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Crack tip fields in a material with three independent slip 
systems: NiAl single crystal 

Maryam Saeedvafai and James R Rice 
Division of Applied Sciences, Hamrd  University, Cambridge, MA 02138, USA 

Received 4 April 1992 

Abstraei The crack tip stress and deformation field is analyzed for an ideally plastic 
ordered NiAl single crysral of B2 (Bcc type) structure which has only three independent 
slip systems at m m  temperature, the {ll0}(lOO) systems. For the crack on the (010) 
plane growing in the [ l O l )  direction, only one of these systems is capable of sustaining 
considerable plane plastic Row. It involves slip plan- lying parallel to the crack tip, 
making an angle of 90' with the crack plane. and has the yield condition ul2 = f r o  
(1 is the cracking direction, 2 the crack plane normal, and ro the critical resolved shear 
stress). An elastic-ideally plastic asymptotic solution is derived in which the stress field 
has a In r type singularity, with a shearing discontinuity at 90'. These features are 
verified and more fully quantified by a finite element solution. At regions very near the 
tip, the field is divided into 5 angular sectors of which 2 are plastic regions (a12 = *TO), 

one inclined ahead of the crack front and one behind. Further away from the tip, at 
distances greater than about 0.01 of the overall plastic zone size, the plastic region ahead 
of the crack front, in which u12 = 70, disappears resulting in 3 angular sectors of which 
one is plastic, which persists for the rest of the plastic region. While the plastic zone 
coven a broad angular range, Lhe deformation field within it is dominated by the shear 
discontinuity of displacement. 

The stress on other possible systems such as {110)(111), which in NiAl becomes 
activated at higher temperalures, and on {112}(111) systems, which are the usual 
twinning systems for BCC crystals, is also investigated. The results show thal Zones 
over which the resolved shear stresses on these two set of systems become of the order 
of critical resolved shear stress on the soft { l l O ) ( l O O )  system are either much smaller 
than, or of the same order as, the plastic zone for the {llO)(IOO) system, although very 
close to the crack tip the stresses on some of these systems become significant due to 
the stress singularity. Thus. wen though the shear strength is much larger for these two 
systems than for the {llO}(lOO) syslem, over regions extremely near the tip they may 
become activated and alleviate the stress singularity. It is also possible that cleavage will 
occur first at lower temperatures or higher strain rates, and such is consistent with the 
brittleness of NiAL 

1. Introduction 

Intermetallic ordered alloys have received much attention recently due to their high 
strength, high melting point, low density and environmental stability. Of these, B2 
structured (BCC type) NiAl has limited room temperature ductility, which reduces 
its range of application. The {llO}(laO) systems are the active slip systems for 
NiAl single crystals at room temperature as found by various researchers (Vedula 
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and Stephens 1987, Vedula et a1 1989, Guha et a1 1989, Fu and Yo0 1991, Miracle 
et a1 1989, George and Liu 1991, Russell er a1 1989). These constitute only three 
independent systems, which are in general insuficient to fully alleviate the crack tip 
stress singularity, since a minimum of five systems are required to accommodate an 
arbitrary strain field. At higher temperatures (above 800 K at normal laboratory 
strain rates, of the order of s-l) or with the addition of other solutes such as Cr 
and Mn (Miracle er al 1989), the {110)(111) system also becomes active, hut due to 
the high APB energy of dissociation of the (111) superdislocation into partials (see Fu 
and Yo0 1991), very little activity is observed on this system at lower temperaturcs. 
Since the ideal cleavage strength of NiAl single crystals is not particularly low (about 
29 GPa on the (001) plane as calculated by Fu and Yo0 (1991) using electron density 
functional methods), the usual brittleness of these crystals is generally thought to be 
the result of an insufficient number of slip systems at room temperature. 

In this paper the crack tip field in NiAl single crystals, with the crack on the 
(001) cleavage plane, is studied in an attempt to investigate the crack tip deformation 
mechanisms resulting when there is an insufficient number of slip systems. The results 
could describe any solid which can flow plastically only, or primarily, in response to 
shear stress u12, where direction 1 is the direction of crack growth and direction 2 is 
perpendicular to the crack plane. A simple elastic-ideally plastic single crystal material 
model is adopted, and is implemented within 'small geometry change' assumptions 
by both asymptotic and finite element analysis to determine the incompletely relaxed 
crack tip stress and deformation field. 
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2. Finite element formulation 

A 'User Material' subroutine was written by Huang (1991) for use in the finite element 
code ABAQUS (1989) to incorporate single crystal plasticity laws. The following is a 
summary of the constitutive laws used in the options within this subroutine that are 
appropriate to the present 'small strain' analysis. 

