x)] (x) dx — J k \TIE‘ s(x)dx, (8

2nx
with

do(&)/d
oo = o [ \/5 P a ©)

The first term in (8), U, denotes the energy of the unslipped solid, i.e. the energy of
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the loaded solid when d(x) is constrained to zero. The second term is the energy
gained on the slip plane when d(x) develops, and the remainder of the terms account
for the energy change of the material outside the slip plane and of the loading system
due to the introduction of §(x). The functional s{6(x)] gives the amount by which the
shear stress t decreases upon introduction of the slip, with its “kernel” function
(27t —v)] /i/x/(‘c— ¢) identified as the shear stress at distance x due to a unit edge
dislocation located at position ¢ [see, e.g., THOMSON (1986) or BELTZ (1992)]. Ren-
dering (8) stationary with respect to d(x) yields the integral equation

KII

()] =@ o] = . —s[o(x0)]. (10)
\/ZTIX

which corresponds to enforcing stress equilibrium along the slip plane. Stable, or
minimum energy, solutions J,,;, (x) of (10) have been determined numerically by BELTZ
and RICE (1991, 1992) and BELTZ (1992) in connection with the dislocation emission
problem (i.e., in the range where G and é,;, lie on branch A4 of the energy curve in Fig.
2). Solutions are shown as solid lines for y,, = ub/2n” and v = 0.3 in Fig. 3(a) at
various load levels up to instability. In order to determine the saddle-point solutions,
a second solution of (10) must be determined for each level of applied load. These
solutions are found via the method used to determine the stable solutions, except that
initial guesses of d(x) are used that are greater than the solution corresponding to
G = G, and which have a é,, given by the larger solution of {6). These solutions
are shown as dashed lines in Fig. 3(a) for the same values of G as were used to
determine the stable solutions, shown as solid lines. For more general conditions than
assumed here (e.g. slip plane inclined with respect to crack plane, screw and edge
components of emergent dislocation, tension—shear coupling, and mixed-mode
loading, all as dealt with in references cited above) G, should be interpreted as the
maximum G for which a stable solution can be determined. Thus, while G, = 7, In
the specific case analyzed here, we shall generally phrase results in terms of the ratio
G/Gi. supposing them to be at least approximately valid in those more general
situations.

Inserting (8) into (7) and simplifying with the help of (10) gives the following
expression for the 2D activation energy, which can be simply evaluated numerically
for a given pair d,,,,(x). and d,q(x):

* ésjd (X) :{?mm‘f)

AU;&B = \[ {(‘I\)[(Ssad(x)] —(i)[émin(x)]} dx— éKll J - d,\’, (] 1)
0

0 V/an

where ®(8) = ®(5) —6®’(5)/2. Evaluation of (11) is carried out for y,, = ub/2n* and
v = 0.3. As will be discussed later, the calculation is extremely insensitive to these
values, however. In Fig. 4, the results are plotted as a function of applied load as a
solid line. Table 1 shows the results for specific G values. The first column gives
AU (an energy per unit dislocation length). The entry in each of the remaining
columns gives an estimate of the 3D activation energy AE obtained by writing
AE = 7.5bAU? (i.e. assuming an activated dislocation length of 7.56), for a Shockley
partial dislocation in Cu, a full dislocation in Fe, and a partial dislocation in Si. The



The activation energy for dislocation nucleation at a crack

0.8

341

F

T T

\\\G/yu;o.s

~

X/
06 N
“os

0.4

d/b

0.2

(a)

1.0

(b) 0. :
0.0 1.0 2.0 3.0 4.0 5.0

F1G. 3. (a) Displacement profiles for various loads; the solid lines are the minimum energy solutions and

the dashed lines are the corresponding saddle-point solutions. (b) Eigenfunction g(x) [= 39(x; )[04,

evaluated at d,, = b/2] determined as part of the 2D asymptotic analysis. All plots are for 3, = ub/2n? and
v = 0.3

AE estimated are listed in units of kT as evaluated at room temperature ; implications
for thermally activated nucleation are discussed later in this paper.

ASYMPTOTIC CALCULATION OF THE 2D ACTIVATION ENERGY

In order to more simply evaluate the 2D activation energy near critical loading,
and to provide a basis for the 3D analysis to come, we present here an asymptotic
calculation of the activation energy per unit length, good for small deviations of the
applied load from the critical load for emission. The method proceeds via a per-
turbation analysis of the shear distribution. It is useful to regard a given shear profile,
satisfying (10), as being a function of x and of §,,, i.€. 6 = d(x; dy;,). Note that a pair
of d;;, values corresponds to a given G (less than G ) by (6) and Fig. 2, so one
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(1-v) AUZP
ubz .

0.12¢%, Exact .
AN » Asymptotic approximation ]
0.00F X, __Li(r981, 1986) ]

. \%._,Schoeck (1991) :
0.06 ]
0.03
0.00 . e ,

0.2 0.4 0.6 0.8 1.0
G/Gcrj‘

F16. 4. Activation energy AU (2D) per unit length vs loading. The solid line is the exact result from

numerical solutions of the Peierls model. The dashed line is the result of the asympiotic expansion about

the critical loading. The dashed--dotted lines show the predictions of Li (1981, 1986) based on the Rice
Thomson model, and SCHOCK (1991) based on an approximate implementation of the Peierls model.

