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ABSTRACT 

THE ACTIVATION energy for dislocation nucleation from a stressed crack tip is calculated within the Peierls 
framework, in which a periodic shear stress vs displacement relation is assumed to hold on a slip plane 
emanating from the crack tip. Previous results have revealed that the critical G (energy release rate 
corresponding to the “screened” crack tip stress field) for dislocation nucleation scales with y., (the unstable 
stacking energy), in an analysis which neglects any coupling between tension and shear along the slip plane. 
That analysis represents instantaneous nucleation and takes thermal effects into account only via the weak 
temperature dependence of the elastic constants. In this work, the energy required to thermally activate a 
stable, incipient dislocation into its unstable “saddle-point” configuration is directly calculated for loads 
less than that critical value. We do so only with the simplest case, for which the slip plane is a prolongation 
of the crack plane. A first calculation reported is 2D in nature, and hence reveals an activation energy per 
unit length. A more realistic scheme for thermal activation involves the emission of a dislocation loop, an 
inherently 3D phenomenon. Asymptotic calculations of the activation energy for loads close to the critical 
load are performed in 2D and in 3D. It is found that the 3D activation energy generally corresponds to 
the 2D activation energy per unit length multiplied by about 5 -10 Burgers vectors (but by as many as 17 
very near to the critical loading). Implications for the emission of dislocations in copper. K-iron, and silicon 
at elevated temperature are discussed. The effects of thermal activation are very significant in lowering the 
load for emission. Also, the appropriate activation energy to correspond to molecular dynamics simulations 
of crack tips is discussed. Such simulations, as typically carried out with only a few atomic planes in a 
periodic repeat direction parallel to the crack tip. are shown to greatly exaggerate the (aheddy large) effects 
of temperature on dislocation nucleation. 

WE BUILD on recent advances in the modeling of dislocation nucleation at a crack tip 
based on the PeierlssNabarro concept (RICE, 1992 ; BELTZ and RICE, 199 1, 1992 ; 
RICE et al., 1992 ; BELTZ, 1992 ; SUN et al., 1991, 1993 ; SUN, 1993). These have 
provided a consistent description of the genesis of a dislocation, free of core cut-off 
parameters of earlier approaches, and have predicted a critical load for emission in 
various materials. The analyses presented thus far, however, have neglected thermal 
effects, except perhaps through the weak temperature dependence of the elastic con- 
stants which enter the analysis. They thus correspond to instantaneous emission 
without the aid of thermal fluctuations. The purpose of this paper is to extend the 
Peierls model to calculate the activation energy associated with the nucleation of a 
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dislocation, thereby gaining insights on the effects of elevated temperatures. The basic 
premise is that, assuming a crack is loaded helms the critical load for instantaneous 
emission of a dislocation, a dislocation could nevertheless be emitted if thermal 
activation supplies enough energy to overcome the predicted activation energy barrier. 
Realistically, this is a very localized process, involving the unstable emission of a 
dislocation loop, and hence the problem is inherently 3D. Initially, a 2D activation 
energy (per unit length of dislocation line) for dislocation nucleation within the 
Peierls framework is calculated directly and then via an asymptotic analysis (good for 
loadings near the critical loading for emission). Next the asymptotic analysis is 
extended to the 3D situation, so as to approximately calculate the activation energy 
and shape of the activated slip configuration. 

RICE and THOMSON (1974) regarded the ductile vs brittle behavior of materials as 
a competition between dislocation emission at an atomistically sharp crack and cleavage 
decohesion. In their work, the activation energy was calculated for a crack which had 
been subjected to the Griffith load for cleavage (i.e. when G’. the “applied” energy 
release rate, attained the value ?;I,. the ideal work of fracture defined as twice the 
surface energy). A disadvantage is that their analysis considered a pre-existing, fully- 
formed dislocation on a slip plane intersecting the crack tip and hence relied on the 
uncertain core-cutoff parameter rC, from elastic dislocation theory [see Fig. 1 (a)] ; that 
and other ad hoc energy cut-offs, especially at the near-atomic length scales involved, 
provided what are now regarded as very questionable estimates of the activation 
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FIG. I. Atomically sharp crack loaded in mode II. with a slip plane continuing along the crack plane. (a) 
Depicts a fully formed Volterra dislocation. as analyzed in the Rice Thomson model. and (b) dcnotcs the 
incipient dislocation modelled as a P&&type shear profile. The crack surfaces are assumed to he free of 

tractions. 
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energy (ARGON, 1987). With this limitation in mind, various crystals were classified 
as ductile or brittle based on the outcome of this calculation. In general, dislocations 
in fee metals were found to become unstable when the fully formed dislocation was 
within one core radius of the crack tip, and since the elastic forces considered in this 
calculation are ill-defined on the length scales considered, it was argued that dis- 
locations were spontaneously emitted in these materials. The bee metals, as well as 
the covalent and ionic crystals considered were found to have positive activation 
energies with an activated dislocation loop that was sensibly large. Examples include 
Fe, with an activation energy of 2.2 eV (which is small enough for thermal activation 
to be important, as will be discussed later), and Si, with an activation energy of 111 
eV (which is prohibitively high for thermal activation to occur at room temperature), 
but which is much higher than what is found here. 

Through extensions by MASON (1979), ANDERSON (1986), and ANDERSON and RICE 
(I 986), the Rice-Thomson model evolved to a state where the competition between 
dislocation emission and cleavage was evaluated not in terms of an activation energy 
but rather via the separate calculation of G,,,,, the energy release rate associated with 
the emission of a single dislocation and GCICil,,C, the Griffith cleavage energy. The former 
depends not just on the geometry of the slip system relative to the fracture plane, but 
also on the ratios of stress intensity factors (modes I, II and III) to one another. If 
G,,,, < G,,,,,,. then it is assumed that a dislocation would be spontaneously emitted 
before decohesion, and vice versa. The calculation of the activation energy for dis- 
location emission has been additionally considered within the Rice-Thomson frame- 
work by Lr (1981, 1986) who calculated the activation energy as a function of the 
applied energy release rate, rather than evaluating it at the Griffith cleavage level. Li’s 
result, valid for a mode II load and a slip plane coplanar with the crack plane, gives 
the activation energy (per unit dislocation length) to emit an edge dislocation and can 
be written as 

(1) 

where p and v are the shear modulus and Poisson’s ratio, respectively. This result will 
be seen to overestimate the more exact 2D results calculated here. 