Total strain rate can be written as the sum of the elastic and plastic strain rates 

e . .  $1 = i?. : I  + i?.. '1 (1) 

The plastic strain rate can be described as the tensorial sum of the slip rates on all 
systems 

where i." is the slip rate on system Q and ppj is the Schmid factor. That is 

(3) 
" - 1  a! n pLij - *(Si nj + spnp, 

in which ss  is the slip direction and ns is normal to slip plane a. The resolved shear 
stress on system CY is 

(4) T " = a . .  0 t,lL,, . 
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The stress rate is related to the elastic strain rate by way of 

6.. I1 = L;jkrG;r = L i j k l ( t k l  - i',,) (5)  

where L i j k l  is the elastic moduli tensor, taken as isotropic in what follows. 

to describe the relation between rate of slip 
stress T* on that system, namely 

A slightly rate-dependent formulation used by Peirce et a1 (1983) has been adopted 
on a system and the resolved shear 

?a = i.u"sgn(Ta) I T " / T ; ~ ' "  . (6) 

Here 4; and 70" are constants and m -t 00 denotes the rate independent limit, in 
which 7; could be interpreted as the critical resolved shear stress on the slip system 
a (m = 100 has been used in this calculation). This rate-dependent formulation 
eliminates problem with uniqueness, especially in the ideally plastic case for crystals. 
An implicit time integration proposed by Kanchi et a1 (1978) has been utilized in 
order to increase the extremely small time steps that would be required by explicit 
time integration. In this scheme the increment in slip accumulated during the interval 
At is estimated as 

AY = [ (I  - e1i.p + si.p+,,] At (7) 

and 8 = 0.7 has been used since this value yielded the most accurate results (see 
Kanchi et a1 (1978)). Furthermore, has been expanded in a one-term 'bylor 
series to linearize the incremental equations namely 

The incremental constitutive relation, from which the tangent stiffness matrix is 
constructed, is derived by substituting equation (2) into (9, integrating over the 
time step, and using the results with equations (4), (7) and (8) to eliminate A y a ,  
and has the form 

where 

Also, from equation (6). [8Ya/d~*], = [i."/mrall has been used in (9). The total 
strain increment, Ackl ,  accumulated at an interval At is related to the increment of 
nodal displacements, A q ,  in the finite element formulation through a matrix which 
is the derivative of the element shape, or displacement interpolation, matrix. 

The loading range is assumed to be restricted such that the size of the plastic zone 
is always much smaller than the region over which the conventional crack tip r-'/' 
elastic singularity dominates, so that small scale yielding conditions are established. 
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The problem could then be modeled as a semi-infinite crack in an infinite body. Here, 
it is modeled as a crack along a ray of a circular region of radius much larger than the 
size of any plastic zone developed in the solution. Due to symmetry, only the upper 
half domain is  considered, with points constrained against opening displacements 
over the plane ahead of the crack. A semi-circular mesh consisting of four noded 
isoparametric elements is used, where the inner nodes of the first ring of elements 
adjacent to the crack tip all occupy the same initial position at the tip. The mesh 
(shown in figure 1) is divided into three zones and at the circular borders between 
them the angular range of elements is doubled with respect to the inner adjacent 
zone. Except for the very inner rings which have equal dimensions in the radial 
direction, the elements have an aspect ratio of 1. The mesh has 6959 nodes and 
6768 elements. Mode I tractions are imposed on the outer elements with the mode 
I stress intensity factor, Kf, as the loading parameter. The stress intensity factor is 
increased at a uniform rate gl. If T is the total time for the stress intensity factor 
to increase to the value at which the solution is examined and r,, is the yield stress 
entering the yield criterion U - &rU to be discussed, then it is possible to see from 
dimensional analysis that if ‘time 1s denoted by t / T ,  ‘stress’ by uii/ru, ‘strain’ by 
eii / ( r u / p )  and ‘displacements’ by p u i / r U ,  then only three dimensionless parameters 
enter the formulation. These are the Poisson ratio U, taken to be 0.3, the exponent 
m, taken to be 100, and the combination + , , T / ( T ~ / ~ ) ,  taken as 1 in this analysis. 
The ratio r U / p  does not otherwise enter because of the ‘small strain’ framework It 
would enter a ‘finite strain‘ analysis as a fourth dimensionless material parameter. 
The choice for +“T/ ( r , , / p )  assures that negligible plastic strain will occur unless r 
is driven towards, and slightly above, T, (but only slightly; the large m assures, for 
example, that a T which is 1% above rU produces a strain rate of 3’{,, 5% above 
produces 13@y,,, and 10% produces 14 x lo3+”). To assure that the stresses, strains 
and displacements output by the program are U ; ~ / T ~ ,  e ; i / ( r U / p )  and pu; / ru ,  each 
of rU, p and the loading time within the program are specified as unity, this being 
allowed for p only because a ‘small strain‘ analysis is done. Lengths such as pu i / ru  
and distance T from the tip are later normalized by ( K1/rU)* in presenting the results, 
where IC, is the maximum stress intensity factor for this calculation. A nominal size 
scale for the plastic zone can be obtained by setting r to the value at which uI2 of 
the elastic singular field reaches -rU along a line in the 2 direction passing the crack 
tip, giving a nominal radius of K,?/167rr,2 0.02(K1/r0)2. In the mathematical 
small scale yielding problem for a half-infinite crack in a full space, this is the only 
length dimension. In the finite element model there are lengths set by element size. 
and by overall grid dimensions. The ratio of the second to the first is large here 
(23 x IO3 for the smallest elements at the crack tip); here, it is attempted to make 
the first irrelevant by growing the plastic region large compared to it, and the second 
by keeping the plastic zone small compared to it. 