0(x;04,) 18 0min{X) and the other is d,4(x). Suppose ¢ = f(x) is the shear profile at
instability (G = G;,); in the case of a mode II shear crack with the Frenkel form,
f(x) = 8(x;bh/2), which corresponds to the last solid line in Fig. 3(a). If the applied
energy release rate G is slightly less than G, the shear distribution may be written
as

o(x) = f(x)+eg(x), (12)

where ¢ = 0,;, — /2 characterizes the extent of the perturbation and g(x) is defined by

TABLE 1. Activation energies: Cu, Fe, and Si 3D estimates based on (exact) 2D

calculationt
,f’; (I-mA U§B AE(,‘u‘parlial é&e full disl. A‘Ersii‘Pgmgl
Gcril .ub : k Troom k Troom k Troom
0.1 1.67x10"" 59.0 454.1 256.2
0.2 1.25x10 ! 44.3 340.7 192.2
0.3 9.05x 1072 32.0 246.6 139.1
0.4 6.55%x 10 * 23.1 178.5 100.7
0.5 4.62x1072 16.4 1259 71.0
0.6 3.10x 107 11.0 84.5 477
0.7 1.90 x 10 * 6.72 51.8 29.3
0.8 9.85%x 10?3 3.48 26.9 15.2
0.9 3.32x10°° 1.17 9.05 5.10
1.0 0 0 0 0

+AUZR is the activation energy per unit length for 2D configurations. The entries in the
remaining columns are the 2D results multiplied by 7.56 and the appropriate material constants.
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06(x ;0

Note that & has units of length and g(x) is dimensionless. A relation satisfied by the
function g(x) may be determined by differentiating (10) with respect to §,, and
evaluating for 8(x) = f(x), noting that the term 0K,,/0d,, vanishes because G, and
hence Kj,, undergoes a maximum at the instability point characterized by f(x). The

result shows that g(x) satisfies the eigenproblem
Q[ f()]g(x) = —s[g(x)]. (14)

An implication is that the function of x generated by s[g(x)] is finite at x = 0; i.e.
considered as a slip distribution, g(x) would induce no singularity at the crack tip.
The function g(x), for y,, = ub/2n’ and v = 0.3, is plotted in Fig. 3(b).

The algebraic manipulations to follow rely on the following relation, which follows
from the elastic reciprocal theorem :

fﬁ 510, (91 65() dx = j 1650016, () . (15)

Equation (15) holds for any pair of shear distributions J,(x) and d,(x) ; they need not
satisfy (10). Now the total energy U of the system may be written, using the point of
instability as a reference, as

U= Ule) = Ucm+£ | {@Lf(x) +eg(x)] - D[ f (0]} dx

£

1 * 11
+ ZL {1/ () +2g ()] () +eg ()] = s/ ()] /()] dx— J f —eg(x)dx. (16)

0 2nx

Equation (10) when evaluated at the critical state shows that
o Kflm )
/()] =V [f(x)] = — —s[/ ()] (17
J2mx
With the help of the reciprocal theorem and (14) and (17), the energy may then be
written as

U= Ucril_Q(8)+(Kflm'_Kll)8ﬂa (18)

where
QO(e) = —L {OLf (%) +eg(x)] — @[ (x)] —eg(x)@L f ()] — 26°g* (0)D"[ /()] } dx,
(19a)

* g(x)
ﬁzj I 4x ~1.255/b 19b
o J/2nx i \/ (190)
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with the numerical value given for v,, = ub/2n>. Now consider the function Q(¢) and
its derivatives with respect to ¢ evaluated at ¢ = 0. One sees that

0(0) = Q(0) = Q"(0) = 0, (20)

and that

0"(0) = — f )'g"(x)flf’[.f(x)] dx. 1)

where ©"(8) = d*®(8)/dé°. Hence the Taylor series for Q, expanded to third order,
trivially reduces to

1
Q@) = 4, Q" (0)e’ (22)
and the energy may now be written as
U= Ui —¢0"(0)e +( i — Ku)sb. (23)

The stationary points now may be determined by ensuring that the derivatives with
respect to ¢ vanish, which requires that

—10"(0)e* +(Ki' =K = 0. (24)
Since 0”(0) > 0, this equation has solutions for ¢ only when K|, < K{j", as expected.
and solving for ¢ yields two solutions
2BKS" ~ Ki)
o=+ [P (25)
\/ Q"(0)

which may be alternatively written in terms of G as

(2B17/5)* 20/ (1= )7..)'