Calculations of the activation energy for dislocation emission in silicon have been 
of interest recently because this material undergoes a relatively sharp brittle-to-ductile 
transition at a temperature dependent on loading rate, e.g. at approximately 562 ‘C 
atastrainrateof1.3xlO ‘S ’ [see experimental work by SAMUELS and ROBERTS 
(19X9), CHIAO and CLARKE (1989), WARREN (1989), MICHOT and GEORGE (1986), 
and references therein]. Dislocation motion below the transition is not observed, and 
the transition temperature increases with strain rate; increasing the strain rate by a 
factor of 20 increases the transition temperature by about 100 ‘C. As mentioned 
before, however, the Rice-Thomson estimate of the activation energy at the fracture 
stress for Si was 111 eV, making thermally activated dislocation nucleation at the 
transition temperature impossible. HAASEN (1983) has estimated the activation energy 
in Si at the Griffith load to be as low as 0.5 eV, taking into account the fact that the 
stacking fault energy in Si is relatively low and hence nucleation of a partial dislocation 
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with Burgers vector b = (a/6)[112] is favored. Additionally, I.-H. Lin and R. Thomson 
(private communication, 1992) have carried out a calculation of the activation energy 
for a rectangular partial dislocation loop in Si and obtain values between 0.5 and 1 .O 
eV, making thermal activation possible; the difference between these numbers and 
the one calculated by Rice and Thomson is attributable to the fact that a partial 
dislocation is considered, and a much different saddle-point configuration was 
assumed (rectangular vs circular). The aforementioned numbers seem too low to 
account for the ductile-to-brittle transition in silicon, especially in light of recent 
atomic calculations by DUESBERY et al. (1991) and KAXIRAS and DUESBERY (1993), 
which reveal anomalously large values of the unstable stacking energy yUs (= 1.91 
J/m* for relaxed shear, commonly referred to as yy, on the so-called “glide-set” and 
1.67 J/m’ on the “shuffle” set), the parameter which controls dislocation nucleation 
within the Peierls framework (RICE, 1992) and which will be discussed in further detail 
below. It has become increasingly evident in recent years that it may be lattice friction 
against motion of dislocations, not the nucleation event itself, which controls the 
brittle-to-ductile transition of silicon (MICHOT and GEORGE, 1986 ; BREDE and HAASEN, 
1988 : CHIAO and CLARKE, 1989; WARREN, 1989; HIRSCH et ul., 1989; HIRSCH and 
ROBERTS, 1991 ; HSIA and ARGON. 1993). However, the issue remains incompletely 
resolved. Further discussion of the instantaneous nucleation of dislocations in Si may 
be found in recent work by SUN et al. (1993) based on parameters for Peierls modeling 
of Si from KAXIRAS and DUESBERY ( 1993) and HUAN(; PI ~1. ( 199 1) ; additionally. the 
detailed application of the ideas presented in this paper to the understanding of 
thermal activation in the brittle-to-ductile transition in silicon is the subject of a 
follow-up paper (BELTZ and RICE, 1994). 

The most serious drawback to the RiceeThomson model is that it treats a fully- 
formed dislocation on a slip plane intersecting the crack tip. as depicted schematically 
in Fig. l(a). The activation energy analysis proceeds by considering a given set of 
applied loads and then finding stable and unstable configurations which satisfy equa- 
tions of equilibrium, in terms of I’ (the radius of the pre-existing loop). As pointed 
out by AIIC;ON (1987). and more recently SCH(jCK (1991), a dislocation is likely to 
emerge from a crack tip as a Peierls-like shear distribution of atoms across the slip 
plane. and hence the Burgers shear displacement of the loop, as well as the radius of 
the loop, should be considered as the activation parameters. A simple argument given 
by Argon shows that the consequences for the activation energy should be appreciable : 
the primary scaling factor for the energy analysis (as will become apparent later in 
this work) is ,u/? (p is the shear modulus and his the magnitude of the Burgers vector) ; 
hence, if the incipient dislocation configuration involves slip of less than a full atomic 
spacing, then the activation energy should be strongly reduced due to the power of 3 
[the same argument applies as well to the HAASEN (1983) analysis of partial dis- 
locations in silicon]. SCHiiCK (199 1) has treated the nucleation from a crack tip within 
the Peierls framework in an approximate fashion for a straight dislocation and a 
dislocation loop has been similarly treated by SCHICK and P&~HI> ( 1991). The 
activation energy analysis in this paper follows procedures within the Peierls frame- 
work set out by Rrcr-: (1992), and further developed by BELTZ and RICE (1991, 1992), 
RICE ct ~1. (1992), BELTZ (1992), SUN ct ul. (1993). and SUN (1993) in which exact 
2D solutions for incipient shear distributions at a crack tip are determined. 
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To review the Peierls, or Peierls-Nabarro, model for dislocation nucleation, suppose 
that one of the possible slip planes in a crystal intersects a crack tip. Here we assume 
that the material is an isotropic elastic solid, that the emergent dislocation is of edge 
character relative to the crack tip, and that there is negligible effect of tensile stress 
on the shear response along slip planes (analyses that remove all these simplifications 
are given in the works cited above). If the solid is loaded, an incipient dislocation may 
begin to form on a slip plane [see Fig. 1 (b)] ; under increasing load the dislocation 
may be emitted if the load reaches a critical value. Alternatively, cleavage decohesion 
could occur, causing the crack to propagate; this scenario is not addressed in this 
paper but it is important when evaluating the ductile vs brittle behavior of materials. 
The shear stress 5 on the potentially active slip plane is taken to be a periodic 
function of 6 (= 6, = 6, for the mode II case to be discussed), the shear displacement 
discontinuity across the plane. Once z = $6) is known, the shear displacement profiles 
6 = 6(x) (X is the distance from the crack tip) as a function of the applied stress 
intensity factors can be determined via the solution of an integral equation to be 
introduced below. In the simplest case, when the slip plane is taken to be coplanar 
with the crack plane, RICE (1992) showed that an incipient edge dislocation becomes 
unstable when G, the “applied” Griffith energy release rate associated with the mode 
II component of loading, given by G = (I -~)(K,,)‘/2,u, attains the value of the 
unstable stacking energy, corresponding to the first maximum undergone by the 
energy per unit area of the slip plane, @ = Q(6) = {z(6) d6. Emission criteria for the 
case when the slip plane is inclined at some angle 0 may be extracted from the same 
type of integral equation solution, assuming that a suitable function z(6) is known, 
chosen to at least approximately include the effects of tension normal to the slip plane 
(RICE et al., 1992; BELTZ and RICE, 1992; SUN et ul., 1993). 

The shear stress 5 on a slip plane is typically expressed as a function of A, the 
relative atomic displacement undergone by atoms on opposite sides of the cut, which 
differs from 6 due to an elastic shear strain z/p acting over a distance h normal to the 
cut, where h is the interplanar spacing. The simplest modeling assumes that the 
function z(6) is given parametrically by the relations (RICE, 1992) 

T = (ny,,/h) sin (27cA/h), (2) 

with 

6 = A - (b/27c) sin (271A/h). (3) 

An extensive literature exists [see RICE et 01. (I 992), SUN et al. (1993), and references 
therein] concerning more realistic forms for z vs 6, most of which include a coupling 
effect due to tensile stresses normal to the slip plane. Equation (2) is commonly 
associated with the Frenkel model, in which the initial slope of z vs A is identified 
with the shear modulus, giving 

7iU = pb2/2z2h, (4) 

thus within the model yUl is fully determined by p, h, and h. 
Results from atomic calculations (RICE et al., 1992; SUN et al., 1993) suggest that 
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(4) overestimates the unstable stacking energy for a wide range of materials. or 
underestimates it, in the case of Si. In this analysis it is convenient to note that until 
now the parameter h appears 0~1~’ in (4) ; hence it may be regarded not as the true 
interplanar spacing but rather as a fitting parameter which allows p and ;‘,,, to be 
independently specified for a given material. To be more specific, if h is literally 
interpreted as the interplanar spacing, /l/h = J2 for a Shockley partial in the fee 
lattice, J2/4 for a Shockley “glide” partial in the diamond cubic lattice, and ,/2/3 
for a full dislocation (( 11 1) type slip direction) in the bee lattice, then the Frenkel 
model rigorously states that, for the three lattices, ;I,, should be 0.036,&, O.l43/lh, 
and 0.062@, respectively. If, however, it is known that y,,, differs from the Frenkel 
prediction. for example in the glide planes of Si. where the atomic calculation ref- 
erenced earlier gives ,l,, Jo’ = 0 1421th an “effective” value of h/h. determined from (4). 
would then be l/(O.l42)2rc’ z 0.357 (vs the actual value of 0.354). It is interesting to 
note that the Frenkel theory overestimates 7::;’ in Si by only about 1%. 