‘2 -, . 

3. Asymptotic solution 

The crystal orientation considered is shown in figure 2(a), with the crack on the (010) 
plane with its tip along the [Toll direction so as to intersect a slip plane. Figure 2(b) 
shows the projection of the crystal in the ( i O l )  plane. Only the top half of the crystal 
is shown due to symmetry. ?faces of the { l l O )  planes of the potentially active slip 
systems are shown in figure 2(b). Systems capable of large plastic flow under plane 
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Figure 1. Finite element mesh. 

Figure 2. ( a )  Crystal onenlalion. ( b )  Projection of the crack configuration an lhe (iOl) 
plane. 'Races of the { l l O )  slip planes are marked. 

strain conditions must have pL33 = 0. The slip system (lOl)[OlO] is the only one which 
does (except for the (lOi)[OlO] system which has pll  = pZ2 = pI2 = pP3 = 0 and 
hence no shear stress resolved onto it by tensile loading). The yield surface, which is 
normally constructed by the inner envelope of all the lines of critical Shear (resolved 
shear stress on a system, T* = T,), is an unbounded surface, uI2 = +T,, since all 
the Schmid factors are equal to zero except for plz for this system. Thus the only 
way that the elastic singularity can be (partially) alleviated is by plastic shearing on 
the (101)[010] system. Noting the features of a solution to the case of discontinuous 
shearing on an elastic half plane, as well as by looking at the finite element results 
discussed later, the crack tip field was assumed to have a logarithmic singularity. The 
field was assumed to  be divided into angular sectors alternating between plastic and 
elastic regions. 

In any plastic regions the shear stress uI2 = fr,, thus the equilibrium equations 
(oj j  ,j = 0, where the third subscript, j ,  indicates the term is a partial derivative with 
respect to z j ,  i.e. ( ) , j  = a( ) / a z j )  result in cI1 = cll(zZ) and uz2 = uzz( q). 
Assuming that the field has a logarithmic singularity then 

ul l=  ZIInlzzl+Y, uZ2= Zzlnlzll+Y, (11) 
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where Z,, Z,, Y, and Y, are constants. Now since the normal components of the 
plastic strain, cyl = c e  = ci3 = 0, these strain components are entirely elastic and 
thus for plain strain as assumed here 

M Saeedvafa and J R Rice 

= 0) 

where v is the Poisson ratio and p is the shear modulus. Integrating the first two of 
the above equations leads to 

2PU, = ~ 1 - ~ ~ ~ l l x l - ~ J b Z 2 ~ x l ~ ~ ~ l + f ~ ~ 2 ~  
(13) 

2pu2 = (1 - ~ ) ~ z z + z -  v /o l l (xz )d r ,  t d x d .  

