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Earthquake Failure Sequences Along a Cellular Fault Zone in a Three-Dimensional 
Elastic Solid Containing Asperity and Nonasperity Regions 
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Numerical simulations of earthquake failure sequences along a discrete cellular fault zone are 
performed for a three-dimensional (3-D) model representing approximately the central San 
Andreas fault. The model consists of an upper crust overlying a lower crust and mantle region, 
together defining an elastic half-space with a vertical half-plane fault. The fault contains a 
region where slip is calculated on a uniform grid of cells governed by a static/kinetic friction 
law and regions where slip is prescribed so as to represent tectonic loading, aseismic fault 
creep, and adjacent great earthquakes. The computational region models a 70-km-long and 
17.5-km-deep section of the San Andreas fault to the NW of the great 1857 rupture zone. 
Different distributions of stress drops on failing computational cells are used to model asperity 
("Parkfield asperity") and nonasperity fault regions. The model is "inherently discrete" and 
corresponds to a situation in which a characteristic size of geometric disorder within the fault 
(i.e., cell size, here a few hundreds of meters) is much larger than the "nucleation size" (of the 
order of tens of centimeters to tens of meters) based on slip weakening or state evolution slip 
distances. The computational grid is loaded by a constant plate motion imposed at the lower 
crust, upper mantle, and creeping fault regions and by a "staircase" slip history imposed at the 
1857 and 1906 rupture zones. Stress transfer along and outside the fault due to the imposed 
loadings and failure episodes along the computational grid is calculated using 3-D elastic 
dislocation theory. The resulting displacement field in the computational region is compatible 
with geodetic and seismological observations only when the asperity and nonasperity regions 
are characterized by significantly different average stress drops. The frequency-magnitude 
statistics of the simulated failure episodes are approximately self-similar for small events, with 
b -- 1.2 (the b value of statistics based on rupture area b A is about 1) but are strongly enhanced 
with respect to self-similarity for events larger than a critical size. This is interpreted as a 
direct manifestation of our 3-D elastic stress transfer calculations; beyond certain rupture area 
and potency (seismic moment divided by rigidity) release values, the event is usually 
unstoppable, and it continues to grow to a size limited by a characteristic model dimension. 
This effect is not accounted for by cellular automata and block-spring models in which the 
adopted simplified stress transfer laws fail to scale properly with increasing rupture size. The 
simulations suggest that local maxima in observed frequency-magnitude statistics correspond 
to dimensions of coherent brittle zones, such as the width of the seismogenic layer or the 
length of a fault segment bounded by barriers. The analysis indicates that a single cell size, 
representing approximately a single scale of geometric disorder, cannot induce self-similarity 
in a 3-D elastic model over a broad range of magnitudes. A representation of geometric disorder 
covering a range of scales may thus be required to generate a wide domain of self-similar 
Gutenberg-Richter statistics. Our simulations show a great diversity in the mode of failure of 
the Parkfield asperity; the earthquakes themselves define an irregular sequence of events. The 
modeling, like many other discrete fault models, suggests that expectations for periodic 
Parkfield earthquakes and/or simple precursory patterns repeating from one event to the other 
are unrealistic. 

INTRODUCTION 

In the last decade there has been mounting evidence that 
the crust in general and fault zones in particular are 
heterogeneous on many scale lengths. Interevent distance 
statistics of global earthquakes [Kagan, 1991 ], profilometry 
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measurements along exhumed fault surfaces [Power et al., 
1988; Power and Tullis, 1991], characterization of mapped 
San Andreas fault (SAF) traces [Aviles et al., 1987; Okubo 

and Aki, 1987], and analysis of sonic velocity and electrical 
resistivity logs from the deep Cajon Pass scientific 
borehole [Leary, 1991] indicate that fractures in crustal 
rocks are characterized by fractal-like distribution in space. 
The well-known Gutenberg-Richter (GR) statistics, relating 
the frequency of earthquake occurrence with earthquake 
magnitude, emphasize the spatial and temporal non- 
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uniformity of fault slip and indicate that, within limits, 
earthquake statistics are scale invariant or fractal. On the 
other hand, plate tectonics and rheology bring about distinct 
large-scale mechanical regimes such as locked and creeping 
fault segments [e.g., Allen, 1968] and brittle and stably 
sliding depth sections [e.g., Sibson, 1982; Tse and Rice, 
1986] within which the complex smaller-scale fractures 
develop. 

The purpose of this work is to develop a model for fault 
instabilities (earthquakes) incorporating both the large-scale 
mechanical regimes and the small-scale complex fracture 
heterogeneities. The model consists of an upper crust 
overlying a lower crust and upper mantle region, together 
defining an elastic half-space with a vertical half-plane 
fault. In present applications the model corresponds to the 
central SAF. The fault contains a computational region 
where slip is calculated on a grid of cells governed by a 
static/kinetic friction law and regions where imposed slip 
represents tectonic loading, aseismic fault creep, and 
adjacent great earthquakes. Stress transfer along and outside 
the fault is calculated using the three-dimensional (3-D) 
solution of Chinnery [1963] for static dislocations on 
rectangular patches in an elastic half-space. 

The evolution of stress and displacement fields is 
calculated in our model in a quasi-static fashion. The 
dynamics of quasi-static systems is governed by the 
constitutive law giving the relation between stress and slip 
on failing elements and by the stress transfer function 
describing the spatial redistribution of stress due to slip 
episodes. Rice [1993] classified models of fault 
instabilities based on the used constitutive law. When the 

constitutive stress-slip relation includes a finite slip 
distance over which the strength of failing elements evolves 
continuously, i.e., a slip weakening or state transition slip 
distance L, the model has a well-defined continuum limit 

which can be approached for small enough numerical cells. 
When, however, the strength of failing elements drops 
discontinuously with slip, as in the present work, or is 
dependent only on the velocity of slip such that no finite 
distance L is included in the constitutive law, the model is 

inherently discrete. In models with a continuum limit, 
suitably refined cells can fail only as members of a 
cooperating group, whereas in inherently discrete models, 
cells can fail individually regardless of how small they are. 
When a continuum limit exists, the cell size h of a suitably 
refined grid must be small compared to a "nucleation size" 
h*. The size h* scales with L but is orders of magnitude 
larger (2 x 104 to 105 in cases addressed by Rice [1993]) 
since it is given as L multiplied by the shear rigidity g 
divided by a measure of weakening, e.g., by-Vd'Css(V)/dV 
in rate- and state-dependent friction, where 'ess(V) is the 
steady state shear resistance at slip rate V. For L between 5 
and 500 gm, h* is estimated to lie in the range of tens of 
centimeters to tens of meters. 

Evidently, models with a continuum limit form a 
different class of dynamical systems than do inherently 
discrete models. Rice [1993] found in his simulations of 

slip on a smooth vertical fault surface with cell size h (( 
h* that the generic model response is a simple limit cycle 
of repeated earthquakes. (Spatiotemporally complex slip can 
be found in similar simulations for special parameter 
choices [Horowitz and Ruina, 1989] or with strong 
variation of velocity weakening properties along strike 
[Rice, 1992].) In contrast, the generic response of 
inherently discrete systems (generated by Rice [1993] by 
choosing a cell size h >> h*) gives a spectrum of event 
sizes, generally with some range of self-similar scaling and 
GR statistics. Such behavior is found in the present work 
and has been reported in analyses of far simpler models of 
the inherently discrete class, in which the dimension of the 
system is the same as that of the fault, rather than one 
greater as for a one-dimensional (l-D) or two-dimensional 
(2-D) fault embedded in, respectively, a 2-D or 3-D 
surrounding medium. Those works involve cellular 
automata [Bak and Tang, 1989; Ito and Matsuzaki, 1990; J. 
Lomnitz-Adler, manuscript in preparation, 1993] or 
Burridge and Knopoff [1967] arrays of spring-connected 
rigid blocks [Carlson and Langer, 1989; Carlson, 1991; 
Carlson et al., 1991; Brown et al., 1991; Christensen and 

O lami, 1992]. The cellular automata and block-spring 
models with system dimension equal to fault dimension, 
while inherently discrete like the present work, greatly 
simplify the stress transfer function to nearest neighbor 
interactions that do not scale with rupture size in a way 
suitable to represent a fault embedded in a 3-D elastic 
continuum. 