The energy per unit area quantities V(A) and Q(b) are defined such that r dA = dY 
and r d6 = d@. Combining with (3) reveals that Q(6) = Y(A) -/z~‘(A)/2~1, and intc- 
grating the same equation gives 

YJ = Y,,, sin’ (ndjh). (5a) 

@ = ;‘,I, sin” (rrA/h). (5b) 

The latter is expressed in terms of 6 by (3). Figure 2 shows plots of Q(6) as well as 
r(d). Assuming that the slip plane is coplanar with the crack plane and there is mode 
II loading, RICE (1992) showed that the slip at the crack tip 6,,,, [ = d(x) at .Y = 0] is 

given by 

in any solution which renders stationary the energy functional U, the total potential 
energy of a slipped configuration per unit distance along the crack front. When ii,,,, 
lies along the branch of the curve labeled A in Fig. 2, the instability state is one of 
locally minimum energy and corresponds to a stable configuration of an incipient 
edge dislocation. When G reaches y,,, an instability occurs, and the dislocation is 

emitted. Note that for a given G less than G,,,, (G,,,, = y,,& in this simplified case of 
coincident crack and slip plane under mode 11 loading), additional solutions exist. 
Points A’. A”, etc. correspond to stable incipient dislocations after one, two. etc. 
dislocations have been emitted from the crack tip. When (i,,, lies along the portion 
labeled C, the stationary state represents a .raddle-point configuration-the slip dis- 
tribution corresponding to C is unstable due to the fact that the equilibrating load 
decreases as the distribution expands outward. For a given applied energy release rate 
G < G,,.,, (= y,,) the activation energy is defined as 

AU,,, = VLi(.~)l - ~[&,,n (-~)I. (7) 

where fi,c,d(.~) denotes the solution for 6(.x) having 6(O) (= 6,,,) on branch C and 
?jrnln(.~) is the solution on branch A. As mentioned earlier. the saddle configuration is 
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FIG. 2. Shear stress 5 and the slip plane potential @ vs displacement discontinuity 6: on the slip plane. Points 
A and C correspond to values of 6 at the crack tip in the stable (minimum energy) and saddle-point 
solutions. respectively, at a given load level. The intensity of the mode II loading is characterized by the 

crack tip energy release rate G. 

first analyzed by constraining the field to be 2D, so that AU,,, is an energy per unit 

length. 

DIRECT CALCULATION OF THE 2D ACTIVATION ENERGY PER UNIT LENGTH 

Au,,, 

The functional U giving energy of a 2D field per unit length along a crack front 
may be written for a linear elastic solid under a mode II load as (RICE, 1992) 

U[d(x)] = Uo+ 
s 
x @[S(x)] dx+ ; 

0 s 
X s[~(x)] 6(x) dx- r sL 6(x) dx, 

0 s 0 J271x 
(8) 

with 

s[~(x)l = &q (9) 

The first term in (8), Ui,, denotes the energy of the unslipped solid, i.e. the energy of 
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the loaded solid when 6(s) is constrained to zero. The second term is the energy 
gained on the slip plane when 6(x) develops, and the remainder of the terms account 
for the energy change of the material outside the slip plane and of the loading system 
due to the introduction of ;i(_y). The functional s[~(s)] gives the amount by which the 
shear stress r decreases upon introduction of the slip, with its “kernel” function 
[~/2rc( 1 - ~)]J~/.Y/(_Y- <) identified as the shear stress at distance ‘c due to a unit edge 
dislocation located at position < [see, e.g., THOMSON (I 986) or BELTZ (1992)]. Ren- 
dering (8) stationary with respect to 6(.r) yields the integral equation 

4, 
t[S(.x)] = @‘[S(x)] = ~7 -.s[S(x)], (10) 

d -71s 

which corresponds to enforcing stress equilibrium along the slip plane. Stable, or 
minimum energy, solutions 6,,,,,(s) of (10) have been determined numerically by BELTS 
and RICE (199 I, 1992) and BELTZ (I 992) in connection with the dislocation emission 
problem (i.e., in the range where G and 6,,, lie on branch A of the energy curve in Fig. 
2). Solutions are shown as solid lines for y,,, = pb;27c2 and v = 0.3 in Fig. 3(a) at 
various load levels up to instability. In order to determine the saddle-point solutions, 
a srconrl solution of (10) must be determined for each level of applied load. These 
solutions are found via the method used to determine the stable solutions, except that 
initial guesses of 6(x) are used that are yrrotrr than the solution corresponding to 
G = G,,.,,, and which have a (jllr given by the larger solution of (6). These solutions 
are shown as dashed lines in Fig. 3(a) for the same values of G as were used to 
determine the stable solutions, shown as solid lines. For more general conditions than 
assumed here (e.g. slip plane inclined with respect to crack plane, screw and edge 
components of emergent dislocation, tensionshear coupling, and mixed-mode 
loading, all as dealt with in references cited above) G,,,, should be interpreted as the 
maximum G for which a stable solution can be determined. Thus, while G,,.,, = ;I~,, in 
the specific case analyzed here. we shall generally phrase results in terms of the ratio 

GIG,,,,, supposing them to be at least approximately valid in those more general 
situations. 

Inserting (8) into (7) and simplifying with the help of (10) gives the following 
expression for the 2D activation energy, which can be simply evaluated numerically 

for a given pair &,,,,(x). and 6,,,(.v) : 

where &6) = Q(6) -6;@‘(6)/2. Evaluation of (I I) is carried out for yUh = ilhj2?r’ and 
I? = 0.3. As will be discussed later, the calculation is extremely insensitive to these 
values, however. In Fig. 4, the results are plotted as a function of applied load as a 
solid line. Table 1 shows the results for specific G values. The first column gives 
AU:: (an energy per unit dislocation length). The entry in each of the remaining 
columns gives an estimate of the 3D activation energy AE obtained by writing 
AE = 7.5hAUzz (i.e. assuming an activated dislocation length of 7.5h). for a Shockley 
partial dislocation in Cu, a full dislocation in Fe, and a partial dislocation in Si. The 
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FIG. 3. (a) Displacement profiles for various loads; the solid lines are the minimum energy solutions and 
the dashed lines are the corresponding saddle-point solutions. (b) Eigenfunction g(x) [ = irS(x: b,,,)/t%,,,, 
evaluated at 6,,, = h,‘2] determined as part of the 2D asymptotic analysis. All plots are for y,, = pthj2n’ and 

\’ = 0.3. 

AE estimated are listed in units ofkras evaluated at room temperature; implications 
for thermally activated nucleation are discussed later in this paper. 

ASYMPTOTIC CALCULATION OF THE 2D ACTIVATION ENERGY 

In order to more simply evaluate the 2D activation energy near critical loading, 
and to provide a basis for the 3D analysis to come, we present here an asymptotic 
calculation of the activation energy per unit length, good for small deviations of the 
applied load from the critical load for emission. The method proceeds via a per- 
turbation analysis of the shear distribution. It is useful to regard a given shear profile, 
satisfying (lo), as being a function of x and of 6,,,, i.e. 6 = 6(x; S,,,). Note that a pair 
of &, values corresponds to a given G (less than G,,,,) by (6) and Fig. 2, so one 



342 J. K. RICE and G. E. BELT?' 

(1 -v) AU.&? 

