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Estimates from atomic models of tension-shear coupling in dislocation 
nucleation from a crack tip 
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Abstract 

The normal stress distribution across a slip plane has the effect of reducing the critical loading required for dislocation 
emission from a crack tip. The reduction by normal stresses was found to be very significant for Si, based on properties 
estimated for it using density functional theory, to be large for Fe as modeled by the embedded atom method (EAM), and 
to be smaller in AI, Ni and ordered Ni3A1, estimated using the EAM. The general dependence over a wide range on 
parameters characterizing the tension-shear coupling was also determined. In the context of a Peierls model for disloca- 
tion nucleation at a crack tip (J. R. Rice, J. Mech. Phys. Solids, 40 (1992) 239), our approach was to search for onset of the 
dislocation nucleation instability based on the numerical solution of the system of non-linear integral equations describing 
an incipient dislocation. The incipient dislocation consists of a distribution of sliding and opening displacements along a 
slip plane emanating from the crack tip; these displacements are related to the shear and tensile stresses across the slip 
plane by constitutive relations based on the atomic models mentioned. Results from the atomic models are used to 
parametrize constitutive relations involving a Frenkel sinusoidal dependence of shear stress on sliding displacement at 
any fixed opening displacement, and a Rose-Ferrante-Smith universal binding form of dependence of tensile stress on 
opening displacement at any fixed shear displacement. These relations then enter the system of integral equations, solved 
numerically, which describe the elasticity solution for a non-uniform distribution of sliding and opening along the slip 
plane. The results show that tension-shear coupling will often significantly reduce the loading for dislocation emission 
from the value estimated on the basis of an unstable stacking energy Yu~ determined with neglect of such coupling, in a 
shear-only type analysis. For the EAM models of the metals considered, a simple and approximate method to account for 
the tension effects is to use a modified quantity yo iu*~, which is an unstable stacking energy for lattice planes which are con- 
strained to a fixed opening A0*, corresponding to that for vanishing normal stress at the unstable shear equilibrium 
position. Moreover, it is found that the normal stress effect can be described well in these cases by replacing the unstable 
stacking energy 7u~ in the shear-only model by a tension softened ~'u~(q~), which depends on the phase angle ~p of the com- 
bined tension-shear loading along the slip plane according to the stress intensity factors of the elastic singular solution. 
The same simple procedures for accounting for tension effects on nucleation are less suitable for lattices with strong 
coupling such as Si. 

1. Introduction 

A new analysis of dislocation emission from a crack 
tip has been given by Rice [1], based on the Peierls [2] 
concept of a periodic relation between shear stress and 
sliding displacement along a slip plane embedded in an 
elastic continuum. This combines continuum elasticity 
with atomistic descriptions of the dislocation core in a 
simple way. Rice applied that concept along a slip 
plane emanating from a stressed crack tip and, in an 
analysis that considered shear only (i.e. without 
coupling of the sliding displacements to tensile stress 

*Present affiliation: Department of Mechanical and Environ- 
mental Engineering, University of California, Santa Barbara, CA 
93106, USA. Address until 1/1/94: Max-Planck-lnstitut fiir 
Metallforschung, Institut fiir Werkstoffwissenschafl, SeestraBe 
92, D-70174 Stuttgart, Germany. 

**Also at the Department of Earth and Planetary Sciences, 
Harvard University, Cambridge, MA 02138, USA. 

across the slip plane), derived an exact solution for the 
dislocation nucleation condition when the slip plane 
and crack plane coincide (corresponding to 0 = 0 in 
Fig. 1). His analysis introduced a new solid state 
parameter 7us, termed the unstable stacking energy; it 
is defined as the energy per unit area of slip plane when 
the lattice on one side of the plane is shifted in shear, 
re la t ive  to  the  la t t ice  on  the  o t h e r  side,  to  the  uns t ab l e  
equ i l ib r ium p o s i t i o n  at  or  nea r  to  a s l iding d i sp lace -  
men t  of  b/2, w h e r e  b is the  Burge r s  vec to r  to  fo rm a 

c o m p l e t e  d i s loca t ion .  T h a t  is, 7u~ is the  height  o f  the  
energy  s add l e  po in t  t r a v e r s e d  in going  f rom the  mini -  
m u m  energy  s ta te  at z e ro  s l iding to  tha t  at the  s l iding b; 
here ,  in a p p l i c a t i o n  to  d i f ferent  mater ia l s ,  b m a y  co r r e -  
s p o n d  to  a full d i s loca t ion ,  o r  to  a S h o c k l e y  par t i a l  in 
an  f.c.c, lat t ice,  o r  to  a cons t i tuen t  d i s loca t ion  of  a 
supe r l a t t i ce  d i s loca t ion  in an o r d e r e d  alloy. I ndeed ,  7u., 
is an  ene rgy  of  the  s a m e  type,  bu t  larger,  t han  the  s tack-  
ing fault  ene rgy  7sf, o r  a n t i p h a s e  b o u n d a r y  energy  
YAPB, en te r ing  these  la t te r  types  o f  defects .  
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Fig. 1. An incipient dislocation, represented by a distribution of 
sliding and opening displacement, develops along a slip plane, 
tilted at angle 0 with respect to the crack plane, in response to 
mixed loading K. and K~. 

Rice's solution for the critical mode II stress inten- 
sity factor K~ at nucleation of a dislocation of edge 
character relative to the crack tip, for the 0 = 0 case, is 

(1 - v)Kii2 /2 t  ~ = )'us ( 1 ) 

Here/a is the elastic shear modulus and v is the Poisson 
ratio. The quantity on the left coincides with the energy 
release rate for pure mode II conditions and, since his 
analysis neglects tension-shear coupling along the slip 
plane, Rice's solution is insensitive to the mode I and 
mode III stress intensity factors in this (0 = 0) case. A 
related solution, involving KII and Kin, was derived for 
nucleation of a general dislocation of mixed edge and 
screw character relative to the crack tip. An approxi- 
mate solution of the same type of Peierls model for 
nucleation has been given by Schoeck [3]. The Peierls 
model has the advantage that the atomic properties 
which enter it are subject to direct estimation from 
atomic calculations. By contrast, the nucleation model 
of Rice and Thomson [4] and its descendents, based on 
elasticity solutions for fully formed dislocation lines or 
loop~ near a crack tip, require introduction of core cut- 
off procedures, so that the continuum elasticity prob- 
lem and the atomic cut-off parameter which enters it 
are not as well defined. 

Recently, there have been further studies of disloca- 
tion nucleation, and the related issue of ductile vs. 
brittle response, based on the Peierls framework. Sun et 
al. [5] used embedded atom method (EAM) models to 
estimate Yus for Ni and NiaAl (see Foiles et al. [6] for Ni, 
and Foiles and Daw [7] for NiaA1 for the origin of such 
models). Beltz and Rice [8] solved numerically the pair 
of integral equations describing the incipient disloca- 
tion for mixed mode loading of a crack with 

tension-shear coupling along a slip plane, in the simple 
case 0 = 0 when the slip and crack plane coincide. 
They introduced a representation of the coupled 
tension-shear constitutive relations along the slip plane 
that we use here. Later, Beltz and Rice [9] applied simi- 
lar procedures to numerical solution of cases with 
0#  0, for cracks along bimaterial (e.g. metal-ceramic) 
interfaces; related predictions of ductile vs. brittle 
response, based on that work and on ref. 10 were suc- 
cessfully tested experimentally for Cu crystals bonded 
to AI203 (sapphire) crystals by Beltz and Wang [11]. 
Rice et al. [12] review many of these developments, and 
give some preliminary results from EAM modeling of 
tension-shear coupling, as well as from consideration 
of elastic anisotropy. The latter topic is more fully 
treated by Sun et al. [13], whereas Beltz and Rice [14] 
give a first treatment within the Peierls type of integral 
equation modeling for the activation energy associated 
with dislocation nucleation. 

The studies mentioned, as well as molecular dynam- 
ics simulations of crack tip dislocation nucleation in 
EAM Fe, and interpretation of the simulations, by 
Cheung [15] and Cheung et al. [16] have emphasized 
the importance of tension-shear coupling in easing the 
nucleation process. The effect comes about since 
opening displacements under tensile stress allow a slip 
process with less shear resistance. The implication of 
this tension softening effect for ductile vs. brittle behav- 
ior was first discussed by Kelly et al. [17]. Argon [18] 
treated the tension effect by an effective shear modulus 
linearly weakened by tension. 

2. Integral equation formulation of elasticity problem 

2.1. Integral equations defining dislocation emission 
f rom a crack tip, considering tension-shear coupling 

We consider the process of a dislocation nucleation 
on an inclined slip plane of angle 0 with respect to the 
crack plane under combined Kx and K a loading, as 
shown in Fig. 1. An incipient static distribution 
{6r(S), 60(S)}, of sliding and opening displacement 
discontinuities across the slip plane develops in 
response to small loading by the stress concentration at 
the crack tip. Here we treat only pure edge slip, i.e. 
there are no antiplane or screw displacement discon- 
tinuities. In a later section we discuss results when an 
antiplane slip 6z(S), of screw type relative to the crack 
tip, is considered. We seek the condition under which, 
with an increase in loading, no further incipient static 
distribution exists, i.e. the solution becomes unstable so 
that afterwards a dNlocation line of a finite edge com- 
ponent emerL:~ at, moves away from the crack tip 
until stopped by lat,_~e resistance, or some other 
barrier. 
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As Fig. 1 illustrates, the incipient profile 
{6,(s), 6o(S)} is modeled here as a continuous distribu- 
tion of infinitesimal dislocations having, at location 
s, a Burgers vector [-(d6r(s)/ds)ds, -(d6o(s)/ds)ds], 
which in turn exerts stresses Oo~(r)=g~j(r, s; O) 
[-(d6j(s)/ds) ds] on a point r along the slip plane, as 
calculated for a linear elastic medium. Here, i, j = r, 0 
and there is summation on repeated indices. Therefore, 
the functions g,/(r, s; O) so defined can be obtained by 
interactions of a line dislocation with the crack tip in 
linear elastic medium. The function gtj(r, s; O) may be 
extracted from Lin and Thomson [19] and is listed fully 
by Beltz [20]. When 0 =0, the functions reduce to 
gi/(r, s; O)=/u(s/r)l/2bij/2sr(1- v)(r-s), where 6i: = 1 
when i = j  and 0 otherwise. 

