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Peierls Framework for

Dislocation Nucleation from a
Crack Tip

J. R. Rice, G. E. Beltz, and Y. Sun

ABSTRACT Dislocation nucleation from a stressed crack tip is analyzed
based on the Peierls concept, in which a periodic relation between shear
stress and atomic shear displacement is assumed to hold along a slip plane
emanating from a crack tip. This approach allows some small slip displace-
ment to occur near the tip in response to small applied loading and, with
increase in loading, the incipient dislocation configuration becomes unsta-
ble and leads to a fully formed dislocation which is driven away from the
crack. An exact solution for the loading at that nucleation instability was
developed using the J-integral for the case when the crack and slip planes
coincide (Rice, 1992). Solutions are discussed here for cases when they do
not. The results were initially derived for isotropic materials and some
generalizations to take into account anisotropic elasticity are noted here.
Solutions are also given for emission of dissociated dislocations, especially
partial dislocation pairs in fcc crystals. The level of applied stress intensity
factors required for dislocation nucleation is shown to be proportional to
/Yus Where Tus, the unstable stacking energy, is a new solid state param-
eter identified by the analysis. It is the maximum energy encountered in
the block-like sliding along a slip plane, in the Burgers vector direction, of
one half of a crystal relative to the other. Approximate estimates of us
are summarized, and the results are used to evaluate brittle versus ductile
response in fcc and bec metals in terms of the competition between dis-
location nucleation and Griffith cleavage at a crack tip. The analysis also
reveals features of the near-tip slip distribution corresponding to the saddle
point energy configuration for cracks that are loaded below the nucleation
threshold, and some implications for thermal activation are summarized.
Additionally, the analysis of dislocation nucleation is discussed in connec-
tion with the emission from cracks along bimaterial interfaces, in order to
understand recent experiments on copper bicrystals and copper/sapphire
interfaces, and we discuss the coupled effects of tension and shear stresses
along slip planes at 2 crack tip, leading to shear softening and eased nucle-
ation.

Reprinted from the book, Topics in Fracture and Fatigue
edited by A.S. Argon, 1992
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2 1. Peierls Framework for Dislocation Nucleation from a Crack Tip

1.1 Introduction

Armstrong (1966) and Kelly et al. (1967) advanced the viewpoint of brittle
versus ductile response as the competition between Griffith cleavage and
plastic shear at a crack tip. The latter proposed that the response of a
crystal or grain boundary should be treated by comparing the ratio of the
largest tensile stress to the largest shear stress close to a crack tip with
the ratio of the ideal cleavage stress to the ideal shear stress. Armstrong
compared the applied stress necessary to meet the Griffith condition with
the stress to shear apart a dislocation dipole near a crack tip, and thereby
noted the importance of the dimensionless combination 7, /ub (7, = surface
energy, 4 = shear modulus, b = magnitude of the Burgers vector) as an
index of how relatively easy it was for the shear process to occur before
cleavage. Subsequently Rice and Thomson (1974) specifically modeled the
shear process as the nucleation of a dislocation from a stressed crack tip.
The Rice and Thomson approach made use of elasticity solutions for a
fully formed dislocation (i.e., a dislocation with slip equal to the Burgers
vector b of some complete or partial lattice dislocation) and a core cut-
off parameter had to be introduced to derive a nucleation criterion. Their
analysis showed, likewise, the lmportance of large v,/ub and also of low
core energy (la.rge r./b, where r, is the core cut-off radius in their analysis)
for ductile response.

Recent treatments of the Rice-Thomson model have evolved to charac-
terizing the crack-tip competition in terms of the parameters Gcieave, the
energy release rate for cleavage and Gaisi, the energy release rate associ-
ated with the emission of a single dislocation on a slip plane emanating
from the crack tip. In its original form, the Rice-Thomson model treated
dislocation emission by considering the stability of a straight dislocation
line or a semicircular dislocation loop; both proceeded by assuming the
existence of a freshly generated dislocation at a relatively small distance
(turning out to be less than a few atomic spacings) away from the crack
tip, on a slip plane which intersects the crack front. A drawback to this
procedure, as well as the Peierls-type model to be discussed shortly, is that
the analysis may be straightforwardly applied only to cases in which the
slip plane(s) intersect the crack front. Following Mason (1979), however, we
may envision a scenario in which dislocations are emitted when a moving
crack front undergoes local deviations which bring it into line with a poten-
tially active slip plane. Another drawback to the Rice-Thomson treatment
is that it involves the core cutoff radius, an uncertain parameter. Here,
following a suggestion by Argon (1987), the Peierls (1940) concept is used
in an analysis of dislocation formation at a crack tip. That is, a periodic
relation is assumed to hold between shear stress and sliding displacement
along a crystal slip plane emanating from a crack tip, and a solution is then
derived for the critical external loading which corresponds to dislocation
nucleation.
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A first report on this approach has been given by Rice (1992). We follow
the text and format of that work closely here, adopting entire sections
where appropriate. We also enlarge on the development to review exact
numerical solutions, anisotropic effects, coupled shear and tension, thermal
activation, and bimaterial interface cracks.

With the results derived in the Peierls framework, we shall have no fur-
ther need for introduction of the poorly defined core cut-off at a crack tip in
analyzing nucleation phenomena. Indeed, the results show that no feature
resembling a fully formed dislocation is present at the crack tip prior to
the instability. The instability begins a slip event leading to a fully formed
dislocation which moves away from the crack tip. Prior to the instability
there exists only an incipient dislocation in the form of a nonlinear shear
distribution along a slip plane, with maximum deformation equivalent to
a slip at the crack tip of generally less than a half of that of the fully
formed dislocation. This agrees with the suggestion by Argon (1987) that
nucleation instability should occur at a slip less than that of the disloca-
tion which ultimately emerges. The Peierls concept has also been used in
a recent analysis of dislocation nucleation by Schoeck (1991). His analysis
was somewhat more approximate and did not uncover the exact solution
for nucleation within the Peierls framework that is derived here. The re-
sults by Rice (1992) identified a new solid state parameter, denoted -y,
and called the unstable stacking energy, which characterizes the resistance
to dislocation nucleation.

1.2 Description of Model

Suppose that a crack tip intersects one of the possible slip planes in a ductile
crystal (Fig. 1.1(a)). The question addressed is that of what loading of the
cracked solid suffices to nucleate a dislocation from the tip, assuming that
cleavage decohesion does not occur first. By adopting the Peierls (1940)
concept, the shear stress r along the slip plane is regarded as a (periodic)
function of the slip displacement § along it. Thus, the problem addressed
consists of an externally loaded solid containing a crack with traction-
free surfaces, and with the additional boundary condition that the shear
traction 7 must be a function of the slip displacement 6 along a plane of
displacement discontinuity emanating from the crack tip. For the present
we assume that there is a discontinuity of slip displacement only along that
plane. More precise models in which there are discontinuities in both shear
and opening displacement (the latter relating to dilatancy of an atomic
array during large shear and, also, to the presence of tensile stress o across
the slip plane) are discussed by Beltz and Rice (1991, 1992a) and Sun et
al. (1992). Hence, if s and n are unit vectors in the slip direction and normal
to the slip plane, then § = u} — u; where u, = 8 - u; u is the displacement
vector and +, — refer to the two sides of the slip plane with n pointing
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FIGURE 1.1. (a) Crystal slip plane emanating from crack tip. (b) Periodic rela-
tion between stress and shear displacement discontinuity (see discussion in con-
nection with next figure to understand basis for vertical tangent at zero slip). (c)
Energy associated with slip discontinuity.
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from — to +. Within the present simplification, other components of u are
continuous. Also, T = n,0as3s = 0n, Where o4p is the stress tensor.

The 7 vs. & relation is assumed to have a form like in Fig. 1.1(b), i.e.,
a periodic function with period b equal to the Burgers vector of a full
dislocation, and with an axis crossing in-between, at b/2 in lattices with
simple symmetry. Ways of estimating the form of the relation, and why
it has been drawn with a vertical tangent at § = O and b, are discussed
below; adaptations of concepts so as to deal with complex dislocations
having stacking faults or anti-phase boundaries are discussed in a later
section. Weertman (1981) analyzed a similar model but with the 7 vs. ]
relation in the form of a rectangular wave.

The result derived by Rice (1992), exactly for a special geometry and
approximately in all cases, is that dislocation nucleation occurs under crit-
ical crack tip stress intensity factors which scale with |/7ys. Here vy, the
unstable stacking energy, is identified in Fig. 1.1(b) as the area under the
r vs. § curve between § = 0 and 6§ = b/2 (more generally, v, is the area
between § = O and the first § at which 7 = 0 again). Figure 1.1(c) shows
the energy per unit area of the slip plane, @ = f 7d6. Thus 7y, is the max-
imum value of ®. We may take the viewpoint that the same 7 vs. § relation
could be used to describe the block-like shear, along a slip plane, of one
half of a perfect lattice relative to the other. Hence @ (or, more accurately,
a related energy ¥ introduced below) corresponds to the v-energy plot of
Vitek (1968) and Vitek et al. (1972) and ~us, the maximum value of ® (and
of ¥) along the slip path, is the energy barrier to be overcome in block-like
shear.

To understand the 7 vs. § relation, consider the states of shear of an
initially rectangular lattice illustrated in Fig. 1.2. The relative shear dis-
placement of the central pair of planes is denoted A; these are separated
by distance h and are the pair of planes which will ultimately be displaced
a lattice distance b. Lattice configurations (a) to (d), starting at the lower
left and going clockwise, correspond to point (a) to (d) on the 7 versus A
curve. All the configurations shown are homogeneous in the direction of the
shear displacement, but not perpendicular to it. When sufficiently sheared,
like in (c) and (d), there exist configurations in which the lattice is not
homogeneously strained, like it is in (b), but rather for which the central
pair of planes corresponds to a A along the descending part of the 7 versus
A relation, while the crystal outside is stressed at the same level at an
amount of shear corresponding to the rising part of the curve. Position (d)
corresponds to the unstressed but unstable equilibrium state for which the
central pair of lattice planes are displaced by & /2 while the crystal outside
is unstrained. This is the unstable stacking configuration and the work to
create it (area under 7 versus A between A =0 and b/2) is Yus, the same
~us Of Figs. 1.1(b) and (c), as explained next.

Although the configurations considered in Fig. 1.2 are homogeneous in
the direction of shear, we follow Peierls (1940) in applying the 7 versus A
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FIGURE 1.2. Various states of shear for a simple cubic lattice; state (d) shows
the unstable stacking configuration, with energy ~us per unit area of slip plane.
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relation locally to states of inhomogeneous shear like along the slip plane in
Fig. 1.1(a). Since that inhomogeneous shear is modeled here as a displace-
ment discontinuity, of amount §, along a cut of zero thickness in an elastic
continuum, it is sensible to identify 6§ not with A, which denotes relative
displacement of points a distance h apart, but rather to write A = §+hr Ju
so that relative displacement A of atomic planes at spacing h is composed
of the discontinuity § on the mathematical cut plus an additional amount
due to elastic shearing by amount r/u over a distance h perpendicular to
the cut; p is the shear modulus. Thus, if 7 = F(A), of period b, describes
the r versus A relation of Fig. 1.2, where F(0) = 0 and g = hF'(0), then
the r versus & relation, r = f(6), is given parametrically by r = F(A)
and § = A — hr/p = A — F(A)/F'(0). This means that the resulting
7= f(6) is of period b and that f'(6) is unbounded at § =0, as illustrated
in Fig. 1.1(b). The transformation from A to 6§ as displacement variable
preserves the area, namely 7us, under the r vs. displacement curve between
the origin and the next zero of 7. An energy ¥(A) may be defined from
rdA = dVU; it is the form in which an energy of sheared configurations
has been calculated from atomic models (e.g., Vitek, 1968; Vitek et al.,
1972; Yamaguchi et al., 1981; Sun et al., 1991). Given that the energy o(6)
of Fig. 1.1(c) satisfies 7d6 = d®, the relation 6 = A — hr/p shows that
d® = d¥ — hrdr/u and thus that ®(6) = ¥(A) — hr?(A)/24.