]
0" G (1= /G/Ge) P x £0.4543b(1 —/G/Goyi) "2

e=+4bh
(26)

where the numerical factor in the latter form, also verified numerically, can be obtained
from equating G to ® of (6) and (5b), and then expanding about G = y,,and 6 = b/2.
Writing the asymptotic solution as d(x) = f(x)+gg(x), the stable minimum cor-
responds to the negative root and the saddle point corresponds to the positive root.
Finally, (7) and (23) may be invoked to determine the activation energy per unit
length

2 2K — Kl
3oeron

In terms of the applied energy release rate, (27) can be rewritten as

AU = (27)
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2D 213/4 :uGcril X [B(l _\/m)] i
AU = 3 <"" """ ) ’“"TQW (28)

or in dimensionless terms as

N R
e — b )1~/ GG 29)

where the dimensionless factor m = m(y,,/ub, v) is given by

8 (B1/b) 121 = vy k)
S A i 30
A I S OWES G0

"t

where all the terms involving # and Q" (0) are arranged as dimensionless combinations
which depend on vy,,/ub and v.

The results, expressed as AU vs applied G, are plotted in Fig. 4 for y,, = ub/2n*
and v = 0.3. The solid line gives the activation energy as calculated exactly in the
previous section, and the dashed line gives the asymptotic result, which is seen to be
remarkably accurate over the entire range G/G;, > 0.2 shown. The dimensionless
function m has values of 0.2869 for ub/2r?y,, = \/2/4, 0.2865 for ub/2n°y, = \/2/3,
0.2864 for ub/2n°y,, = 1.0, and 0.2863 for ub/2n’y,, = \/5_ (all for v = 0.3), indicating
an extremely weak dependence on y,,/ub. Thus (1 —v)AUZR /ub? is, essentially, depen-
dent only on G/G. ; the ratio y,/ub is still important in determining the activation
energy, in as far as it affects the calculation of G.; (= 7, for the present case of

coincident crack and slip planes).

3D AsYMPTOTIC CALCULATION OF THE SADDLE POINT LOOP SHAPE AND
ACTIVATION ENERGY

In the 3D analysis, it is assumed that the saddle-point configuration involves a 3D
elastic field associated with a localized outward protrusion of slip from the stable 2D
incipient dislocation distribution corresponding to branch A of Fig. 2. Here, the
reference state is the 2D pre-nucleation state in the above analysis, i.c. the state given
by the negative root of ¢ in (25). It is convenient, however, to think of ¢ as a
positive number for the pre-nucleation state, so the shear distribution is written as
o(x) = f(x) —¢eg(x), with ¢ interpreted as 5/2—05;,. The saddle-point distribution,
which now is taken to be 3D, is assumed to be approximately expressible as
o(x,z) = f(x)—eg(x)+a(z)g(x), where a(z) is a “’shape” function characterizing the
extent of the outward perturbation, which we determine so as to render the energy
stationary. The coordinate z lies along the crack tip and z = 0 is taken to be the center
of the perturbation (see Fig. 5). Note that the trivial solution a{z) = 0 corresponds to
the pre-nucleation state and a(z) = 2¢ corresponds to the 2D saddle-point distribution
discussed in the previous section,

The functional s[d(x, z)], relating the stress on the slip plane (coplanar with the
crack) to the displacement distribution, is considerably more complicated than its 2D
counterpart. However, it has been given by Gao (1988) and Gao and Rice (1989),
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Mode 11 Loading Slipped Area in:
1. Stable, Pre-Nucleation State
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F1G. 5. Three-dimensional gecometry and coordinate system.

with additional simplification by H. GaAo (private communication, 1991): see the
Appendix. Whenever the argument of s does not depend on z, however, it may be
interpreted as its 2D representation given in (9). The 3D analog to the reciprocal
theorem given by (13) is

J‘[ J/ s[O(x,2)]0-(x.2)dx dz = J‘l J/ s[0-(x,2)]0,(x,2)dx d=. 3N
£ J0 v JO

The functional characterizing the difference in energy between the 2D pre-nucleation
state and the saddle-point distribution is

AE :J | f D[/ () = #9(0) +a(2) g()] — D £ (x) ~ g ()]} dx d=

o
5 J J) L/ () = eg(x) +a(2) g (D[ / (x) —eg(x) + a(z) g(x)]

a0

dxdz. (32)
\/27t.>c

—s[f () —eg(O][f (x) —eg(0)]} dx dz— K, j L

Proceeding in an analogous manner as with the 2D energy functional, the 3D energy
functional simplifies to

AE = J ' J D[ f () —2g(x) +a(2) g(xX)] — B[ f(x) — eg(x)]

—a(2) gD f ()] —eg (D[ f ()] — e (2)g ()P’ f(x)]} dx dz

1 x iz
3 J J sla(2)g(0)] ~a(2)s[g(x)]} (=) g(x) d dz
+(Kull KII)J J (l( )(AF) :. (33)
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To simplify further, it is assumed that ® may be expanded as a Taylor series about
f(x) [valid of course for small £ and a(z), and assuming the derivatives of ®(J) with
respect to 6 exist], just as was done in the 2D analysis above, with the result that