Asymptotic approximation 

FK;. 4. Activation energy AC: (2D) per unit length vs loading. The solid line is the exact result from 
numerical solutions of the Peierls model. The dashed line is the result of the asymptotic expansion about 
the critical loading. The dashed dotted lines show the predictions of LI (1981. 1986) based on the Rice 

Thomson model, and ScMk‘K (1991) based on an approximate implcmcntation of the Pcicrls model. 

ii(.r ; &,,) is drnln(_~) and the other is S,,,(x). Suppose is = ,f’(s) is the shear profile at 
instability (G = G,,,,) ; in the case of a mode II shear crack with the Frenkel form, 
f‘(.~) = 6(.~;h/2), which corresponds to the last solid line in Fig. 3(a). If the applied 
energy release rate G is slightly less than G,,.,,, the shear distribution may be written 
LiS 

S(.Y) = ,f'(s) + txJ(.u), (12) 

where E = 6,,,- h/2 characterizes the extent of the perturbation and g(s) is defined by 

TABLE I. Activation energies: Cu. Fe, nnd Si 30 estimates based OM (exact) 20 

calculations 

0.1 1.67x 10 ’ 59.0 454. I 256.2 
0.2 1.25x 10 ’ 44.3 340.7 192.2 
0.3 9.05 x lo-~’ 32.0 246.6 139.1 
0.4 6.55 x 10 ’ 23.1 178.5 100.7 
0.5 4.62x 10 ’ 16.4 125.9 71.0 
0.6 3.10x lo-’ 11.0 84.5 47.7 
0.7 1.90x 10 z 6.72 51.8 29.3 
0.8 9.85 x 10 3 3.48 26.9 15.2 
0.9 3.32 x IO- ’ 1.17 9.05 5.10 
1.0 0 0 0 0 

t AU:: is the activation energy per unit length for 2D configurations. The entries in the 
remaining columns are the 2D results multiplied by 7.5h and the appropriate material constants. 
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(13) 

Note that E has units of length and g(x) is dimensionless. A relation satisfied by the 
function g(x) may be determined by differentiating (10) with respect to &, and 
evaluating for 6(x) = ,f(x), noting that the term 8K,,/&?,,, vanishes because G, and 
hence Ku, undergoes a maximum at the instability point characterized by ,f(x). The 
result shows that g(x) satisfies the eigenproblem 

@,“[f(x)]g(x) = --s[g(x)]. (14) 

An implication is that the function of x generated by s[g(x)] is finite at x = 0; i.e. 
considered as a slip distribution, g(x) would induce no singularity at the crack tip. 
The function g(x), for y,, = @/2n’ and v = 0.3, is plotted in Fig. 3(b). 

The algebraic manipulations to follow rely on the following relation, which follows 

from the elastic reciprocal theorem : 

s 

CL 
$6, (41 d,(x) dx = 

0 s 
1’ s[62 (x)] 6, (x) dx. (15) 

0 

Equation (15) holds for any pair of shear distributions 6 ,(x) and d2(x) ; they need not 
satisfy (10). Now the total energy U of the system may be written, using the point of 
instability as a reference, as 

U = U(E) = UC,,, + o= (@[f‘(x) +cg(x)] -@[f(x)]) d-x 
s 

+ ; oi (s[f(x)+~g(x)][.f'(x)+&g(x)] -s[f(x>lf(x); d.u- (,j s s . (16) 

Equation (10) when evaluated at the critical state shows that 

r[f(x)] = @‘[f(x)] = JC -s[.f’(x)]. 
J2Z 

(17) 

With the help of the reciprocal theorem and (14) and (17), the energy may then be 
written as 

U = U,,,, - Q(E) + (K;;" - K,&IJ, (18) 

where 

Q(c) = - oz {W-(x> +v(x)I -W-WI -v(.WW(~~)l- :~‘s’(4~“U”(~)l) dx, 
s 

(19a) 

(19b) 
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with the numerical value given for ;‘“, = $1/27c’. Now consider the function Q(C) and 
its derivatives with respect to c evaluated at i: = 0. One sees that 

Q(0) = Q’(0) = Q”(0) = 0, (20) 

and that 

where V’(6) = d’@(S)/dS’. Hence the Taylor series for Q, expanded to third order, 
trivially reduces to 

Q(E) = ;! Q"'(O)t? 

and the energy may now be written as 

U = UC,,, - ~Q”‘(O)E’ + (KY;” - K,,)F$. 

(22) 

(23) 

The stationary points now may be determined by ensuring that the derivatives with 
respect to t; vanish, which requires that 

- iQ”‘(O)i?+ (K;;” - K,,)fl = 0. (24) 

Since Q”‘(O) > 0, this equation has solutions for i: only when K,, < KY;“, as expected, 

and solving for c yields two solutions 

(25) 

which may be alternatively written in terms of G as 

E = +,W&)’ 3PPw(l -v)iluJ' a - 
[h3Q”‘(0)/yL,\] ’ ’ 

(I - JGIG,,,,)’ ’ 2 k 0.4543h( I - JG~G,,,,)~ z 

(26) 

where the numerical factor in the latter form, also verified numerically, can be obtained 
from equating G to @ of (6) and (5b), and then expanding about G = yLlb and (5 = h/2. 
Writing the asymptotic solution as 6(s) = ,f(x)+cg(_~), the stable minimum cor- 
responds to the negative root and the saddle point corresponds to the positive root. 
Finally, (7) and (23) may be invoked to determine the activation energy per unit 
length 

A uzD = 2 MG” - K,)l” ’ 
J‘l 3 [Q”‘(O)] “’ 

(27) 

In terms of the applied energy release rate, (27) can be rewritten as 
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-\IIGiG,t)13’* 
[Q”‘(O)] Ii2 

or in dimensionless terms as 

where the dimensionless factor m = m(y,,/pb, v) is given by 

8 (&q3’“[2( 1 - V)Y”,//LLh] ‘:4 
in = 

3 [h2Q”‘(0)/~,J “’ 
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(28) 

(29) 

(30) 

where all the terms involving p and Q”‘(0) are arranged as dimensionless combinations 
which depend on ~~u,/,ub and v. 

The results, expressed as AU:: vs applied G, are plotted in Fig. 4 for yUS = pb/2x’ 
and v = 0.3. The solid line gives the activation energy as calculated exactly in the 
previous section, and the dashed line gives the asymptotic result, which is seen to be 
remarkably accurate over the entire range G/G,,,, > 0.2 shown. The dimensionless 
function m has values of 0.2869 for pb/2n:‘y,, = $14, 0.2865 for ,ub/2dy,, = m, 

0.2864 for pb/27c2y,, = 1 .O, and 0.2863 for ,ub/2x2;~us = 4 (all for v = 0.3), indicating 
an extremely weak dependence on y&b. Thus (I- v)AU$T/pb2 is, essentially, depen- 
dent only on G/G,,,,; the ratio y,,/pb is still important in determining the activation 
energy, in as far as it affects Ihe calculation of G,,i, (= yU, for the present case of 
coincident crack and slip planes). 