The unrelaxed resolved shear stress in the slip plane 
before emergence of the slip and opening profile is 

K"~"' II~(O)K'+ f'~(O)K" (2) 
Oo,°(r) (2Jrr),/2- (2~r) '/2 

where fir(0) = cos2(0/2) sin(0/2) and fnT(0) = cos(0/2) 
[1 - 3 sin2(0/2)]. The unrelaxed tensile stress is 

Kl of' ji°( 0 )K l + f ,o(  0 )Kll 
Ooo°(r) - (2err)l/2 - (2err),~ 2 (3) 

where fi"(0)=COS3(0/2) and f n ° (O)=-3cos2 (O/2 )  
sin(0/2). These correspond to the classical elastic 
singular field. 

The diverging stresses o0r ° and o00 ° are relaxed by 
emergence of an incipient dislocation core, described 
by the displacement discontinuity profile {6r(S), 60(S)}. 
We treat this as a combined shear and tension stress 
relief process in order to delineate the role which the 
normal stress plays in dislocation nucleation, although 
the model can, of course, also describe the Griffith 
decohesion which results when the unrelaxed tensile 
stress is much larger than the shear stress (and no other 
slip planes are available). The equations of equilibrium 
for shear and tension along the slip plane are thus 

co  

r[6,(r), 6o(r)] = oo,°(r)- f gll(r, s; O) dOt(s)ds 
ds 

0 

f dO0(s) - g,2(r, s; 0 ) ~ d s  (4) 
0 

and 
co 

o[6r(r), 6o(r) ] = Ooo"(r)- f g2,(r, s; O) dOt(s) 
ds 

0 

co 

- f g22(r, s; O) dd0(s) ds 
ds 

/1 

ds 

(5) 

where our treatment adopts the approximation of a 
half-plane crack in an infinite solid under remote K~, 
Kn loading. The terms r[6,(r), 6o(r)] and o[6,(r), 6o(r)] 
are the shear and tensile stresses across the slip plane, 
and a potential • [6r(r), 6o(r)] is assumed to exist such 
that 

0alp [Or(r), O0(r)] 
r[6,(r), 6o(r)]- (6) a6r(r) 

O~ [6,(r), 6o(r)] 
O[6r(r), 6o( r)] - (7) 

aOo(r) 

Modeling of the potential from EAM models will be 
given in the next section. Equations (4), (5), (6) and (7) 
constitute a complete set of equations which can be 
solved simultaneously. The solutions may be obtained 
by numerical methods. 

Following developments by Beltz [20] and Beltz and 
Rice [8, 9], the system of eqns. (4), (5), (6) and (7) is 
solved most efficiently by utilizing the interpolating 
points for the distribution {dr(r ), do(r)} at the N + I  
roots of the Chebychev polynomial of the second kind 
of order N+ 1 (see, for example, Erdogan [21] and 
Erdogan and Gupta [22]). The numerical procedure 
searches for the convergent configuration {6,(r), do(r)} 
via a Newton-Raphson technique. Increasing the 
loading gradually up to a point where no solutions can 
be found (just before the displacement increments 
increase rapidly with loading increments) we then 
assume that the slip profile has become unstable and 
denote the corresponding loading as the critical load- 
ing for dislocation nucleation. An equivalent but more 
rigorous approach to determining the instability point 
is described by Beltz and Rice [8]; it involves monitor- 
ing the Jacobian matrix J of the non-linear algebraic 
equations. The determinant of J rapidly decreases 
towards zero at the instability. 

2.2. Special case based on the shear-only approximation 
The role of normal stress in dislocation nucleation 

analyzed in the combined shear and tension model at a 
crack tip is compared and contrasted with the treat- 
ment of dislocation emission as a pure shear process, in 
which case we have a simpler set of equations to solve, 

co  

" f OOr (r)-- g,,(r, s; O)dar(s) 
ds 

0 

ds (8) 

a,x,[a . (r)]  
r{Or(r)] = (9) 

a a . ( r )  

The angle 0 is an important parameter for disloca- 
tion emission from a crack tip, and is determined by 
the available slip systems with respect to the crack 
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plane. The angle 0 determines the content of the kernel 
functions gis(r, ~, O) and the proportion of mixing of 
shear and tension, gl i  eff and KI eff. 

For the case of a slip plane coplanar with the crack, 
0 = 0, Rice [1] showed that relations could be derived 
between the applied K~, K n and the displacement 
discontinuities at the tip. These follow derivations like 
those of Rice [23, 24] and Eshelby [25] in applying the 
path-independent J-integral to cohesive crack models, 
or derivations in the style of Willis [26] based directly 
on the elasticity integral equations. The relations for 
the coupled tension-shear model of eqns. (4)-(7) are 

1 - v  K2 G - ~ W (  i q - g l l 2 ) = ( I ) ( ( ~ t  tip, (~0 tip) (10) 

where 6 i  tip is 6i(r ) at r=0 .  Also, for the shear-only 
model described by eqns. (8), (9), 

1 - - 1 /  
Kl l2  = (I) (~ir tip ) ( 1 1 )  

Since Yus is the maximum value of 0 ( 6 )  in the shear- 
only model, the above equation explains why the 
maximum loading at which an incipient dislocation 
exists, i.e. the nucleation loading, is given by eqn. (1). 
Since the model with tension-shear coupling involves 
two kinematic quantities, we cannot similarly use eqn. 
(10) to obtain the nucleation condition directly; the 
integral equations must actually be solved. We can, 
however, note that since 27s (Ts is the surface energy) is 
the maximum value of ~ ,  attained as 6 o increases 
beyond the range of attraction of the two surfaces, then 
eqn. (10) assures that the Griffith loading G = 27s gives 
an upper bound to the loading for dislocation nuclea- 
tion in this case of coincident crack and slip planes. 

There is some arbitrariness in how the potential 
O(6t) for the shear-only approximation is chosen. 
Generally we can write 

(6,) = • ( 6r, 60 = constrained) (12) 

to indicate that different ways of constraining 6o during 
the slip process lead to different functions ~(6r), and 
hence to different interpretations of its maximum value 
Yu~. Some of these are discussed in the following 
sections. 

3. Combined tension-shear constitutive relations 
as constrained by atomic modeling 

3.1. Form of  a combined tension-shear constitutive law 
For a uniform slip process in a crystal lattice, we 

imagine that a plane splits the crystal into two blocks. 
The upper block translates by a displacement (At, A0) 
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Fig. 2. Block-like lattice sliding and opening displacement of 
atomic layers along a slip plane. The atoms inside the column 
made of broken lines are counted for total energy summations. 

relative to the lower block, as demonstrated in Fig. 2; A 0 
denotes an opening displacement and At is an in-plane 
shear. Consequently, the lattice is no longer periodic 
along the 0 direction, but is still periodic along the r 
and z directions inside the plane. In this work, we only 
treat the relaxations associated with normal separation 
of the two blocks, which we believe to be the main 
relaxation effect in slip processes in elemental metals. 
Other modes of relaxation and their relevance to 
Peierls modeling are open issues for further research. 

We may define a potential ~(At ,  A0) for the energy 
per unit area associated with displacement (At, A0). 
The work quantities conjugate to (At, A0) are the shear 
stress z and normal stress o such that 

dW(At, A0) = r dA t + o dA 0 (13) 

The potential denoted ~(6r ,  60) earlier involved the 
displacement discontinuities across the slip plane (a 
mathematical plane without thickness). The related 
potential denoted W(A, A0) here is discussed for 
combined slip and opening displacements between the 
two atomic planes with initial normal separation h. We 
will give the transformation from the potential 
W(At, A0) and relative atomic displacements (Ar, A0) 
to the potential tl)(6r, 6O) and displacement discon- 
tinuities (6 ,  6o) in the final part of this section. 

In the unrelaxed shear mode, i.e. sliding by A r with 
A0 = 0, the shear stress r(Ar) vs. the sliding displace- 
ment A r is conveniently approximated by the sinu- 
soidal form [2, 27], 

s m / v  ] (14) 

where now the coefficient, which could also be written 
as #b/2~h,  is given in terms of the unrelaxed value of 
the unstable stacking energy, where h is the interlayer 
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separation distance. Thus Ug(A. Ao=O) has a maxi- 
mum Yus/~/(unrelaxed value) at A~ = b/2. 

However, for normal decohesion at A~ = 0, we may 
adopt the standard approximate form of the 
Rose-Ferrante-Smith [28] universal binding relation 
between tensile stress a(A0) and opening displacement 
A0, as found to fit the numerical solutions for decohe- 
sion based on density functional theory (DFT) in the 
local density approximation (LDA). This is 

a(A0)= ( ~ ) ( A o / L ) e x p ( - A o / L )  (15) 

where V~ is the surface energy for one of the decohered 
surfaces; Rose et aL [28] report that the characteristic 
distance L is found to scale among elemental metals 
like the Thomas-Fermi screening distance. Equation 
(15) is, via eqn. (13), consistent with the 
Rose-Ferrante-Smith [28] universal binding relation 
for the energy excess per unit area, as approximated in 
the form 

qJ (At = 0, A0)= 2ys{ 1 - [1 + (Ao/L)] exp(-Ao/L)} (16) 

Now, to construct approximate constitutive relations 
for the combined shear and tension case, we assume [8, 
12] that r (A,  A0) and o(A r, A0) have the general 
mathematical forms which follow, consistent with 
periodicity b in shear and with characteristic length L 
in the decohesion process. These forms are 

• / 2 ~ A ~ /  Aol=AIAol sml -- ] (17) 

o ( A r ,  A0)= [B(Ar)(Ao/L ) - C(Ar) ] exp(-A0/L) (18) 

where A(A0) , B(Ar) and C(Ar) are functions of their 
arguments. These functions are constrained, in a way 
which introduces just one more material parameter, 
when we require consistency with eqns. (14) and (15) 
when either A0=0 or At=0,  and when we further 
require that o and r be consistent with the existence of 
a potential tIJ as in eqn. (13). The latter condition 
requires that the Maxwell reciprocal relation 

E B(A~) = ~ -  1 -  sin 2 (20b) 

2f <] 
C ( A r ) = L  - [ 1---fi sin / ~ - ] J  (20c) 

Here 

y~(~) Ao* 
q - and p = - -  (21) 

2ys L 

where A0* is the new material parameter allowed by 
these considerations, and is the relaxed opening dis- 
placement corresponding to tensile stress o = 0 when 
the shear displacement A r = b/2, i.e. the value of A r at 
which r = 0 at unstable stacking. The parameter p is 
called the dilation parameter• The two quantities p and 
q measure the importance of tension-shear coupling, 
as will be seen further. 