The simplest case of a 7 = F(A) relation is the Frenkel sinusoidal func-
tion

7 = (ub/2xh) sin(27A /b), (1.1)
in which case,
§ = A — (b/2w) sin(27A /b) (1.2)

and the energies ¥ and P are

¥ = (ub?/2n2h) sin?(rA/b), and & = (ub®/2xh) sin*(rA/b).  (1.3)

In this case 4ys, which is the common maximum of ® and V¥, is given by
Nus = pb?/272h, an estimate that will be considered subsequently along
with others. The plots in Figs. 1.1(b), 1.1(c) and 1.2 have been drawn based
on the Frenkel sinusoid.

1.3 Analysis of Simplified Geometry with
Coincident Crack and Slip Planes

This section repeats the major result of Rice (1992). While geometries like
in Fig. 1.1(a), typically loaded by tensile, or predominantly tensile, forces
relative to the crack plane are of primary interest, the problem posed there
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FIGURE 1.3. Coincident crack and slip plane, mode II loading.

is solvable only by numerical methods (Beltz and Rice, 1991a,b). Tensile
loading of that configuration of Fig. 1.1(a) causes high shear stress 7 (at
least, when slip § is precluded) along any slip plane in the general range
of, say, § = 30° to 120°; the mode I crack tip field has highest shear
stress along 6 =~ 70°. Some of the same features of the configuration of
Fig. 1.1(a), namely, shear along a highly stressed plane emanating from
the crack tip, are preserved in the simplified configuration of Fig. 1.3, for
which an exact solution will be derived. In that simplified case, the most
stressed slip plane is assumed to be coplanar with the crack (6 = 0), with s
in the z; direction, so emerging dislocations are of edge character relative
to the tip, and the external loading is by in-plane (mode II) shear. A nearly
identical analysis may be followed when 8 is in the z3 direction, so that
emerging dislocations are of screw type relative to the tip, and loading is
by anti-plane shear (mode III).

Along the prolongation of the crack into the slip plane in Fig. 1.3, we
have § = u} — ui and 7 = 021, where 7 = f(6) like in Fig. 1.1(b); us
and uj are continuous there. Recognizing that this configuration is being
analyzed as a simplified analog of more realistic tensile-loaded cases like in
Fig. 1.1(a), we do not extend applicability of the 7 versus § relation back
onto the crack faces in Fig. 1.3 but, rather, assume that the crack faces are
traction free (02; = 0,7 = 1,2,3).

The crack is assumed to be sufficiently long that any region near its tip
where significant slip develops, prior to unstable dislocation nucleation, is
assumed to be of negligible length compared to crack length and other
overall dimensions of the cracked solid, such as distance to boundaries and
to points of external force application. In that case it suffices to consider the
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crack as a semi-infinite slit in an unbounded solid, with all loadings applied
at infinitely remote distance so that all we need consider is the singular
crack tip stress field, characterized by stress intensity factors, Ki, K1, K1,
that the loadings would induce in the linear elastic model of the actual solid.
At present, only Ky is assumed to be non zero, such that the stress field
ahead of the crack tip (zz = 0,z; > 0) in the linear elastic model of our
solid, when restrained against slip §, is g21 =79 = K /vV2rnr, 002 = 023 =
0, with r = z;, and the Irwin energy release rate G is, in the isotropic case,

G = (1-v)Kp/2 (1.4)

where p is the shear modulus and v the Poisson ratio.

We now follow a similar argument to that used by Rice (1968 a,b), based
on the path-independent J integral, in proof of the equivalence of the Grif-
fith criterion G = 27, (7, = surface energy) for tensile crack growth under
mode I loading to the criterion derived from the tensile-decohesion analog
of the model described so far here (i.e., from a model in which o022 is a
function of opening displacement, ud — u3, along the prolongation of the
crack plane, with that function increasing to a maximum and then dimin-
ishing to zero at large opening displacements, such that its integral from
0 to oo is 27,). That same equivalence was demonstrated earlier by Willis
(1967), using integral representations of the linear elastic solution for the
field outside the decohesion zone, and the Willis method was also adapted
by Rice (1992) to the present analysis of shear dislocation emission at a
crack tip. See Eshelby (1970), Rice (1987), and Rice and Wang (1989) for
related discussions.

The J integral is

J= / (nuW (V) — acapdup/dz:] ds (1.5)
r

where W is the strain energy density, g,p = (W (Au))/8(dug/dza) is the
stress tensor, s is arc length, and, here, n is the unit outward normal to the
path T, where T starts on the lower crack surface, surrounds the crack tip
and any slip zone in its vicinity, and ends on the upper crack surface. The
integral is independent of path when evaluated for any 2D solution u(z)
of the elastostatic equilibrium equations 8cap/8z, = 0, at least when
the elasti¢ properties are invariant to translation in the z, direction. The
path indepéndence applies not only for conventional stable elastic solutions
corresponding to a minimum of the energy functional U{u(z)], but also to
2D fields u(z) corresponding to other extremals of U[u(z)] such as saddle-
point configurations, of interest for activation over energy barriers; the field
equations 80,3/8z4 = O are satisfied at all extrema. Here U is the energy
of the stressed solid per unit distance along the crack front.

Since J has the same value for all paths which do not traverse the crack
or slip zone ahead of it, we can advantageously evaluate J on two contours,
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Ttar and Taiie; [far lies far from the crack tip and the nonlinear perturbation
of the linear elastic field due to the incipient slip process near the tip,
whereas T',j;; coincides with the upper and lower surfaces of the slit lying
ahead of the crack tip on which the displacement u; is discontinuous by
(variable) amount é. The value of J on I'¢ar will depend only on the remote
linear elastic field characterized by K1 and, as is well known in that case,
the result is J = G. The value along I'sj;¢ can be written as

J = —/ 0210(u] — u7)/8z1dz; = —/ 186 [8z1dz,
0 0

6t
_ / " 1ds = O(6) (1.6)
0

where 6,;,, is the slip displacement discontinuity at the crack tip. Since J is
independent of path, the two evaluations must agree and hence the amount
of slip at the crack tip associated with any static solution must satisfy

G = (1-v)KE/20 = B(buip)- (1.7)

For anisotropic solids the same result applies but with (1 — v/)/2u replaced
with the appropriate compliance factor from the Stroh (1958) and Barnett
and Asaro (1972) results relating G to Kii.

Thus as the applied Ky1 and hence G increases from zero, one first follows
the rising branch of the ®(6) function of Fig. 1.4, having solutions for b¢ip
like that illustrated at point A. Such values of 6y, [= 6(r) at r = 0] are
reasonably assumed to correspond to functions é(r) that give minima of
U[6(r)) and that represent an incipient, but not yet fully formed, dislocation
at the crack tip. It is evident that no static solution can exist when G
exceeds 7ys, the maximum value of ®, and hence the incipient dislocation
configuration discussed loses stability at

G=(1-v)KE/2u = Yus, (1.8)

which therefore corresponds to nucleation of a full dislocation. The slip btip
at the crack tip when instability is reached is well short of that (namely,
b) for a full dislocation, and corresponds to b/2 in lattices with simple
symmetry. Thus no feature resembling a fully formed dislocation is actually
present at the crack tip prior to the instability at which the full dislocation
is nucleated. '

As further shown in Fig. 1.4, the equation G = ®(6ip) for G < ys has
multiple roots, illustrated by solution points 4, C, A’, A", .... Points 4’,
A" etc. have a clear interpretation as corresponding to incipient disloca-
tion configurations after one, two, etc. full dislocations have already been
formed from the crack tip. Since A and A’ may be presumed to correspond
to stable solutions, minimizing U[u(z)], we should expect there to be a
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FIGURE 1.4. Solution for the slip displacement at the crack tip, for stable solu-
tion A (and A', A", ... corresponding to omne, two, or more previously emitted
dislocations), and for 2D saddle-point configuration C.

saddle-point configuration between theses two states, also an extrema of
Ulu(z)]. That saddle-point configuration evidently has a slip éip at the
crack tip given by point C in Fig. 1.4, and hence we are able to calculate
an important feature of the activated configuration, at least in a 2D treat-
ment. This is of limited use because the actual saddle-point configuration,
defining the activation energy for an analysis of thermally assisted disloca-
tion nucleation when G < 7ys, will involve a 3D elastic field associated with
a localized outward protrusion of slip from the stable 2D incipient disloca-
tion distribution corresponding to point A. Further discussion of activated
states in dislocation nucleation is deferred to Section 1.13.

The same analysis as above may be followed for a crack tip loaded under
mode III conditions and for which the slip direction s is in the z3 direction,
so that the emerging dislocation is of screw type. We now identify 7 as o23
and & as u¥ — uz. The above equations hold with K1 replaced with K,
and with (1 — v) replaced by 1, so that the nucleation condition is then

G = K& /26 = Yus- (1.9)

At this point we want to extend the results to nucleation of general dis-
locations, combining both edge and screw components, at crack tips under
general mixed-mode loading. Also, we want to model the nucleation of dis-
locations in dissociated form, with first one partial dislocation nucleating,
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FIGURE 1.5. General mixed mode loading. Relative displacement along the slip
plane assumed to follow a constrained path of pure sliding, without opening,
along slip direction at angle ¢.

leaving a faulted plane behind it, and then the remainder of the disloca-
tion nucleating under increased external loading (e.g. , fcc metals in which
partial dislocations on {111} planes are separated by stacking faults, and
ordered alloys in which superlattice dislocations dissociate into partials sep-
arated by an antiphase boundary). Reasonably exact results (Rice, 1992)
are given next within a “constrained-path” approximation, that is already
tacit in the results presented so far.

1.4 Results for General Shear Loading,
Coincident Crack and Slip Planes

Suppose now that the solid of Fig. 1.3 is loaded in combined mode I, II
and III, Fig. 1.5, so that stresses on the slip plane in the absence of any
relaxation would be 027 = Kn/\/2_7r—r, 02 = KI/\/Z—';, o253 = Kmi/v/2nr.
In general the displacement discontinuity on the slip plane could have com-
ponents in both the 1, 2 and 3 directions, & = uf — u7,8 = uf —uz
and 63 = ud — uy. The energy ®*(6;,62,83) of the slip plane is now re-
lated to the stresses by o2 = 8®*(61, 62,83)/864 and an application of the
J integral paralleling that in the previous section shows that solutions of
the static elastic equations for this case must have relative displacements
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(61tip, b2tips Oatip) at the crack tip satisfying

G=[(1-v) (Kf + K%) + Kfy] /21 = ® (b14ip, b2tips b3tip).  (1.10)

This condition, however, does not let us determine a nucleation condition
since now there are too many degrees of freedom at the tip.

A solution can be found if we make the assumptions that the relative
motion along the slip plane is pure shear so that opening 62 = 0 (an im-
provement is to consider relaxed paths along which 8®* /362 = 0), and
that a certain direction or more generally that a certain set of crystallo-
graphically equivalent directions within a slip plane are far less resistant
to shear than are any other directions. Such directions would, of course,
coincide with the observed slip directions s, i.e., the directions of Burgers
vectors b. Calculations from atomic models (Yamaguchi et al., 1981; Sun
et al., 1991) of slip plane energies for different directions of shear do indeed
show very large differences in energy; see Section 1.9. Thus let the angle
¢ denote the angle of the easy slip direction on the slip plane, where ¢ is
measured from the z; axis (Fig. 1.5) so that ¢ = 0 corresponds to an edge
dislocation, whereas ¢ = m/2 corresponds to a screw dislocation, relative to
the crack front. When there are several such directions, we shall regard ¢ as
denoting the first such direction to meet the nucleation condition, derived
below, under the given ratio of Kiy1 to Ky loading.