3D ASYMPTOTIC CALCULATION OF THE SADDLE POINT LOOP SHAPE AND 

ACTIVATION ENERGY 

In the 3D analysis, it is assumed that the saddle-point configuration involves a 3D 
elastic field associated with a localized outward protrusion of slip from the stable 2D 
incipient dislocation distribution corresponding to branch A of Fig. 2. Here, the 
reference state is the 2D pre-nucleation state in the above analysis, i.e. the state given 
by the negative root of F in (25). It is convenient, however, to think of E as a 
positive number for the pre-nucleation state, so the shear distribution is written as 
6(x) = f(x) - &,q(x), with E interpreted as b/2 - &,. The saddle-point distribution, 
which now is taken to be 3D, is assumed to be approximately expressible as 

6(x, Z) = f(x) -&g(x) +a(z)g(. ) Y , w h ere a(z) is a “shape” function characterizing the 
extent of the outward perturbation, which we determine so as to render the energy 
stationary. The coordinate z lies along the crack tip and z = 0 is taken to be the center 
of the perturbation (see Fig. 5). Note that the trivial solution a(z) = 0 corresponds to 
the pre-nucleation state and u(z) = 2~ corresponds to the 2D saddle-point distribution 
discussed in the previous section. 

The functional s[d(x,z)], relating the stress on the slip plane (coplanar with the 
crack) to the displacement distribution, is considerably more complicated than its 2D 
counterpart. However, it has been given by GAO (1988) and GAO and RICE (1989), 
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Mode II Loading Slipped Area 11, 
1 Stable, Pre-Nucleatmn State 
2 Unstable Saddle Punt 

FIG. 5. Tlit-cc-dimensional geometry and coordinale system. 

with additional simplification by H. GAO (private communication, 1991); see the 
Appendix. Whenever the argument of s does not depend on I, however, it may be 
interpreted as its 2D representation given in (9). The 3D analog to the reciprocal 
theorem given by (I 5) is 

I / 

SI 

I / 
s[6, (s, z)] h2(x. z) ds d: = 

i 0 .i I 
.v[&(‘c, z)] 6, (s, -_) dx d-. (31) 

/ 0 

The functional characterizing the difference in energy between the 2D pre-nucleation 
state and the saddle-point distribution is 

I i 
Al?= 

J?’ 
j~[./‘(.\-)-~:~(~)+LI(T)Y(s)] -Q[,f’(.v)-i:y(.r)]) dx dr 

I 0 

I ’ 

li 

’ 

+2 I,, 
(s[.f’(s) - cg(.u) +4:)&Y)] [.f’(.u) - c:g(.u) + u(=)y(x)] 

I 
s[.f’(s) ~ c:,q(.~)] [,f(.r) - c.r/(.u)] ) d.y d: - K,, 

li 

’ 4Z)Y(-y) 
~~ -~ d.u d;. (32) 

, 0 J’m 

Proceeding in an analogous manner as with the 2D energy functional, the 3D energy 
functional simplifies to 

I I 
AE= 

LI 
(@[.f’(.u) --c,q(.u) + cr(-)y(.*)] -@[.f’(-u) -@/(y(x)] 

I 0 

-~~(~),y(.~)(~‘[.f‘(.u)] -E,~(.Y)@“[~~‘(x)]) - i~‘(,)~~(.u)~“[,f’(“~)]) ds d: 

+; 

I I 

- ss 
(.s[n(z).y(x)] -a(~)s[g(_u)])a(-)~~((x) d.r d: 

I 0 

(33) 
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To simplify further, it is assumed that 0 may be expanded as a Taylor series about 

f(x) [valid of course for small E and a(z), and assuming the derivatives of O(6) with 
respect to 6 exist], just as was done in the 2D analysis above, with the result that 

@V(x) --Es(x) +4z)g(x)l = wIx)l +Wf(-L-)lg(x)b(z) -El 

+~~“[.f(x)Jg2(x)[a(z)--]Z+~~“‘[f(~~)].~3(~)[u(~)--]3, (34a) 

W(x) -w(x)1 = Wf(x)l -@‘V(x)l~g(x) + t@“[.f(x)l~‘g’(x) - t@“‘Lf(x)1~‘g3(x). 

(34b) 

Inserting (34a) and (34b) into (33) and simplifying gives 

AE = - iQ”‘(0) 
s 

m1 ([a(z)-s]3+e3}dz+(K;;‘-K,,)p 7J u(z)dz 
X s m 

+; 
7i e 

ss 
~~b(z)g(x)1-4z)~~g(x)1}4z)g(x) dx dz, (35) r o 

where Q”‘(0) and /? are the same as in the 2D analysis. In order to determine the 
functions u(z) which make AE stationary, the first variation of AE must vanish for 
arbitrary variations of u(z). Using (24) to replace the term with the K,,s, this gives 

0 = -+Q”‘(O)([u(z)-+sE?)+ 
s 

a {s[a(z)g(x)]-a(z)s[g(x)])g(x)dx. (36) 
0 

Re-arranging gives the following integral equation for a(z), the solutions of which 
should correspond to extrema of energy : 

Q”‘<O>[m(z) - tu’(z>] = 
s 

,: {u(z>s[g(x>] -s[a(z>g(x>]}g(x) dx. (37) 

Observe that a(z) = 0 and u(z) = 26, - co < z < + co, are the solutions corresponding 
to the 2D minimum energy and saddle-point states. We wish instead to find a solution 
with non-constant u(z), but with a(z) + 0 as IzI + co, corresponding to the 3D saddle- 
point state. Inserting (37) into (35) yields the simplified expression for the activation 
energy 

AE = ““(‘) 
s 
- 

12 _X 
03(z) & (38) 

Because the reference state used in (32) is exactly the pre-nucleation state, the energy 
in (38) is the activation energy, consistent with the definition in (7). It must be 
understood, however, that the function a(z) must satisfy (37) before (38) is evaluated. 

The numerical procedure for solving (37) proceeds by discretizing the function 
a(z), i.e., a, = a(~,), over the integration interval. The integral equation may be then 
regarded as a nonlinear set ofalgebraic equations, which may be iterated to consistency 
via the Newton-Raphson method for a given value of s. When initial guesses covering 
a wide range of shapes and sizes (e.g. Gaussian curves of various widths and rec- 
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Shape functions a(z) at YXIOUS loads 

0 
-3 -2 -1 0 1 2 3 

z/b 

functions u(z) of 3D asymptotic analysis for various values of G/G,,,, (corresponding to 
= 0.45, 0.35, 0.25. 0.15. and 0.05): the slip at the crack tip is 6,,, = b/2-i:+tr(r). 

FIG. 6. 

tangular boxes with varying degrees of roundness in the corners) are input, the 
algorithm either : (i) converges to a(z) = 0, (ii) converges to a(:) = 2r:, (iii) converges 
to U(Z) equal to the solutions shown in Fig. 6 and discussed in the following section. 
or (iv) diverges. Evaluation of the integral on the right-hand side of (37) is exacerbated 
by the fact that the 3D form of the s operator involves the evaluation of slowly- 
convergent double-integrals, leading to an unwieldy triple integral overall. The inte- 
grands involved in the evaluation of s are functions of X, I, and Z-Z (where .f and Z 
are the actual integration variables), thereby making the integral of the second term 
in (37) a convolution of a(z) with another function. The integral may be evaluated 
by combining the terms involved in the right-hand side of (37) and integrating first 
over x and .?. More details concerning the numerical procedure may be found in the 
Appendix. 

As a confirmation that the solutions shown in Fig. 6 are indeed saddle-point 
solutions, the energy functional in (35) is regarded as a function of the variables u, 
characterizing a solution and its Hessian is numerically evaluated. The eigenvalues of 
the Hessian are then calculated and, in all cases, there are a mixture of negative and 
positive values. The mixture of eigenvalues implies that the Hessian is indefinite, and 
hence the calculated solutions must be saddle points. 