We obtain the potential tI/(Ar, A0) consistent with 
eqns. (17), (18), (19)and (20) as 

W(A r, A0)= 2y~ [1 - [1  + (Ao/L)] exp(-Ao/L ) 

x exp(-Ao/L) } (22) 

% 

and this reduces to a potential introduced by Needle- 
man [29] when p = q. 

The relaxed ~us value Yus (r/which is the energy • at 
equilibrium in the unstable stacking configuration 
requiring no stresses ( r = 0  and 0=0) ,  is obtainable 
from eqn. (22) by setting the shear displacement Ar = b/2 
and the opening displacement A0=A0 *, i.e. setting 
Ao/L =p. Omitting the algebra, we arrive at the rela- 
tion, 

ru  r -rus [ 1-q 1 y~(u) - -  q (~_p)  [ e x p ( - p ) - l + p ]  (23) 

Or 0o 

0Ao OAr 
(19) 

be satisfied. The resulting functions A, B, C, obtained 
so as to require r to vanish as A 0--" 0% are 

A(A°)= gTus(u--~b { 1 + ll_p- p/q]] (Ao/L)} exp(-Ao/L)  

(20a) 

3.2. Results from EAM calculations for models of Fe, 
AI and Ni 

The atomic calculations for embedded atom method 
Fe, A1, Ni and Ni3A1 were performed in the following 
way. The energy calculations involve double summa- 
tions. The EAM functions are usually cut off at a 
distance rout which is between the third and fourth 
nearest neighbor distances. Because of the cut-off we 
need to sum over the fourth nearest neighbors. 
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We want to calculate energies associated with the 
slip process with coupling to opening displacement. 
The model is shown schematically in Fig. 2. It is con- 
venient to use triclinic axes {a~, a z, a3}, which can be 
chosen for the slip system and lattice type, for describ- 
ing a lattice undergoing sliding and opening de- 
cohesion, with a 1 and a z marking the periodic lattice in 
the slip plane, and a third axis a3 directed out of the slip 
plane. 

The slip is designated as some fraction of the 
Burgers vector b expressed in some components on 
{al, a2}. Define e z as a vector in the slip plane and 
perpendicular to the Burgers vector, and e0 a vector 
perpendicular to the slip plane having components in 
{al, a2, a3}. The original lattice is composed by putting 
atoms on all space points, spanned by integer numbers 
as the coordinates in the basis {al, a2, a3}. So we let the 
upper block be displaced by a vector (Ar, A0, Az) in the 
basis of {b, eo, e z} respectively. The sliding routes are 
shown from the top view for a b.c.c, lattice in Fig. 3, the 
Shockley partial route in an f.c.c, lattice in Fig. 6, and 
for Ni3AI in Fig. 11. 

The configuration after sliding and opening dis- 
placements is still periodic inside the two-dimensional 
plane, the sliding plane spanned by basis {al, a2}. 
However, it is no longer periodic along the a 3 direction, 
pointing out of the sliding plane (Fig. 2 shows that). 
This suggests the way in which we choose atoms so that 
the energy excess from such displacements can be 
calculated. In the direction normal to the slip planes, 
we  put a few extra layers on top of the upper block and 
also below the lower block to provide the necessary 
embedding medium, usually three layers so that the 
embedding electronic density contribution for the 
blocks from the boundary layers and the pairwise inter- 
actions between the boundary layers and the blocks are 
all taken care of. When a slip is imposed on the two 
blocks, we let the boundary layers also move with their 
associated block. Hence, the way our calculations of 
the energy of a generalized stacking fault are per- 
formed does not involve either free boundaries or a 
periodic array of stacking faults along the normal 
direction. 

The atoms inside a column are chosen, shown in Fig. 
2, in order to be counted in summing for the total 
energy: we start by choosing a unit cell in the basis of 
{al, a2, a3} , then let the unit cell repeat along the a 3 
direction both above and below the sliding plane for 
the same number of units in a 3. The upper and bottom 
blocks should be as thick as twice the cut-off distance 
to calculate the energy accurately. The atoms will 
interact both with the atoms inside the column and 
with those outside, including atoms in the boundary 
layers, as long as they are within the interacting range. 
Trial calculations showed we only need to include, for 

the total energy calculations, five units along a 3 direc- 
tions each for both blocks above and below the slip 
plane, in order to yield unchanging results when 
including more units along the a 3 direction. 

We calculate the energy of the column in the fashion 
of direct numerical summations. We take the energy 
difference of the slipped configuration relative to the 
undisplaced configuration. Since the energy excess 
obviously scales with the area of the slip plane, we can 
define a potential energy associated with such a dis- 
placement qt(Ar, A0, Az) for the excess in energy per 
unit area. The calculations are always to evaluate the 
energy of the configuration with imposed sliding and 
opening condition. They should not be thought of as a 
type of simulation where a boundary condition is 
imposed and the system of atoms responds to it. 

We now present results on the energy surface 
tI/(Ar, A0) for sliding and opening between a pair of 
lattice slip planes as calculated based on EAM poten- 
tials intended to simulate approximately Fe, A1 and Ni. 

The slip route (1/2)[111](0i l) in b.c.c, is shown in 
Fig. 3. Figure 4(a) shows the energy ~(A, ,  A0) of 
EAM Fe (for the source of EAM potential, see 
Harrison et  al. [30]) as a function of the slip displace- 
ment A~ at various opening displacements A 0 for the 
slip system (1/2)[111](0il). With a finite amount of 
opening, the energy height in the path from zero slip 
displacement to that of a half Burgers vector is 
lowered, which is the source of tension softening in a 
shear process in the description within the Peierls 
framework, noted on the basis of molecular dynamics 
simulations based on this same potential by Cheung 
[15] and Cheung et al. [16]. Figure 4(b) shows the 
energy as a function of the decohesion A0 with slip 
displacement as a parameter. The analytical model of 
eqn. (22) describes well the general shape of the curves 
when we choose L / b = O . 1 9 7 ,  q=0.158 andfl_~0.214 
(and h / b  from the b.c.c, lattice geometry is ./2/3). The 
minimum energy point, with opening displacement as 
the variable, shifts with different slip displacements, 
which is accounted for in the analytical formula. Figure 
5 compares the relaxed and unrelaxed energy vs. slip 
relations as calculated from the EAM model. 

slip(i/2) [1 1 1] (0-1 1)inbcc 

Fig. 3. The (1/2)[111](0i 1) slip in a b.c.c, lattice, top view. The 
empty and filled circles depict atoms adjacent to the slip plane 
on opposite sides. 
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Fe( l /2 )  [1 1 1] (0-1 1) 

1 8  t . . . .  , . . . . . . . . . .  
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"~ 1 . 3 5  = - - -  " " 
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~" 0.9 
0.16 

0.45 
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o ~D 

0 0.2 0.4 0.6 0.8 
slip displacement A r / b 

a O  
b O  
c o 

Shockley partial slip, (1/6) [-2 I 1] (111) in fcc 

Fig. 6. The (1/6)[211](111) slip, i.e. Shockley partial route, in an 
f.c.c, lattice, top view. The large, medium and small circles depict 
atoms of layers a, b and c. The slip plane is between the layers a 
and b. 

Fe (1/2) [1 1 1] (0 -1 1) 
5 

- marker - : EAM (b) 

,.~ 4 [ - -  : analytical fit 
<3 

9-~ 2 ~t 0 . 2 5 /  

1 
0.0 °° . . . . . . .  

-0.2 0.2 0.6 1 1.4 1.8 
normal opening displ. A 0 / h 

Fig. 4. The potential energy W(A,  A0), (a) as a function of the 
sliding displacement A~ and (b) as a function of opening displace- 
ment A0, for the Fe (1 /2 ) [ l l  1](0 ] 1) slip system. Broken curves 
with markers are obtained from atomistic calculations based on 
the embedded atom method; solid curves are from modeling 
based on the analytical formula, eqn. (22). 
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Fig. 7. The energy W(Ar, A0) as a function of the shear displace- 
ment A~ and opening displacement A 0 for the AI( 1/6) [ 211 ] ( 111 ) 
slip system from atomistic calculations based on the embedded 
atom method ( - - - ) .  Results of analytical fitting using eqn. (22) 
( ) are also shown. 

-% 0.8 

~--~ 0.6 
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0.2 0.4 0.6 0.8 
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Fig. 5. The potential energy qJ(A r, m 0 ) o f  ( 1 /2) [ 111 ] (011 ) slip for 
Fe along the constrained path (A0=0)  and relaxed path (A 0 
relaxed to value to minimize the energy W, i.e. to make o = 0) 
from atomistic calculations based on the embedded atom 
method. 
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,% 0.2 

0.15 
9- 
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~ 0.05 
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AI (1/6) [-2 1 11 (I 1 1) 

q 
A 0 = 0 (unrelaxed) 

J 

0.2 0.4 0.6 0.8 
shear displacement A r / b 

Fig. 8. The potential energy ttt(Ar, A0) of(1/6)[211](111) slip for 
AI along the constrained path (A0=0)  and relaxed path (A0 
relaxed to value to minimize the energy qJ) from atomistic calcu- 
lations based on the embedded atom method. 