Again since it is assumzed that the field has a logarithmic singularity, f and g in the 
above equation are assumed to have the form 

f ' ( 4  = v, In 1x21 t U, d ( x 1 )  = v, In lZ l l  t U2 (14) 

where a prime indicates the derivative of the function with respect to its argument 
and VI, 15, U, and U2 are constants. Thus the full equations for the displacements 
are 

2pu1 = [ ( l  - v )Z ,x ,  + V,x,] In1x21- vZzx ,  In lxll 

2pu2 = [ ( l -  v ) Z 2 x 2  t V,x , ]  lnIxlI - v Z l x 2  In1q.I 
(15) 

+ qI(1- - vu, t vZ2l t Z,(UI - VI) + w, 
+ x2[(1- Y)Yz - vu, + VZ,] t x , ( U 2  - Kc) + ry, 

where W1 and IV, are integration constants. By differentiating the above equations 
the shear strain is obtained as 

4pcl, = 127,  + 4 4  = VI In 1x21 + In lxll 
(16) 

i- (1 - v) [Zd~ , /xz )  + z2(~2/xI) l+  U, t 4 ' 2 .  

The solution in the elastic regions is derived by using Muskhelishvili complex 
potentials which are 

(Cl1 -t 4 / 2  = Re[24'(z)I 
("22 - "1,)/2 + io12 = ( Z  - .)4"(.) - 4 ' ( z )  t W.) 
2p(u1 f iu2)  = (3 - 4v)4(z) + ( 5  - .)$(z)' - n ( z )  

- -  (17) 

where z = x + ix, and the overbar denotes the complex conjugate of the function, 
and i = h. Again due to the logarithmic singularity, it is assumed that 
4' = A In z t B and 0' = C In z f D, where A,  B,  C and D are complex 
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constants (e.g., A = A, + iA,). The full equation of the field derived by using this 
assumed form of the complex potentials is 

2pu1 = [ ( 3  - 4v)A,  - C,] cos 8 T In r - [(S - 4v)A2 - C,] sin 8 T In r 
+ [C, - ( 5  - 4v)A1]rB sin I3 + [C, - ( 3  - 4 v ) A Z ] ~ S  cos 8 
+ [ ( 3 -  4 v ) ( ~ ,  - A , )  + c, - D , I ~  cos e 
- [ ( 5 - 4 v ) B Z -  (3 -4v )Az  - D, + C,]T sin 0 + E, 

2puz = [(l - 4v)A,  + C,] sin 0 T In T + [ ( 3  - 4v)A, + C,] cos 0 T In r 
+ [ ( 3  - 4 v ) ~ ,  + c,jTe COS e - [(I - 4 v ) ~ z  + c,lTe sin e 

+ [ ( 3  - ~ v ) ( B ,  - A*)  + D, - c,]. COS e + 
(18) 

+ [( 1 - 4u)B1 - ( 3  - 4u)A, + D, - C,]T sin 0 

U,, = (3A, - C,) In r + (C, - 3A2)0 + A,(1 - cos 20)  - A, sin 28 + 3B, - D, 
~ 2 2  = ( A ,  + Cx) In T -  (Cz + A,)f7- Al ( l  -cos 28)  + A ,  sin 20 + B, + D, 
u ~ ~ = ( C ~ - A Z ) I ~  ~ + ( C 1 - A 1 ) @ - A , ( l - c o ~ 2 8 ) - A ~ ~ i n 2 0 + D , - B ~  

where E, and E, are integration constants and z = T exp(i0). 

2, IOIOI 

Figure 3. Sector arrangement in the asymptotic solution. The shaded regions are plastic 
Sectors with region [2] at on = + r ~  and region [4] at viz = - Q  

The finite element results suggest that very near the crack tip the field is divided 
into five angular sectors as shown in figure 3, where sectors [2] and [4]  are plastic 
with ul2 = +T,, in sector [2]  and U,, = -7" in sector 141. Rice (1987) has proved 
that the only way a discontinuity can occur for ideally plastic single crystals is either 
along the direction of, or perpendicular to, the slip plane traces, and thus except for 
B = 90' where a shear discontinuity can occur (across the slip system trace in the xl- 
z, plane), full continuity conditions must hold. That is, the stress and displacements 
are continuous at 0 = e,, 0 = 0, and 0 = 04. At 0 = 90°, U,,, U,, and U, must 
be continuous but U, and U= need not be. On the crack faces uz2 = U,, = 0 (free 
surface boundary condition), and ahead of the crack (0 = 0) U,, = uz = 0 due 
to symmetry. The full field equations in each of the sectors, which are derived by 
applying these boundary conditions, are given in the appendix. In those expressions 
the field in every sector is expressed in terms of the set of nine constants Z,, Z,, W,, 
W,, X, Y, and e,, Oz, 0, which appear in these equations. These constants coincide 
with some of the constants of the same label, introduced earlier, in specific sections; 
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X and Y redefine constants A,  and B, from sector [l]. In addition, the continuity 
conditions also yield the following relationships between Z,, Z,, O,, 0, and 0, 

M Saeedvafa and J R Rice 

$ ( z l  - z,)0, t i(z, t z,) sin 2 4  = -To 
i(z, - Z , ) ( K / ~  - e,) - $(z, t z,) sin 28, = 27, 
+z,(T - e,) - $z, sin 20, = -T" 
Z,(cot 0, - cot e,) t Z,(tan 8, - tan e,) = 0. 