We now make the approximation that the resistance to slip along direc-
tions other than ¢, and the resistance to tensile opening, is so great that
we can regard the relative displacement as being constrained to a pure slip
path at angle ¢, so that

§, =6cos¢,6, =0, and b3 = 6sin ¢ (1.11)
where 6 is the slip along direction ¢. Thus if

T = 091 c0s¢ + g23sin ¢ (1.12)

denotes the resolved shear stress in the slip direction, we may assume
as boundary condition along the slip plane that 7 is related to & like in
Fig. 1.1(b), and that & of Fig. 1.1(c) is given as before as & = [ rds.
Because of the constraint on the relative displacements, it will no longer
be the case that the slip process relaxes the stress singularity at the crack
tip. Thus, in addition to the K, K11 and Kiyyp characterizing the remotely
applied loading, we will also have a non-zero stress intensity factors Ki(tip),
Kii(tip) and Kui(tip) remaining at the crack tip at z; = 0.
Evaluation of the J integral along the path I'ia; gives

J=G=[(1-v) (K +Kfy) + Kiu /2» (1.13)
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whereas in evaluating the contribution along I's);; we now have to include
the contribution from the crack tip singularity, thus getting

J = [(1 - v) (Klz(tip) + Klzl(tip)) + Klzll(tip)] /2u —/(; 0240806, /0z1dz)

= [(1 - v) (Klz(tip) + KIZI(tip)) + Kﬁl(tip)] /21 + @(bip) (1.14)

where it has been noted that 02,86,/8z, = 7386 /3z, = dP(6)/dz1 in view
of the constraint on the slip path. The following conditions may be brought
to bear: Since 7 is bounded at the tip,

Kii(tip) cos ¢ + Kin(tip) sin ¢ = 0. (1.15)

Also, by using the separate mode I, II and III solutions for the effect of slip
on alteration of the stress intensity factors, we have

(K1 = Kieip), K11 — Kueip), K1 — Kini(eip))

= [ a0, 0- 6@ L. 1)

When the above constraints on the §, are used, this gives

Ki(tip) = K1, and (1 —v)sin ¢(Ku ~ Ki(eip)) — cos ¢( K1 — Kr(eip)) = O-
(1.17)
We may therefore solve for Kip(tip) and Kir(tip) as

(sin ¢, — cos ¢)
cos? ¢ + (1 — v)sin® ¢

[(1 - l/) sin q.')Kn — COS8 ¢KIII],
(1.18)

and when we substitute these results into the two expressions for J above,
and equate the expressions, one finds after a little manipulation that the
slip 6;ip at the crack tip is given by

(K1eip), Kun(eip)) =

- 1—v (cos Ky +sin ¢Kip)®

2 cos?d+(1-v)sin®¢

This coincides with the results of the last section for mode II loading in
emission of an edge (¢ = 0) dislocation and for mode III loading in emission

of a screw (¢ = n/2). Since the maximum of & is vy, the nucleation
criterion is therefore '

B(6uip)- (1.19)

2p

—V

cos p K11 +sin ¢ Ky = \/1 [cosZ ¢ + (1 —v) sin? ?)Vus (1.20)
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(assuming that the left side is positive; a minus sign should precede the
right side if not). The combination

K = cos ¢ K11 +sin K1 (1.21)

which enters the criterion has an evident interpretation as the intensity
factor for the resolved shear stress along the slip direction.

Anisotropy: We may readily generalize the above discussions to take into
account anisotropic elasticity (Sun and Rice, 1992). Evaluation of the J
integral along the path I'ta, yields

J=G=AusK.Kp (1.22)

where K = (K1, K2, K3) = (Ku, K1, K1) and Agp is the appropriate ma-
trix (derived by methods of Stroh, 1958, and Barnett and Asaro, 1972)
for the anisotropic material. Aqg is real, symmetric, and positive definite,
and is a function of the elastic constants of the material; it has the dimen-
sion of compliance and generally contains off-diagonal elements. Assume
that a cohesive zone with slip 6(r) along a constrained path as above is
developed to relax the singular stress field near the tip in response to
the loading. There still exist residual singular stress components, which
are described by the stress intensity factors Ky(tip), @ = 1,2,3; K(tip) =
(K1(tip)» K2(tip)s Kas(tip))- The J integral evaluated along T,j;¢ contains two
contributions; one is from the crack tip singularity and the other is due to
the energy ®(iip),

J = AapKatip) Kp(rip) + 2(btip) (1.23)

We define 8(¢) = (cos ¢,0,sin ¢) so that &,(r) = 6(r)sa (¢). The anisotropic
derivation for the emission criterion proceeds analogously to that of the
isotropic case. Further details may be found in Sun and Rice (1992) who
use 8o (@) Ka(tip) = 0, corresponding to Eq. 1.15, and also the anisotropic
analog of Eq. 1.16, expressing each K, — Ka(iip) 3s 2 similar integral op-
erator on [A71],58s, to derive the nucleation condition

sa(¢)Ka =V 7usp(¢) (1.24)

where we have defined p(¢) = [A™]apsa(d)ss(4).

Some tendency for dilatant opening across a lattice plane (62 # 0) must,
in general; accompany shear. A particular embedded-atom model for iron,
used in molecular dynamics simulations by Cheung (1990), provides an
example for which the constrained-path approximation with 62 = 0 is not
so good, in that high tensile stress across slip planes at a crack tip noticeably
reduce the resistance to dislocation emission (Cheung et al., 1991). These
features require a more detailed formulation including numerical solution
of coupled integral equations for the distribution of the §’s. The coupling
of dilatant opening and shear has been analyzed based on such numerical
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solutions in work by Beltz and Rice (1991, 1992a) and Sun et al. (1992) to
be discussed, and confirm the conclusions of Cheung et. al (1991) for their
model of a-iron.

An approximate account of such tension-shear coupling can be made by
simply interpreting 7,s as the unstable stacking energy for relazed shear,
along a path with 8, chosen to make 3®*(6;,62,85)/862 = 0. Such may be
formally justified within an alternative “constrained path” approximation
by observing that the J integral conservation applies not only to the entire
elastic field but also to each crack tip mode individually. Thus, we can
equate the expressions for J given by the right sides of Eqs. 1.13 and 1.14,
but with the K and Kj(tip) terms deleted and understanding that now o
in Eq. 1.24 ranges over just 1 and 3. Hence, choosing as the constrained
path that with 8®* /86, = 0, but restricting 6; = § cos¢ and 63 = sin¢
as above, we re-derive Eq. 1.20 with ~,, now interpreted as the relaxed
value. The procedure does a good job of describing coupled tension-shear
results as will be discussed in Section 1.7.

1.5 Nucleation of Dissociated Dislocations,
Coincident Crack and Slip Planes

The parts of this section based on isotropic elasticity also follow Rice (1992).
Suppose that a complete lattice dislocation in a certain crystal is composed
of two partial dislocations with respective Burgers vectors b4 and bg, where
these share the same slip plane and are separated by a faulted portion
of slip plane with energy 75 (stacking fault energy) per unit area. We
continue with the simplification that the crack plane and slip plane are
coincident as in Fig. 1.5, and make the constrained-path approximation for
each partial dislocation individually. Thus partial dislocation A is created
by slip §4 from O to by along a definite direction at angle ¢4 (the first
of the different possible partial dislocation directions on the slip plane to
meet the nucleation condition, under the prevailing K/ Kjp ratio), and
then partial dislocation B can come into existence by slip 65 from 0 to
bp at angle ¢p (taken to be the most favorable of the allowed crystal
directions for continuation of slip as a second partial). For {111} planes in
fcc lattices, with partials of Burgers vectors in < 211 > directions summing
to complete < 110 > dislocations, ¢p and ¢4 differ by 60°. (Anderson
(1986) previously analyzed partial dislocation nucleation within the Rice-
Thomson framework.)

Energy functions ® for the two partials are shown in Fig. 1.6. The first
slip over b4 carries the energy ®4 from zero, through the peak at yus, and
to a residual state of energy <g¢; the next slip starts with energy ®p at
sf, goes through the same peak 75, and returns to zero after slip bp, a
complete dislocation having then been formed. Let
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FIGURE 1.6. Energy versus slip for two partial dislocation which combine to
form a complete lattice dislocation; v, is the energy per unit area of the stacking
fault.

K4 = Kicos¢s + Kirsings, Kp = Kyjcos¢p + Kirsindp. (1.25)

The analysis of the previous section shows that first partial nucleates when

2
KA = KAcrit = \/1 _#

However, the fully formed partial dislocation which emerges, of Burgers
vector by, leaves a faulted plane of energy 7 behind it and thus is not
swept indefinitely far away by the stress field but instead remains in the
vicinity of the crack tip. Let r4 be the position of the core of that partial
dislocation. It is determined by equilibrium between Peach-Koehler config-
urational forces; that due to the applied stress field K4/ v/27r must balance
the sum of the dislocation image force due to the presence of the stress-
free crack surface (Rice and Thomson, 1974) and the force 7,¢ tending to
annihilate the fault. (We can treat this defect as a classical, singular line
dislocation, without considering its spread-out core, since it will be seen
that r4 is typically very large compared to b4). Thus r, is the (largest)
root of

7 [cos? g4 + (1 — v)sin® §a]us- (1.26)

Kaba/V2rra =Yt + pb%[cos® g4 + (1 — v)sin® g4]/4n(1 — v)ra, (1.27)
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from which one finds that

F‘bA — KA[]- - \/1 - ('7sf/'7us)(KAcrit/KA)2 (1 28)
(1= v)y2nry cos2 ¢ + (1 —v)sin® ¢4 '
(the combination on the left will be needed shortly) and that
ra _ (Kacris/Ka)?[cos® ga + (1 - v) sin® ¢4)(1ba /Yus) (1.29)
- 2 . .

ba 4x(1 ) [1 = VI (et /ee) Rcrie/ K4 V)

The last expression, to be used after nucleation (K4 > K 4crit), defines a
rapidly increasing function of K4. It is least when K4 = K 4crit, and then
gives the position r4 to which the partial jumps just after nucleation. Later
we will see estimates of uba /vus ranging from 25 to 40 for fcc metals, and
Ysf X Yus/4 tO Yus/2 seems to be representative (smaller values give larger
r4). These lead, for ¢4 = 0 and v = 0.3, to ra/b = 30 to 250. This is
an overestimate, in that it neglects lattice friction against motion of the
partial dislocation.

The simplest way to address emission of the second partial is to note that
the first partial dislocation has the effects of (i) modifying the Ky1 and Kt
at the tip (say, to values Kj; and Kij;), and (ii) resetting the energy of the
unslipped state from zero to 7., Fig. 1.6, so that the peak energy to be
surmounted for the instability leading to dislocation B to occur is reduced
from 7us t0 Yus — Vst- With those factors taken into account, we can just
use the result of the last section so that, at instability,

Ky = Kjcos¢p+ Kipsings

_\/721‘
= i

(When we take into account the expressions for Kj; and Ky, given next,
the same result could be derived, alternatively, by applying the J integral,
in the style of the last section, to the entire dislocated array, partial disloca-
tion A, the assotiated stacking fault zone, and incipient partial dislocation
B.) "

The expressions for Kj; and Ky, are derivable from Eq. 1.26 as

> [cos? ¢p + (1 —v) sin® ¢B] (Yus — 7st)  (1.30)

Ki; = K11 — pba cos d)A/(l - V)\/ZWTA, Ky = K — pba sin¢4/\/21rr4.