B a s e d  o n  t h e  s i m i l a r i t y  o f  t h e  E A M  c u r v e s  ( b r o k e n  
l ines)  a n d  the  m o d e l i n g  c u r v e s  ( so l i d  l ines) ,  o b t a i n e d  
f r o m  eqn .  (22) ,  in F ig .  4, w e  see  t h a t  t h e  a n a l y t i c a l  
f o r m u l a  e x p r e s s e d  in  eqn .  (22)  is s a t i s f a c t o r y  f o r  
d e s c r i b i n g  t h e  t e n s i o n - s h e a r  c o u p l e d  c o n s t i t u t i v e  l aw 
f o r  c o m b i n e d  s l i d ing  a n d  o p e n i n g  d i s p l a c e m e n t s .  
T h e r e f o r e ,  w e  use  t h e  a n a l y t i c a l  f o r m u l a  in  t h e  n u m e r i -  

ca l  f o r m u l a t i o n  of  t h e  i n t e g r a l  e q u a t i o n s  d e s c r i b i n g  
d i s l o c a t i o n  e m i s s i o n .  

T h e  s l ip  ( 1 / 6 ) [ 2 1 1 ] ( 1 1 1 )  in  a n  f.c.c, so l id ,  i.e. the  
S h o c k l e y  p a r t i a l  r o u t e ,  is s h o w n  in  F ig .  6. F i g u r e  7 
s h o w s  t h e  e n e r g y  I ' I ' / ( m r ,  m0) as  a f u n c t i o n  o f  t h e  s l ip  
d i s p l a c e m e n t  A t a t  v a r i o u s  o p e n i n g  d i s p l a c e m e n t s  A 0 
f o r  A I  ( fo r  t h e  s o u r c e  o f  t he  p o t e n t i a l ,  see  H o a g l a n d  et  

al. [31]), w h i l e  F ig .  8 s h o w s  it w h e n  t h e  n o r m a l  s e p a r a -  
t i o n  d i s t a n c e  b e t w e e n  the  t w o  b l o c k s  is r e l a x e d  o r  
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unrelaxed. Figures 9 and 10 show similar curves for 
EAM Ni (for the source of the potential, see Foiles et 
al. [6]). Note the decrease in unstable stacking energy 
when the normal separation is relaxed, shown in Figs. 
5, 8, 10 and 12. 

In the f.c.c, cases, qs does not vanish when the lattice 
is shifted by A r = b and relaxed in the normal direction 
(see right sides of Figs. 7-10). That is because b corre- 
sponds to a partial dislocation, and the residual value 
of W corresponds to the stacking fault energy Yst. That 
parameter is, in fact, not very well described by the 
EAM models; Hirth and Lothe [32] give ysf = 125 mJ 
m-2 for Ni whereas the E A M  model predicts Ysf = 14.5 
mJ m -2. Also, for A1, the experimental value from 
Hirth and Lothe [32] is ysf = 166 mJ m -2 while E AM 
gives ysf = 14.1 rnJ m -2. In our fit to the analytical 
potential of eqn. (22), we focus on the E A M  results up 
to the peak in W at A~ = b/2, since that is the part of the 
potential experienced in the Peierls modeling prior to 
the nucleation instability. The maximum of tlS at fixed 
A 0 is still very close to A~ = b/2. 

The fitting is done as follows. The value of 2y s is 
fixed at the E A M  value, i.e. the leveling-off value of 

0.5 

0.4 
4' 

Ni (1/6) [-2 1 l] (1 1 1) 

. . . . . . . . . . . . .  A '  o ;' t~ - ' 

<~" 0.3 

S ~'~ 0.1 

i . . . L 

~= 00 0.2 0.4 0.6 0.8 
slip displacement A r / b 

Fig. 9. The energy Ud(Ar, A0) surface as function of the shear 
displacement  m r and opening displacement A 0 for the Ni(1/6) 
[21 l](111) slip system from atomistic calculations based on the 
embedded atom method ( - - - ) .  Results of analytical fitting using 
eqn. (22)( ) are also shown. 

0.5 

.~ 0.4 

~<~ 0.3 

0.2 

"~0 .1  
0 2  

=~ 0 

Ni (1/6)[-21 11 (1 1 1) 

A o = 0 (unrelaxed) 

0 0.2 0.4 0.6 0.8 
shear displacement ,~ / b 

Fig. 10. The potential energy qJ(A,,A0) surface of (1/6) 
[2.11](111) slip for Ni along the constrained path (A 0 = 0) and 
relaxed path (A 0 relaxed to value to minimize the energy ~ )  from 
atomistic calculations based on the embedded atom method. 

at large opening A 0. The set of parameters q, p and Lib 
is chosen in a non-linear fitting procedure [33] so that 
the analytical function of eqn. (22) gives the best fit in 
the least square sense to the EAM results for W(Ar, A0). 
That is, we choose the set of parameters q, p and Lib 
to minimize the sum of squares of differences of the 
energy q / (Ar ,  A0) from the E A M  computations and 
that obtained from the analytical formula at each grid 
point in a mesh of the two variables (At, A0). We would 
prefer the analytical formula to describe the energy 
function q/ (Ar ,  A0) from the E AM computations in as 
wide a range as possible, starting with the most relevant 
range for dislocation nucleation. We have used slightly 
different fitting ranges for these four E AM materials as 
follows: For Fe, 0 to b in 100 divisions for Ar, - 0 .14h  
to 0.24h in 38 divisions for A0; for Ni, 0 to b in 100 
divisions for Ar, -0 .105  h to 0.300h in 27 divisions for 
A0; for Al, 0 to b in 100 divisions for Ar, - 0 . 1 2 h  to 
0.255h in 25 divisions for A0; for NiaAl (see below), 0 
to b (b here is ao/f6 ) in 100 divisions for Ar, - 0 . 0 3 h  
to 0.18h in 7 divisions for A 0. The fitting results in the 
most relevant range are shown with the EAM results in 
Figs. 4 for Fe, 7 for Al and 9 for Ni. When we solve for 
the critical conditions for dislocation nucleation at a 
crack tip, we know that values near 0.6b for A r are 
sometimes involved, but not too much beyond that 
value. Therefore, we need to be concerned with the 
quality of the analytical representation for values of Ar 
from 0 to slightly beyond 0.5b, in which range the 
analytical fitting by eqn. (22) for these three materials is 
satisfactory. We actually include the whole range from 
0 to b for A r in the fitting, but the closeness of fit 
beyond 0.6 b is less important than the range from 0 to 
0.6b for Ar. 

Table 1 summarizes the parameters of the combined 
shear and tension constitutive law for these EA M 
metals, which were obtained by fitting the analytical 
formula, eqn. (22) to the numerical results by atomistic 
calculations using E AM potentials. Properties deter- 
mined directly from the E AM calculations, rather than 
the fitting procedure, are shown in Table 2. Some of the 
ratios of Yus values shown in Table 2 are also shown in 
Table 3 based on properties from the fitting procedure, 
i.e. from Table 1. 

3.3. Results from EAM calculations for Ni3AI 
The route to a full slip on a (111) plane in Ni3A1 

can be viewed in Fig. 11. The easiest route is 
O --' M--" R--> M' -" O'. The associated energy of the 
lattice for sliding along the route is calculated with the 
E AM functions, taken from Foiles and Daw [7]. For the 
whole route, the relaxed energy (the solid curves), i.e. 
with the condition that the normal tension is zero, is 
shown in Fig. 12 alongside the unrelaxed energy (the 
broken curves), i.e. with the constraint of no normal 
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TABLE 1. Properties of the analytical combined shear-tension law of eqn. (22) as fitted to results of atomistic calculations for the 
EAM Fe, A1, Ni and Ni3A1, and DFT-LDA Si (glide and shuffle set) 

75 

Material and slip system y. lrl (yo.l.I) 2y~ p q L/b 
(Jm -2) (Jm -2) 

Fe(1/2)[11 l](li0) 0.438 (0.517) 3.33 0.214 0.158 
AI (1/6)[211](111) 0.0795 (0.0920) 1.13 0.140 0.0854 
Ni(1/6)[211](111) 0.226 (0.260) 2.87 0.132 0.0879 
Ni3AI (1/6)[211](111) a 0.316 (0.348) 3.30 0.150 0.108 
Si glide (1/6) [211](111) b 1.91 (2.02) 3.12 0.376 0.647 
Si glide (1/6)[211](111) ~ 1.91 (2.02) 3.12 0.747 0.647 
Si shuffle (1/2)[011](111) b 1.67 (1.81) 2.68 -0.650 0.675 
Si shuffle (1/2)[0] 1](111) ~ 1.67 (1.81) 2.68 -0.881 d 0.675 

0.197 
0.279 
0.271 
0.256 
0.308 
0.155 
0.121 
0.090 

aHere the Burgers vector b is also a fitting parameter, set equal to 1.18 ao/,[6. 
bp, L are determined from the ratio y,ff//yu~/"/. 
CL is given by Rose et al. [34]. 
dThere is a problem that p~ q, which ls not allowed, for this set of estimates. 