D[/ (x) —eg(x) +a(z)g(x)] = [ f()+ Q[ f(x)]g(x)[a(z) —¢]
+30[f (0] (0[alz) —e]* + @[ f(0)]g* (Va(z) —&’,  (34a)
LS (x) —eg(x)] = DLL ()] —D'[f(x)]eg(x) + 30" f (x)]e’g (x) — e @[ f (x)]e’g* (x).
(34b)
Inserting (34a) and (34b) into (33) and simplifying gives

AE = —éQ'”(O)jX {la(z) —&]* +&’} dz+( ff“*Ku)ﬁfj a(z)dz

+ % J | L {sla(z)g(x)] —a(2)s[g(x)]}a(z)g(x) dx dz, (35)

where Q" (0) and f are the same as in the 2D analysis. In order to determine the
functions a(z) which make AF stationary, the first variation of AE must vanish for
arbitrary variations of a(z). Using (24) to replace the term with the Kj;s, this gives

0= —%Q”/(O){[G(Z)—S]z—sz}+LJ {sla(2)g(x)] —a(z)slg(0)]}g(x) dx.  (36)

Re-arranging gives the following integral equation for a(z), the solutions of which
should correspond to extrema of energy :

Q" (0)[ea(z) —3a*(2)] = L {a(2)s[g(x)] —sla(2) g ()]} g(x) dx. 37

Observe that a(z) = 0 and a(z) = 2¢, — 0 < z < 4 0, are the solutions corresponding
to the 2D minimum energy and saddle-point states. We wish instead to find a solution
with non-constant a(z), but with a(z) — 0 as |z| - o0, corresponding to the 3D saddle-
point state. Inserting (37) into (35) yields the simplified expression for the activation
energy

_2O [
I T

AE a’*(z) dz. (38)
Because the reference state used in (32) is exactly the pre-nucleation state, the energy
in (38) is the activation energy, consistent with the definition in (7). It must be
understood, however, that the function a(z) must satisfy (37) before (38) is evaluated.

The numerical procedure for solving (37) proceeds by discretizing the function
a(z), 1.e., a; = a(z,), over the integration interval. The integral equation may be then
regarded as a nonlinear set of algebraic equations, which may be iterated to consistency
via the Newton-Raphson method for a given value of &. When initial guesses covering
a wide range of shapes and sizes (e.g. Gaussian curves of various widths and rec-
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Shape functions a(z) at various loads
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FiG. 6. Shape functions a(z) of 3D asymptotic analysis for various values of G/G,; (corresponding to

&/b = 0.45,0.35,0.25. 0.15, and 0.05) ; the slip at the crack tip is d;, = b{2 —e+a(z).

tangular boxes with varying degrees of roundness in the corners) are input, the
algorithm either : (i) converges to a(z) = 0, (ii) converges to a(z) = 2¢, (iii) converges
to a(z) equal to the solutions shown in Fig. 6 and discussed in the following section,
or (iv) diverges. Evaluation of the integral on the right-hand side of (37) is exacerbated
by the fact that the 3D form of the s operator involves the evaluation of slowly-
convergent double-integrals, leading to an unwieldy triple integral overall. The inte-
grands involved in the evaluation of s are functions of x, £, and z—Z (where ¥ and 2
are the actual integration variables), thereby making the integral of the second term
in (37) a convolution of a(z) with another function. The integral may be evaluated
by combining the terms involved in the right-hand side of (37) and integrating first
over x and . More details concerning the numerical procedure may be found in the
Appendix.

As a confirmation that the solutions shown in Fig. 6 are indeed saddle-point
solutions, the energy functional in (35) is regarded as a function of the variables g
characterizing a solution and its Hessian is numerically evaluated. The eigenvalues of
the Hessian are then calculated and, in all cases, there are a mixture of negative and
positive values. The mixture of eigenvalues implies that the Hessian is indefinite, and
hence the calculated solutions must be saddle points.

NUMERICAL RESULTS AND DISCUSSION

The 2D results are shown in Fig. 4; the exact calculation of the activation energy
(per unit length) is shown as a solid line, the asymptotic approximation is shown as
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a dashed line, and the result derived by L1 (1981, 1986) [see (1)] based on the Rice-
Thomson model is shown as an alternating dashed—dotted line, which overestimates
the more exact results here. The ScHOCK (1991) 2D result is also shown, which
underestimates the activation energies calculated here by about 40%. The scaling
factor used, i.e. ub*/(1 —v) turns out to be particularly convenient because the numeri-
cal results become relatively insensitive to y,,/ub when plotted as a function of G/G
(= GJ/y,,)- This is discussed earlier in connection with the 2D asymptotic solution and
it also holds for the exactly calculated results. Of course, the activation energy pre-
dicted by (1) is entirely independent of y.,/ub.