NUMERICAL RESULTS AND DISCUSSION 

The 2D results are shown in Fig. 4; the exact calculation of the activation energy 
(per unit length) is shown as a solid line, the asymptotic approximation is shown as 
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a dashed line, and the result derived by LI (198 I, 1986) [see (l)] based on the Rice+ 
Thomson model is shown as an alternating dashed-dotted line, which overestimates 
the more exact results here. The SCH&K (1991) 2D result is also shown, which 
underestimates the activation energies calculated here by about 40%. The scaling 
factor used, i.e. ,&‘/(I -v) turns out to be particularly convenient because the numeri- 
cal results become relatively insensitive to y,,,/pb when plotted as a function of G/G,,,, 
(= G/Y~,~). This is discussed earlier in connection with the 2D asymptotic solution and 
it also holds for the exactly calculated results. Of course, the activation energy pre- 
dicted by (1) is entirely independent of y,,/ph. 

In order to quantify the concept of thermal activation, it is essential to realize that 
the activation process must involve a.finite amount of energy supplied locally to the 
dislocation line due to atomic vibrations. The process is inherently 3D, so a proper 
treatment, as attempted in an asymptotic approximation in this paper, would deter- 
mine the saddle-point configuration, consisting of a local protrusion of a dislocation 
loop. The activation process could not adequately be modelled in 2D because an 
infinite amount of energy would have to be supplied to the dislocation line to achieve 
the saddle-point configuration. A simple approximation is to multiply the energy per 
unit length (from the 2D analysis) by a fixed number of atomic spacings, say 5-10, 
based on the 3D asymptotic results to be discussed. Table 1 shows the results from 
the 2D analysis (assuming an activated dislocation length of 7.5b, i.e. 
AE z 7.5bAU$;) for partial dislocations in Cu and Si and a full dislocation in Fe; 
this scheme both underestimates and overestimates AE when compared to the 3D 
results, depending on the G/G,,,, ratio. The AE estimates are listed in units of kT as 
evaluated at room temperature. Material constants used in the various calculations 
are tabulated in Table 2. 

The 3D results are plotted in Fig. 7 as a solid line. For comparison, the 2D result 
(the solid line from Fig. 4) is multiplied by 5b and by IOh, and plotted as dashed lines 
in Fig. 7. It is seen that 5h is too small of a factor to use in conjunction with the 2D 
results. For larger loadings, a factor of as high as IOh is appropriate, and as high as 
17b for loadings very near to critical (e.g. G z 0.9G,,,,). Additionally, the 3D result 
by SCH&K and P~~SCZHL (I 991) is shown, which varies considerably from the present 
result. Table 3 also gives specific values of the 3D result for the materials Cu, E-Fe 
and Si. 

The functions Q(Z), which give the z-dependence of the saddle point for the 3D 
solutions, are plotted in Fig. 6 for various load levels, corresponding to 8/h = 0.05, 
0.15, 0.25, 0.35, and 0.45. Note that U(Z) resembles a Gaussian “bell” curve and 
undergoes a maximum value of between 3~ and 4~, thus the furthest extent of the 3D 
protrusion is greater than the 2~: protrusion predicted by the 2D analysis. This feature 

TABLE 2. Material constunts (k = I.381 x IO- 23 J/K) 

Property Cu (partial) Fe (full disl.) Si (partial) 

P (GPa) 40.8 69.3 60.5 
0.324 0.291 0.218 

1.4757 x 10 ‘” 2.4825 x IO- ‘” 2.2172x 10~ ‘” 
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(1 -v) AE 
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\ 't AE, 3D asymptotic 1 

FIG. 7. Activation energy AE (3D) vs loading. The solid line is the asymptotic result and the dashed lines 
are the 2D “exact” result multiplied by 5h and by IOh; dasheddotted line is result of SCHICK and 

PtiSCHL (1991). 

may be qualitatively rationalized as follows : one consequence of the 3D nature of the 
problem is that variations in the function a(z) give rise to a “screw”-like contribution 
to s[a(z)g(x)], that is, if Q(Z) at some point were to approach the form of a step 
function, the s functional would have a term which resembled the stress field to a screw 
dislocation impinging upon the crack tip at a right angle. Any realistic a(z) that describes 
a dislocation segment which has popped out will contain two regions of comparatively 
large slope, and the perturbations of the stress field due to the two individual zones 
reinforce each other, with the net result that the right-hand side of (37) is sufficiently 
modified by this effect to cause a solution, otherwise being of order 2a, to be increased. 
This shape is consistent with the shallow loop proposed by HAASEN (1983) and 
discussed by SCHTICK and PCJSCHL (1991). 

TABLE 3. Actiaation energies: Cu, Fe, and Si bused on 30 asymptotic 

culculution 

0.1 39.4 303.2 171.0 
0.2 31.4 242.3 136.7 

0.3 25.5 196.9 III.1 

0.4 20.6 158.8 89.5 

0.5 16.3 125.4 10.7 
0.6 12.4 95.5 53.9 
0.1 8.87 68.4 38.6 
0.8 5.65 43.6 24.6 
0.9 2.68 20.1 11.7 
I.0 0 0 0 
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Contour plots, i.e. plots of constant 6 in A-Z space, are shown in Fig. 8 for the 
particular saddle-point distributions corresponding to the various E mentioned above. 

Since the maximum of the slip 6,,, at the crack tip is h/2-E+u(O), and is expected to 
be less than h in a more exact analysis, solutions with 2-3~ greater than about h/2 (i.e. 
r-:/h > 0.2) may push the limits of the 3D asymptotic analysis, although the 2D analysis 
remains acceptable for c/h up to nearly 0.5. These problems are seen by the fact that 
the contour lines exceed 6 = h in Figs 8(c) and (d). Since the misfit energy Q(6) has 
been expanded about the slips of the 2D minimum energy state, there is nothing in 

the asymptotic formulation to reveal that 6 z h should be an upper limit: to the slip. 

It is possible that the AE values are, nevertheless. approximately correct even when 
the local slips of the asymptotic analysis exceed h, but such must be checked by further 
work. The fact that the results at loadings much reduced from critical remain in the 
range of 5- IOh A(/:: suggests some degree of continued validity. 

(a) 
Contour plots for G/G,,,, = 0.99 (E/b = 0.05) 

3.5/ 

I “‘i,‘,-“m.I, 
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(b) Contour plots for G/G,, = 0.89 (E/b = 0.15) 
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FIG. 8. Contour plots of the 3D slip distribution for: (a) G/G,,,, = 0.99 (c/h = 0.05), (b) G/G,,,, = 0.89 
(gih = 0.15). (c) G/G,,,, = 0.71 (c/h = 0.25). and (d) G/G,,,, = 0.25 (c/h = 0.45). 
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Contour plots for G/Gcri, = 0.71 (E/b = 0.35) 
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IMPLICA~IUN~ FOR DISLOC‘ATION NUW~ATION AT ELEVAXD TEMPERATURES 

An elementary calculation of a AE/jkT below which there is spontaneous nucleation 
now follows. Since dislocation nucleation is considered to be a thermally activated 
proceess, at finite temperatures a dislocation segment may, with the aid of thermal 
fluctuations, be nucleated under a stress level that would not be sufficient for ‘“instan- 
taneous” nucleation, or for nucleation at OK. A given dislocation segment must 
“wait” until a thermal fluctuation is successful in inducing emission, and the net result 
is that the total nucleation rate of dislocations must scale with an “attempt” frequency, 
here taken as (cShear/h), where cShCBr z 3 km/s is the shear wave speed, multiplied by 
the Boltzmann probability that an incipient dislocation loop possesses an energy 
greater or equal to the activation energy AE, thus giving an Arhennius-type relation. 
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Similar arguments are given by SCHICK (1980) for thermally activated dislocation 
motion via the nucleation and propagation of a double kink and MATTHEWS et al. 