TABLE 2. The properties as calculated directly from EAM for Fe, AI, Ni and Ni3A1 

Material and slip system ~us (r) '~us (u) ~us (u*) Yus(r)/~us lu) ~usiU*}/Yus (u) ~'usIU*)/~us (rl 
(J m -2) (J m -2) (J m -2) 

Fe (1/2)[111](1]0) 0.438 0.517 0.373 0.847 0.722 0.852 
AI (1/6) [211](111) 0.0795 0.0920 0.0689 0.864 0.749 0.867 
Ni (1/6)[),11](111) 0.226 0.260 0.198 0.869 0.762 0.876 
Ni3AI ( 1/6)[211]( 111 ) 0.316 0.348 0.287 0.907 0.825 0.910 

TABLE 3. The properties as calculated from the parametrized combined shear-tension law for the EAM Fe, AI, Ni and Ni3A1, and 
DFT-LDA Si glide and shuffle set 

Material and slip system p, q ~(~)/y~(~J yu~(U*)l)".~ I"> yu~(u')lY~s i~) 

Fe (1/2)[1111(1 i0) 0.214, 0.158 0.855 0.729 0.853 
AI (1/6)[211](111) 0.140, 0.0854 0.882 0.779 0.881 
Ni (1/6)[211](111) 0.132, 0.0879 0.900 0.810 0.899 
Ni3AI (1_/6)[211](111) 0.150, 0.108 0.896 0.802 0.895 
Si (1/6)[211](111)(glide) 0.376, 0.647 0.945 0.860 0.910 
Si(1/2) [110]( 111 ) (shuffle) - 0.650, 0.675 0.923 0.434 0.471 

(111) 
planes in 

Ni3AI 
... [-2111 

Ni AI 
-110] a O • 

~kot?~, o/7,,o/-o,~ b~-  ~- 
~ " x  <o ° 
~ [-12-1] 

Fig. 11. The Ni3AI( 111 ) planes. Open and filled circles represent 
the Ni and A1 atoms respectively. Large, medium and small 
circles represent the a, b and c plane layers respectively. 

opening, which has been  given in ref. 5. T h e  estimates 
of  the relaxed complex stacking fault (CSF) energy and 
relaxed (111) antiphase boundary  (APB) energy are 

0.273 J m -2 and 0.198 J m -2 respectively. T h e  (111) 
APB energy for Ni3AI using the same version of the 
E A M  functions was calculated by Foiles to be  0.156 
J m -2 [35], with individual atomic relaxation. The  
relaxed unstable stacking energies are est imated to be 
0.315 J m -2 for the first (also the same as for the 
fourth) encountered barrier, and 0.501 J m -2 for the 
second (also the same as for the third), while the corre-  
sponding unrelaxed values are 0.348 and 0.575 J m-2.  

Of  impor tance  is the sliding path  over  the first 
barrier  to a stable stacking fault, the CSE We would 
like to represent  the E A M  curves by the analytical 
formula  for  the energy tIJ(Ar, A0) of the tens ion-  
shear coupled model,  eqn. (22). Notice that the 
peak  value is at a sliding that is somewhat  greater  than 
b/2, had we taken b to be  ao/ f6  for the Shockley par-  
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Fig. 12. The energy of a generalized stacking fault on a (111) 
plane in Ni3AI as a function of the slip distance in the Shockley 
partial route. The  solid curve corresponds to the relaxed case 
where o = 0 ,  while the dashed curve corresponds to the 
unrelaxed case A0 = 0. 
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Fig. 13. The  energy q/(Ar, A0) surface as a function of the shear 
displacement A r for the NiaA1 (1/6) [211] ( 111 ) slip system from 
atomistic calculations based on the embedded atom method 
( - - - ) .  Results of fitting using eqn. (22) ( ) are also shown. 
(a) Basis for choosing b, slightly larger than ao/4r6, (b) results 
over a wide range. 

tial in the f.c.c, structure. We performed the fitting by 
taking the maximum point in the unrelaxed curve to be 
at b/2 and defined b this way; see Fig. 13(a). We found 
b to be (1.18)(ao/f6 ) = 0.172 nm. The value 2y s for the 
cleavage energy is fixed at the EAM result of 3.30 J 
m -2. The fitting done this way gives q=0.108,  
p=0 .150  and L/b=0.256. Note that b here is also a 
fitting parameter. The EAM and analytical fitting 
results are shown in Fig. 13. 

The set of parameters (q, p, L/b, b, 2ys), as entered 
in Table 1, for overcoming the first barrier, for nucle- 
ating the first Shockley partial in Ni3AI , does not carry 
over exactly for the tension-shear coupling involved in 
overcoming the other barriers. 

3.4. Results for Si from density functional theory 
Recently, Kaxiras and Duesbery [36] have reported 

similar calculations done by DFT-LDA, for shearing of 
Si along (111) planes. They studied both unrelaxed and 
relaxed configurations, in the sense of block-like lattice 
motions as in Fig. 2, in the vicinity of the unstable 
stacking configuration. Further, their studies of config- 
urations that were unrelaxed in the block-like sense 
(i.e. corresponding to A0= 0 here)were, nevertheless, 
locally relaxed relative to atomic positions in the 
opening direction for the four lattice planes immedi- 
ately bordering the sliding plane. An earlier version of 
some of these results was reported by Duesbery et al. 
[37], corresponding to A 0 = 0" but with no local relaxa- 
tions of atoms bordering the slip plane. 

For Si and other materials of diamond-cubic struc- 
ture, two types of (111) planes are of interest. These 
are the shuffle plane, which cuts through single cova- 
lent bonds along the direction perpendicular to the 
(111) plane, and the glide plane, which cuts through 
triplets of covalent bonds which are inclined equally to 
the (111) plane. For a partial dislocation along a {111} 
glide plane, corresponding to a slip in a (211) direction, 
Kaxiras and Duesbery [36] find Yus/U/=2.02 J m -2, 
}'us(r)=l.91 J m -2 for Si. Their results also give 
A0*= 0.0257 nm. For introduction of a full (110) dis- 
location along the { 111 } shuffle plane, the correspond- 
ing results are Yus tu/= 1.81 J m -2, yus tr/= 1.67 J m -2 and 
A0*= -0 .0303 nm. Additional parameters of impor- 
tance for Si are b = 0.222 nm for the partial glide plane 
dislocation and b = 0.384 nm for a full dislocation on 
either plane. 

Huang et al. [38] used similar DFT-LDA methods to 
calculate surface energies for (111) planes of Si. For the 
glide plane, the result is 2y s = 3.12 J m-2 after recon- 
struction, and 2ys=3.21 J m -2 when constrained 
against reconstruction [39]. For the ( 111 ) shuffle plane, 
the result is 2y s = 2.68 J m -2 with reconstruction. 

There is no direct source in the DFT-LDA results, 
as reported, for our parameter L. One estimate is 
L= 0.0344 nm from the Rose et al. [34] correlation of 
L with the Thomas-Fermi screening length. Then in 
describing Si as modeled by DFT-LDA with a poten- 
tial in the form of eqn. (22), we obtain the following 
results: for the (211) partial dislocation route along a 
{111} glide plane, L/b=O.155, q--0.647 and 
p = 0.747; for the (110) full dislocation slip route along 
a {111} shuffle plane, L/b~.O.0896, q=0.675 and 
p = -0.881 (this value ofp  has the problem that p2 > q, 
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which should not be allowed for the requirement that 
7u~/u*/be positive, see next section). These values of p 
were taken from the A0* and L values as given above. 
An alternative estimate of p, and hence L, can be 
obtained from the 7uff)lTu~ (u) ratio, using eqn. (23). This 
leads to p = 0 . 3 7 6  (glide) and p = - 0 . 6 5 0  (shuffle). 
From these p values, and using the known A0* values, 
we can also determine L = Ao*/p for the glide set as 
0.0682 nm and for the shuffle set as 0.0466 nm. Fortu- 
nately, we find that at such large values of q as apply for 
Si, the dislocation nucleation condition that we calcu- 
late by solving the integral equations has little depen- 
dence on p. Both estimates appear in Table 1. We use 
the latter estimates of p in the dislocation nucleation 
calculations discussed subsequently. 

3.5. Relations of  (A, Ao) and gt to (6 ,  5o) and q~ 
The upper case Greek letters (Ar, A0) denote the 

relative displacements of two adjacent atomic planes 
with initial normal separation h. Since the displace- 
ment discontinuities (6 ,  6o) across a mathematical cut, 
introduced in our implementation of the Peierls con- 
cept at a crack tip, refer to a surface of zero thickness, 
we follow Rice [1] in expressing each A as the corre- 
sponding 5 plus the additional displacement that 
would be acquired over distance h between planes in 
the tensile and shear strain field in the adjoining elastic 
continuum corresponding to o and r. Evaluating those 
strains as for the linear elastic solid lying outside the 
cut, this gives additional displacements (hr/p, ho/c), 
where p and c are the shear and uniaxial strain tensile 
moduli respectively; c = 2 + 2~ for an isotropic solid. 
Hence, we extract (St, 5o) from (Ar, A0) by 

6~ = A m - hr (A,  Ao)/p = A r -(h/p)0~p(A, Ao)/()A r (24) 

5o = A o -  ha (A ,  Ao)/C = A o - (  h/c)O~p(A,, A0)/0A0(25 ) 

Since when (A,, A0) approach zero, 

r (A,  Ao)--'l~AJh o(Ar, Ao)-*cAo/h (26) 

Equations (14) and (15) require for consistency that 
we understand here that /~/h =2er2yus/U//b 2 and that 
c/h = 2 Ys/L2. With those replacements, h, p and c do 
not appear explicitly in the relation between the 
stresses and displacements. 

While r (A,  Ao) and a(A,, Ao) are derivable from 
the potential tP(A,, A0), the displacement discon- 
tinuities are associated with a potential dp(5,, 60) for 
V(fr, 50) and a(br, 6o) such that, 

d(I) (6 r, 6o)= "t'(0r, 6o)dfr+ O(6r, 6O)d6 o (27) 

(see eqns. (4) and (5)). Therefore, from the relations 
above between the A and 5, from eqns. (24) and (25), 
and from eqn. (13), we derive that 

(I)(fr, 60)=qJ(Ar, Ao)-(1/2)(h/p)r2(A,, A0) 

-(1/2)(h/c)o2(A,, A0) (28) 

In formulating the integral eqns. (4) and (5) for the 
numerical solution we let (A,, A0) serve as parametric 
variables in terms of which (5 r, 6o), • and (o, r) are 
determined. 

4. Results for dislocation nucleation 

Results for nucleation are now given in cases for 
which the emergent dislocation has both edge and 
screw components relative to the crack tip. Letting ~b 
denote the angle between the Burgers vector and a line 
drawn normal to the crack front, in the slip plane, the 
vector thus has edge component b cos ~ and screw 
component b sin ~b. Two cases when normal stress 
exists across the slip plane have been studied in detail. 
These are (1) mixed mode II and I loading on crack 
with a coplanar slip plane and emergent edge disloca- 
tion ( 0 = 0 and ~ = 0), and (2) pure mode I loading but 
for non-zero slip plane inclination 0 and Burgers 
vector direction ~ of the emergent dislocation. 