(19) 
(20) 

(21) 
(22) 

As can be seen, the field is not fully determined in the asymptotic solution but five 
constants are left undetermined, namely e,, W!, W,, X and Y .  These can be found 
by matching the solution with the finite element results. 

4. Results of the finite element analysis 

Figure 4 shows contours of constant uI2 values. Contour levels vary from -1.02ro 
to - 0 . 9 0 ~ ~  The plastic zone size is estimated here by the outline of the contour 
U,, = -0.96~,, which has a maximum radius of R,  = 0.044(IC,/7,)2, which is 
clearly within the small scale yielding range, since the outer edge of the mesh is at 
r = 0.40(Kl/r,)'. The level -0 .96~" was chosen as an effective measure of yield 
stress in the visco-plastic formulation since the contours show a rapid drop in CT,, over 
a very small increase in radius but comparatively little increase of U,, with decreasing 
radius. Figure 5 is the enlargement of the near-tip region of figure 4. As can be sccn, 
the field is divided into angular regions with the plastic sectors falling inside of the 
contours of U,, = fro. Near the tip (at distances of order of r = 3 . 0 ~  lo-" ( I<, /T")~ 
from the tip) there are five sectors as distinguished by the two plastic sectors, in 
agreement with the asymptotic assumptions. The plastic sector marked [4] in figure 3 
of the asymptotic analysis is found from the finite element results to be located from 
90° 6 0 < 0, = 1 7 2 3 .  The plastic sector marked 12.1 in the asymptotic analysis, 
which is located (when r = O+) from,@, = 7.6O < 0 < 0, = 79.3O, vanishes as r 
increases to T = 3.0 x 10-4(Ifl/~,)2 from the tip. Thus at larger distances from the 
tip the field has only three angular regions and the end angle of plastic sector [4] is 
found to change to 0, = 116O. The angle 8, is measured from figure 5, while the 
'angles 0, and 02 are calculated from equations (19) to (22) of the asymptotic solution 
as described below, and are in good agreement with what could be measured from 
figure 5. 

From the asymptotic analysis (equations ( k l )  through (AS) of the appendix) the 
following expressions can be compared to the finite element results, partly as a check 
and partly to determine the constants which were left undetermined by the asymptotic 
analysis: 



Crack r i p  fields: NiA1 single c y t a l  61 

Figure 4. Contours of con~tant q z .  Contour levels vary Crom -1.0270 lo - 0 . 9 0 ~ 0 .  

Figure 5. Enlargement of the near-tip area of contours of constant 012 near the crack 
tip. Contour levels vary from - q to q,. 

for the case of five angular sectors. Independent of the considerations based on 
equations (23), substituting the value of O4 = 172.5' as measured from figure 5 into 
equations (19) through (22) and simultaneously solving those equations results in 
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Z, = -7.687, Z, = - 1 0 . 9 3 ~ ~  8, = 7.6" 0, = 79.3'. (24) 

As described earlier, at distances greater than r == 3.0 x 10-4(K,/~,)2 from the 
crack tip the plastic zone ahead of the crack vanishes, resulting in only three angular 
sectors. The solution for this three-sector field can be obtained from the asymptotic 
analysis by letting 0, = 8, (which will drop all dependence on 8, or 0, out of rhe 
equations). Then the field equations for plastic sector [2] become immaterial, and the 
resulting field equations for elastic sectors 111 and 131 become identical. Substituting 
8, = 116.0° (as measured from 6gure 5) into equation (21) leads to 

Z, = -1.327, Z, = -2.60~" (25) 

for the case of three angular sectors, where the constant Z, was obtained by adding 
equations (19) and (20) to obtain (2, - Z2)7r/4 = r,. 

30 t 

0 m I/ 20\ 

d 

I . 

Figure 6. Variation of 011 ahead of the crack with 
distance from the tip. 

Figure 8. Variation of oll ahead of the crack with 
distance fmm the rip on a logarithmic scale. 

c 
Elastic ,. 10 

\ 
8 -i_L 0 I.OZ aw 0.111 0.08 0.1 

R / ( K , / ~ ~  

Figure 7. Variation of U= ahead ol rhe crack with 
distance from the tip. 