(1.31)
Using Eq. 1.28 for the latter terms, the quantity K entering the criterion
for nucleation of the second partial is given by
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2 .
Ky =Kp—nKa+ r)\/;(i - i?y;'jgflcosz da+(1-v) sin® $a] (1.32)

where . .
__cospacosgp +(1- v)sin ¢4 sindp
cos?da+ (1— v)sin® ¢4 '
Anisotropy. The treatment of dissociated partial dislocations in
an anisotropic elastic medium proceeds analogously with the isotropic case
(Sun and Rice, 1992). The emission of the first partial occurs when the
nucleation condition is reached in anisotropic medium,

Ky =34 (¢A)Ka = Kacrit = V '7usp(¢A)- (1-34)

The emitted partial dislocation is treated as a line defect; its stable equi-
librium position is found from the condition that the force exerted on it
vanishes:

(1.33)

fa=Kaba/V2rrs — st + fr = 0. (1.35)

The image force f, on the partial dislocation itself is given by Rice (1985)
as

_ bi[A—I]aﬂsa (¢A)3ﬂ(¢A)
87nry )

fr = (1.36)

Hence,

ba Ka [1 -V1- ('7sf/'1us)(KAcrit/KA)2]
22nra p(4a4)

The stress intensity factor is now shielded by the emitted first partial dis-
location

(1.37)

K2 =Ko —balA Yapss(da)/2V2nr4. (1.38)
Combining Eq. 1.25 with Eq. 1.38 gives

Kp = a(65) K% = K — n(65,64)Ka + (65, 64)\/ K& — 1tp(4)
(1.39a)
where -

_ (A apsa(95)ss(94) _ (A" |ansa(éB)ss(8a) (1.39b)

T [A"Yapsal(pa)ss(da) p(44)

The emission of the second partial dislocation occurs when

K3 = V(tus — 1:t)p(¢8)- (1.40)

’7(¢Bs¢A)
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The resulting nucleation criterion (now considering isotropic materials
only) is a little complex to study in general, but it takes a simpler form in
a special case of considerable interest for fcc metals, in which ¢4 = 0° and
|¢5| = 60° (+ or - chosen according to the sign of Kyjj). The 0° partial will
be the first nucleated only if Kp < (v/4 — 3v/2)K,4, which is equivalent
to |KIII| < (\/4— v — 1)Ku/\/§ or, for v = 0.3, to |KIIII < 0.44Kjp, a

condition which is now assumed to hold. The first partial nucleates when

K = V2u7us/(1 = V) (1.41)

and the condition for nucleation of the second, given above, now simplifies
to

V3| K| + \/Kﬁ — 2psr /(1= v) = V2u(4 — 3v) (Yus — 11) /(1 = ¥).
(1.42)
Since this equation takes effect only after Kjj reaches the value to nucleate
the first partial, the Kj; which enters it will always be at least as large as
that of Eq. 1.26, and hence the quantity of which the square root is taken
is always positive since (since yus > 7st).

Three possibilities exist, depending on Kiyyi: (i) When Kijp is zero or
sufficiently small, Kj; must be increased to nucleate the second partial.
(ii) For |Kip| greater than a certain limit Kiir(sp) given below, the second
partial nucleates spontaneously once the first has formed; no increase in
K1 is then required. (iii) And for |Kjyi| yet larger, the analysis ultimately
becomes untenable because, instead, the |¢| = 60° partial nucleates first,
and we have to start from the beginning, interchanging A and B.

The greatest Kjj to nucleate the second partial results when Ky = 0,
in which case

Ki = vV2u[(4 — 3v)1us — 3(1 — v)yst] /(1 — v) (1.43)

When v = 0.3 and st = 7Yus/3, this is 55% higher than the Ky to
nucleate the first dislocation. The required increase in Kj; diminishes to
zero when | K| = Ki(sp), where

KIII(sp). = v2u(Vus — 7s1)/ (1 — V) (\/4 - 3v— 1) V3 (1.44)

is calculated by setting Ky equal to that to nucleate the first partial. For
the numerical values above, Kiij(sp) is 0.36 times the Kyj to nucleate the
first partial. The range of Ky for which there is spontaneous nucleation
of the 60° partial persists up to a limit given by the same expression as for
Kii(sp) but with (yus — vst) increased to vy,s; beyond that limit, it is the
60° partial which nucleates first.

Nucleation by the partial mechanism discussed here is considered again
in the next section, where slip planes at angle 6 # 0 are considered.
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I1

II1

3

FIGURE 1.7. Slip plane inclined at angle 8 with the prolongation of the crack
plane; slip direction inclined at angle ¢ with the normal to the crack tip.

1.6 Approximate Nucleation Condition, Slip
Plane Not Coincident with Crack Plane

In general the most highly stressed slip plane will make a non-zero angle
relative to the crack plane, like in Fig. 1.7, and the Burgers vector direction
along that plane will make an angle ¢ with a line drawn perpendicular to
the crack tip, similar to Fig. 1.5.

Effective stress intensity factor concept. Rice (1992) proposed the follow-
ing approximate treatment of nucleation when 9 # 0. Suppose that the
solid is loaded so as to induce a general set of intensity factors Ki, Ki1 and
Ky at the crack tip. The in-plane and anti-plane shear stress components
acting along the slip plane, according to the linear elastic solution, are

cor = [K1f1(8) + Kuful8)] /V2rr, oes = K fu(6)/v2rr.  (L.45)

where, for the isotropic case,

i) = cos?(6/2) sin(6/2), fu(f) = cos(6/2)[1 - 3sin(6/2)],
fin(f) = cos(8/2). (1.46)

The form of these results motivate the notion of effective mode II and
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mode III intensity factors along the slip plane at angle 6. These are defined
as

K&F = Kif1(0) + Kufu(8), Kiff = K fui(6). (1.47)

The same idea can be applied to anisotropic elasticity; the set of effective
stress intensity factors KT are defined by writing

ooa(r) = KF /v/2rr (1.48)

with @ = r, 0, z from the general loading K = (Ki,K2,Ks)
= (K, K1, K111) on the main crack,

K& = Fop(6)Ks (1.49)

where F,5(0) appear in the near tip expression for 0po under mode £ load-
ing. Equations in the form of Eq. 1.45 and 1.47 are sufficient for orthotropic
elasticity with principal axes along the z;, z2, z3 system, in the following
approximations, with Egs. 1.46 then replaced by results appropriate to
orthotropic elasticity, since in-plane deformation is then decoupled from
anti-plane deformation. :

As a simple ‘approximation, we may now assume that the nucleation
conditions derived for 8 = 0 in all the earlier sections of the paper apply
as well to an inclined slip plane, § # 0, when we replace Ky and Ky in
expressions earlier in the paper with the effective intensity factors K§¥ and
K:E above. Thus the basic nucleation condition of Eq. 1.20 for a complete
dislocation in an isotropic material becomes, approximately when 8 # 0,

[f1(6) K1 + fu1(6) K] cos ¢ + finn(6) Kurx sin ¢

= \/12“ [cos2 ¢+ (1—v) sin? ¢] Yus (1.50)

i 4

and corresponding results are given shortly for nucleation of a dissociated
dislocation.
We treat anisotropic elasticity in a parallel fashion to the isotropic case.

The proper A,p matrix, denoted by A‘(f) for the crack extension force G,
for a crack ex_ténding along the radial direction (G, = Aff; KEK eff where
now a, B range over r, f, 2.) is
Ag’ﬂ) = RoyA5Rps (1.51)
where R is the rotation matrix
cosf sinf O

R=1| —sinf cosf O (1.52)
0 0 1
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The dislocation nucleation criterion is written the same way for K7 as for
the coplanar case, so that

Sa (¢)Faﬁ (9) Kﬁ =V 'Yusp(¢) 0) (1°53)

with

p(6,6) = A9 sa(#)sa(4) (1.54)

and where now 8(¢) has components (cos ¢, 0, sin ¢) in the (r, 8, z) direc-
tions.

Ezact analysis for § # 0. By contrast, the exact (but neglecting tension-
shear coupling) route to determining a nucleation condition would involve
enforcing equilibrium along the inclined slip plane, as achieved for nucle-
ation in the edge mode in the isotropic case by satisfying the following
integral equation:

_ K1 f1(9) + Kt fu(6)
2nr

7(r) - 27r(1#— ” /;°° d5d(pp) g11(r, p; 6)dp  (1.55)

where g11(r, p;8) reduces to \/p/r/(r — p) when 6 = 0, and where 7 =
f(6(r)), e.g., 7 = (1/27) sin(2wA/b) where & = A — (h/2b) sin(27A /b) for
the Frenkel model. Solutions of Eq. 1.55 have been found in connection
with the dislocation emission problem (Beltz, 1991); it has been found that
there is a critical value of Kﬁﬁ' beyond which no solutions exist, and that
value is taken as the nucleation value. The critical KffT thus found has

some 6 dependence, in contrast to the prediction of Eq. 1.50; see below.

For pure mode I loading of an isotropic solid, in which case G = (1 —
v)K? /2, the above approximate criterion given by Eq. 1.50 reduces to

1+ (1-v)tan®¢
=38 . 5, Jus
(1 4+ cosf) sin“ 6

for dislocation nucleation. Figure 1.8 gives a comparison of the approx-
imate result in Eq. 1.56 with the numerical results from the solution of
Eq. 1.55 based on the Frenkel form. There is reasonable agreement and the
results become identical in the limit of small §. However, G as estimated
by Eq. 1.56, based on the K*f concept, must be reduced by 11% when
§ = 45°, to agree with the exact result based on Eq. 1.55, by 16% when

= 55°, and by 26% when 6 = 90°.

Dislocation nucleation versus cleavage. The G for dislocation emission (as
given by its approximation in Eq. 1.56, in order to expedite the algebraic
manipulations to follow) may be compared to

(1.56)

G =21, (1.57)
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FIGURE 1.8. The critical G for dislocation nucleation versus slip plane inclination
angle. The solid line is based on an exact solution (but neglects shear-tension

coupling); the dashed line is calculated based on the K°f concept.

(7, = surface energy) for Griffith cleavage. Hence crack tip blunting by
dislocation nucleation should occur before conditions for Griffith cleavage
decohesion are met if the latter G exceeds the former, which happens for

the isotropic solid when
v +(1-v)tan®¢ (1.58)

’ > :
VYus (1 + cos6) sin®

Cleavage occurs before the tip can blunt when the inequality is reversed.
(Given the discussion in connection with Fig. 1.8, the number on the right
side of Eq. 1.58 should be reduced by an amount ranging from approxi-

mately 10% when 8 = 45° to 25% when § = 90°, if we are to have a more
accurate estimate. We use the simpler formulae based on Egs. 1.50, 1.53,

and 1.56 here and in Section 1.10, except where noted otherwise).
The critical 4, /qus Tatio is, however, usually quite sensitive to deviations

from pure mode I loading. For example, if z and z denote fractional shear
loadings, defined by writing Ky = zKj and Kyy = zKj, then the inequality

to be met for emission before cleavage is (Rice, 1992)
Vs 41+ 2% + 22/(1 —v)|[1+ (1 — v) tan® ¢] (1.59)
Yus (14 cos6)[sin6 + (3cosf — 1)z + 2ztan §|? |

For a pure mode I loaded crack tip in an anisotropic elastic medium, the
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condition of dislocation emission before crack extension 1s,

-1
T A2234($)AS) 3s(9)
Tus 2[30 (¢)Fa2(0)]2
Equation 1.60 specializes for orthotropic elasticity, with principal axes
aligned with the z;, zo and z3 coordinate system, as

(1.60)

s [A2cos?8/A; +sin @ + Ag tan® ¢/As]
> f, where f=
- >F p 211(6)2

and this generalizes for tensile loading with some fractional shear loadings
as

(1.61)

_ (2®A1/Az2 + 1+ 22A3/A5)[A2 cos® §/Ay + sin® 8 + Az tan® §/As]
B 2(zfu(6) + f1(8) + 2 fur (0)]?