(1976) for the nucleation of dislocations at a free surface. Thus 

11 = n(cshcar/b) exp (- AE/kT), (39) 

where u is interpreted as the frequency of spontaneous nucleation events per unit 
distance along the crack front, n is taken as the number of nucleation sites per unit 
length of crack front, taken here as II = I /lOh, where 10b is used in light of the broad 
shape functions shown in Fig. 6. Assuming that II z 1 06/s mm describes spontaneous 
nucleation on a laboratory time scale for a metal, solution of (39) gives a borderline 

AEjkT z 30. 
Examination of Table 3 (the 3D results) leads to the conclusion that thermal 

activation would be sufficient (at room temperature) to spontaneously emit a partial 
dislocation in Cu at loadings of G z 0.2G,,i, or greater, and a full dislocation in Fe at 
loadings of G z (0.880.9)G,,,, or greater, keeping in mind that Gcri, is the critical loading 
for dislocation nucleation wifhout help from thermal activation. At T = 2T,,,,, these 
values for spontaneous nucleation would, e.g., change to approximately < 0.1 G,,,, for 
Cu and (0.7-0.8)G,,i, for Fe. The relatively low value of the activation energy for 
Cu leads to the conclusion that dislocation nucleation is remarkably easy at room 
temperature, i.e. an energy release rate of about 20% of the value at T = 0 is required. 
It is perhaps best, however, to think in terms of the applied stress intensity factor, 
which varies linearly with an applied stress. If K,, cr’t is defined as the critical stress 
intensity for nucleation, then at room_ temperature a dislocation in Cu would spon- 
taneously emit at approximately 3.2KE;” z 0.45K7’. 

Dislocation nucleation in silicon 

The borderline AE/kT should be re-calculated for the case of Si in light of exper- 
imental observations which show crack tip shielding occurring at or above the tran- 
sition temperature with as few as five dislocations (CHIAO and CLARKE, 1989) but 
more commonly on the order of magnitude of 100 (SAMUELS and ROBERTS, 1989; 
WARREN, 1989), on time scales comparable to a minute. Although no nucleation rate 
has been specifically measured in the experimental work referenced, an approximation 
would be to assume that l/s mm describes nucleation under the conditions noted. Due 
to the logarithmic dependency of AE/kT on v as predicted by (39), an order of 
magnitude difference in the assumed nucleation rate does not appreciably affect the 
calculation. The solution of (39), using the Burgers vector of a Shockley partial in Si, 
and o = l/s mm gives AE/kT c 43. Using similar reasoning, MATTHEWS et al. (1976) 
give a similarly-defined cutoff value of AE/kT z 50, which is discussed in further 
detail by FITZGERALD et ~1. (1989) in connection with the nucleation of dislocations 
at a free surface in Si. 

Examination of Tables I and 3 leads to the conclusion that a dislocation would 
be spontaneously emitted in Si when G z 0.6.0.7G,,,, at room temperature, and at 
G z 0.4G,,,, at twice room temperature. An important issue is that of whether G can 
be arbitrarily increased to the critical value before cleutqe occum. This consideration 
is especially important in the case of silicon, which cleaves at room temperature, i.e. 
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as G is increased, its critical value for cleavage (usually approximated as the Griffith 
energy) is attained before conditions for dislocation nucleation prevail. The activation 
energy results may be used to determine the temperature at which it is possible to 
nucleate a dislocation when the material is loaded to the Grifith load. By making USC 
of this discriminating condition, it is possible to predict a brittle-to-ductile transition 
temperature based on dislocation nucleation. The details of this type of calculation 
are the subject of an upcoming paper (BELTZ and RICE, I994), and only the highlights 
are given here, in part because the present work neglects tension -shear coupling which 
is thought to be important for nucleation in Si. 

In order to proceed with the calculation. it is necessary to consider a particular 
geometry. Since Si cleaves along its (I I I ) plants, it makes sense to consider the 
competition between cleavage and dislocation nucleation on another inclined I I I 11 
slip plane. For example. consider a crack on a (I I I) plane with its tip along the [Oi I] 
direction (see Fig. 9). If a mode I load is imposed, the favored slip plane for nucleation 
is the (il I) plane which is inclined at 70.53 with respect to the fracture plane. The 
critical load for nucleation of a Shockley partial at 0 K on this slip plane is approxi- 
mately 5.29;~,,, z 10.1 Jim’. where ;‘,,, has been taken here as the relaxed value cal- 
culated by KAXIRAS and DUESBERY (1993). This result depends on many factors. such 
as the coupling between tension and shear across the slip plane. and the orientation 
of the Burgers vector; these issues and their effect upon the activation energy are 
addressed in further detail by SUN rt ul. (1993) and BELTZ and RICE ( 1994). The 
Griffith load is taken here as 3. I2 J/m’. which is based on the TYSON (1975) correlation 
with formation energy and also happens to be the value calculated quantum mech- 
anically by HUANG cl LI/. (1989) for a reconstructed ( 1 I I i surface using &n.si/~~ 
fiu~rionul ~/xw~~. i.e. the same method used by KAXIRAS and DIJESBERY ( 199.1) to 
calculate the unstable stacking energy that goes into G,,.,,. At the Griffith load. 
G/G,,.,, = 0.3 I. corresponding to an activation energy of (0.53)ph’:‘( I -~ 1,) z 4.47 x 
10 1’) Jim' 

z 2.8 eV, based on the asymptotic 3D calculation (on which the 
numbers in Table 3 are based). Using the discriminating condition of AEikT = 43 

discussed above, the transition temperature turns out to be 7‘,, = 480 C. This prc- 
liminary calculation underestimates the actual transition temperature range [c.g. 
the value of 562 C at a strain rate of I .3 x IO ’ mentioned earlier in this paper. 
from work by SAMUELS and RWERTS (19X9)]. The calculation is consistent, however. 

FIG. 9. Schematic depicting the gcomctry used for the analysis of thermally activated dislocation nuclcution 
in silicon. 
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with the idea that thermally activated dislocation nucleation is at least a necessary 
requirement for the brittle-to-ductile transition to occur, while the transition itself 
may be due to the strong temperature dependence of dislocation mobility in Si. 
Dislocations, once nucleated, must still be swept away from the crack tip to relax 
stress. 

Remarks on thr uctiwtion mwg~~,for molerultr dynamics (MD) simulations 

In MD simulations of crack tips. it is typical to devise atomic arrays which extend 
many atom spacings in the I- and y-directions, i.e. in the plane perpendicular to the 
crack tip, but only over a small number of atomic planes (as few as two in simulations 
of cracks in fee or bee lattices) in the =-direction. The Newtonian dynamical equations 
for the atoms are solved by assuming that atom locations in the layer considered are 
repeated periodically in the z-direction. Let H be the layer thickness. The layer itself, 
with appropriate modification of atomic force laws in a way that would correspond 
to periodic repeats of its atom positions, may be considered as a dynamical system to 
which the ideas of statistical mechanics may be applied. For a thin layer. the imposed 
periodicity will force any shear distribution at the crack tip to be 2D in character. 
Thus if AEE:’ = AE%E,D(H) is the activation energy for a MD model involving thick- 
ness H of the periodically repeated layer, then for a thin layer, AE‘iF e HAUfz. 
Here AlJ$i is the 2D activation energy per unit length, which has been calculated here 
based on the Peierls model and is given in Fig. 4 and Table 1. Only with increasing 
H can shear configurations develop that are localized along the crack front, like in 
Figs 6 and 8, so that we may expect AE.$’ to increase initially as HAU$: but to 
ultimately saturate at AE,,,. the 3D activation energy, as H becomes large. 