Since the constitutive laws of inherently discrete 
systems do not contain a critical slip distance, these models 
are not able to address questions related to crack tip 
phenomena in faulting and to the nucleation of fault 
instabilities in the sense of Dieterich [1986] and Tse and 

Rice [1986]. On the other hand, detailed modeling of 
observed seismic data in terms of earthquake rupture 
propagation always requires the use of discrete fault 
elements such as barriers, asperities, and short-rise-time 
dislocations [e.g., Aki, 1984; Gusev, 1989; Heaton, 1990]. 
In addition, the generic response of the class of models with 
a continuum limit does not account for the spario-temporal 
complexity of observed fault slip and the related observed 
frequency-magnitude (FM) statistics of earthquakes [e.g., 
Rice, 1993]. It thus appears that realistic modeling of the 
growth of fault instabilities (i.e., the interaction between 
different sections along the fault) should include some use 
of discrete fault patches. These are presumably related to 
geometrical, material, pore pressure, and/or stress 
heterogeneities along the fault. As noted above, the studies 
of Aviles et al. [1987], Okubo and Aki [1987], Power et al. 
[ 1988], and others indicate that fault zones are characterized 
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Fig. la. A model for the central San Andreas fault (SAF), 'c s is static strength assumed homogeneous over the 
computational region, 'c a is arrest stress, CA and CNA -> CA are numerical coefficients, and GH and MM mark 
approximate positions of Gold Hill and Middle Mountain. See text for more explanation. 
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Fig. lb. Imposed slip modeling tectonic loading, aseismic 
fault creep, and large 1857 and 1906 type earthquakes. 

by geometric disorder that covers a wide range of size 
scales. In the presence of fault bends, forks, and step-overs, 
and/or complex fault wall topography, a fault segment may 
fail independently of an adjoining region in a way 
prohibited by the large stress concentration at the front of a 
slip event spreading along a smooth surface. Thus we 
interpret the cells of our inherently discrete fault model as 
representing quasi-independent fault segments of size (equal 
to cell size h) that is large compared to h*. An open 
question, to which we return in the discussion, is whether a 
single size scale of geometric disorder, represented 
approximately by a grid of uniform size cells, can induce 
self-similar GR statistics over a broad magnitude range in a 
realistic 3-D model. 

Additional observations that might be related to some 
form of discreteness in the earthquake rupture process are 
the constancy of radiated seismic corner frequency for 

earthquakes in the low-magnitude range [e.g., Bakun et al., 
1976; Chouet et al., 1978; Fletcher, 1980], the related 

observation of strong variation of earthquake stress drop for 
small events [e.g., Sacks and Rydelek, 1992; Hough et al., 
1992], and the occurrence of repeated earthquakes such as 
those observed in large numbers at Parkfield, California, 
[Antolik et al., 1991] and Volcano Usu in Japan [Okada et 
al., 1981]. Observations showing flattening of FM curves 
in the low-magnitude range [e.g., Aki, 1987; Malin et al., 
1989; Rydelek and Sacks, 1989; Sacks and Rydelek, 1992] 
can also be interpreted as resulting from fault zone 
discreteness, although other explanations (e.g., a transition 
from brittle failure to creep) exist. We note that the 
interpretation of the constancy of seismic comer frequency, 
the strong variation of stress drops, and the flattening of 
FM curves, for earthquakes in the low-magnitude range, is 
controversial. Some seismologists [e.g., Anderson, 1986; 
Hanks, 1992] attribute these observations to sampling and 
recording site effects, while others [e.g., Aki, 1987; 
Rydelek and Sacks, 1989] attribute them to the earthquake 
source. In particular, Rydelek and Sacks [ 1989] and Malin 
et al. [1989] claim that their earthquake catalogs are 
complete in the relevant low-magnitude range, and Hough 
et al. [1992] used the, presumably accurate, empirical 
Green's function approach to estimate the (constant) rupture 
area of their small events. Abercrombie and Leary [1993] 
recently observed in the Cajon Pass borehole, at a depth of 
2.5 km, corner frequencies of natural earthquakes that 
correspond to slip patches as small as 10 m. The data of 
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Abercrombie and Leary argue convincingly against the 
existence of a minimum earthquake dimension of the order 
of a few hundreds of meters. It is possible, however, that 
observations such as those of Antolik et al. [1991], Sacks 

and Rydelek [1992] and Hough et al. [1992] are related to 
"effective" discreteness in fault zones due to, e.g., 

geometrical disorder as discussed above. A scale length of 
the order of 100 m that might affect the source volume, and 
hence the size of slip patches, of small earthquakes is the 
width of fault zones, as indicated from modeling of fault 
zone seismic trapped and head waves [Leary and Ben-Zion, 
1992; Ben-Zion, 1993; S. E. Hough et al., manuscript in 
preparation, 1993]. The studies of Malin et al. [1989], 
Antolik et al. [1991], Sacks and Rydelek [1992], Leary and 
Ben-Zion [1992], Hough et al. [1992; manuscript in 
preparation, 1993], and Ben-Zion [1993] suggest that the 
dimension of small, effectively disconnected, slip patches 
in mature fault zones may be of the order of a few hundreds 
of meters. 

An important unresolved question is whether the spatio- 
temporal complexity of fault slip can be attributed purely 
to fault dynamics or whether nonuniformities in geometry, 
material properties, or mode of loading are essential for 
understanding the observed complex fault slip. The cellular 
automata and block-spring studies mentioned above 
simulated successfully aspects of the observed complex 
fault slip using discrete uniform systems governed by 
strongly nonlinear dynamics. In the present work we 
attempt to clarify the dynamics of inherently discrete 
models when stress interactions are controlled by 3-D 
elasticity. This is done in the context of a particular fault 
zone, that of the central SAF, so that model simulations 

could be compared with specific (as opposed to averaged or 
generic) data. Although the origin of fault slip complexities 
cannot be fully understood until the inertia-controlled 
elastodynamics of rupture propagation is included in the 

modeling, the quasi-static simulations for a fault embedded 
in a 3-D surrounding continuum, done here and by Rice 
[1992, 1993], suggest that strong heterogeneities capable of 
stopping ruptures of various sizes are probably responsible 
for the observed complex fault slip. 

The cases examined in our work cover varying degrees of 
model heterogeneity. In the least heterogeneous case, the 
computational grid has uniform properties and model 
heterogeneity comes only from the inherently discrete 
cellular fault structure and the assumed loadings. In more 
heterogeneous cases, the computational grid contains 
property variations. Our results show spatio-temporal slip 
complexities for all cases; however, the calculated 
displacement field is compatible with geodetic and 
seismological data from the Parkfield region only when 
strong property variation is assumed along the fault. The 
frequency-size (FS) statistics of the simulated failure 
episodes are self-similar for small events with b = 1.2 and 
b^ • 1, where b and b^ are b values based on magnitude and 
rupture area, respectively (here and later FS is used as a 
general reference to statistics based on either earthquake 
magnitude or rupture area, FM refers to statistics based on 
earthquake magnitude, and GR refers to power law, i.e., 
log-log linear, FS statistics). For events larger than a 
threshold size, however, the simulated FS statistics are 

strongly enhanced with respect to self-similarity. This is a 
direct manifestation of the 3-D elastic stress transfer 

calculations used in our model; beyond critical rupture area 
(apparently scaling directly with cell area h 2) and potency 
release values, the event is usually unstoppable, and it 
continues to grow to a size limited by a characteristic 
model dimension. This effect is not accounted for by 
cellular automata and block-spring simulations where the 
employed simplified stress transfer laws do not scale 
properly with increasing rupture size. The supercritical 
rupture growth in our simulations results in FS statistics 

fixed 
U ' t fixed 

t 

t increases 

Fig. 2. Schematic diagrams of stress-time and stress-slip relations at the center of computational cells. Static 
strength, dynamic strength, arrest stress, and failure stress are denoted, respectively, by 'c s, 'c d, 'c a, and 
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showing local maxima for events having rupture areas 
corresponding to the upper layer thickness and the entire 
computational grid. Similar local maxima in the rate of 
occurrence of events having specific rupture dimensions are 
present in observed frequency-magnitude statistics of local 
earthquake catalogs [Schwartz and Coppersmith, i984; S. 
G. Wesnousky, The Gutenberg-Richter or characteristic 
earthquake distribution, which is it?, submitted to Bulletin 
of the Seismological Society of America, 1993; hereinafter 
referred to as Wesnousky, submitted manuscript, 1993] (but 
see Kagan [1993]) and in regional FM data from 
approximately uniform seismogenic zones [Main and 
Burton, 1984; Main, 1987; Main and Burton, 1989; Trifu 
and Radulian, 1991 ]. 