B

(1.62)
Here A; (z = 1, 2, 3) are the diagonal components of the A,s matrix
discussed in connection with Eq. 1.22 and f;(4), fiz(6) and fi1(f) are the
appropriate functions defined in Eq. 1.45 for a singular crack tip field but
here based upon orthotropic elasticity instead of isotropic elasticity (Sun
and Rice, 1992).

Consider a case of interest for bcc solids: a crack on a {100} plane with tip
along a < 100 > type direction, so as to intersect a {110} slip plane on which
< 111 > slip can occur. In that case, § = 45° and ¢ = arctan(1/v/2) =
35.3°. Thus, for pure mode I loading and using isotropic expressions with
v = 0.3, Eq. 1.58 predicts v, /qus > 6.3 for dislocation nucleation to occur
before Griffith cleavage, but according to Eq. 1.59 the required ratio reduces
nearly by a half, to v, /yus = 3.5, when Ky and Kyyg are just 10% of K (i.e.,
z = z = 0.1). Implications for specific solids are discussed in Section 1.10,
after reviewing some estimates of ~,s in Section 1.9.

Partial dislocation pair. For the nucleation of dissociated dislocations
with § # 0, we consider a geometry of interest for fcc solids, with a crack
on a {100} plane and tip along a < 110 > direction, and assume that the
most stressed {111} slip plane is that at § = 54.73°, and that the loading
is such that the first partial to nucleate involves slip along the < 211 >
direction at ¢4 = 0° with the second at ¢p = 60°. Then K4 and Kp of
the earlier discussion of dissociated dislocations can be replaced by K&f
and K&, defined like K4 and Kp in Eqgs. 1.39a, 1.39b but in terms of Kf
and Kflff. For the special § and ¢’s considered, these quantities are

K< = 0.363(K; + 0.897K;), K5 = 0.769Kyy; + 0.5K". (1.63)
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‘Nucleation of 2nd partial dislocation, at $g = 60 degrees

5
! k= Ky / it/ (1112,
4] L = LILIII
3 ] (for © = 54.74 degr.,
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FIGURE 1.9. Combinations of K1, K11 and K for nucleation of the second of
two partial dislocations in a fcc crystal with crack on {100} plane, with tip along
< 110 > direction so that the relevant {111} slip plane is at § = 54.74°; the first
partial is assumed to nucleate with ¢ = 0° and the second with ¢ = 60°.

It is assumed that Ky > 0 and Kjypp > 0. If not, the same phenomena will
occur relative to § = —54.73° if Ky < 0 and to ¢ = —60° if K1 <0, so
Ki; and Kipp here can be interpreted as |K11| and | K1l

Reading from the earlier results, interpreted approximately in terms of
the effective shear stress intensity factors, the 0° partial will indeed be the
first to nucleate when Ki < 0.179(Kp + 0.897Kir), and the nucleation
condition (from Eq. 1.26) for that first partial is

K; +0.897Ky; = 2.75v/2p74s/ (1 — v). (1.64)

This is shown as the dashed line in Fig. 1.9, which is analogous to the mixed
mode nucleation diagrams of Lin and Thomson (1986). The nucleation
condition for the second partial, at ¢ 5 = 60°, is then, from Eqs. 1.30, 1.32,
1.33, 1.63,

=y 2
0.769 K11 + 0.5\/[(?.363“{1 - 0.8971(11)]2 - _'i"'st

1—-v

\/?;—'_(; EVJ)‘L ('Yus - '7sf)- (1'65)

For pure mode I loading, this 1s

Ki = 2.75v/2u(4 — 3v)vus — 3(1 — v)st)/(1 — v), (1.66)
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or K; = 4,26\/5;;1“5/(1 — v) when v = 0.3 and 7.t = Yus/3. The combined
loading result is plotted in Fig. 1.9, based on v = 0.3 and 7,1 = 7us/3, for

various values of Kiiz. The nucleation condition is extremely sensitive to
Kyi: While the numerical factor 2.75 in Eq. 1.64 above increases to 4.26
for nucleation of the second partial when Kjj = 0, that factor is reduced
back to 2.75 (so that there is spontaneous nucleation of the second partial)
when Kijjg is increased so that an analogously defined numerical factor for
K11 reaches only 0.404.

Emission of partial dislocations before cleavage. From Eqs. 1.64 and 1.57,
the first partial will nucleate before the Griffith cleavage condition is met,
under pure mode I loading of the fcc configuration considered, if 7, [Yus >
3.8. Since ¢4 = 0, this result is insensitive to mode III loading, at least as
long as |K| < 0.179K7 so that the ¢ = 0° partial is actually the first to
nucleate. If there is also a 10% mode II loading (z = 0.1), the inequality
changes somewhat, to v, /vus > 3.2.

Under pure mode I loading, the second partial, and hence the complete
fcc dislocation, nucleates before Griffith cleavage if, from Eqgs. 1.66 and
1.57,

Vs /Vus > 3.8[4 —3v —3(1— V)Yst [ Yus), (1.67)

which is 7, /7us > 9.1 when v = 0.3 and vy = Vs /3. However, as antici-
pated from the discussion above, this result is extremely sensitive to small
shear mode contributions, especially in mode III. Thus for loading with K1
and Kiyyp both 10% of Ki, and with v = 0.3 and 7 = us/3, the inequality
becomes 7, /Yus > 4.2, so that there is a reduction to less than a half of the
Yo/ 7us value required for nucleation prior to cleavage under pure mode I
loading.

Because of the strong sensitivity to shear loadings illustrated here, and
in the earlier bcc discussion, it should rather commonly be the case that
dislocations emerge from (nominally) tensile loaded cracks in solids which
violate the 4, /vus requirement for ductility under pure tensile loading by
as much as, say, a factor of 2.

Anisotropy: We consider emission of paired partial dislocations in fecc
metals within the anisotropic elasticity framework, adopting the same crack
geometry and slip plane as in the isotropic case. That is, the crack is on the
(001) plane growing along the {110] direction; the slip plane which contains
the [110] crack front and which is the easiest plane on which slip can occur
under tensile loading, is the (111) plane. The slip plane makes an angle of
§ = 54.7° with the crack plane.

We consider the paired partials, (1/6) [112] as the first Shockley partial
and (1/6) [211] as the second partial. The condition for the first partial
emission under pure mode K loading is expressed by Eq. 1.61, and the
resulting parameter f is listed in Table 1.1 for fcc metals. The first partial
slip is along the r direction, ¢4 = 0°.
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The anisotropic case can be discussed similarly to the isotropic for emis-
sion of the second partial, based on the Kf concept and the appropriate
A( ) matrix for that inclined slip plane and Eq. 1.34 to 1.40 of the last sec-
tlon for partial dislocation when 6 = 0°. For the same geometry as in the
isotropic case, ¢4 = 0°, and ¢ép = 60°, n(d4,$s) = 1/2 from Eq. 1.39b.
The nucleation condition for the second partial, after Eq. 1.40, is thus

(vV3/2) KT + (1/2)\/K,‘3ﬁ2 — %tp(#4,0) = V(s — ¥st)P($5,6) (1.68)

For pure tensile loading, the loading required for nucleation of the second
partial is thus

\/4 '7us '73f P(¢Bs ) + '7sfp(¢A; 0)/f1 (0) (1'69)

The condition of second partial emission before Griffith cleavage condition
is met is again expressed in the inequality form

: 1.70
Yus o ﬁ ( )

where now

A22[4(1 - '7sf/'7us)p(¢3: 0) + '75fp(¢A) 0)/'7us]
2[£1(8)]2

The equation above further simplifies, when taking vsf/vus = 1/3 as in

estimates for the isotropic case, to

A22[8p(¢3 ) 0) =+ p(¢A: 0)]
6[f1(6)]2

The values for various fcc metals are listed in Table 1.1 with 4 taken as

Yus/3.7.

= (1.71)

B = (1.72)

1.7 Effects of Tension Across the Slip Plane;
Shear-Tension Coupling

The procedures for determining G discussed thus far have not explicitly
considered effects of tensile stress across the slip plane. Cheung et al. (1990},
and earlier Argon (1987), have argued that shear softening by high tensile
stress is a critical element in dislocation nucleation. We can model such
effects by broadening the framework to include coupled shear and tension
(Beltz and Rice, 1991, 1992a). In the calculations to be discussed, the tensile
stress across the slip plane, in the absence of slip, is assumed to follow
the well-known fit, with energy proportional to —(L + Ag) exp(—Aq/L),
to the universal bonding correlation of Rose et. al. (1983). Here Ay is the
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opening and A, the shear displacement between neighboring atomic planes.
The parameter L has been suggested as scaling with the Thomas-Fermi
screening length; here it can be loosely interpreted as the characteristic
length associated with the decohesion process (o reaches its maximum, at
A, =0, when Ag = L). An analytical form for the shear and normal stress
on a slip plane as functions of the relative atomic shear A, and opening Ay,
which combines the Frenkel relation and the universal bonding correlation,
has been proposed by Beltz and Rice (1991, 1992a) and is given by the
following equations:

7 = A(Ag)sin (21rbA,> (1.73a)
o =[B(A,)As — C(A,)] e~ 20/ (1.73b)

where

A(Ag) _ TYus _ 27y, {q (1 _ e—Ag/L) _ (q—p> ﬁe—Ag/L} (1.74&)

b b 1-p/ L
B(A,) = 21;72 {1 - (‘{:Z) sin® (”f)} (1.74b)
c(a,) = 3%—’5%—__7")sin2 (“—f‘—) (1.74c)
and
q= 72%)- p= % (1.75)

and where A} is the value of Ay after shearing to the state A, = b/2 under
conditions of zero tension, o = 0 (i.e., relaxed shearing). The form of these
equations is consistent with the existence of a potential ¥ = ¥(A,, Ay},

with ¢ = ¥ /3As and 7 = ¥/ A,, and V¥ is the same as the potential

(u

introduced by Needleman (1990) when p = q. Here qus) denotes the unsta-
ble stacking energy for unrelazed shear (Ag = 0). It has been determined

that coupling effects may be approximated by using a modified form of

Yus, denoted '75::*) and defined as frdA, along the path from A, = 0 to

A, = b/2 with Ap fized at the value Aj. In terms of the above quantities
( )

'7::;') may be written as

(us) _ (u) 2 _ -p 1-—
Tus Tus” (P gle P+ Q( P) (1.76)

N (1 - p)

The parameter p, referred to here as the “dilation parameter,” as well as ¢
and L/b have been estimated so as to be consistent with results of various
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TABLE 1.1. Partial Dislocation Nucleation; Anisotropic Formulation
fcc metals [(001) cracks growing along [110] with slip on (111) plane,
(1/6) [112] as the first partial and (1/6) [211] as the second partial].
The f value, for the inequality 4,/7us > B in order that the first
partial and second partial be emitted before the Griffith cleavage
condition is reached under pure tensile loading, is listed.

These B values are based on the K.g concept.