4.1. Mixed mode H and I loading, coincident crack and 
slip planes and emergent edge dislocation (0 = 0 and 
¢=0) 

In the mixed mode II and I loading for coplanar 
crack and slip planes, the critical crack extension force 
G d at dislocation nucleation depends on the phase 
angle ~p of the mixed loading, where ~p = arctan(Ki~/Kl). 
That is, ~p = 90 ° for pure shear loading and ~V = 0 ° for 
pure tension loading. Results for Gd/Tus (u) from 
numerical solution of the pair of coupled integral 
equations, based on the material parameters and slip 
systems of Table 1, are shown by the solid lines in Figs. 
14 (a-Fe), 15 (AI), 16 (Ni), 17 (Ni3A1), 18 (Si, glide) 
and 19 (Si, shuffle). The flattening of the curves for 
small % i.e. for conditions near pure mode I, corre- 
sponds in all cases to the Griffith decohesion loading 
G d = 27~ (or GJTu~ iul = 1/q). That is also an upper limit 
to the load to nucleate a shear instability, in that the 
resistance to shearing becomes negligibly small as 
atomic planes are pulled apart. Our present modeling, 
which only detects the onset of an instability, does not 
tell us whether the subsequent instability itself should 
be regarded as more like a cleavage decohesion or 
more like a dislocation emission instability. 

The solid-line exact numerical results in Figs. 14-19 
are compared with a number of broken-line curves 
which represent different approximate estimates of the 
nucleation condition. These approximate estimates 
represent different attempts to interpret results of the 
shear-only model, that being the model which does not 
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Fig. 14. The critical G for emission of a full dislocation of edge 
type (#=0) in (EAM) a-Fe vs. the loading phase angle 
(tan ~, = KII/KI) when the slip plane is copolanar with the crack 
plane (0=0). The solid line is based on an exact numerical 
solution of eqns. (4)-(7) which takes into account coupling 
between tension and shear. The dashed line is based on a calcu- 
lation for the shear-only model, for which the exact result is 
given by eqn. (1), and uses Yus = y~ (.t. The dash-dotted line is 
based on the same calculation but with y~ = y~ t¢). Figure 14(b) 
is a comparison of the full tension-shear coupling model and 
the shear-only model but with y~(~p)= y~(~)-a[y~ (~)- y=(r)] 
(~r/2-- ~), and a = 0.841. 
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Fig. 15. The critical G for emission of a Shockley dislocation of 
edge character in EAM AI vs. the loading phase angle 
(tan ~=Kll/K,) when the slip plane is coplanar with the crack 
plane (0=0). The solid line is based on an exact numerical 
solution of the tension-shear coupling model. The dashed line is 
based on a calculation for the shear-only model, for which the 
exact result is given by eqn. (1), and uses yus = yus (u). The dash- 
dotted line is based on the same calculation but with Yus = Yus I"'/. 
Figure 15(b) is a comparison of the full tension-shear coupling 
model and the shear-only model but with Yus(~0)=yus (r)- 
a[y,slul- yuI~)](ar/2 - ~p), and a = 1.145. 

directly consider tension-shear  coupling, and replaces 
the set of coupled equations (4)-(7) with the simpler 
equations (8) and (9) which consider shear response 
only. We recall that the exact solution of the shear-only 
model  for the nucleation condit ion is known exactly 
and is given by eqn. (1). Thus,  when expressed in terms 
of G [ G = ( 1 -  v)(KI 2 +Kn2)/2/A] using Kn/KI  = t a n  % 
the shear-only model  gives 

G d = yu~/sin 2 ~ (29) 

(for small % which corresponds to near mode  I load- 
ing, this must be cut off at the Griffith tensile de- 
cohesion loading Go = 2 ys). 

T he  uppermost  broken-line curves in parts (a) of 
Figs. 14 -19  show the result of eqn. (29) when we iden- 
tify Yu~ as the unrelaxed value yu~/u). This clearly over- 
estimates the exact (solid-line) results. One does a 
slightly better  job by identifying Yus in eqn. (29) as the 

relaxed value Yus (r), but that too overestimates the exact 
results except at large % near 90 ° and corresponding 
to conditions near pure mode  II loading. Rice et al. [12] 
found that results f rom the shear-only model,  eqn. (29), 
could be made to agree approximately with the exact 
results for E A M  a-Fe, AI and Ni if Yus was identified as 
a quantity Yus/u*/which is a modified type of unrelaxed 
unstable stacking energy. Th e  results with this choice 
are shown as the lower broken-line curve in parts (a) of 
Figs. 14-19 ,  and the agreement is also seen to be good 
for the E A M  Ni3AI case, although not for either of the 
D F T - L D A  Si cases. 

The  new quantity is defined by yus (u') = f r(A r, A0*) d A  r 

f rom Ar = 0  to b/2, where A0* is as previously defined. 
For comparison, yus (u) = f r(A,, 0) dA~ from A~= 0 to 
b/2, and yus (r) = f r(Ar, A0r) dA~ from A~ = 0 to b/2 
where A0 r is the function of A, which makes o =  0 at 
each Ar- In terms of the parametrized combined shear 
and tension constitutive law, 
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Fig. 16. The critical G for emission of a Shockley dislocation of 
edge character in EAM Ni vs. the loading phase angle 
(tan ~p = K,/Kt)  when the slip plane is coplanar with the crack 
plane (0=0). The solid line is based on an exact numerical 
solution of the tension-shear coupling model. The dashed line is 
based on a calculation for the shear-only model, for which the 
exact result is given by eqn. (1), and uses 7.~ = y~(~). The dash- 
dotted line is based on the same calculation but with Yus -- Y,s (".). 
Figure 16(b) is a comparison of the full tension-shear coupling 
model and the shear-only model but with ~us(tp)=y~s (~t- 
a[yu~ ("i- y~(~>](sr/2 -~p), and a = 1.323. 
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Fig. 17. The critical G for emission of a Shockley partial disloca- 
tion of edge character in EAM Ni3A1 vs. the loading phase angle 
( t a n  ~ = KII /KI )  when the slip plane is coplanar with the crack 
plane (0=0). The solid line is based on an exact numerical 
solution of the tension-shear coupling model. The dashed line is 
based on a calculation for the shear-only model, for which the 
exact result is given by eqn. (1), and uses y~+ --- yu~ (~1. The dash- 
dotted line is based on the same calculation but with y~s = y,y).  
Figure 17(b) is a comparison of the full tension-shear coupling 
model and the shear-only model but with y~(~0)=yu~ (~- 
a [yu~  (") - yj~>](~r/2 - ~p), and a = 0.969. 

/ q__p2 
?us (u*) = yus (u) / e x p ( - p )  (30) 

~q(1 - p )  

The  yu~ (u*!, Vus (") and yus (r) values for Fe, AI, Ni and 
Ni3AI are listed in Table 2 as calculated f rom E A M  
and in Table 3 f rom the parametrized combined ten- 
s ion-shear  constitutive laws, which also gives esti- 
mates for  the Si glide and shuffle cases. It is interesting 
to note  that the ratio yus/U)/yus It) is roughly the same as 
y,s(r)/yus (~*/for E A M  Fe, A1, Ni and Ni3AI. 

A somewhat better approximation is, again, to use 
the shear-only model  of  eqn. (29) but to let the unstable 
stacking energy Yus which enters it be dependent  on the 
ratio of tensile to shear loading. We do this by writing 

Yus(~P) = Y,~(r)- a[Yus (u) - r~sI~)](zt/2 - ~) (31) 

where ~p is, as above, the phase angle of the mixed 
loading in radians, and a is a reduction coefficient, 

determined by fitting to the exact tension-shear  
coupled results. This procedure  then leads to 
Gd=Yus(W)/sin2~p, which result is shown by the 
broken-line curves in parts (b) of Figs. 14-19.  We do 
not know a a priori,  but it is interesting that it turns out 
to be around unity for all the metals we have studied. In 
particular, a has the values 1.323, 1.145, 0.969 and 
0.841 for Ni, AI, NisAI and Fe respectively, and the 
exact results for  those cases are described well by this 
approximation. 

For Si, Figs. 18 and 19, the tension-reduced Y,s(~) 
also gives a better fit to the tension-shear  coupled 
results than does Yus (u*), but the a values are in a very 
different range. Th e  value of a for the glide set is deter- 
mined to be 7.249. For the shuffle set it is interesting to 
note that p is negative. Th e  tension-reduced Yus(W) 
gives a somewhat valid description. Th e  value of a for 
the shuffle set is determined to be - 2 . 2 3 4 ;  note that 
the a coefficient is also negative. 
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Fig. 18. The critical G for emission of a Shockley partial disloca- 
tion of edge character on the DFT-LDA Si glide set vs. the 
loading phase angle (tan ~p=Kn/K~) when the slip plane is 
coplanar with the crack plane (0 = 0). The solid line is based on 
an exact numerical solution of the tension-shear coupling model. 
The dashed line is based on a calculation for the shear-only 
model, for which the exact result is given by eqn. (1), and uses 
Y,~ = Y~("). The dash-dotted line is based on the same calculation 
but with yu~ = ),~("'). Figure 18(b) is a comparison of the full 
tension-shear coupling model and the shear-only model but with 
7,~(~P) = 7,~ I~) - a[Yu~ (") - Y,~('l](n/2 - ~P), and a = 7.249. 
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Fig. 19. The critical G for emission of a full dislocation of edge 
character on the DFT-LDA Si shuffle set vs. the loading phase 
angle (tan ~p = KII/KI) when the slip plane is coplanar with the 
crack plane ( 0 = 0). The solid line is based on an exact numerical 
solution of the tension-shear coupling model. The dashed line is 
based on a calculation for the shear-only model, for which the 
exact result is given by eqn. (l), and uses Y,~ = y~ (u). The dash- 
dotted line is based on the same calculation but with ),.~ = y, (u*). 
Figure 19(b) is a comparison of the full tension-shear coupling 
model and the shear-only model but with 7u~(~p)=7,~ ( ')-  
a[Y,.~ I~) - 7,s(~l](n/2 - ~2), and a = -2.234. 