In order to quantify the concept of thermal activation, it is essential to realize that
the activation process must involve a finite amount of energy supplied locally to the
dislocation line due to atomic vibrations. The process is inherently 3D, so a proper
treatment, as attempted in an asymptotic approximation in this paper, would deter-
mine the saddle-point configuration, consisting of a local protrusion of a dislocation
loop. The activation process could not adequately be modelled in 2D because an
infinite amount of energy would have to be supplied to the dislocation line to achieve
the saddle-point configuration. A simple approximation is to multiply the energy per
unit length (from the 2D analysis) by a fixed number of atomic spacings, say 5-10,
based on the 3D asymptotic results to be discussed. Table 1 shows the results from
the 2D analysis (assuming an activated dislocation length of 7.5b, ie.
AE ~ 7.5h AUZ2) for partial dislocations in Cu and Si and a full dislocation in Fe;
this scheme both underestimates and overestimates AE when compared to the 3D
results, depending on the G/G.,; ratio. The AFE estimates are listed in units of kT as
evaluated at room temperature. Material constants used in the various calculations
are tabulated in Table 2.

The 3D results are plotted in Fig. 7 as a solid line. For comparison, the 2D result
(the solid line from Fig. 4) is multiplied by 55 and by 105, and plotted as dashed lines
in Fig. 7. It is seen that 55 is too small of a factor to use in conjunction with the 2D
results. For larger loadings, a factor of as high as 105 is appropriate, and as high as
176 for loadings very near to critical (e.g. G =~ 0.9G.;). Additionally, the 3D result
by ScHOck and PUscHL (1991) is shown, which varies considerably from the present
result. Table 3 also gives specific values of the 3D result for the materials Cu, a-Fe
and Si.

The functions a(z), which give the z-dependence of the saddle point for the 3D
solutions, are plotted in Fig. 6 for various load levels, corresponding to ¢/h = 0.05,
0.15, 0.25, 0.35, and 0.45. Note that a(z) resembles a Gaussian “bell” curve and
undergoes a maximum value of between 3¢ and 4¢, thus the furthest extent of the 3D
protrusion is greater than the 2¢ protrusion predicted by the 2D analysis. This feature

TABLE 2. Material constants (k = 1.381 x 107 2* J/K)

Property Cu (partial) Fe (full disl.) Si (partial)

1 (GPa) 40.8 69.3 60.5
v 0.324 0.291 0.218
b (m) 14757x 107" 2.4825x 107 '°  22172x 10" '°
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F1G. 7. Activation energy AE (3D) vs loading. The solid line is the asymptotic result and the dashed lines
are the 2D “cxact™ result multiplied by 5h and by 105; dashed—dotted line is result of Scuock and
PUscHL (1991).

may be qualitatively rationalized as follows : one consequence of the 3D nature of the
problem is that variations in the function a(z) give rise to a ““screw”-like contribution
to sla(z)g(x)], that is, if a(z) at some point were to approach the form of a step
function, the s functional would have a term which resembled the stress field to a screw
dislocation impinging upon the crack tip at a right angle. Any realistic a(z) that describes
a dislocation segment which has popped out will contain two regions of comparatively
large slope, and the perturbations of the stress field due to the two individual zones
reinforce each other, with the net result that the right-hand side of (37) is sufficiently
modified by this effect to cause a solution, otherwise being of order 2¢, to be increased.
This shape is consistent with the shallow loop proposed by Haasen (1983) and
discussed by ScHOcK and PUscHL (1991).

TABLE 3. Activation energies: Cu, Fe, and Si based on 3D asymptotic

calculation
G AEcu pura AEvcnan. AEsi purin

G KT KT oo KT
0.1 394 303.2 171.0
0.2 31.4 2423 136.7
0.3 25.5 196.9 I11.1
0.4 20.6 158.8 89.5
0.5 16.3 1254 70.7
0.6 124 95.5 53.9
0.7 8.87 68.4 38.6
0.8 5.65 43.6 24.6
0.9 2.68 20.7 11.7
1.0 0 0 0
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Contour plots, i.e. plots of constant J in x—z space, are shown in Fig. § for the
particular saddle-point distributions corresponding to the various ¢ mentioned above.
Since the maximum of the slip d,, at the crack tip is »/2 —e+a(0), and is expected to
be less than b in a more exact analysis, solutions with 2-3¢ greater than about 5/2 (i.e.
¢/b > 0.2) may push the limits of the 3D asymptotic analysis, although the 2D analysis
remains acceptable for ¢/b up to nearly 0.5. These problems are seen by the fact that
the contour lines exceed & = b in Figs 8(c) and (d). Since the misfit energy ©(J) has
been expanded about the slips of the 2D minimum energy state, there is nothing in
the asymptotic formulation to reveal that & ~ b should be an upper limit to the slip.
It is possible that the AF values are, nevertheless, approximately correct even when
the local ships of the asymptotic analysis exceed b, but such must be checked by further
work. The fact that the results at loadings much reduced from critical remain in the
range of 5-10h AU suggests some degree of continued validity.

(a) Contour plots for G/G_, = 0.99 (e/b = 0.05)

35 ' 1
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(b) Contour plots for G/G,, = 0.89 (e/b = 0.15)
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F16. 8. Contour plots of the 3D slip distribution for: (a) G/G.. = 0.99 (/b = 0.05), (b) G/G.,;, = 0.89
(e/b = 0.15), (¢) G/G = 0.71 (¢/b = 0.25). and (d) G/G oy, = 0.25 (¢/b = 0.45).
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F1G. 8. Continued.