Solid P for first partial B for second partial
emission emission®
isotropic, v = 0.3 3.8 9.1
Ag 5.33 11.1
Al 4.05 9.23
Au 5.04 11.0
Cu 5.55 11.8
Ir 4.44 10.85
Ni 5.29 12.0
Pb 5.52 10.8
Pt 4.35 9.33

TABLE 1.2. Comparison of the Critical G for Emission on Inclined Slip Planes

System G/ G/18" G/ % Red.,
(based on Kgff (slip only; (fullo—r7 (K
no coupling)  coupling) to full
oc—T
coupling)
EAM-Fe (bcc)
(p = 0.214,¢ = 0.158, L/b = 0.204)
6 = 45° 9.37 8.34 7.80 17%
8 =90° 8.00 5.92 6.33 21%
EAM-AI (fcc)
(p = 0.140,¢ = 0.0855, L/b = 0.279)
6 =54.7° - - 7.61 6.43 6.33 17%
6 =90° ’ 8.00 5.92 6.21 22%
EAM-Ni (fcc)
(p = 0.132,9 = 0.0879, L/b = 0.271)
0 = 54.7° 7.61 6.43 6.27 18%

8 =90° 8.00 5.92 6.15 23%
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embedded atom models by Sun et al. (1992). Representative values are
shown in Table 1.2. For general in-plane loadings, the equilibrium discussed
in connection with Eq. 1.55 for an incipient dislocation of edge type is now
described by a pair of coupled integral equations:

K1 f1(6) + K1 fu(9)

2nr

" 6. (o)
_ — -0
27l’(1—l/) /; gll(r)p! ) dp dP

- 5771’%7) /:o 912(r; £3 9) dael()p) (1.77a)

T(Ar) AO) =

(Ar)A(I) KIfI (0) + anﬁ(ﬁ)

2mr

- i, e
_ 27(1_#—7) /0 922(’p,0)d69£P) dp (1.77b)

where the functions f?(6) relate the applied stress intensity factors to the
normal stress ¢ = ogg across a slip plane in the linear elastic solution,
and where 6, = A, — hT/#, bo = Do — L20/2'1,. We show results for
three choices of the parameters p, g, and L/b. Each set has been chosen to
approximately fit the potential ¥(A,, Ap) associated with Egs. 1.68, 1.69
to the corresponding potential found numerically by atomic calculations
(Sun, 1991), using the Embedded Atom Method, for the block-like relative
motion of one half of a crystal relative to the other by shear and opening
across a lattice slip plane. This has been done for {110} < 111 > slip in
an EAM model of a-Fe and also for {111} < 211 > slip, corresponding to
emission of the first Shockley partial, in EAM models of Al and Ni; some
further details relating to the atomic calculations are given in the next
section.

Figures 1.10(a), 1.10(b), and 1.10(c) show results for pure edge dislo-
cation nucleation for the three different materials when the slip plane is
taken to be coplanar with the crack plane (i.e., 6§ = 0). The critical G for
emission or cleavage, whichever occurs first along the slip plane, is plotted
as a solid line as a function of the loading phase angle ¥, defined such
that tan ¥ = K1/ K7 (e.g., pure shear corresponds to ¥ = 90° and pure
tension corresponds to ¥ = 0°). The Griffith condition G = 2+, is repro-
duced at small ¥. Figure 1.10(a) is for the slip system {110} < 111 > in
iron, and Figs. 1.10(b) and 1.10(c) are for the slip system {111} < 211 >
in aluminum and nickel, respectively (i.e., the emission of the first Shock-
ley partial). The dashed line in each figure gives results when no tension
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FIGURE 1.10. (a) The critical G for emission of a full dislocation in (EAM) a-Fe
versus the loading phase angle (tan ¥ = K11/ K1) when the slip plane is coplanar
with the crack plane (§ = 0). The solid line is based on an exact numerical solution
of Eqs. 1.77 which takes into account coupling between tension and shear. The
dashed line is based on a calculation which only considers slip, for which the
exact result is then given by Eq. 1.8, and uses 7ys = '7u,, . The dash/dotted line
is based on the same calculation but with 7,, = 754", (b) and (c) are the same
except they are for a partial dislocation in EAM-A] and EAM-NI, respectively.
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effects are included and we consider slip only. It corresponds to setting
Ag = 8 = 0 and ignoring the second integral equation, in which case the
solution for the nucleation condition is exactly (since § = 0) that given by
Eq. 1.8 with -, identified as ~4¥) the unrelaxed value. The alternating
dash/dot line in each figure corresponds to Eq. 1.8 with v, identified as
the modified value, "1.&:'), which will be seen to provide an approximate
way of dealing with coupled shear and tension effects.

For all three cases, the approximation based on simply using 1.(,:*) is seen
to be quite good when # = 0. It is less accurate when used, in conjunction
with the KT concept of Section 1.6, to deal with typical cases of interest
when 4 # 0, although the largest source of error is with the K7 concept,
as already discussed in connection with Fig. 1.8. Table 1.2 gives compar-
isons of the G values for a few special cases in the same materials involving
inclined slip planes. The first column gives G based on the K*f concept,
and the second column gives G as predicted by the numerical solution of
Eq. 1.55, i.e., only slip is taken into account. For both of these methods,
~us 15 identified with 1&;"). The third column gives G as calculated from
the numerical solution of Egs. 1.77a and 1.77b, in an analysis which thus
fully considers tension-shear coupling; the results are normalized to 152‘) as
given by Eq. 1.76. The reduction of G, from its value given by the K con-
cept, that occurs when coupling effects are taken into account is expressed
as a percentage in this table; these effects appear to be appreciable: reduc-
tions of the critical G for emission are in the range of 17-18% for 6§ = 45°
or 54.7° and 21-23% for § = 90°.

Inspection of the final two columns of Table 1.2 shows, however, that the
approximation based on ~4%*) is also quite good for inclined slip planes,
assuming that the approrimation uses the G based on the calculation which
constders slip only. The error in this approximation shows no clear trend;
and ranges from +1.6% to £6.9%. This justifies the earlier statement that
the major source of error in this approximation for inclined slip planes is
due to the K% concept. These considerations are important when address-
ing the ductile versus brittle behavior of crystals, as will be taken up in

Section 1.10.

1.8 Width of the Incipient Dislocation Zone at
Instability

The width of the incipient dislocation zone at the moment of instability is
also of interest. It will be seen that the width at a crack tip is, at the mo-
ment of instability, a moderately broad feature compared to a lattice spac-
ing, thus making more appropriate the use of the Peierls concept. Indeed,
Peierls (1940) laments towards the end of his paper that the dislocation
core size which he calculated, for an isolated dislocation in an otherwise
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FIGURE 1.11. Displacement profiles at various levels of applied energy release
rate up to instability for a pure mode II shear crack in an isotropic material,
assuming v = 0.3 and h = b. The dashed line is an unstable “saddle” configuration
corresponding to a load of 0.9G ;.-

perfect lattice, was sufficiently narrow compared to b that the concept of 2
continuously distributed core displacement, amenable to analysis by con-
tinuum elasticity, becomes problematical. The results for nucleation at a
crack tip appear to be more favorable.

The core width at instability can be estimated from a full numerical
solution of Eq. 1.55. Such solutions have been carried out by Beltz and Rice
(1991) based on a 7 = f(§) relation obtained from the Frenkel sinusoid for
the case when # = 0 and various ratios of applied Ky and Kjp; here we
consider the case when Kj = 0, i.e., pure shear. Solutions are shown for
h="5b and v = 0.3 in Fig. 1.11 at various load levels up to instability. The
characteristic width over which §(r) is appreciable is roughly {2 — 3)b.

To quantitatively compare core widths, we may make a comparison with
Peierls’ width, also based on the Frenkel form, of A/2(1 — v} (Hirth and
Lothe, 1982) for an isolated dislocation. This width is the distance over
which 7 diminishes from its peak value to its unstable zero value at § =
A = bf2, ie., b/4d < A < b/2, corresponding to (r — 2}b/dr < § < b/2.
The half width for an isolated dislocation (assuming b = h, to be consistent
with the conditions under which the integral equation is solved) is about
0.71b; applying the same definition to the incipient dislocation (loaded at
instability) gives a half-width of approximately 2.05b, an increase by a
factor of 2.9.
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Nabarro (1947) solved the problem corresponding to that of Peierls for
the case of two coplanar dislocations of opposite sign, attracting one an-
other and subjected to a stress just sufficing to hold them in unstable
equilibrium, in an otherwise perfect lattice. This is a nice analog of the
problem of dislocation nucleation from a crack tip, particularly when we
recall the Rice and Thomson (1974) result that the self force on a line
dislocation at distance r from a crack tip is the attractive force caused by
an oppositely signed dislocation lying at distance 2r away in an uncracked,
otherwise perfect solid. Like what we infer here, Nabarro’s (1947) results
show that the core widens considerably from the Peierls size as the two
dislocations are brought close to one another.

1.9 Estimates of the Unstable Stacking Energy,vus

Frenkel estimates: The simplest estimate of «,; is based on the Frenkel
sinusoid. This is rewritten here, for shear relative to atomic planes spaced
by h, as

T = (islipber /27h) sin(27 A [beg) (1.78)

to emphasize that the modulus, p.jip, should be that for shear relative to
the slip system, and given as pgip = (c11 — 12+ cs4)/3 for the fcc and bee
crystal slip systems considered here. Also the Burgers vector is replaced by
an effective value, b.g, to emphasize that in some cases the A{= b.g/2) at
maximum energy 7yus, 1.e., at the unstable zero of r, may not coincide with

6/2. Thus

Tus(Frenkel) = Fslipbgﬁ'/zﬁzh (1.79)

and there is no distinction to be made in this simple model between re-
laxed (0 = 0} and unrelaxed Ay = 0) values. The result is shown in the
dimensionless form ~,s(Frenkel1)/Hslipb as the first numerical column of Ta-
ble 1.3 for partial dislocation on {111} planes in fcc solids and for complete
dislocation on two common slip planes, {110} and {211}, in bcc solids. For
the fce and first bee case beg = b (where, consistently with earlier use,
in the fec case b corresponds to that of a Shockley partial). However, the
Frenkel model is expected to give a poor representation of the r = F(A)
relation for shear on the {211} plane in bec (Vitek et al., 1972), especially
for shear in the twinning direction on that plane, in which direction it is
possible that slip energy ® (or ¥) has a local maximum corresponding to
the twinned structure, as it climbs towards «,5. The geometry of shear in
the anti-twinning direction (Paxton et al., 1991) seems somewhat simpler
and the Frenkel model might apply approximately with the A at ., re-
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duced from 5/2 to a value perhaps as low as 5/3. Thus, for that case, beg
is given a range 26/3 to b in Table 1.3, resulting in the ~ys(Frenkel) Tange
shown.

To go beyond these simple estimates we require models of atomic po-
tentials in solids. In principle, the energy 7., could be determined by a
quantum mechanical computations, based on (electron) density functional
theory in the local density approximation, of the ground state energy of the
configuration for which one half of a lattice is rigidly shifted relative to the
other along a slip plane, so as to coincide with the unstable stacking (like
in configuration (d} in Fig. 1.2). The analysis of such atomic geometries
seems consistent with the present level of development of density functional
computations.

For the present it is necessary to be content with empirical atomic mod-
els. A recently developed class of these, going beyond pair potentials and
thus avoiding Cauchy symmetry of crystal moduli, have been formulated
within the Embedded Atom Method (Daw and Baskes, 1984) and have found
extensive applications to solid state phenomena, including interfacial struc-
ture and deformation and fracture. A few results for «,; based on such
models are now summarized.

Embedded Atom Models: Such embedded atom models as have been in-
troduced seem to lead to lower estimates of 7, than does the Frenkel
model. The results will be different for direct shear with no relaxation in
the direction normal to the slip plane {the most commonly available case},
and for relaxed shear for which the lattice spacing h is allowed to dilate
during shear so as to keep zero normal stress. As we have seen, the latter
case is the most relevant one for use in the simplified nucleation criterion
(e.g., Fig. 1.10 and Table 1.2, comparing 2nd and 3rd columns).

Cheung (1990) (see also Cheung et al., 1991) employed an embedded
atom model for bce Fe and, from plots of his potential for {110} < 111 >
shear, we may infer that vy eam) = 0.44 (relaxed) to 0.52 (unrelaxed)
J/m?2. The dimensionless Yus(EAM)/ Bslipb 1s entered for Fe in the second
numerical column of Table 1.3 where, here and next, uq);, is the slip system
shear modulus that is consistent with the embedded atom potentials used.