A related important issue to fault slip complexities is 
the affinity of fault heterogeneity to "characteristic" 
earthquakes and precursory patterns around presently locked 
asperities. Rice [1993] found that fault segments that differ 
in their rate- and state-dependent friction parameters by 
about 10% adopt a coordinated response with a common 
recurrence interval (phase locking), rather than quasi- 
independent responses consistent with their individual 
properties. Similarly, our model requires a significant 
property variation in order to generate a Parkfield-type 
asperity. Our simulated results show an irregular sequence 
of Parkfield-type earthquakes and a great diversity in the 
failure mechanism of the model asperity; some failure 

events are preceded by a period of accelerated potency release 
and/or foreshocks, some events resemble slow earthquakes, 
and other events are abrupt. We thus suggest that scenarios 
of earthquake prediction based on simple repetitive cycles 
are unrealistic. It is possible, however, that some 
precursors exist, for example, in the form of evolving 
microseismicity patterns. A feedback between precise 
monitoring of microearthquakes [e.g., Antolik et al., 1991 ] 
and theoretical simulations of earthquake failure sequences 
may facilitate the identification of such patterns, if they 
exist. 

ANALYSIS 

Our model (Figure la) consists of a layered elastic half- 
space with a vertical half-plane fault. The half-space has a 
17.5-km-thick upper crust over a lower crust and upper 
mantle region where stable sliding occurs. The model is 
tailored to the SAF in central California, where extensive 

seismic, geodetic, and other geophysical instruments 
monitor the fault in anticipation of the recurrent M6 
Parkfield earthquakes [Bakun and McEvilly, 1984; Bakun 
and Lindh, 1985]. The fault region in the upper crust 
contains large earthquake patches (regions I and IV) 
representing the rupture zones of the 1857 and 1906 M8 
events. On these patches we impose a staircase slip history 
with a recurrence time of 150 years. Everywhere along the 
lower crust and upper mantle (region V) and in the upper 

Dislocation algorithm 

Anolytic crock solution 

Fig. 3. Slip on a circular crack in a full space calculated using an analytical solution (left) and the 
dislocation-based algorithm of this paper (right). Calculated slip values at the edge and center of the crack 
differ by 1/8 and 1/250, respectively. 
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crust fault segment that is distant from Gold Hill (GH) by 
more than 70 km (region III) we impose slip at a constant 

plate rate Vpl = 35 mm/yr (Figure lb). Time-dependent 
effects due to viscoelasticity in the lower crust and upper 
mantle [e.g., Li and Rice, 1987; Ben-Zion et al., 1993] are 
ignored at the present level of modeling. The upper crust 
fault segment 0 _< x _< 70 km, 0 _< z _< 17.5 km comprises 
a computational grid where space and time evolution of 
stress and displacement fields due to the imposed slip 
(Figure 1 b) are calculated using a variant of static/dynamic 
friction law and 3-D continuum elasticity. The 
computational grid contains "asperity" and "nonasperity" 
regions. The asperity (referred to as the "Parkfield 
Asperity") extends from GH to Middle Mountain (MM) 
between the depths of 5 and 10 km, in agreement with 
geodetic data [e.g., Harris and Segall, 1987] and the 
microearthquake distribution of Malin et al. [1989]. We 
assume that everywhere along the computational grid the 
static strength 'Cs is uniform. This is motivated by the fact 
that laboratory measurements of peak sliding resistance are 
largely independent of the rock type [e.g., Byeflee, 1978]. 
This leaves differences in fault properties to be attributed to 
dynamical processes which we simply model here by 

assigning different levels of dynamic strength 'i: d and arrest 
stress 'c a to different fault regions. 

Consider a failure process involving a fault segment 
represented by a single cell of the computational grid. 
When the stress 'c on the fault segment (cell) reaches the 
level 'Cs, failure occurs and the segment slips at 'c = 'i: d 
(<'Cs) until the rupture is blocked by the segment borders. 
Then, slip on the cell is brought to a halt, leaving on the 
failed segment an arrest stress 'Ca (<'Cd). If the stress 
transferred from the failed segment increases the stress at 
other fault regions to their failure thresholds those regions 
fail, causing additional stress transfers which, in turn, may 
induce or reinduce more slip events. We assume that 
reinitiation of slip on an already failed cell occurs when 'c > 
'c d there. Thus 'c s is the failure strength of a segment which 
has not yet slipped in a composite event, 'Cd is the failure 
strength of a segment which has slipped in an earlier 
subevent, and 'c a is the stress remaining on a cell just after 
it has slipped and before stress transfers from other 
segments failing at the same time have occurred. The 
conceptual picture of rupture adopted in this study is thus 
that of a composite failure process, made of subevents that 
are dominated by geometric heterogeneities. The latter 

Slip 01ong the SAF 

t = 150- yr 

t = 75 yr 

t=0.1 yr 

t=O- yr 

Fig. 4. Slip distributions along the SAF at various times throughout the imposed 150 year great earthquake 
cycle. The static strength is 'c s = 40 bars. In the asperity region the arrest stress is 'c a -0.1q: s' in the 
nonasperity region 'c a -0.9q: s. Note that the asperity is reflected on the various slip surfaces. 
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define segment borders, arrest elementary subevents, and 
require that slip be initiated or reinitiated by stress transfers 
for rupture to continue. 

The static strength, dynamic strength, and arrest stress 
are related to each other as 

(Xs- Xa)/(Xs - Xd) = D (1) 

where D is a dynamical overshoot coefficient. Numerical 
simulations of Madariaga [1976] indicate that D for a 
rupture propagating in a 3-D elastic solid is about 1.25. 
The difference x(i, j) - Xa(i, J) gives a transient stress drop 
on cell (i, j) during a composite failure episode, where i and 
j are, respectively, cell indexes along the horizontal and 
vertical directions and x(i, j) is the stress just before failure. 
The final stress drop on cell (i, j) is usually less than x(i, j) 
- Xa(i, J) due to subsequent failures of other cells, but it is 
always greater or equal to x(i, j) - xd(i, J)- 

Figure 2 illustrates representative stress-time and stress- 
slip relations and the algorithm used for modeling failures 
in this work. Stress on cell (i, j) accumulates with time 
either gradually owing to the continuous tectonic loading or 
abruptly owing to failures at other cells. When x(i, j) > Xs, 
cell (i, j) fails, and it slips so as to reduce its stress to the 
arrest level Xa(i, J). In addition, the strength of cell (i, j) 

drops to the dynamic level xd(i, J) for the duration of the 
present failure episode. Failure and slip at cell (i, j) 
continue if x(i,j) is raised above xd(i, J) owing to 
subsequent failures elsewhere along the fault (i.e., rupture 
propagation). At the end of the failure episode the stress on 
cell (i, j) is distributed between the levels xd(i, j) and 
xa(i, j), with the actual value depending on the failure 
sequence. 

For the asperity cells we assume that Xa(i, j) are small 
fractions (e.g., 0.1) of Xs, while in the nonasperity region, 
Xa(i, j) are assumed to be close to Xs (e.g., Xa(i, j) -- 0.8•s). 
Thus, failing cells at the asperity and nonasperity regions 
experience large and small stress drops, respectively. Large 
stress drops on failing asperity cells tend to propagate the 
rupture throughout the entire asperity (or the whole model), 
resulting in relatively few large asperity events separated by 
relatively long time intervals. In contrast, small stress 
drops on failing nonasperity cells generate, in general, 
frequent small events in the nonasperity region. Our 
assumed distribution of stress drops is compatible with the 
studies of O'Neill [1984] and Malin et al. [1989], where 

microearthquakes with an order of magnitude higher stress 
drops than the usual low stress drop seismicity are found to 

Slip(x,z-8.75km,t) 

MM 

Fig. 5. Slip at a fixed (mid upper crust) depth of 8.75 km as a function of distance along the SAF and time. In 
the asperity region slip is accommodated by large steps. In the nonasperity region slip is more or less 
continuous. The assumed distribution of Xs and Xa is the same as in Figure 4. Slip values are normalized to the 
range 0-1. 