4.2. General dependence on tens ion-shear  parameters  
over a wide range for  m ixed  m o d e  I I  and  I loading and  
for  O = O and  ~) = O 

T h e  mater ia ls  cons ide red  in this s tudy show a wide  
range  of  rat io  of  uns tab le  s tacking energy  to twice the  
sur face  energy  (i.e. q). A s  a genera l  ru le -o f - thumb,  the  
mater ia ls  s tudied he re  suggest  that  fo r  f.c.c, meta ls  
including Ni3AI, q = 0.1; for  the one  b.c.c, me ta l  q ~- 0.2, 
and  for  the s e m i c o n d u c t o r  Si, b o t h  glide and  shuffle 
cases,  q ~- 0.6. If we  a s sume  that  all mater ia ls  possess  a 
q value that  falls into this k ind  of  range,  it is poss ib le  to 
assess  quickly the  critical loading  for  d is locat ion  
nuc lea t ion  f r o m  a c rack  tip, taking into  accoun t  the 
t e n s i o n - s h e a r  coupling.  We genera te  d iagrams  of  criti- 
cal g n scaled by  [2~Yus(r)/(1 -- V)] 1/2 VS. the  phase  angle 
~p = arctan(Kn/K~), in o rde r  to show h o w  it d e p e n d s  on  
q, and on  a f iner  scale, the  di lat ion p a r a m e t e r  p. T h e  
resul ts  a re  shown  in Figs. 2 0 - 2 5 .  A n  interest ing fea ture  
f r o m  the s tudies  is that  for  high q values,  the critical 

condi t ion  is insensit ive to the value of  the di lat ion pa ra -  
m e t e r  p.  

For  conven ience ,  a p a r a m e t e r  z is in t roduced ,  
def ined  as z =Tus(r)/27s, which can  be  found  f r o m  q 
and p,  

1 - q  
z = q - ( ~ - _ p )  [ e x p ( - p ) - l  +p] (32) 

E a c h  of  Figs. 2 0 - 2 5  is charac te r i zed  by  a different  
value of  z (z = 0 . 1 ,  0.2, 0.3, 0.4, 0.6 and  0.8). Dif ferent  
curves  in the  s a m e  figure are  fo r  var ious  p values  
( p = 0 . 1 ,  0.2, 0.3, 0.4, 0.6 and  0.8). T h e  m a x i m u m  
abso lu te  value of  p m a y  not  be  larger  than  fq .  Th i s  is 
ev ident  f r o m  eqn. (29), because  we requi re  that  the  
sliding d i sp l acemen t  at I)/2 to be  higher  in energy  than  
at  ze ro  sliding d i sp lacement ,  with the open ing  separa -  
t ion fixed at A0*, o r  in shor t  that  the quant i ty  Yus (u*) be  
posit ive.  
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Fig. 24. T h e  family of  curves  for  yu~ r~/2y~ = 0.6 showing  how the  
critical m o d e  II loading d is loca t ion  nuc lea t ion  in the  c o p l a n a r  
slip and  c rack  p lanes  case  d e p e n d s  on  the  m o d e  I I - m o d e  l 
loading phase  angle  and  on  var ious  p values.  
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Fig. 22. T h e  family of  curves  for  yus/~//2y~ = 0.3 showing  h o w  the  
critical m o d e  II loading  d i s loca t ion  nuc lea t ion  in the  c o p l a n a r  
slip and  c rack  p lanes  case  d e p e n d s  on  the  m o d e  I I - m o d e  I 
loading phase  angle  and  on  var ious  p values.  
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Fig. 25. T h e  family of  curves  for  cri Yus /2y~ = 0.8 showing  how the  
critical m o d e  II loading d is loca t ion  nuc lea t ion  in the  cop l ana r  
slip and  crack  p lanes  case  d e p e n d s  on  the  m o d e  I I - m o d e  1 
loading phase  angle and  on  var ious  p values.  

For small phase angles, under mixed mode I and II, 
the approach of the combined tension-shear model 
becomes coincident with the Griffith decohesion 
condition G = 2Vs, as discussed in connection with the 
flat portions of the solid line curves in Figs. 14-19. 
Thus, at small % G d = 2~s and 

Knl[2~yu~,'~l(1 - v)] ~/2 = ( l / f  z) sin ~p (33) 

For large ~p, near pure mode II loading conditions, 
there is negligible tensile stress on the slip plane and 

the nucleation by the shear-only result of eqn. ( 1 ) with 
Yu~ = Vu/ri. Thus we expect, for ~p near Jr/2, that 

K,,/[Z/u)'u~lr)/( 1 - v)] 1/2 -- 1 (34) 

which is indicated by a horizontal line of value unity in 
Figs. 20-25. 

The reduction in the critical shear loading K n for 
nucleation because of tension-shear coupling is shown 
by the fact that all the critical K n vs. lp curves are below 
the horizontal line of unity in the series of figures. 
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4.3. Mode I loading, with inclined slip planes and mixed 
edge-screw character of emergent dislocation (0 ¢ 0 and 

o) 
For the more general case involving screw com- 

ponents ¢ ~0,  the incipient profile is of the type 
{6r(r), do(r), dz(r)} in the slip plane making an angle 0 
with the crack plane, as in Fig. 1. Following Rice [1], we 
apply the constrained slip path approximation here, 
treating the slip as constrained to be along the direction 
s (the same as b) that makes an angle 4 with the r axis 
in the slip plane, 6a(r)=[d,(r ) cos4, do(r), 6~(r) sin 4]. 
The corresponding shear and normal stresses are 
r=Oo, COS4+OozSin4, O=Ooo. In place of eqns. (4) 
and (5) for the tension-shear coupling model, we have 
the following integral equations: 

r[d,(r), 6o(r)]-(2~r)l/2 g,H(r, s; O, 4) ds 
0 

co 

- J db0(s) ds (35) 
- -  gl2(r, s; 0, 4) ds 

0 

K oeff ~ 
o[6,(r), do(r)]=(2~fr)l/2 f g2,(r,s; 0, 4) ds 

0 

i ,, dd0(s) - g22(r, s; 0, 9) ~ ds (36) 
0 

where K~ ~ff= (2zrr)l/2[cos ¢OOr°(r, O)+ sin 4OOz°(r, 0)], 
and Ko~ff=(2~rr)l/2ooo°(r, O) are the effective stress 
intensity factors for the singular stresses %0, %0 and 
ooo ° at the crack tip under external loading before the 
emergence of the incipient profile. Under pure mode 
I loading they are given by K~ ~ff=K~cos¢ 
sin(0/2)cos2(0/2) and Ko ~ff = KI cos3(0/2). 

The terms gl~, g 1 2 '  g21 and g22 are the stress func- 
tions of a straight dislocation with mixed edge and 
screw components near a crack tip. All of these terms 
and functions can be obtained using the linear isotropic 
or anisotropic elasticity formulation. For details of 
these functions, see Sun and Berlitz [13]. The terms 
r[d~(r), d0(r)] and o[6~(r), 60(r)] are the same shear and 
tension stresses across the slip plane as before, 
expressed in eqns. (6) and (7), and the same analytical 
formulae as described in Section 3 are used to 
represent these functions. 

In the shear only model, the equation to be solved 
becomes, in place of eqn. (8), 

K~ ~ff 
oo 

- J gH(r, s; 0, 4) dd,(s) ds (37) 
r[d'(r)]=(2atr)m o ds 

The function r[d,(r)] is expressed as in eqn. (9). Rice [1] 
found the exact nucleation solution to the shear-only 

model when 0 = 0. The result is 

K~eff={2pYus[COS2 4 + ( 1 - v )  sin2 4]/(1-v)}l/2 (38) 

which generalizes eqn. (1) and reduces to it when ¢ = 0. 
He proposed, in fact, that eqn. (38) be used as an 
approximation for situations with 0 ¢ 0, like for pure 
mode I loading considered in this subsection. 

We may therefore compare the exact numerical 
results from solutions to the tension-shear coupled 
integral equations, eqns. (35) and (36), with two types 
of simpler expressions. The first, and simplest, is based 
on using the effective shear stress intensity factor 
concept, and amounts to using eqn. (38) with a special 
choice of the Yus term which enters it to account 
approximately for tension-shear coupling. The second 
is based on exact numerical solution of the shear-only 
integral equation, eqn. (37), with the r vs. 6, function 
taken as that consistent with a Frenkel-Peierls sinusoid 
of form r = (~ryus/b) sin(2 erA,/b ). Here too the Yus term 
may be chosen to account approximately for 
tension-shear coupling. 

One such choice would be simply to take Yus as yus It). 
However, what we have learned previously in study of 
the case 0 = 0 suggests that we should take Yu~ as the 
tension-softened Yus(~P) of eqn. (31), where now the 
logical interpretation of the loading phase angle ~ is as 
*p=arctan(K~eff/Koeff). For pure mode I loading this 
reduces to ~p = arctan[cos 4 tan(0/2)], and just to 
~O= 0/2 when the emergent dislocation is of edge 
character so that 4 = 0. Of course, the prediction based 
on this choice of 7us(~0) should be cut off by a Griffith 
decohesion threshold at sufficiently small % as in Figs. 
14-19. 