EQure 9. Variation of a2 ahead df the crack with 
disunce from the lip on a lo~arifirmic scale. 
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ahead of the 
crack with distance from the tip. The dashed lines are the mode I elastic distribution 
of stresses ahead of the crack, U,, = oz2 = K1/&. Figures 8 and 9 are the same 
two figures on a logarithmic scale. The solid l i e s  are the FEM results, the dashed 
lines are the results from the five angular sectors of the asymptotic solution, equations 
(23), and the dot-dashed lines are from the results of three angular sectors, based 
on Z, and Z, values given above. By positioning the dashed and dotdashed lines 
to best coincide with the FEM results in different ranges, it is additionally determined 
that 

Figures 6 and 7 show the variation of normal stresses U,, and 

x = 9.45 x 1 0 - ~ ( 1 ~ ~ / ~ ~ ) ~  

X = 0.06S5(K,/ru)2 Y = 0.0371(K1/~0)2 (27) 

Y = 7.75 x 1 0 - ~ ( 1 ~ , / ~ ~ ) ~  (26) 

for the case of five angular sectors and 

for the case of three angular sectors. 

Figure 10. Variation of U, on the crack surface 
vnth distance from the tip. 

Figure 11. Variation of uz on the crack surface 
with distance from the tip. 

Figures 10 and 11 show the variations of the displacements U, and u2 on the 
crack surface with distance from the tip. Again the solid lines are the FEM results, 
the dashed lines the results for five angular sectors and dot-dashed lines are the 
results for three angular sectors of the asymptotic solution. From these figures 

W, = -1.48 x W3( I i I )2 /~u 6,, = W2/p = 4.44 x lo-'( l i , ) z / p ~ O  (28) 

for the case of five angular sectors, where 6,, is the crack opening displacement 
( ~ 5 , ~  = [2u2],=, as P - 0), and 

w, = 2.00 x lcI)z/ru btiP = w ~ / ~  = 9.72 io-z( K ~ ) ~ / ~ ~ ~  (29) 

for the case of three angular sectors. 
As obvious from these figures, specially figures 5, 8 and 11, the field is clearly 

divided into two zones with different slopes in each as caused by the existence of 
the plastic sector [21 of small radial extent. For both the 3 and 5 angular sectors 



64 

asymptotic solutions the results are in good agreement with the the finite element 
results, except for the variation of uzz where the solution is only an approximate 
match for the 5 angular sectors case (see figure 9). Note that the matching of the 
FEM and the asymptotic results for determining the constants X ,  Y,  W, and W, 
from figures 8, 9, 10 and 11 respectively, were done at one point for each zone (i.e. 
5 or 3 angular sector zones) which fell well into its applicable range. For the case 
of the 5 angular sector zone, that meant a point which was not too close to the tip 
(since the FEM results at the elements very near the tip arc not dependable), but at 
a distance smaller than 3.0 x 10-4(I(1/~a)z (the end of plastic sector [2]). The point 
chosen was at a radius of 2.5 x I < I / ~ o ) 2  which gave the best match of slopes for 
oI1 and uz. Although figure 9 shows that the first two points of the FEM results do 
match the predicted asymptotic slopes of aZu that slope comes from the first element 
at the crack tip, the result of which is unreliable (as can be seen best in figure 8). 

M Sneedvafa and J R Rice 

Figure 12. Displaced mesh near the crack tip 

The small plastic zone ahead of the tip in the 5 angular sector range, has a radial 
extent Rf, = 0.0068R, = 6.7 x 10-3(p/7u)6tir The 5-sector field would be a valid 
prediction of ‘small strain’ theory only at distances T within it that are at least, say, 
three or more times Stip, so as to be in the range not affected by crack tip blunting and 
associated large geomeay changes. Such a range can exist at all for the 5-sector field 
only if R; is several times larger than 6,,, which means 6.7 x 10-3(p/~u) must be 
several times larger than unity. Since the polycrystalline tensile 0.2% yield strength 
for NiAl is around 200 MPa at 300 K, and around 100 MPa at 300 K (Nocbe et 
a1 1992), at those temperatures is estimated to be about 100 MPa and 50 MPa, 
respectively. Also given a bulk modulus B as 1.9 x l@ MPa (Fleisher ef a1 1989), 
the shear modulus may be estimated as p = 9 x lo4 MPa, assuming Y = 0.3. Thus 
I?;/&, = 6.7 x 10-3 (p /~u)  = 6 at 300 K and 12 at 600 K, which provides at least 
some limited range of the 5-sector field which can presumably be described by the 
present ‘small strain’ analysis. 
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-BO o 45 80 135 180 Figure 13. Variation of shear strain €12 amund the crack 
e tip, for 5 and 3 angular sector zones. 