14,116 BEN-ZION AND RICE: EARTHQUAKES IN A THREE-DIMENSIONAL ELASTIC SOLID 

SIip(x-24km,z,t) 

Fig. 6a. Slip as a function of depth and time at x = 24 km, near the boundary between the asperity and 
nonasperity regions. In the depth section corresponding to the asperity slip is accommodated by large steps; 
slip becomes more continuous in the shallower and deeper sections. The assumed distribution of 'c s and 'ca is the 
same as in Figure 4. Slip values are normalized to the range 0-1. 

SIip(x-45km,z,t) 

Fig. 6b. Same as Figure 6a for x = 45 km. Here slip is more or less continuous at all depths. 
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be concentrated near the edge of the Parkfield asperityß We 
note that the absolute values of Xs, Xd, and Xa play no role 
in our simulations; the model calculations are based only 
on the assumed stress drops. 

The stress transfer along the fault due to incremental 
tectonic loadings and failing grid cells is written as a 
discretized form of a boundary integral equation, 

'c(i, j): - • K(i, j, k, l) Au(k, l) (2) 
k,1 

where Au(k, l) is right-lateral slip at a fault patch (k, l), and 
the stress transfer function K(i, j, k, l) can be extracted 
from the static solution of Chinnery [ 1963] for dislocations 
in a 3-D elastic half-space. The indexes k and I in (2) cover 
the entire x-z fault plane, i.e., both the upper crust layer 
and the lower crust - upper mantle region. A more 
convenient form can be written by noting that the assumed 

fight-lateral stable sliding Vpl t at the lower crust and upper 
mantle region is mathematically equivalent to a left-lateral 

slip (- Vpl t) at the upper crust layer [e.g., Savage and 
Prescott, 1978]. This can be seen by writing the slip 

everywhere as Au(k, l) = [Au(k, l)- Vpl t] + Vpl t. The 
square bracket term is zero in the lower crust and upper 

mantle region, while the term Vpl t combines in the upper 
layer and lower crust - upper mantle region to give a 
uniform block motion that produces no stress. Thus the 
stress at cell (i, j) can be written as 

'c(i, j) = • K(i, j, k, l) [Vpl t- u(k, /)1 (3) 
k,l 

where now u(k, l) is the total displacement of cell (k, l) in 
the upper layer and K(i, j, k, l) is Chinnery's stress transfer 
solution for a unit slip over a rectangular patch (the 
appropriate expressions for a finite rectangular dislocation 
patch were provided by T. E. Tullis and W. D. Stuart, 
written communication, 1992). The source dislocation 

(square bracket) term in (3) is the slip deficit of cell (k, l) 
with respect to the long-term plate position. This is also 
called the "offset-phase" in the formulation of Rundle 
[1988]. 

The evolution of stress and displacement fields in the 
computational region is calculated using the following 
quasi-static procedure: 
Step 1. Lock the fault by setting everywhere 'el(i, j) = 'Cs, 
where zf(i, j) is the strength (failure envelope) at cell (i, j). 

Step 2. Increase the plate position, Vpl t, so as to induce 
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failure at a single cell, i.e., start all failure episodes with a 
single initiator (hypocenter). We note that this is different 
from what is sometimes done in cellular automata and 

block-spring simulations where the plate position is 

updated by a constant increment Vpl At so that failure 
episodes may begin with many hypocenters. 
Step 3. Find new equilibrium configuration of the fault as 
follows' 

Step 3.1. Calculate 3-D elastic stress '•(i, j) along the 
fault using equation (3). 

Step 3.2. Compare stress '•(i, j) with the failure 
envelope 'of(i, j). For subset of cells having 'c _> 'of (denoted 
as the rupture set [ }r) implement steps 3.2.1 - 3.2.4' 

Step 3.2.1. Solve for slip [AU]r via [A'•]r = ['•(i, j)- 
'•a(i, J) }r = [K(i, j, i, j) Au(i, j) Jr, where K(i, j, i, j) is the 
self-stiffness of cell (i, j). 

Step 3.2.2. Update displacements [U|r. 
Step 3.2.3. Reduce strengths to dynamic levels 

= {•d}r. 
Step 3.2.4. Write output; check exit criteria (number 

of time steps or analysis years). 
Step 3.3. Check the number of elements N in the set 

{ }r. If N > 0, the rupture still propagates; go to step 3.1. If 
N - 0, the fault is at equilibrium; go to step 1. 

Steps 3.1 to 3.3 amount to solving the matrix equation 
{ a: - a:final } r = {K } r { Au } r by an iterative procedure, where 
the final stress values a:final(i, j) are distributed between 
'•d(i, J) and '•a(i, j) as discussed above. 

In an earlier version of our algorithm, each cell whose 
stress was found to be at or above the failure threshold 

slipped toward a stress level '•a during the scanning 
procedure, i.e., step 3.2.1 was done inside step 3.2. In this 
early version the precise values of stress drops and stress 
transfers depend on the scanning order, in contrast to the 
algorithm outlined above. We note, however, that for the 
choice of parameters used in our study (see next section) the 
results obtained during trial runs by the different algorithms 
were essentially the same. Our simulation procedure 
generates large ruptures as aggregates of small subevents on 
quasi-independent fault segments, on each of which there 
are initiation, propagation, and arrest events and possible 
reinitiations or repeated reinitiations. The most important 
model parameters are the number and size of grid cells; the 
location, size, and shape of the asperity, i.e., the 
distributions of Zs, Zd, and Za; and the recurrence interval 
and failure timing of the 1857 and 1906 patches. It is 
interesting to note that the above description of rupture 
process is similar to what is simulated by the barrier model 
of Papageorgiou and Aki [ 1983]. 

RESULTS 

A Circular Crack in a Full Space 
In order to test our algorithm we begin with a simple 

case for which the algorithm-generated slip can be compared 
with an exact result. A fault surface that is 100-km-long 
and 100-km-deep is loaded by 150 years of plate motion, 

- Aftershock I - 
1500 -- -- 

• - _ 

ß - 'Slow events ? . - 

• 1000 -- J Foreshock -- 
• _ 

_ _ 

= 500 -- 

• - _ 

_ Different character - 
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Fig. 8. Cumulative rupture area at the Parkfield asperity region. Note the diversity in the character of the 
large events. 
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i.e., Vpl t = 35 mm/yr x 150 years = 5.25 m. A circular 
crack region with radius of 10 km and origin at the center 
of the fault is allowed to slip so as to relieve the stress 
generated there by the plate motion. Figure 3 shows slip 
surfaces calculated using an analytical solution for a circular 
crack in a full space [Dmowska and Rice, 1986, equation 
3.2.13] and our dislocation-based algorithm. The agreement 
between the analytical solution and the numerical result, 
obtained using 100 x 100 dislocation patches, is very good; 
calculated slip values at the edge and center of the crack 
differ by 1/8 and 1/250, respectively. 