Table 4 summarizes results for the nucleation con- 
dition, in the form Gd/Yus (r), for pure mode I loading 
and for various 0 and 4 values, for the materials and 
slip systems listed in Table 1. The column labeled "full 
o - r  coupling" gives the exact results found by numeri- 
cal solution of the system of coupled integral equations 
in eqns. (35) and (36). The column labeled "based on 
K~ elf'' is the result of simply using eqn. (38), which is re- 
expressed in terms of G, for the present pure mode I 
loading, to give 

Gd=8Y~s[l+(1-v)tan2¢]/[(l+cosO)sin20 ] (39) 

For that column of the table we have identified Y~s as 
yu~ tr/. The column labeled "shear-only" contains two 
sets of numbers, both based on the numerical solution 
of the shear-only integral equation, eqn. (37). The first 
set corresponds to choosing Yus as yu~ It). The second 
set, in square brackets, corresponds to choosing yu~ as 
Yus(~p) of eqn. (31), basing ~ on the effective stress 
intensities as above and using the values of a in eqn. 
(31 ) quoted earlier. 



E Sun et al. / Tension-shear coupling 

TABLE 4. Comparison of the critical G d for dislocation emission on inclined slip planes under mode I loading 

83 

O, ¢ Gd/Yus !ri ad/Yus it! adlTus iri Reduction (%) 
Meg) (based on K f  ff) (shear-only) (full o - r  (Kli ~" to full 

[with y~ ( ~p)] coupling) a - r  coupling) 

EAM Fe (b.c.c.), full (v=0.324, p=0.214, q=0.158,  L/b=O.197) 
45, 0 9.37 8.34 [6.94] 6.65 
45, 35.3 12.5 11.4 [9.35] 9.18 
90, (/ 8.00 5.92 [5.26] 5.40 
90, 35.3 10.7 8.20 [7.17] 7.53 
90, 54.7 18.8 15.1 [12.8] 13.4 

EAM AI (f.c.c.), partial (v = 0.345, p = 0.140, q = 0.0854, L/b = 0.279) 
35.3, 0 13.2 12.2 [9.84] 9.72 
54.7, 0 7.61 6.43 [5.35] 5.58 
54.7,60 22.6 20.6 [16.4] 16.1) 
70.5,0 6.75 5.29 14.51[ 4.81 
90, 0 8.00 5.92 [5.21] 5.47 
90, 30 9.75 7.40 [6.43] 6.87 

29.0 
26.8 
32.5 
29.6 
28.9 

26.4 
26.7 
28.9 
28.7 
31.6 
29.6 

EAM Ni (f.c.c.), partial (v = 0.281, p = 0.132, q = 0.0879, L/b = 0.271) 
35.3, t) 13.2 12.2 [9.95] 9.82 25.6 
54.7, 0 7.61 6.43 [5.40] 5.64 25.9 
54.7, 60 24.1) 22.0 [17.7] 17.4 27.5 
70.5, 0 6.75 5.29 [4.55] 4.85 28.2 
90, 0 8.00 5.92 [5.24] 5.53 30.9 
90, 30 9.92 7.54 [6.59] 7.03 29.1 

EAM Ni3AI (L 12), partial (v = 0.263, p = 0.150, q = 0.108, L/b = I).256) 
35.3, 0 13.2 12.2 [10.5] 9.70 26.6 
54.7, 0 7.61 6.43 [5.64] 5.60 26.4 
54.7, 60 24.4 22.8 [19.4] 18.5 24.2 
70.5, 0 6.75 5.29 [4.72] 4.83 28.5 
90, 0 8.00 5.92 [5.40] 5.54 30.7 
90, 30 9.97 7.58 [6.85] 7.05 29.3 

DFT-LDA Si (diamond), glide, partial (v = 0.218, p = 0.376, q = 0.647, L/b = 0.308) 
35.3,0 13.2 12.2 [5.74] 1.99 (C) 
54.7, 0 7.61 6.43 [3.48] 2.57 (C) 
54.7,60 25.5 23.3 [10.4] 3.03 (C) 
70.5,0 6.75 5.29 [3.17] 3.18 
70.5,611 22.6 19.7 [9.52[ 4.66 (C) 
90, 0 8.00 5.92 [3.971 4.82 
90, 30 10.1 7.68 [4.92] 5.70 

DFT-LDA Si (diamond), shuffle, full ( v = 0.218, p = -0.650, q = 0.675, L/b = O. 121 ) 
35.3, 30 16.7 15.6 [19.4] 1.98 (C) 
54.7,0 7.61 6.43 [7.75] 2.57 (C) 
54.7, 30 9.59 8.30 [10.1] 2.68 (C) 
70.5, 30 8.51 6.90 [8.22] 3.80 (C) 
90, 0 8.00 5.92 [6.79] 6.10 

53.0 

39.8 
43.5 

23.8 

G d values in the first column are calculated based on the Kt e" concept in which Yu~ is identified with yu~ cri. 
G d values in the second column are calculated from the numerical solution to eqns. (8) and (9), or to eqns. (37) and (9) when ~ # 0, 
which only take slip into account. Again, 7us in this procedure is identified with 7u~ !r/. The bracketed value is what is predicted when 7~ 
is taken as 7u~(~P)= 7o~ ~ r*-a[Tu~ iu~- 7u~i~l](:r/2 -~P)in order to estimate the normal stress effect; q~ = arctan (K~ff /KS f) = arctan (cos 
tan 0/2) for mode I loading. 
G d values in the third column take into account the full coupling between tension and shear and are based on the numerical solution to 
eqns. (4)-(7), or of eqns. (35), (36), (6) and (7) when ¢ # 0. 
The sign (C) indicates that the instability occurs along the branch of results analogous to the flat portions of the solid curves in Figs. 18 
and 19, and may correspond to Griffith cleavage decohesion along the inclined slip plane rather than to dislocation emission. 

T h e  resul ts  in Tab le  4 show tha t  the  cr i t ical  l oad ing  
G d inc reases  wi th  4. Th i s  is easi ly  u n d e r s t o o d  f rom 
eqn. (39); the  sc rew c o m p o n e n t  gives an  ex t ra  f ac to r  of  
[1 + (1 - v) tan  2 ~b] to  the  cr i t ical  l oad ing  G d. 

T h e  p e r c e n t a g e  r educ t ion ,  f r o m  the effect ive shear  
s tress  in tens i ty  a p p r o x i m a t i o n  to  the  resul t  of  n u m e r i -  
cal so lu t ion  of  the  s h e a r - o n l y  mode l ,  is f r om 7% to 
26%. T h e  p e r c e n t a g e  r e d u c t i o n  d e p e n d s  to  a l a rge  
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extent on the angle 0, and generally to a lesser extent 
on the angle 4. The larger the angle ~ the smaller the 
reduction, and the larger the Poisson ratio the larger 
the reduction. For any fixed ~ we see from Table 4 that 
the percentage reduction in GO, from the effective 
stress intensity approximation to the shear-only model, 
increases with angle 0. 

From the shear-only to the tension-shear coupling 
model, the percentage reduction depends on the q and 
p parameters of the material and slip system, and for 
the same parameters, on the effective phase angle % 
For Fe, the percentage reduction is 8% to 20%, for A1 
7% to 22%, for Ni 7% to 20% and for Ni3Al 6.4% 
to 20%. 

However, for the Si glide set, the tension-shear 
coupling is very strong, and the percentage reduction is 
19% to 40%, neglecting the cases marked C, to be 
discussed. For the Si shuffle set, surprisingly, the ten- 
sion-shear coupling model gives a higher G d than the 
shear-only model does because of the negative p 
parameter in the one case not marked C. 

The estimate using the tension-reduced 7us(~P) of 
eqn. (31) in the shear only model works surprisingly 
well for Fe, Ni, A1 and NiaAl , and gives an error less 
than 9%. This method for the Si glide set gives an error 
less than 19%, and for the shuffle set gives an error less 
than 11%, excepting cases marked C. 

For Si, both glide and shuffle sets, the tension-shear 
coupling model, because of strong coupling and the 
pure mode I loading, in a few cases renders solutions 
that have dominantly a decohesion profile and may 
possibly be better interpreted as a crack cleavage 
branching instability, rather than as a shear instability 
of dislocation nucleation. Such solutions are labeled C 
in Table 4. 

The last colunm in Table 4 gives the percentage 
reduction from the effective stress intensity model to 
the tension-shear coupling model, which is 24% to 
53%. 

5. Summary 

The softening effect of the tensile stress across a slip 
plane, emanating from a crack tip, on dislocation 
nucleation from the crack tip has been investigated in a 
Peierls framework. The distributions of sliding and 
opening displacement along the slip plane, non-linearly 
coupled to the local shear and tensile stresses through a 
constitutive law based on atomistic calculations, are 
fully solved by an exact numerical method under ten- 
sion and shear loadings, up to the critical condition for 
nucleating a full or partial dislocation line. By studying 
two possible cases where the normal stress is present, 
the case of the mixed tension and in-plane shear mode 

in the case of coplanar slip and crack planes (0 = 0), 
and the case of pure tension loading but inclined slip 
plane, we have quantified the tension-shear coupling 
effects. Results are given for parameters based on 
EAM models of Fe, A1, Ni and Ni3A1, and on a 
DFT-LDA model of Si. The general dependence on 
the tension-shear parameters (q, p) over a wide range 
for 0 = 0 and ~ = 0 has been determined here. 

We also found that the tension softening effect can 
be reasonably described by the tension-softened 
unstable stacking energy )'us(~) = )'us (r) - a [)'us (u) - )'us (r)] 
(zr/2 - ~p) which is utilized in a much simpler shear-only 
type of analysis. Here tan ~p is the ratio of the effective 
shear to tensile intensity factors along the slip plane (i.e. 
t an~p- -K~ ,  o,eff/K eff when 0= 0 and ~ = 0, tan ~p = 
Kn/KI).  The tension softening coefficient a is near 
unity for all the metals studied, but is much larger for 
the Si glide set and is negative for the Si shuffle set. 
Another simple and approximate approach is to use 
the modified unstable stacking energy )'us (u*) in the 
shear-only model although this does a poor job in the 
Si shuffle case. 

We conclude that the tension eases dislocation 
nucleation at a crack tip, to an extent which can be 
described quantitatively by the tension-softened 
unstable stacking energy. In this work, we also treated 
nucleation of dislocations of mixed edge and screw 
components on an inclined slip plane. All our results 
correspond to loadings for spontaneous nucleation; 
thermal activation will allow nucleation at a finite rate 
and lower load levels. 
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