Sun et al. (1991, 1992) have done similar calculations based on embedded
atom models for {111} < 211 > shears forming partial dislocation in fec
metals. These are for the respective cases of Al modeled by the potentials of
Hoagland et al. (1990} and Foiles and Daw (1987}, and Ni by the potentials
of Foiles et al. (1986). These unrelaxed results are vy gam) = 0.092J/m?
for Al and 0.260J/m? for Ni; both numbers correspond to nearly the same
Yus(EAM) [pstiph, of 0.026 as entered in Table 1.3. Relaxed vy (pam) values
are also shown and are 87% and 86% that of the unrelaxed ~yu,(gam) for Ni
and Al, respectively. This is close to the 85% of unrelaxed ~..(gam) found
for the EAM a-Fe model.

The modified values of Yys(gam)/Hslipb cited for Fe, Ni and Al are all of
the order of 53% to 55% of the corresponding ~us(Frenkel)/ ts1ipb. Thus, for
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FIGURE 1.12. (a) The slip plane potential energy ¥ as function of slip displace-
ment A, along (1/2)[111] on the (011) plane in EAM-Fe. (b) The slip plane po-
tential energy W as function of slip displacement A, along {1/2){111] and opening
displacement Ap along [0I1] on the (011) plane in EAM-Fe.

later purposes (Table 1.4) in dealing with {111} plane partial dislocations
in a large class of fcc solids and with {110} plane dislocations in a large
class of bee solids, for most of which embedded atom model results for 4,4
are not available, the rough estimate y,(EaM) = 0.547Vys(Frenkel) 18 used
in all cases. This improves upon the estimate v,s(aM) = 0.7Yus(Frenkel)
made in a table similar to Table 1.4 by Rice {1992}.

We now present results for the energy ¥ as function of block-like trans-
lational displacements {A,, Az, Ap}, calculated based on the embedded
atom method potential for a-Fe (Harrison, et al. 1990; Cheung, 1990} and
Ni {Foiles and Daw, 1987). The relative positions of atoms in the two blocks
are held fixed for each slip configuration. As before, A, is edge-like slip, Ay
is opening, and A; is screw-like slip. The energy surface for A, displace-
ment along (1/2) [111] in the {011) plane in a-Fe [¥ vs. A,} is shown in
Fig. 1.12({a) {also see Cheung, 1990) for A, = 0. The ¥ vs. A, curve for re-
laxed conditions, along a path satisfying 3% /3As = 0, is also shown, and it
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FIGURE 1.13. The potential energy ¥ as function of slip displacement A, along
(1/2)[111] and A, along (1/2)[211] on the (011) plane in EAM-Fe. {a) shows
curves for A, from 0.0 to 0.3; (b) shows curves for A, from 0.3 to 0.5.

has a maximum at v,, = 0.44J/m? as noted above. The maximum slope is
Tmax = 6.41 GPa. The energy ¥ vas. slip displacement A, along (1/2) [111]
at various opening displacements Ay along [011], is shown in Fig. 1.12(b).
The maximum stress along the pure opening direction is o.x = 25.3 GPa.
The ratio oax/Tmax = 3.95 for Fe.

The energy ¥ va. slip displacement A, along (1/2) {211}, which is perpen-
dicular to A, for the Fe model is shown in Fig. 1.13(a) and 1.13(b), with
opening Ag kept at zero. The saddle-like path first deviates from the A,
direction (i.e., along b = (1/2) [111]) toward (1/2) [211] and then gradually
returns to be parallel to the A, direction. Along the direction perpendic-
ular to the saddle like path direction, the energy W increases much more
rapidly than along the saddle-like path direction, as seen in Figs. 1.13{a)
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FIGURE 1.14. (a) The potential energy ¥ as function of slip displacement A,
along (1/6)[211] on the (111) plane in EAM-NI. (b} The potential energy ¥ as
function of slip displacement A, along (1/6}[211] and opening displacement Ay
along [111] on the (111) plane in EAM-NI.

and 1.13(b). This sort of geometry of the energy surface is, of course, the
basis of the constrained path approximation discussed earlier.

The energy surface for block-like A, displacement along (1/6) [211] (i.e.
the partial route) in the {111) plane for the EAM model of Ni [¥ vs. A,]
is shown in Fig. 1.14(a}, for the unrelaxed condition when Ag = 0 and the
relaxed condition. The relaxed 7y, is 0.226J/m?. The maximum slope is
Tmax = 5.54 GPa. The energy ¥ vs. slip displacement A, along (1/6) [211],
at various opening displacements Ay along [111}, is shown in Fig. 1.14(b).
The maximum slope along the pure opening direction is oax = 28.2 GPa.
The ratio Omax/Tmax = 5.09 for Ni. .

The energy ¥ vs. slip displacement A, along (1/2) [011], at various A,,



40 1. Peierls Framework for Dislocation Nucleation from a Crack Tip

TABLE 1.3. Estimates of Juas/ fteliph

Frenkel Embedded-Atom Density Functional,
Solid Sinuseid Models, Block- Homogeneous Simple
(b3 /2m%bh) Like Shear Shear Strain

(Wrn nxh/}‘-slipb)
(1) fcc, partial dislocations, < 211 > {111}, b = ao/V6,h =a0/V3,beg =b:

Al 0.036 0.026(u}, 0.022(r),0.019(u+) 0.042(r), 0.043(u)
Cu 0.036 — 0.042(u)
Ir 0.036 — 0.034(r}, 0.043(u)
Ni 0.036 0.026(u), 0.023(r),0.020(u») —
(2) bee, < 111 > {110}, b = V3a0/2,h = a0/ V2,beg = b :
Fe 0.062 0.045(u),0.038(r),0.032(u+) —
(3) bee, < 111 > {211}, b = /3a0/2,h = ao/V/6,b.a = 2b/3 to b :
Cr  0.048-0.108 — 0.069(u)
Mo  0.048-0.108 — 0.056{u)
Nb  0.048-0.108 — 0.093(u)
V  0.048-0.108 - 0.100{u)
W 0.048-0.108 — 0.060(u)
3.5_--'1'-'|'1'1-"|'—f11"*_
- A along (16) [-211]= 0.5
<28 | ;
s ! Ni (111) 5
=21 F 3
E [ 0.2 1]
";;‘;d 1.4 - 0.1 -
o ! 0.0 ]
g 0.7 ]
0 | 1

06 -04 -02 0 0.2 04 06
displacement A, along (1/2) [0-1 1]

FIGURE 1.15. The potential energy ¥ as function of slip displacement A, along
(1/6){211] and A, along (1/2)[011] on the (111) plane in EAM-Ni.
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TABLE 1.4. Material Properties and 7./v.. Ratios

Solid 'Ta(T = 0) beslip b Tus({Frenkel) 1“(;:nhl} ‘Iu-(':..ku)
(J/m*)  (GPa) (am)  (J/m?)

fcc

metals:
Ag 1.34 25.6  0.166 0.15 8.8 16.1
Al 1.20 25.1  0.165 0.15 8.1 14.6
Au 1.56 23.7  0.166 0.14 11.0 20.1
Cu 1.79 40.8  0.147 0.22 8.3 15.1
Ir 2.95t 198.  0.156 1.1 2.7 4.8
Ni 2.27 74.6  0.144 0.39 5.9 10.7
Pb 0.61 7.27  0.201 0.053 11.6 21.1
Pt 2.59 57.5  0.160 0.33 7.8 14.3
bece

metals:
Cr 2.32 131.  0.250 2.0 1.1 2.1
Fe 2.37 69.3  0.248 1.1 2.2 4.1
K 0.131 1.15  0.453 0.032 4.0 7.4
Li 0.53% 3.90 0.302 0.073 7.3 13.2
Mo 2.28 131.  0.273 2.2 1.0 1.9
Na 0.241 2.43  0.366 0.055 4.4 7.9
Nb 2.57 46.9  0.286 0.83 3.1 5.6
Ta 2.90 62.8  0.286 1.1 2.6 4.7
v 2.281 505  0.262 0.82 2.8 5.1
W 3.07 160. 0.274 2.7 1.1 2.1

diamond

cubic:

C 5.791 509.  0.145 2.7 2.2 4.0
Ge 1.20f 49.2  0.231 0.41 2.9 5.4
Si 1.561 60.5  0.195 0.42 3.7 6.7

Notes: ¥ means =, is based on correlation with formation energy; Tyson (1975).
pstip = (€11 — c13 + caa)/3.
b= bparial = 2o < 211 > /6 for fcc and diamond cubic; b = 2o < 111 > /2 for
bee.
Yus(Frenkel) = 0.0364,1ip b for fcc and diamond cubic; Yys(Frenxety = 0.062fh1ip b
coe for bee.
Tus(Eam) €quated to 0.547us(Frenkel) based on recent calculations of modified

values, 7", summarized here for EAM models of Al, Ni, and Fe. This is a
change from Rice (1992} who used the estimate Yua(eam) = 0.7Vua(Frenkel)-
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for Ni is shown in Fig. 1.15, with opening Ay kept at zero. The saddle-like
path is strictly along the A, direction. Along the direction perpendicular
to the A, direction, the energy ¥ increases much more rapidly than along
the A, direction. The constrained path approximation is thus very well
justified in this case, more so than for Fe above.

Density functional theory: No directly relevant calculation for the block-
like shear of one part of a metal crystal relative to another seems yet to
have been reported based on quantum mechanics via density functional
theory. However, such calculations appear to be feasible, as Duesbery et
al. {1991) have reported energy surfaces for shear of Si along {111} planes
in a2 manner corresponding to the introduction of an intrinsic stacking fault.
The Duesbery et al. (1991) work also shows that empirical potentials, as
available for Si; may agree reasonably with the quantum mechanical cal-
culations for one direction of shear but poorly for another direction on the
same crystal plane.

Paxton et al. {1991) used density functional theory in the local approx-
imation to analyze stress-strain relations of homogeneously strained crys-
tals, in fcc cases corresponding to simple shear parallel to {111} planes in
< 211 > type directions, and for bcc cases to simple shear parallel to {211}
planes in < 111 > type directions. These are shears leading to twinning
transformations (in the softer direction of shear in each case}. Paxton et
al. report the maximum stress and also the maximum strain energy {say,
Winax, on 2 unit volume basis) encountered for simple shear in the twinning
direction and in the opposite, or anti-twinning direction. The strain energy
maximum, Wpay, is a rough analog of 4ys. Both correspond to maximum
energies along a shear path, but for block-like shear of one half the lattice
relative to the other in the case of 7,, (like in Fig. 1.2, illustration d),
and for homogeneous simple shear strain of the entire lattice in the case of
Waax.

Rice (1992} formed a quantity somewhat like vy, from Wpyax in the fol-
lowing way: Since Wi,y is the maximum energy per unit volume in simple
shear strain, W ,h is the maximum energy per unit area of slip plane
associated with an interplanar separation k. This could be considered com-
parable to v, and thus the final column in Table 1.3 shows Wyyaxh/paiiph
based on Wy,,x from Paxton et al. (1991) and using experimental ugy;p
values {expected to correspond within about 10% of those estimated from
the density functional calculations; Paxton, private communication, 1991);
Wo.ax for the twhining sense is used for the fcc partial dislocation compar-
isons, and in the anti-twinning sense, suggested in Paxton et al. {1991),
for complete {211} bce dislocation comparisons. It is interesting that these
values seem approximately compatible with the Frenkel estimates.

The experimental values for ug;p used in the last column of Table 1.3
(and in Table 1.4) are from Hirth and Lothe (1982) and, if not there, from
Brandes (1983} or Anderson (1986). Lattice parameters a,, used to evaluate
b, are from Ashcroft and Mermin (1978).
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1.10 Ductile Versus Brittle Crack Tip Response

In using the results of this paper to discuss ductile versus brittle response,
in the sense of asking whether conditions for dislocation nucleation will or
will not be met prior to Griffith cleavage, it is well to keep the following
factors in mind.