Figure 12 shows the displaced mesh near the tip. Figure 13 shows the 
variation of eI2 around the crack tip at distances r = 2.5 x 10-4(K,/r0)2 and 
T = 2.5 x (I<I/ru)z from the crack tip for the case of 5 and 3 angular sectors, 
respectively. These distances, which are within the applicable ranges of the 5 and 
3 angular sector zones, were the points chosen for comparing the asymptotic results 
with the finite elements. The solid lines in figure 13 are the finite element results, 
the dashed lines are the 5-sector asymptotic results, and the dotdashed l i e s  are the 
3-sector asymptotic results. The asymptotic results have a Dirac 'delta' singularity in 
q2 at I3 = 90°, associated with the shear displacement discontinuity predicted there. 
As can be seen from these figures, there is a clear shear discontinuity across I3 = 90° 
parallel to slip line trace of the (101)[010] system. Again there is a good agreement 
between the finite element results and the 3-sector asymptotic analysis, but only an 
approximate match between the FEM results and 5-sector asymptotic analysis. 

Figure 14 shows contours of resolved shear stress on (llO)[lil] slip system, 
assumed not to be activated in the present solution. Figure 15 shows wntom 
of resolved shear stress on (121)[1?1] slip system. Among the members of the 
{110}(111) and {112}(111) systems capable of sustaining large plastic flow (p33 = 0 
which means = 0 for non-zero in-plane e:,), these two were chosen since they 
exhibited the largest zone over which the resolved shear stress is larger than 7,. Since 
the Schmid factor for some of the systems are the same in this orientation under plane 
strain conditions, the resolved shear stress is equal for some of these systems, thus 
figure 14 also shows the resolved shear stress on (011)[1?1] system. Both of these 
two systems form an angle of 35.26O with the crack face. The wntour levels shown 
in figures 14 and 15 vary from -27, to -rU, with the outermost wntour representing 

stress exceeds r, are of the order of plastic zone size R, = 0.044(1<,/~,)~. Figure 
16 shows the variation of resolved shear stress on systems (llO)[lil] or (Ol l ) [ l i l ]  

7 = -7 ,. As can be seen in these two figures the largest zones in which resolved shear 
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XI/(KI/TO)' 

~ i g u r e  14. Contours of constant re~o~ved shear stress on (iio)[iii] or (oii)[iii] 
systems. Conlour levels vary from -2ro to -TO. 

111,111.111 

0.051 1 

X,P(r/To? 

Figure 15. Contours of conslant resolved shear stress on (lZl)[lil] system. Contour 
levels valy from -270 to -70. 

around the crack tip. Figure 17 shows the variation of resolved shear stress on 
system (121)[lil] around the crack tip. The finite element results, shown as solid 
lines in figures 16 and 17, are taken at distances T = 2.5 x lO-"((h;/r,)* and 
T = 2.5 x 10-3(I<1/~u)z from the crack tip for the case of 5 and 3 angular sectors, 
respectively. The first distance is about 5.7~5,;~ when r0/p = Again the dashed 
lines in these figures are the results for the 5 angular sectors of the asymptotic solution 
and the dot-dashed lines are the results for the 3 angular sector asymptotic solution. 
Figures 16 and 17 again show that the results for 5-sector angular asymptotic solution 
is only a qualitative match while there is a very good match between the finite element 
results and the 3 angnlar sector asymptotic results. Note that the Schmid factors for 
systems (llO)[lil] or (Oll)[l i l]  are f i l l  = -pZz = l/& and p 1 2  = 1 / 4 4  and the 
Schmid factors for (12l)[lil] systems are pl, = - f izz = &/3 and p I Z  = 1/6. and 
thus the resolved shear stress on either of the two systems is 
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where A = l /& for (llO)[lil] or (Oll)[lil] systemsand A = f i / 3  for (121)[lil] 
system. Thus substituting the equations for oil, crZ2 and u , ~  in each of the sectors 
into equations (30) leads to 