[MPLICATIONS FOR DISLOCATION NUCLEATION AT ELEVATED TEMPERATURES
Dislocation nucleation in metals

An elementary calculation of a AE/AT below which there is spontaneous nucleation
now follows. Since dislocation nucleation is considered to be a thermally activated
proceess, at finite temperatures a dislocation segment may, with the aid of thermal
fluctuations, be nucleated under a stress level that would not be sufficient for “instan-
taneous” nucleation, or for nucleation at 0K. A given dislocation segment must
“wait” until a thermal fluctuation is successful in inducing emission, and the net result
is that the total nucleation rate of dislocations must scale with an “attempt” frequency,
here taken as (Cgear/P), Where cuer ® 3 kmy/s is the shear wave speed, multiplied by
the Boltzmann probability that an incipient dislocation loop possesses an energy
greater or equal to the activation energy AE, thus giving an Arhennius-type relation.
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Similar arguments are given by ScHOck (1980) for thermally activated dislocation
motion via the nucleation and propagation of a double kink and MATTHEWS et al.
(1976) for the nucleation of dislocations at a free surface. Thus

v = n(Csnear/b) €Xp (= AEJKT), (39)

where v is interpreted as the frequency of spontaneous nucleation events per unit
distance along the crack front, # is taken as the number of nucleation sites per unit
length of crack front, taken here as n = 1/10b, where 104 is used in light of the broad
shape functions shown in Fig. 6. Assuming that v &~ 10%/s mm describes spontaneous
nucleation on a laboratory time scale for a metal, solution of (39) gives a borderline
AEKT ~ 30.

Examination of Table 3 (the 3D results) leads to the conclusion that thermal
activation would be sufficient (at room temperature) to spontaneously emit a partial
dislocation in Cu at loadings of G &~ 0.2G,;, or greater, and a full dislocation in Fe at
loadings of G = (0.8-0.9)G,;, or greater, keeping in mind that G is the critical loading
for dislocation nucleation without help from thermal activation. At T = 27, these
values for spontaneous nucleation would, e.g., change to approximately <0.1G;, for
Cu and (0.7-0.8)G,; for Fe. The relatively low value of the activation energy for
Cu leads to the conclusion that dislocation nucleation is remarkably casy at room
temperature, i.e. an energy release rate of about 20% of the value at 7' = 0 is required.
It is perhaps best, however, to think in terms of the applied stress intensity factor,
which varies linearly with an applied stress. If K{* is defined as the critical stress
intensity for nucleation, then at room temperature a dislocation in Cu would spon-
taneously emit at approximately \ﬂ).2 it 045K,

Dislocation nucleation in silicon

The borderline AE/kT should be re-calculated for the case of Si in light of exper-
imental observations which show crack tip shielding occurring at or above the tran-
sition temperature with as few as five dislocations (CHIA0 and CLARKE, 1989) but
more commonly on the order of magnitude of 100 (SAMUELS and ROBERTS, 1989;
WARREN, 1989), on time scales comparable to a minute. Although no nucleation rate
has been specifically measured in the experimental work referenced, an approximation
would be to assume that 1/s mm describes nucleation under the conditions noted. Due
to the logarithmic dependency of AE/KT on v as predicted by (39), an order of
magnitude difference in the assumed nucleation rate does not appreciably affect the
calculation. The solution of (39), using the Burgers vector of a Shockley partial in Si,
and v = I/s mm gives AE/kT ~ 43. Using similar reasoning, MATTHEWS ¢r al. (1976)
give a similarly-defined cutoff value of AE/kKT =~ 50, which is discussed in further
detail by FITZGERALD et al. (1989) in connection with the nucleation of dislocations
at a free surface in Si.

Examination of Tables | and 3 leads to the conclusion that a dislocation would
be spontaneously emitted in Si when G = 0.6-0.7G.;, at room temperature, and at
G ~ 0.4G,; at twice room temperature. An important issue is that of whether G can
be arbitrarily increased to the critical value before cleavage occurs. This consideration
is especially important in the case of silicon, which cleaves at room temperature, i.e.
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as G is increased, its critical value for cleavage (usually approximated as the Grithth
energy) is attained before conditions for dislocation nucleation prevail. The activation
energy results may be used to determine the temperature at which it is possible to
nucleate a dislocation when the material is loaded to the Griffith load. By making use
of this discriminating condition, it is possible to predict a brittle-to-ductile transition
temperature based on dislocation nucleation. The details of this type of calculation
are the subject of an upcoming paper (BELTZ and RicE, 1994), and only the highlights
are given here, in part because the present work neglects tension—shear coupling which
is thought to be important for nucleation in Si.