Homogeneous Asperity and Nonasperity Regions With 
Strongly Differing Stress Drops 

As a first realization of the SAF model of Figure 1 we 
set '•s = 40 bar (4 MPa) and consider a uniform strength 
asperity in the region 0 _< x _< 25 km, 5 _< z _< 10 km. The 
asperity is characterized by •a = 0.1 •s, while in the 
nonasperity region, '•a = 0.9 '•s, i.e., the transient stress 
drops in the asperity and nonasperity regions are 36 bars 
and 4 bars, respectively. Here and in the following section 
we use 128 x 32 = 4096 square cells having a dimension of 
about 550 m. This is close to the size of the slip patches 
(dimension of about 200 m) that generate repeated 
microearthquakes at Parkfield [Antolik et al., 1991]. We 
begin all simulations with 150 years of model-conditioning 
analysis during which the 1857 and 1906 earthquake 

Magnitude 
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Fig. 9. Cumulative frequency-size (FS) statistics of earthquake 
magnitude (squares) and rupture area (triangles) during 150 
analysis years in the 70 x 17.5 km 2 computational region. 
Units of rupture area are square kilometers. For small events b .• 
1 and bA -- 1, where b and bA are based on event magnitude and 
rupture area, respectively. 

patches (regions I and IV in Figure 1) are locked and the 
stably sliding zones (regions III and V in Figure 1) move 

by the amount Vpl t = 35 mm/yr x 150 years = 5.25 m. 
The fault configuration at the end of the model-conditioning 
period provides nonzero heterogeneous initial states of 
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Fig. 10½. Noncumulative frequency-size (FS) statistics of 
rupture area during 150 analysis years in the 70 x 17.5 km 2 
computational region. Region 1 is a self-similar domain with 
b A -- 1; region 2 shows enhancement in frequency of 
intermediate size events with a peak at a rupture area having the 
dimension of the upper layer thickness; region 3 is a final 
steep decay ending with a peak for events the size of the 
computational grid. 

' :•.•8-õ2hoi.40%.oLTb-d-•.•7.5 ' ' ' I ' 

ß 

4 5 6 

Magni[ude 

Fig. 10b. Same as Figure 10a for event magnitude. 
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stress and displacement for the continuing analysis. As 
indicated in Figure 1 b, at t = 150 + years, or more generally 
at t = 0 + years into the analyzed earthquake cycle, we 
impose 5.25 m of right-lateral slip (equal to the 
accumulated plate motion in 150 years) on the 1857 and 
1906 earthquake patches. For simplicity, both earthquake 
patches are moved simultaneously. We note that in the 
present modeling the computational grid is largely 
"shielded" from the 1906 earthquake patch by the presence 
of the stably sliding region III. 

Figure 4 shows calculated slip distributions along the 
SAF at four different times. The bottom surface (t = 0-) is 
the slip at the end of the model-conditioning period. The 
other three surfaces show calculated SAF slip at 0.1, 75, 
and 150- years into the analyzed earthquake cycle. The big 
jump between the slip surfaces at t = 0- and t = 0.1 years is 
due to the imposed 1857 event. We note that the asperity 
modeled by the assumed distributions of 'rs, 'ra, and 'rd is 
clearly shown on the various slip surfaces. We also observe 
that the results of Figure 4 are compatible with geodetic 
measurements along the SAF; the difference between 
calculated slip values on the Earth's surface at t = 75 years 
and t = 150' years increases toward the creeping zone in 
agreement with the measured geodetic profile [Buford and 
Harsh, 1980; Lisowski and Prescott, 1981; Schultz et al., 
1982]. 

Figure 5 shows time evolution of slip along the fault at 
a fixed (mid upper crust) depth of 8.75 km. Along the first 
25 km, where the assumed asperity lies, slip is 
accommodated in the form of large steps separated by 
periods of little or no activity. This mimics or represents 
the recurrent M6 Parkfield earthquakes. Beyond 25 km, in 
the nonasperity region, slip is accommodated in a nearly 
continuous fashion. 

Figures 6a and 6b show slip as a function of depth and 
time at fixed positions along the fault. Near the boundary 
between the asperity and nonasperity regions (Figure 6a, x 
= 24 km) the shallow slip is accommodated by large steps, 
while the deep section (z > 10 km) experiences more or less 
continuous slip. On the other hand, in the nonasperity 
region (Figure 6b, x = 45 km) the slip is more or less 
continuous at all depths. The results of Figures 6a and 6b, 
like those of Figure 5, are compatible with geodetic data 
and earthquake distribution along the central SAF. We note 
that in our model all calculated slip occurs in the form of 
earthquakes; there is no aseismic slip within the 
computational grid. 

In following figures we show and use rupture area and 
potency release. Rupture area is the total slipped area in 
given region and time. We note that the rupture area does 
not have to be continuous, although it typically is. 
Potency is the integral of slip over the ruptured area in 
given region and time. The potency is equal to the seismic 
moment divided by the rigidity; owing to the ambiguity in 

the definition of rigidity for fault zone spanning material 
contrasts [Heaton and Heaton, 1989; Ben-Zion, 1989] we 

prefer to use potency. For faulting in a homogeneous 
elastic solid as here, with • = 30 GPa, potency P of 104 
km 2 cm corresponds, for example, to a moment of 3 x 
1018 N m = 3 x 1025 dyn cm. 

Figure 7 shows potency release in the fault region 0 < x 
< 30 km, 0 < z < 17.5 km as a function of time. The 

results suggest two large (about 104 km 2 cm) alternating 
values of potency release. The alternating pattern is, 
however, not periodic, and it does not persist throughout 
the entire 150 years of model analysis. We note that there 
are two bands of potency release values, around 102 and 
103.6 km 2 cm, that characterize only a small number of 
events. As explained below, the relative deficiency in the 
number of events releasing potency in these zones is a 
direct consequence of our 3-D elastic stress transfer 
calculations. 

Figure 8 shows cumulative rupture area along the 
asperity region 0 < x < 25 km, 5 < z < 10 km. We note 
the diversity and different character of the large events. The 
event at about 180 years is preceded by a period of gradual 
rupture formation; the events at about 190, 220, and 240 
years are abrupt; the events at about 210 and 230 years 
resemble "slow" earthquakes; the events at about 200 and 
260 years are preceded by "foreshocks"; and the event at 
about 280 years is followed by an "aftershock". It may thus 
be unrealistic to expect simple precursory patterns, such as 
accelerated microearthquake slip, to occur before the failure 
of a Parkfield-type asperity. Although such patterns occur 
before some failures, they are not very indicative. 

Figure 9 shows cumulative frequency-size statistics of 
rupture area and earthquake magnitude in the computational 
grid 0 _< x _< 70 km, 0 _< z _< 17.5 km during the 150 
analysis years. The earthquake magnitudes M are obtained 
using the relation M = (2/3)log(P) + 3.6, where P is 
potency in square kilometers times centimeters (the units of 
rupture area in all figures showing FS statistics are square 
kilometers; log = log10). The above expression follows 
from the moment-magnitude relation of Hanks and 
Kanarnori [1979], log(M0) = (3/2)M + 16.1, where M 0 = 
BP is seismic moment in dyn centimeters, upon using a 
nominal rigidity • = 30 GPa (3 x 1011 dyn/cm 2) and 
accounting for the change in units. There are three clear 
event groups in Figure 9: small events characterized by b -- 
1.2 and b A = 1, intermediate size events having b, b A < 
0.5, and a final steep falloff. A Gutenberg-Richter region b, 
bA -- 1 is commonly observed and simulated, indicating that 
small events are self-similar. The intermediate region 
results from a supercritical rupture growth beyond certain 
rupture area and potency release thresholds. This is better 
seen in Figures 10a and 10b where we show noncumulative 
FS statistics. The small events fall more or less on self- 

similar GR curves, but beyond a rupture area of about 80 



kin2 (Figure 10a) or a magnitude of about 5 (Figure 10b) the event usually continues to grow to a size that is limited 
by either the upper layer thickness (,• 17.5 x 17.5 km 2) or the entire model dimensions ( = 70 x 17.5 kin2). That is, ruptures that release more potency than a threshold value 
are usually unstoppable. The simulated results can be 
understood in terms of a critical crack area for which the 
stress concentrated in the border cells of the failed region is uniformly greater than ,rs. This is illustrated in the discussion part of the paper. 
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Additional Cases of Assumed Stress Drop Distributions 
The asperity of the previous section simulates a strong and abrupt property variation along the SAF. The resulting 

static strength _ 

displacement field is in general agreement with geodetic and 
seismic observations. The average recurrence time of the 
simulated Parkfield earthquakes is, however, about 13 
years, shorter than the 22-year estimate of Bakun and McEvilly [ 1984]. 