T = A [ f ( B )  In T + d e ) ]  (31) 

where f and g are also dependent on the constants of each sector. Thus as can be 
seen from equation (31), as well as figures 16 and 17, the resolved shear stress in 
these two systems (as well as many other members of their respective set of systems) 
is infinite at the crack tip due to the singular stress field. Realistically, one should 
probably cutoff the In T at a distance of T m 26,,. Thus flow on these two systems 
could contribute to alleviate the unrelaxed crack tip stresses, even though the critical 
resolved shear stress on these systems is much larger than that of the {llO}(loO) 
slip system at room temperature. Note that there are 7 independent slip systems in 
the {112}(111) family and 5 independent slip systems in the {110}(111) family with 
4 and 3 systems in each respectively which are capable of sustaining large plastic 
flow. Thus activation of either of these two systems is sufficient for a bounded stress 
field. The tensile stress directly ahead of the crack is about ozz = 15.57,, from finite 
element results of figure 9, at the cut off distance T = 26,,, which for = W3, 
corresponds to I n [ r / ( 1 ~ , / ~ ~ ) ~ ]  = -9.3. The competition at the crack tip is between 
cleavage, aided by such large stresses, and plastic relaxation. 
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Figure 16. Varialion-of resolved shear stress on Figure 17. Variation of resolved shear stress on 
(l lO)[li l]  or (011)[111] systems around the crack (121)[li l]  system around the crack tip, for 5 and 
lip, for 5 and 3 angular seclor zones. 3 angular sector zones. 
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5. Conclusions 

The asymptotic as well as the finite element results show that the elastic-ideally 
plastic NiAI single crystal with the crack on the (010) plane growing in the [loll 
direction has a In T type singularity in the stresses, at least within the 'small strain' 
theory, when there is only one system, (lOl)[OlO], which is capable of sustaining 
large plastic Row. The field has a distinct shear displacement discontinuity at 0 = 90° 
along the dip plane trace of the (101)[010] system and is divided into two zones, 
an inner one containing 5 angular sectors alternating from elastic to plastic, and 
an outer one with 3 angular sectors. The zone in which the solution contains 
5 angular sectors has two plastic sectors, one at 7.6O < 0 < 79.3O, vanishing at 
distances Rf, = 3.0 x 10-4(Ii,/7,)2 from the tip, in which uI2 = + T ~ ,  and one at 
90° < 0 < 172.5O in which uI2 = -rW Over distances larger than Rb from the tip 
the field is divided into 3 angular sectors with the plastic sector at 90a < 6' < 116O in 
which uI2 = - T ~ ,  vanishing at R, = 0.044(1CI/70)2. 

The contours of constant resolved shear stress on systems {110}(111) and 
{112}(111), which can become activated at higher temperature, shows that the largest 
zones over which the resolved shear stress on either of these two systems is larger than 
ru is of the same order as R,. The largest of these two zones are associated with the 
resolved shear strcss on (110)[111] and @ll) [ l i l ]  systems (figure 14) and (12l)[lil] 
systems (figure 15) whose traces in the (101) plane form an angle of 35.26O with the 
crack face. Although the critical resolved shear stress on either of these two systems 
is larger than that of the {110}(100) system, the resolved shear stress on all members 
of these two set of systems is very large at the crack tip due to the stress singularity, 
thus one or the other of these two systems could become activated at sufficiently high 
temperature, relieving the stress singularity. Presumably, at lower temperatures, the 
maximum tensile stress uz ahead of the tip becomes sufficiently large as to cause 
cleavage before such additional systems can be activated. 

M Saeedvafa and J R Rice 
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Phstk sector [4], 90.0' < e < 8,: 
M Saeedvafa and J R Rice 

r sin 0 sin 82 I xs ine ,  I 2pu,  = (1 - .)ZIT cos 0 In 

u2, = ( -2 , /2)  sinz e, 

4 4 ,  = (1 - V)Z,(cot e -cot 8,). 

ulz = -7, 

EIastic sector [SI, 0, < 0 < 180.0°: 

r sin 0, sin 6, 1 x s i n e ,  I 2p.q = (1 - v)Z,r cos 6 In 

r sin 6, sin 8, 2pu2 = -uZ,r sin 0 In - I$( '  - 2U)Z1 - ( v / 2 ) Z 1  sinze, 

U,, = -(Z1/2)Sin2O 
~ l z = ( Z , / Z ) ( ~ - 6 )  - ( Z J 4 ) s i n 2 8 .  

In the above equations all the constants have been written in terms of 2, and 2, 
of the plastic sector [Z]. The constants X and Y are used to denote the constan6 
which are left undetermined by the asymptotic analysis, namely 38,-D1 = - 2, In X 
and B, + D, = -2, In Y, where the constant B, and D, refer to the values of 
these constants in the elastic sector [l]. 
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