In order to proceed with the calculation, it is necessary to consider a particular
geometry. Since Si cleaves along its {111} planes, it makes sense to consider the
competition between cleavage and dislocation nucleation on another inclined {111}
slip plane. For example, consider a crack on a (111) plane with its tip along the [0T1]
direction (see Fig. 9). If a mode I load is imposed, the favored slip plane for nucleation
is the (T11) plane which is inclined at 70.53 * with respect to the fracture plane. The
critical load for nucleation of a Shockley partial at 0 K on this slip plane is approxi-
mately 5.29y,, ~ 10.1 J/m”, where 7, has been taken here as the relaxed value cal-
culated by Kaxiras and DUESBERY (1993). This result depends on many factors, such
as the coupling between tension and shear across the slip plane, and the orientation
of the Burgers vector: these issues and their cffect upon the activation energy are
addressed in further detail by Sun er al. (1993) and BELTZ and Rice (1994). The
Griffith load is taken here as 3.12 J/m’. which is based on the Tyson (1975) correlation
with formation energy and also happens to be the value calculated quantum mech-
anically by HUANG er al. (1989) for a reconstructed {111} surface using density
Junctional theory. i.e. the same method used by Kaxiras and DUESBERY (1993) to
calculate the unstable stacking cnergy that goes into G- At the Griffith load,
G/G.i = 0.31. corresponding to an activation encrgy of (0.53)ub*/(1 —v) = 4.47 x
10 " J/m* =~ 2.8 eV, based on the asymptotic 3D calculation (on which the
numbers in Table 3 are based). Using the discriminating condition of AE/KT = 43
discussed above, the transition temperature turns out to be 7, = 480 C. This pre-
liminary calculation underestimates the actual transition temperature range [c.g.
the value of 562 C at a strain rate of 1.3x 10 ¢ mentioned earlier in this paper.
from work by SAMUELS and ROBERTS (1989)]. The calculation 1s consistent, however.

Stip Planc

Crack Surface
(111)

k. [211]
8 =70.53° 0Tt

f

F1G. 9. Schematic depicting the geometry used for the analysis of thermally activated dislocation nucleation
in silicon.
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with the idea that thermally activated dislocation nucleation is at least a necessary
requirement for the brittle-to-ductile transition to occur, while the transition itself
may be due to the strong temperature dependence of dislocation mobility in Si.
Dislocations, once nucleated, must still be swept away from the crack tip to relax
stress.

Remarks on the activation energy for molecular dvnamics (M D) simulations

In MD simulations of crack tips, it is typical to devise atomic arrays which extend
many atom spacings in the x- and y-directions, i.e. in the plane perpendicular to the
crack tip, but only over a small number of atomic planes (as few as two in simulations
of cracks in fcc or bee lattices) in the z-direction. The Newtonian dynamical equations
for the atoms are solved by assuming that atom locations in the layer considered are
repeated periodically in the z-direction. Let H be the layer thickness. The layer itself,
with appropriate modification of atomic force laws in a way that would correspond
to periodic repeats of its atom positions, may be considered as a dynamical system to
which the ideas of statistical mechanics may be applied. For a thin layer, the imposed
periodicity will force any shear distribution at the crack tip to be 2D in character.
Thus if AEY? = AEMP(H) is the activation energy for a MD model involving thick-
ness H of the periodically repeated layer, then for a thin layer, AEMP ~ HAUZX.
Here AUZ is the 2D activation energy per unit length, which has been calculated here
based on the Peierls model and is given in Fig. 4 and Table 1. Only with increasing
H can shear configurations develop that are localized along the crack front, like in
Figs 6 and 8, so that we may expect AEN’ to increase initially as HAUY but to
ultimately saturate at AFE,,, the 3D activation energy, as H becomes large.

From Fig. 7 and Tables 1 and 3, we predict that HAUZY will generally be smaller
than AE,, unless H exceeds 5-1056. For loadings that are near to critical, which are
the cases most feasible for MD study of activated emission because of the com-
putational time steps involved, and which are also the cases for which our calculations
of AE,. are thought to be most reliable, H AUZY will be smaller than AE,., unless H
exceeds about 1756, Thus the predicted activation energy to correspond with a MD
simulation will vary with layer thickness H roughly as shown in Fig. 10; the solid
curve is a guess, but it must have the small and large H behavior shown by the dashed
lines. Figure 10 has been drawn for a loading G ~ 0.7G., at which (Fig. 7)
AE,. ~ 10hAU;Z, so that the dashed lines meet at H = 10b. The lines meet at yet
larger H values, as large as H ~ 17b, for higher load levels like G =~ 0.9G,;,, and meet
at smaller /i values at lower load levels, perhaps as small as H =~ 5b if our asymptotic
predictions continue to be approximately correct at low load levels.