In this section we examine a few cases representing increasingly more uniform faults. In order to get an average Parkfield earthquake recurrence time closer to the 
observations we set ,rs = 60 bars. We consider five cases of 
assumed stress drop distributions. (1) The distribution of 
the previous section with _+ 0.1 ,rs random stress drop fluctuations, uncorrelated from cell to cell (Figure 1 l a) (In 
order to reduce the computation time we increase the 
average transient stress drop in the nonasperity region to 

arrest stress 

Fig. 1 la. Assumed stress drop distribution for uniform (but different) asperity and nonasperity regions, with uncorrelated random property variation along the fault. The static strength is '•s = 60 bars. In the asperity region the average arrest stress is '•a = 0.1'• s. In the nonasperity region the average arrest stress is '•a 0.8'• s. The amplitude of the random fluctuations is 0.1'•s. = 

static strength - arrest stress 

..,,. •,..¾..•-•-,"• 

Fig. lib. Assumed stress drop distribution for asperity and nonasperity regions with gradual property variation and uncorrelated random fluctuations along the fault (see text for a precise description). The static strength is z s = 60 bars. In the asperity region the average minimum arrest stress is z a = 0.1Zs. In the nonasperity region the average arrest stress is z a = 0. Szs. The amplitude of the random fluctuations is 0.1z s. 
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0.2 Xs, setting there Xa = [0.8 + 0.1] Xs. The average 
transient stress drop in the asperity region remains 0.9 Xs.), 
(2) a gradual property transition between the asperity and 
nonasperity zones (In the asperity region (0 _< x _< 25, 5 _< z 
_< 10)Xa = {0.1+Max[0.7x/25, 0.7Abs(z-7.5)/2.5]} 
where Max and Abs denote, respectively, maximum and 
absolute values. In the nonasperity region, Xa -0.8 Xs.), 
(3) the distribution of the previous case with _+ 0.1 Xs 
uncorrelated random stress drop fluctuations (Figure 1 lb), 
(4) a homogeneous 0.2 Xs transient stress drop along the 
fault, and (5) same as case 4 with + 0.1 Xs uncorrelated 
random fluctuations. 

Figures 12a-12c show time evolution of slip along the 
SAF at a depth of 8.75 km for the stress drop distribution 
cases 1, 3, and 5 above. The results for cases 2 and 4 (not 
shown) are similar to those of 3 and 5, respectively. We 
note that as the fault properties become increasingly more 
uniform, the resulting displacement field becomes less 
compatible with what is observed along the SAF. In 
particular, the results of Figure 12c indicate that the mere 
proximity to the 1857 rupture zone is not sufficient to 
generate a Parkfield-type asperity. The mean and sample 
standard deviation of the simulated Parkfield earthquakes 
recurrence time in Figure 12a (strong property variation 
along the fault) are about 19 and 3 years, respectively. The 

maximum and minimum time intervals between the 

Parkfield-type earthquakes in Figure 12a are, respectively, 
24 and 15 years. These numbers are similar to values given 
by Bakun and McEvilly [1984], although the spread and 
standard deviation are smaller than figures based on their 
earthquake catalog as indicated by Ben-Zion e! al. [1993, 
Table 2]. 

Figures 13a-13e show frequency-size statistics of rupture 
area and event magnitude for the various assumed stress 
drop distributions. Inspection of these figures shows that 
the general structure of the FS data discussed in the 
previous section is preserved. In particular, the simulations 
are robust in having peaks for events with rupture areas 
having the size of the elastic layer thickness (i.e., rupture 
area -- 17.5 x 17.5 km 2) or the whole system. The 
incorporation of random fluctuations in the model fault 
properties results in a strong smoothing effect on the 
obtained frequency-size relations. This is seen by 
comparing Figure 13a to Figure 9 (strong property 
variation along the fault, with and without random 
fluctuations), Figure 13c to Figure 13b (gradual property 
variation along the fault, with and without random 
fluctuations), and Figure 13e to Figure 13d (uniform fault 
properties, with and without random fluctuations). A lesser 
smoothing effect results from an overall increase in model 

Slip(x,z-8.75km,t) 

MM 

o (:3 

Fig. 12a. Slip at a fixed (mid upper crust) depth of 8.75 km as a function of distance along the SAF and time for 
the stress drop distribution of case 1 (Figure 1 la). Slip values are normalized to the range 0-1. 
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Slip(x,z-8.75krn,t) 

<:5> <Z2) 

Fig. 12b. Same as 12a for the stress drop distribution of case 3 (Figure 1 lb). 

Slip(x,z-8.75km,t.) 

Fig. 12c. Same as 12a for the stress drop distribution of case 5 (uniform 'c s and 'ca, with superposed random 
fluctuations). 
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Fig. 13a. Cumulative FS statistics of earthquake magnitude 
(squares) and rupture area (triangles) for the stress drop 
distribution of case 1 (Figure 11a). 
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Fig. 13b. Noncumulative FS statistics of earthquake magnitude 
for the stress drop distribution of case 2 (like Figure 1 lb but 
without random fluctuations). 
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Fig. 13c. Noncumulative FS statistics of earthquake magnitude 
for the stress drop distribution of case 3 (Figure 1 lb). 

-• ' c•l 1;•S•32.aoO.g)Ob.O-?O-O- 1•7.5[ ''' I" 
_ 

_ 

Fig. 13d. Noncumulative FS statistics of rupture area for the 
stress drop distribution of case 4 (uniform 'r s and 'ra). 

uniformity, e.g., compare Figure 10b (strong property 
variation along the fault) with Figure 13b (gradual fault 
property variation), and Figure 10a (strong property 
variation along the fault) with Figure 13d (uniform fault 
properties). The average b and b^ values of the initial self- 
similar regions in the various model realizations are about 
1.2 and 1, respectively. 

DISCUSSION 

We perform 3-D numerical simulations of fault 

instabilities using a model incorporating both large-scale 

mechanical regimes and small-scale fault heterogeneities. 
The model is tailored in present application to the central 
SAF. Imposed slip boundary conditions represent the great 
1857 and 1906 rupture zones, the creeping segment of the 
central SAF, and a stably sliding region in the lower crust 
and upper mantle. Assumed distributions of stress drops on 
a computational region to the NW of the 1857 rupture zone 
model small-scale fault heterogeneities (wavelengths 
associated with the used cell size and with larger scale of 
the Parkfield asperity). The computational cells are 
governed by static/kinetic frictions. Our model is thus 
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Fig. 13e. Noncumulative FS statistics of rupture area for the 
stress drop distribution of case 5 (uniform 'r s and 'ra, with 
superposed random fluctuations). 

inherently discrete, corresponding to a situation in which 
the characteristic size of geometric disorder within the fault 
(represented by cell size, here a few hundreds of meters) is 
much larger than the nucleation size of slip instabilities (of 
the order of tens of centimeters to tens of meters for L = 5 

to 500 gm) based on slip weakening or rate- and state- 
dependent friction laws [Rice, 1993]. In the current work, 
only simple stress drop distributions are assumed. Other 
distributions, modeling more realistic (e.g., fractal) small- 
scale fault heterogeneities, can be incorporated easily in 
future work. 

In the absence of a characteristic distance in the used 

friction law it is not clear how to rationalize a criterion for 

"small enough" numerical cells. Both the number and size 
of the used cells are important model parameters. From a 
numerical point of view, a large number of cells (a large 
number of degrees of freedom) is necessary for preventing 
the model from falling into an unrealistically simple 
periodic behavior after a relatively short model time (e.g., 
102-104 years; Rundle [1988]). Apparently, our simulation 
procedure could, in principle, lead to a complex periodic 
solution regardless of the number of used cells, if the model 
employs periodic boundary conditions (note that the 
boundary conditions in the present work are not periodic) 
and the model is run unchanged (i.e., with the same failure 
mechanism and stress drop distribution) for a "long 
enough" time (e.g., 106 years; Narkounskaia et al. [1992]; 
G. Narkounskaia, personal communication, 1992; A. 
Gabrielov et al., manuscript in preparation, 1993). From a 
physical point of view, the seismological observations of 
Antolik et al. [1991] (repeated microearthquakes at 
Parkfield), Sacks and Rydelek [1992] (flattening of FM 

curves and strong variation of stress drops for small 
earthquakes), Malin et al. [1989] (flattening of FM curve 
for small earthquakes at Parkfield), Hough et al. [1992] 
(strong variation of stress drops of small events), and Leary 
and Ben-Zion [1992], Hough et al. (manuscript in 
preparation, 1993), and Ben-Zion [ 1993] (modeling of fault 
zone trapped and head waves) suggest that a proper cell size 
for the central SAF may be of the order of a few hundreds 
of meters. 