From Fig. 7 and Tables I and 3, we predict that HAU$; will generally be smaller 
than AE,,, unless H exceeds 5-IOh. For loadings that are near to critical, which are 
the cases most feasible for MD study of activated emission because of the com- 
putational time steps involved, and which are also the cases for which our calculations 
of AE;,,, are thought to be most reliable, HAUZZ will be smaller than AE,,, unless H 

exceeds about 17h. Thus the predicted activation energy to correspond with a MD 
simulation will vary with layer thickness H roughly as shown in Fig. 10; the solid 
curve is a guess, but it must have the small and large H behavior shown by the dashed 
lines. Figure IO has been drawn for a loading G z 0.7G,,,,, at which (Fig. 7) 

AE<,,, z lOhAU:L:, so that the dashed lines meet at H = IOh. The lines meet at yet 
larger H values, as large as H z I7h, for higher load levels like G = 0.9G,,.,,, and meet 
at smaller H values at lower load levels, perhaps as small as H z 5h if our asymptotic 
predictions continue to be approximately correct at low load levels. 

As an example, consider a crack on the (100) plane, growing in the [Oll] direction, 

in a bee lattice. For the usual (I 11) bee slip direction, h = (,/‘3/2)a,, where a0 is the 
side length of a unit cube in the lattice. The lattice geometry allows consideration of 
a minimum thickness H,,,,, of the simulated layer that includes just two (Oil) atomic 
planes, in which case the periodic repeat distance is the diagonal of a cube face, H,,i, = 
J2ao. Thus H,;,Jh = 2&Jj z 1.6. F or such an MD model, and for the loading 
G z 0.7G,,,, considered in Fig. 10, we have AEEy z 0.16AEL,,,. Then, T = IOOK in 
the MD simulation of the two-atom-plane layer should give thermal activation effects 
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FIG. 10. Activation energy AE,M,: (solid line, exact shape unknown) corresponding to molecular dynamics 
simulation of a layer of atomic planes, occupying thickness H in the direction parallel to the crack tip, 
with periodic conditions at the layer faces. Here AE,,, is the 3D activation energy BE of Fig. 7. Drawn for 

loading G % 0.7G,,,, ; value of H at which dashed lines intersect increases with G/G,,,, 

similar to T z 600 K for the 3D solid. For G z 0.9G,,,,, AEZ:’ z O.O9AE~,,,, and 
T = 100 K in the MD simulation should then give effects similar to T z 1000 K for 
the 3D solid. Hence the MD model will greatly overestimate the already large effects 
of temperature that we have predicted based on AE~,,,. These are important effects to 
consider when planning and interpreting MD simulations. 

SUMMARY 

The activation energy for dislocation nucleation from a crack tip has been calculated 
within the Peierls framework. The advantage of this method is that incipient dis- 
locations are treated as a gradual build-up of atomic shear across a slip plane, thereby 
eliminating uncertainties associated with analyzing fully formed dislocations near a 
crack tip. Furthermore, the saddle point associated with unstable dislocation emission 
is treated in a similar manner. The activation energy per unit length, a 2D calculation, 
is calculated exactly as well as asymptotically for loads near the critical load for 
emission. The activation energy for emission of a 3D loop is also calculated asymptot- 
ically. It is found that a good approximation of the 3D result generally consists of 
multiplying the 2D result by ~-IO/J (but by as much as 17h for loadings very near to 
critical). Specific values of the activation energy for Cu, Fe, and Si are calculated, and 

the results are used to rationalize the spontaneous emission of dislocations due to 
thermal effects at loads below the critical load. A preliminary calculation of the 
activation energy to nucleate a (glide set) Shockley partial in silicon (based on the 3D 
asymptotic approach) when loaded to the Griffith cleavage load indicates that thermal 
activation of dislocations is possible at the observed transition temperatures. For the 
future, it is important to devise a rigorous but non-asymptotic 3D calculation of Al?‘, 
and also to better understand inherent limits to the Peierls framework for modeling 
dislocation nucleation, e.g., due to its neglect of the energy of surface exposed at the 
crack tip by dislocation blunting. 
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APPENDIX: NUMERICAL PROCEDURE 

The functional s[O(r, z)] appearing in the intcgrand of (37) may bc written as (GAO. 198X ; 
GAO and Rlc~r. 1989: H. GAO, private communication. 1991) 
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H(.Y,.?, z-F)[S(,f, F) -6(O+, z)] dl dz 

where 

and 

I 
G(x,.f, Z-ZF) = 

D 

D 
arctan :- , 

2J.C-I 

D’ = (x-.f)‘+(z-Y))‘. (A3) 

Replacing 6(x,z) with u(:)g(.y), f ormulating the quantity {a(:)s[g(x)] -.r[a(z)g(.r)]}, and 
rearranging [noting that g(0) is unity] gives 

+ H(x, f.z-?)g(.C)[a(f) -a(z)] dd dZ 

x (.?-x)g’(.C)[a(?)-U(l)] I 
- - - dx di 

D’ 

x (Z-_=)g(l)u’(~) _ 

D1 
- dx dZ, (A4) 

where the “prime” notation on functions a and ,y refers to differentiation with respect to the 
argument. Multiplying (A4) by g(x) and integratmg gives the right-hand side of (37), 

i 
,lT’ (u(z)s[g(_u)]-s[u(z)g(x)]}g(.x) d.u = 

s 
’ 
1 

[u(+u(=)]F,(z-?) dZ+ _j_ a’(:)F,(z-_;) dl, 
s 

(A9 

where 

x (A? - x)g’(.f)g(_x) 
po’ ~ - dl dx (A6) 

and 

FH = 6:, 
7. ss x (Z-z)g(l)g(.r) 

0 0 
- pD7 ~ dl dx. (A7) 

Noting that the integrands in (A6) and (A7) remain finite over all I and Zcxcept when z--P = 0, 
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the functions F,.,(r--f) and FH(r-?) are obtained by numerically integrating the representations 
given in (A6) and (A7) via a ?I-point Gauss Kronrod rule with a relative error in the result of 
10 ‘. The functions become singular for z = 5; however. that point is not needed : during the 
actual solution of (37). the integral given by (A5) is rapidly carried out via the Gauss 
Chebyshev integration formula (ERDWAN and GUPTA. 1972: EKIXXAN. 1975), which ncvcr 
requires the evaluation of the intcgrands at r = E. 

To achieve a suitable format in which to use the Gauss-Chebyshev scheme, the integrals in 
(A5) arc rewritten with semi-infinite domains of integration. noting that F,\ is an cvcn function 
and F8 is an odd function : 

s 
,/’ [a(z)-tr(~)](F:,(:-:)+F,(c+r”)) dZ+ 

s 
’ Z LI’(_=)-(F,)(-~-Z)-~~(-_+~)~ dZ. (A8) 

0 

Next, the following change of variables is made which maps the semi-infinite domain onto the 
rcpion - 1 < 4 < I : 

The domains of q and < arc then discretized and the integral (37) is pointwisc enforced at 
values of q given by 

Integration is carried out by discretizing the domain of < in the manner 

<, = cos 
.in 

12 i- 1 ’ 
j= I.....n 

(AlO) 

The remainder of the nulncric~~l procedure proceeds exactly as outlined by Br:r.rz and RICE 
(19923, with II taken as SO. 