As an example, consider a crack on the (100) plane, growing in the [011] direction,

in a bece lattice. For the usual {111 bee slip direction, b = (\/3/2)a0, where a, is the
side length of a unit cube in the lattice. The lattice geometry allows consideration of
a minimum thickness H.;, of the simulated layer that includes just two (011) atomic
planes, in which case the periodic repeat distance is the diagonal of a cube face, H,;,
\/Za(). Thus H,;,,/b = 2\/2/\/3 & 1.6. For such an MD model, and for the loading
G ~ 0.7G,;, considered in Fig. 10, we have AEMP ~ 0.16AE,,. Then, T = 100K in
the MD simulation of the two-atom-plane layer should give thermal activation effects
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FiG. 10. Activation energy AEN? (solid line, exact shape unknown) corresponding to molecular dynamics
simulation of a layer of atomic planes, occupying thickness / in the direction parallel to the crack tip,
with periodic conditions at the layer faces. Here AE,, is the 3D activation energy AE of Fig. 7. Drawn for

loading G ~ 0.7G;,; value of H at which dashed lines intersect increases with G/G

erit-

similar to T'= 600K for the 3D solid. For G =~ 0.9G.;, AEMP ~ 0.09AE,,,, and
T = 100K in the MD simulation should then give effects similar to T~ 1000K for
the 3D solid. Hence the MD model will greatly overestimate the already large effects
of temperature that we have predicted based on AE, . These are important effects to
consider when planning and interpreting MD simulations.

SUMMARY

The activation energy for dislocation nucleation from a crack tip has been calculated
within the Peierls framework. The advantage of this method is that incipient dis-
locations are treated as a gradual build-up of atomic shear across a slip plane, thereby
eliminating uncertainties associated with analyzing fully formed dislocations near a
crack tip. Furthermore, the saddle point associated with unstable dislocation emission
is treated in a similar manner. The activation energy per unit length, a 2D calculation,
is calculated exactly as well as asymptotically for loads near the critical load for
emission. The activation energy for emission of a 3D loop is also calculated asymptot-
ically. It 1s found that a good approximation of the 3D result generally consists of
multiplying the 2D result by 5-10b (but by as much as 175 for loadings very near to
critical). Specific values of the activation energy for Cu, Fe, and Si are calculated, and
the results are used to rationalize the spontaneous emission of dislocations due to
thermal effects at loads below the critical load. A preliminary calculation of the
activation energy to nucleate a (glide set) Shockley partial in silicon (based on the 3D
asymptotic approach) when loaded to the Griffith cleavage load indicates that thermal
activation of dislocations is possible at the observed transition temperatures. For the
future, it is important to devise a rigorous but non-asymptotic 3D calculation of AE,
and also to better understand inherent limits to the Peierls framework for modeling
dislocation nucleation, e.g., due to its neglect of the energy of surface exposed at the
crack tip by dislocation blunting.
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APPENDIX : NUMERICAL PROCEDURE

The functional s[é(x.2)] appcaring in the integrand of (37) may be written as (GA0o. 1988 ;
Gao and Rick, 1989 H. Gao, private communication, 1991)
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Replacing d(x,z) with a(z)g(x), formulating the quantity {a(z)s[g(x)]—s[a(z)g(x)]}. and

rearranging [noting that g(0) is unity] gives
ux a(@)—a(z) 4z
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where the “prime” notation on functions a and ¢ refers to differentiation with respect to the
argument. Multiplying (A4) by g(x) and integrating gives the right-hand side of (37),

J {a@)s[9(0)] —sla() ()]} g(x) dx = J () —a)Faz—2) d2+ j a(2)Fy(z—2) d,

x

(AS)

where

_ xg(x) .
Fo=— 47[(1‘»)} [ +("_" 557 dx J J H(x,X,z—-2)g(X)g(x)dx dx
(¥—x)g' () g(x)
4n(1*‘)ﬁf)/———rd dx (A6)

and

(ﬂ—Z)g(X)y(’C)
Fa=4 L J} (A7)

Noting that the integrands in (A6) and (A7) remain finite over all x and X cxcept whenz —7 = 0
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the functions F,(z —2) and Fy(z—2) are obtained by numerically integrating the representations
given in (A6) and (A7) via a 21-point Gauss Kronrod rule with a relative error in the result of
10 % The functions become singular for - = Z; however, that point is not necded : during the
actual solution of (37), the integral given by (AS) is rapidly carried out via the Gauss
Chebyshev integration formula (ERpoGAN and Gupta, 1972 Erpocan, 1973), which ncver
requires the evaluation of the integrands at = = Z.

To achieve a suitable format in which to use the Gauss—-Chebyshev scheme, the integrals in
(AS) arc rewritten with semi-infinitec domains of integration, noting that F, is an even function
and Fy is an odd function :

ﬁ {a(2)s[g (0] —sla(2)g(0)] o) dx

= J [a(Z) —a(D]Falz =)+ Fals+ D)} df-l—J d (N Fy(z~2)~Fa(z+2)) dZ. (A8)
o 83
Next, the following change of variables is made which maps the semi-infinite domain onto the
region —1 <y < 1!
144 14+<

-=bh , =5 i (A9)
[ —n 1—<
The domains of » and & arc then discretized and the integral (37) is pointwise enforced at
valucs of # given by
a(2i—1)

n; = COs 2(—;1—4_”-, i=1,...,n+1 {A1D)

Integration is carried out by discretizing the domain of £ in the manner

. jn
;= COs

oL, j=1 .
> PRSI "

The remainder of the numerical procedure proceeds cxactly as outlined by Berrz and Rice
(1992}, with n taken as 50.