In practice, the number of cells used is limited by the 
available computing facility. Using a Sun Sparc Station 2, 
we modeled a 70 x 17.5 km 2 fault region with 128 x 32 = 
4096 square cells having a dimension of about 550 m. To 
verify that our results are stable with respect to further 
reduction in cell size, we repeated the calculations for the 
stress drop distribution of Figure 1 l a, using 160 x 40 = 
6400 cells. The resulting FS statistics (Figure 14) are 
similar to what is obtained with our standard 4096 cells 

(Figure 13a). As is shown below, however, the range of 
self-similarity in the simulated FS statistics shifts to lower 
magnitudes as the cell size is reduced. 

One of the most commonly discussed parameters of 
observed and simulated seismicity is the b value of the 
frequency-size statistics. It is important to distinguish in 
both model and data between a system consisting of many 
different faults and a system representing a single fault or a 
collection of similar faults. Pacheco et al. [1992] fitted 

global FM data (a system with many different faults) with 
two straight lines having b -- 1 and b -- 1.5 for small and 
large earthquakes, respectively. This result was anticipated 
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Fig. 14. Cumulative FS statistics for event magnitude (squares) 
and rupture area (triangles) for a grid having 160 x 40 cells and 
the stress drop distribution of Figure 11a. The results are 
similar to those obtained with 128 x 32 cells (Figure 13a). 
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by Rundle [1989], assuming that events of all size cover 
the same fault area (similar geometrical argument was used 
earlier by Kanamori and Anderson [1975] to derive b = 1 for 
small earthquakes) and that small and large events propagate 
in two dimensions and one dimension respectively. The 
assumption of constant fault area for events of all size, 
while being reasonable for a collection of faults having a 
fractal areal distribution, may not be applicable to 
individual faults or to regions with approximately uniform 
faults. Indeed, observations focusing on specific faults 
(Figure 15, Schwartz and Coppersmith, [1984], 
Wesnousky, submitted manuscript, 1993) or uniform 
seismogenic zones [Main and Burton, 1984; Main, 1987; 
Main and Burton, 1989; Trifu and Radulian, 1991] show 
significant deviations from log-log linear GR relations. 

Our simulated FS statistics, corresponding to a single 
fault, contain three regions: an initial self-similar (power 
law) GR domain with b = 1.2, bA = 1, an intermediate 
region with enhanced seismicity and a local maximum in 
the frequency of events having rupture area with the 
dimension of the upper layer thickness, and a final steep 
decay ending with a pronounced peak for events having a 
size of the order of the whole system (see, e.g., Figure 
10a). A power law region (usually with b or bA = 1) is 
simulated by all models that generate, one way or another, 
a critical state (e.g., the spring-block and cellular automata 
models mentioned in the introduction). Thus the ability of 
a model to simulate a b, b A = 1 region is not a strong 
indication that the model corresponds to a system of 
earthquake faults. Rather, models should be appraised on 
the basis of their success in simulating details outside the 
b, b A = 1 domain, relevant to earthquake rupture. We note 
that characteristics of individual faults or uniform 

seismogenic zones in observed data are shown not in the b 
-- 1 region but in deviations from self-similarity [e.g., 
Main, 1987; Wesnousky, submitted manuscript, 1993]. 
Such characteristics may be lost in FM statistics of data 
that are taken from irregular seismogenic zones such as 
southern California [Hileman et al., 1973] or the whole 

Earth [Pacheco et al., 1992]. 

Figure 15 shows the observed number of earthquakes per 
100 years versus magnitude for the SAF at Parkfield, 
California. The microearthquake distribution defines a self- 
similar line with b--0.9 [Malin et al., 1989]. The 

frequency of occurrence of five M = 6 Parkfield earthquakes 
in a century is, however, strongly enhanced with respect to 
self-similarity, in agreement with our model simulations. 
Our model frequency-size statistics are qualitatively similar 
also to the fault specific FM data of Schwartz and 
Coppersmith [1984] for the Wasatch fault in Utah, and 
Wesnousky (submitted manuscript, 1993) for the Whittier- 
Elsinore, Garlock, and San Andreas faults, and segments of 
the San Jacinto fault zone in southern California. Local 

maxima in the rate of occurrence of intermediate and large 

size events, similar to what is simulated in our model, are 

present also in the regional FM data of Main and Burton 
[1984] for earthquakes in the New Madrid seismic zone, 
Main [1987] for seismicity in Mount Saint Helens, Main 
and Burton [1989] for the Aegean area, and Trifu and 
Radulian [ 1991 ] for the Vrancea seismic zone in Romania. 

Kagan [1993] emphasizes that the definition of a specific 
fault is problematic due to the complexity of the crust and 
the possible circular use of the limited available data. These 
difficulties, however, should not apply to the regional 
seismicity data cited above. 

Trifu and Radulian [1991 ] explained deviations in their 
data from self-similarity in terms of a variant to the 
percolation model of Lomnitz-Adler [1985]. The block- 
spring calculations of Carlson and Langer [1989] and the 
hierarchical model of Narkounskaia and Shnirman [1990] 

also produce nonlinear (log-log) FS statistics. Our study 
indicates that local maxima in FS statistics of earthquakes 
in a 3-D elastic medium correspond to dimensions of 
coherent brittle zones, such as the width of the seismogenic 
layer (the upper crust in our model) or the length of a fault 
segment bounded by strong or weak barriers (the 
computational grid in our model). The FM statistics of 
seismicity observed along specific fault zones show, in 
most cases, a similar increase in the frequency of events 
having "characteristic" rupture dimensions (but see Kagan 
[1993]). Exceptions to this rule may be found in the FM 
data of Wesnousky (submitted manuscript, 1993) for the 
Newport-Inglewood fault and the combined San Jacinto 
fault zone in southern California. Seismotectonic studies 
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Fig. 15. Noncumulative frequency-magnitude statistics of 
observed Parkfield data. The microearthquake distribution is 
from Malin et al. [1989]. The five M = 6 Parkfield earthquakes 
per 100 years fall above the straight, b = 0.9, self-similar line 
defined by small events, in agreement with our model 
calculations. 



BEN-ZION AND RICE: EARTHQUAKES IN A THREE-DIMENSIONAL ELASTIC SOLID 14,127 

by Sanders and Kanamori [1984] and others show, however, 
that the depth of the seismogenic layer and the length, 
strike, and dip of fault segments in the San Jacinto fault 
zone are all highly variable. Similarly, the fault-trace- 
complexity analysis of Wesnousky (submitted manuscript, 
1993) indicates that the Newport-Inglewood fault consists 
of many disjoint segments. In these circumstances, as in 
the cases of the complex southern California region or the 
entire Earth, local maxima associated with rupture 
dimensions corresponding to the width of the seismogenic 
zone and characteristic asperity/barrier spacing will be 
averaged out. On the other hand, in places where the 
seismogenic layer is more or less uniform, local maxima 
may be preserved in FM statistics of regional data. This 
holds, for instance, in the case of the seismicity preceding 
the eruption of Mount Saint Helens, where the FM 
statistics show a clear local maximum in the rate of 

occurrence of events having a source dimension equal to the 
width of the seismogenic zone above the magma chamber 
[Main, 1987]. Another example is the peak in the rate of 
occurrence of earthquakes in the Aegean area with rupture 
dimension of 10-14 km [Main and Burton, 1989]. 

Independent seismotectonic studies in the Aegean area [e.g., 
Ekstrom and England, 1989] indicate that the brittle crust 
in that region has indeed an approximately uniform 
thickness of about 10 km and that most earthquakes there 
occur on steeply dipping faults with rupture areas bounded 
by the width of the seismogenic layer. 

The supercritical rupture growth in our model is a direct 
manifestation of the 3-D elastic stress transfer calculations 

used in the simulations. This can be illustrated by a simple 
analysis of fracture mechanics type based on elastic stress 
concentration. Consider a full space having a circular crack 
with a radius R over which a uniform stress drop A'C is 
applied and stress 'Ca remains on the ruptured surface. The 
stress at a small distance r from the crack front is given 
asymptotically as 

'c = K/(2nr) 1/2 + 'Ca (4) 
where K = TA'C(4R/n) 1/2 is the stress intensity factor and, 
assuming a Poisson ratio of 0.25, ¾ = 1.14 and 0.86 for 
positions along the crack front where the shearing 
conditions are pure mode II (inplane) and III (antiplane), 
respectively [Dmowska and Rice, 1986, equation 3.2.14]. 
Denoting the size of a discrete computational cell by h and 

calculating stress at the cell center by setting r = h/2 we get 

'c = (2/n)TA'C(R/h) 1/2 + 'Ca. (5) 
Putting into (5), A'C = P('cs - 'Ca), with p being an effective 
coefficient of weighted average stress drop in the rupture 
area, the ratio R/h for which the left hand side of (5) is just 
equal to the (static) failure stress 'Cs is 

R/h ~ (•/2p) 2. (6) 
This may be interpreted as the size of a rupture for which 
the stress concentrated around its perimeter is large enough 
to cause failure of all the border cells, i.e., an unstoppable 
rupture. We may expect that the average prestress over a 
large multicell region, within which failures of small 
subregions are occurring more or less randomly, will be 
approximately midway between 'Cs and 'Ca. This argues for 
p -- 0.5, or slightly larger since the actual stress at the end 
of a failure episode is distributed between 'Ca and 

Unfortunately, it is not easy to substantiate relation (6) 
by running many models with different cell size. This is 
because data generated by models using large cells are 
noisy, while data generated by models having small cells 
require large computation time. Table 1 shows critical crack 
size versus the size of the used cell for four runs (assuming 
the stress drop distribution of Figure 1 la) having 80 x 20, 
100 x 25, 128 x 32, and 160 x 40 cells. The critical crack 

size is determined by equating the rupture area at the end of 
the self-similar region (Figures 16a-16d) to the area of a 
circular crack. The ratio R/h is nearly a constant (with 
some scatter attributed to inaccuracies in simulations with 

large cells) as predicted by equation (6). As the cell size is 
reduced, the results define a critical area at the end of the 

scaling range more accurately (e.g., compare Figure 16d to 
Figures 16a- 16c). From the entries of Table 1 the effective 
coefficient of the average stress drop in the ruptured area is 
evaluated as p = 0.55. This value is close to 0.50 as 
estimated above. 

We note that the supercritical crack growth simulated 
here is not accounted for by cellular automata and block- 
spring models in which the adopted simplified stress 
transfer laws fail to scale properly with increasing rupture 
size. The power law scaling range in our simulations is 
terminated by events having rupture area of about 200 
times the cell size (A = •(8.3h) 2 based on R/h of Table 1). 
Thus our FS statistics for a cellular fault show GR power 
law distribution of events spanning only 2 earthquake 

TABLE 1. Parameters for Supercritical Crack Growth 
Number of Elements A = nR2, km 2 R, km h, km R/h A/h 2 

80 x 20 158 7.09 0.875 8.1 206 

100 x 25 112 5.97 0.7 8.5 227 

128 x 32 63 4.48 0.546 8.2 211 

160 x 40 40 3.56 0.437 8.1 206 

A is the rupture area at the end of the self-similar regions in Figures 16a-16d, R = (A/re) 1/2 is the radius of a critical 
circular crack, and h is the size of the used cell. 
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magnitudes. This is in contrast to the earthquake statistics 
of Wesnousky (submitted manuscript, 1993) and Main and 
Burton [1984] for the San Andreas fault in southern 

California and the New Madrid seismic zone, where GR 

power law distributions are shown to cover 3 earthquake 
magnitudes or more. We note, however, that the FM 
statistics of Wesnousky (submitted manuscript, 1993) for 
the Whittier-Elsinore and Garlock faults, and segments of 
the San Jacinto fault zone, as well as the data presented by 

Schwartz and Coppersmith [1984], Main [1987], Main and 
Burton [1989], and Trifu and Radulian [1991], all show 
power law distributions that cover only about 2 orders of 
earthquake magnitude. The range of self-similarity in actual 
earthquake statistics can, of course, extend toward the low- 
magnitude range, where the data may be incomplete. We 
recall, however, that Sacks and Rydelek [1992] and other 
studies mentioned in the introduction argue that small 
earthquakes do not follow a self-similar GR distribution due 
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Fig. 16a. Noncumulative FS statistics for rupture area using 80 
x 20 cells. Critical event size is marked by an asterisk. The 
assumed stress drop distribution is shown in Figure 1 l a. 
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Fig. 16b. Same as Figure 16a for 100 x 25 cells. 
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Fig. 16c. Same as Figure 16a for 128 x 32 cells. Fig. 16d. Same as Figure 16a for 160 x 40 cells. 
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to the discreteness of fault zone structure and failure of 

small slip patches by creep. Since the scaling region in our 
simulations is proportional to h 2 (Table 1), our results 
indicate that the area range of events following power law 
FS distribution, in a fault having a single cell size h, 
vanishes as h is reduced to zero. A tentative conclusion is 

that a broad GR power law scaling region of observed 
earthquakes is the result of geometric fault zone disorder 
spanning a broad range of size scales. The simple cellular 
automata and block-spring models miss the fact that a 
single cell size can produce GR power law statistics only 
over a limited range since they do not include proper 
scaling of stress concentration with event size. 

Our simulated results can be used to examine scaling 
relations between potency release P and rupture area A. 
Figures 17a and 17b show log(P) versus log(A) for the 
stress drop distribution cases 1 and 4 of the previous 
section (significant average property variation plus small 
random fluctuations along the fault, and uniform stress drop 
distribution, respectively). The results show log(P) = (3/2) 
log(A) + const for events having about P > 102 square 
kilometers times centimeters (M > 4.9) in agreement with 
the analysis of Aki [1972] and Kanamori and Anderson 
[1975]. For events with about P _< 102 square kilometers 
times centimeters the results, however, are better described 

by log (P) •- log(A) + const. We note that our small events 
are not covered by the data of Aki [1972] and Kanamori and 
Anderson [1975]. The recent data compilation of 
Romanowicz [1992] shows that the scaling relation log(P) 
-- (3/2) log(A) + const breaks down also for large strike-slip 
earthquakes. While the break in the scaling log(P) -- (3/2) 
log(A) + const for large strike-slip earthquakes (rela.ted to 
the change from b -- 1 for small events to b = 1.5 for large 
ones [Rundle, 1989; Pacheco et al., 1992]) is readily 
understood as a consequence of a predominantly 1-D rupture 
propagation for long and narrow faults, we cannot offer an 
explanation for the scaling log(P) = log(A) + const of our 
simulated small events. 

Our model calculations may be considered as providing a 
few simple representations of the SAF in central 
California. The simulated results show an •rregular 
sequence of Parkfield-type earthquakes and a great diversity 
in the failure mechanism of the model asperity. We thus 
suggest that it is unrealistic to expect a complex crustal 
system like the SAF to produce periodic earthquakes and/or 
simple precursory patterns repeating from one event to the 
other. It is possible, however, that precursory patterns do 
exist in the form of complex, perhaps evolving, 
combinations of parameters. A useful strategy for 
earthquake prediction might employ large synthetic data 
sets, generated over many earthquake cycles and various 
model realizations, to "train" pattern recognition 
algorithms. These algorithms may then be applied to real 
earthquake data [e.g, Keilis-Borok, 1990]. 
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Fig. 17a. Log (potency) versus log (area) for the stress dro• 
distribution of Figure 1 l a. Events having about P < 10 2 km a 
cm (M < 4.9) are characterized b• log(P) -- 1.1 log(A) + const, 
while events with about P > 10 • km 2 cm follow the scaling 
log(P) -- (3/2) log(A) + const. 
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Fig. 17b. Same as Figure 17a for homogeneous stress drop 
distribution along the fault. Here the scaling of small events (P 
_< 10 2 km 2 cm, M _< 4.9) is log(P) = 1,og(A) + const. 
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