{a) Dislocation nucleation is a process susceptible to thermal activation.
The analysis given thus far here is, essentially, of temperature T = 0 re-
sponse. The critical K’s for nucleation will be reduced somewhat at finite
T. The Peierls concept gives a route to treat thermally activated nucleation
and some related concepts have already been uncovered in the J integral
analysis of the crack tip shear (Fig. 1.4, point C) in the 2D saddle point
configuration of §(r). The fuller evaluation of the activation energy for
dislocation nucleation is not yet complete, but we give some preliminary
results on it later. While the K level for dislocation nucleation in some
finite waiting time can, in principle, be reduced arbitrarily by increase in
T (some solids may melt before there is any substantial reduction), it is
interesting that the K for cleavage cannot be reduced arbitrarily and al-
ways has the Griffith level (at that T) as a lower bound. Thus increase of T
should generally ease dislocation nucleation more than cleavage, and favor
ductility. Our considerations in the rest of this section are for low T, when
thermal activation is not an important factor.

(b) The present analysis of dislocation nucleation is approximate in many
respects, and thus it will be difficult to draw definitive conclusions on duc-
tile versus brittle response in the several borderline cases that arise. We
have attained a good understanding of limits to the K approximation,
and of coupled tension-shear effects, thus far only in the isotropic case.
Most importantly, perhaps, we have no very reliable estimates of ~,,; the
Yus(Frenkel) 2Rd Yus(aM) values of Table 1.3 may contain large errors.
Also, reliable values of ¢, needed in the fcc cases, are not available for
most solids.

{c) Dislocation processes not directly associated with nucleation from
a crack tip may actually control brittle versus ductile response in many
cases. For example, in soft solids with a high density of mobile dislocation,
it may never be possible to build up enough stress at a crack tip to meet
either a Grifith cleavage or a dislocation nucleation criterion, so the issue of
which requires the greater local K value becomes irrelevant. Also, in solids
for which dislocation mobility is low, easy nucleation of dislocations from
a crack tip does not necessarily imply relaxation of stresses; cleavage may
occur because such dislocations cannot move readily enough away from the
crack tip so as to relax stress in its vicinity.

Accepting these limitations, consider Table 1.4. Estimates of the sur-
face energy ~, at T = 0, based on measurements that have been extrap-
olated to low temperature or, where noted by the cross, on correlations
thus established with formation energies, are shown in the first column
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based on Tyson (1975). Shear moduli gg;p and b are also shown (b is
for a Shockley partial dislocation in the fcc and diamond cubic cases,
and for a complete dislocation in the bcc cases), and the Frenkel esti-
mate Yyg(Frenkel) = patipb?/ 272 h is calculated from them, as 0.036241ip b for
partial dislocations in fcc metals and (very uncertainly) in diamond cubic
solids, and 0.062pu,);,b for complete dislocations on the {110} plane in bee
metals.

We can therefore calculate the ratios of 7,/vys; shown in the last two
columns of Table 1.4, based respectively on Yys(Frenkel) 30d Yus(EAM), With
the latter approximated as 0.54-ys(Frenke1) based on that being close to the
modified values calculated for the three EAM models we have examined
(Table 1.3) for Ni, Al, and a-Fe.

To recall now the conclusions drawn in Section 1.7, it was shown that the
dislocation nucleation condition is met before that for Griffith cleavage, for
the {100} cracks considered, if, under pure mode I loading, and using an
isotropic elastic model, ,/7us > 9.1 (fcc) or 6.3 (bece). Those numbers were
based on the K approximation and were used by Rice (1992} in discussing
ductile versus brittle response. We are now in a somewhat better position
to estimate these limits, using corrections based on Fig. 1.8 and Table 1.2.
Those corrections have been worked out only for edge dislocations, which is
the approprizte case for the bcc geometry, but the second partial involved
for the fcc geometry has a considerable screw component and the correction
in that case is less certain. Here we provisionally use a 17% reduction in
both cases, as suggested by results in Table 1.2, so that the condition for
nucleation before cleavage, in the isotropic elastic case, is approximately

Yo/ Vus > 7.6(fcc) or 5.2 (bec), (1.80)

Both required ratios were strongly reduced by small deviations from pure
mode I, the fcc case most. For example, with both shear mode stress inten-
sity factors set at 10% of Kj, the requirements for dislocation nucleation to
occur before Griffith cleavage, again as estimated using the KT approx-
imation, dropped to 7, /7y > 3.5 (fec) or 2.9 (bcc). If, provisionally, we
also reduce these by the same 17% to correct for inadequacies of the K&
approach, the limits become

Y5/ Vs > 2.9 (fcc) or 2.4 (bec). (1.81)

{The fcc numbers in each case also depend on 7t /., which has been
taken as 1/3 in the above inequalities; ¥ = 0.3 is used there too.)

If we tentatively accept the vy (gaM) estimates as being close to correct,
thus using the last column in Table 1.4 as estimates of 7y, /yus, then we come
to the following conclusions for the fcc metals: All the fce metals except
Ir are incapable of cleaving, even if subjected to pure mode I loading. Ir
would not cleave with the 10% shear mode loading discussed, but woul
behave in a ductile manner. Ni is moderately near the borderline and, as an
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indication that Ni may, plausibly, be thought of as a borderline material, in
a brittle versus ductile sense, it is interesting to note that grain boundaries
in Ni are rather easily rendered cleavable by segregation of S there and
by the presence of H. If the true 7y,; is close to the Frenkel estimate then,
according to Table 1.4, both Ir and Ni would be cleavable under pure mode
I, but Ni would be ductile with 10% shear mode loadings. Also, Pt, Al, and
Cu are close to the borderline cleavable at low T if loaded in perfect mode
I. This simplified discussion of fcc solids has assumed the same s /@alipd
in all material and also the same 51 /Yys.

For the bcc metals, again first assume the v,5(gaM) is close to correct so
that the last column of Table 1.4 gives 4,/7us- Then the alkali metals, Li,
Na and K are the standouts in terms of ductility, which is consistent with
the general malleability of the alkali metals. The vanadium subgroup of the
transition metals, in the order Nb, V and Ta, also stand out in Table 1.4.
They fall below (marginally for Nb) the threshold for ductile crack tip
response for pure mode I loading, but fit comfortably within the border for
ductile response when mode I is accompanied by small loadings in the shear
modes. Fe is predicted to be clearly cleavable, although it should likewise be
ductilized by less than 10% shear loadings. By comparison, the chromium
subgroup of transition metals, Cr, Mo and W, seem by our criterion to be
irredeemably brittle, even with substantial shear mode loading.

If the Frenkel estimates of 4,, are, instead, somewhat closer to the mark,
then the results of Table 1.4 still suggest that Li cannot be cleaved. The
other alkali metals are slightly below the borderline, but are ductilized by
modest shear mode loading, and Nb also would be ductilized by the 10%
shear mode loading.

Diamond-cubic non-metals are also shown in Table 1.4 and ~,, has been
extracted for them as for fcc metals, assuming that dislocations are gener-
ated by a partial route on {111} planes, and assuming (quite questionably)
the same scaling of ~,, with ugipb. All of the diamond cubic solids are
predicted to be cleavable by these considerations, for pure mode I loading,
although Si 1s somewhat susceptible to ductilization by modest shear mode
loading.

The discussion concerning the emission of dissociated dislocations given
in Section 1.5, which properly treats the slip energy offset by stable stack-
ing faults and the screening effect of the emitted partial, can be used to
study dislocation emission in ordered intermetallics, in which there exist
dislocations with a dissociated core in pairs, which are coupled by CSF or
SISF surfaces in the L1, type intermetallics; NizAl is an example. Com-
plex paths are possible for dislocation nucleation in these materials. More
details may be found in Sun et. al. (1991).

Since the rough ~,. estimates used in Table 1.4 scale directly with ug;p6
for a given crystal class, the characterization of crack tip response as brittle
or ductile on the basis of the size of 7,/v,s shown in that table is equiv-
alent to characterization on the basis of <, /usipb, much as advocated by
Armstrong (1966) and Rice and Thomson (1974).
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TABLE 1.5. Cleavage Versus Dislocation Nucleation; Anisotropic Formulation

Solid B Ye/TuEAM) 74/ (0.838)Vus(EAM)
fcc metals {(001) cracks growing along {110] with slip plane (111}, for

nucleation of the pair of partials (1/6) [112] and (1/6) [211]]

isotropic, » = 0.3 9.1 — s/ 7-67us
Ag 11.1 16.1 1.74
Al 9.23 14.6 1.91
Au 11.0 20.1 2.20
Cu 11.8 15.1 1.54
Ir 10.85 4.8 0.537
Ni 12.0 10.7 1.07
Pb 10.8 21.1 2.35
Pt 9.33 14.3 1.85

bec metals {{(001) cracks growing along [010] with slip system
(1/2){113](011)]

isotropic, » =03 6.3 — Yo /5.27us
Cr 5.83 2.1 0.432
Fe 8.77 4.1 0.559
K 14.16 7.4 0.627
Li 17.45 13.2 0.912
Mo 5.80 1.9 0.388
Na 16.33 7.9 0.584
Nb 4.88 5.6 1.38
Ta 7.34 4.7 0.777
A4 5.68 5.1 1.07
W 6.38 2.1 0.395

Anisotropy considerations: We now extend the discussion to include
anisotropic elastic effects. The quantity f# was introduced in Eq. 1.61 and
gives the bound, 7, /7. > B, for dislocation nucleation to occur before
Griffith cleavage. The expressions for 8 reported here are based on the
K°? concept. At the time of writing we have no idea of how significant
the corrections, due to # # 0, are in the anisotropic case. We show g in
Table 1.5 as it has been calculated from the elastic moduli of various fcc
and bce metals. For the fcc cases, it corresponds to nucleation of the second
partial (last column of Table 1.1). A provisional guess, based on isotropic
results as in Table 1.2 here, is that these may be 15% to 20% too high.
We show 7, /qu., estimated as v,/v,s(gaMm) from the previous table, and
show «,/B~us with 8 provisionally replaced by 0.83 of § from the earlier
columns (17% reduction, as in the isotropic case; Table 1.2). When the
quantity <y, /Bvus is greater than one, dislocation emission occurs prior to
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Griffith crack extension, and when it is less than one, the opposite hap-
pens. The quantity v,/8%vus is tabulated in Table 1.5 for several bec and
fce metals. The quantity 8 varies from 4.9 to 16.3 depending on the elastic
anisotropy for bcc metals, from niobium having the lowest value to alkali
metals having the highest. Therefore, the treatment of anisotropy in elastic-
ity is important for bec metals. In fact, it significantly changes conclusions.
Nb, which was predicted to be borderline cleavable by the isotropic anal-
ysis, is now found to be ductile; Li, which was definitively ductile in the
isotropic analysis is now borderline cleavable. On the other hand, 5 does
not vary much for fcc metals, and Ir remains the standout as the cleavable
fcec metal.

1.11 Extensions to Interfacial Failure

The results presented thus far may be generalized to cases where a crack
lies on an interface been dissimilar materials. The case of joined isotropic
solids has been worked out in detail by Beltz and Rice (1992a); a brief
review of that development is given here.

Equations 1.72 may be generalized by making use of the interfacial crack
tip field, in which stresses are given by

Cag = \/2% [Re(Kr“)z:Lg(a) + Im(Kr*)S1L, (8) + K =1L (9)]
(o, =r1,9,2) (1.82)

Only in-plane loadings are considered here. The functions £,5(f) corre-
spond to tractions across the interface at # = 0 of tensile, in-plane, and
anti-plane shear type, so that

( . ) = /—ris ( ) = ;—IH
Opg + 10,9 )8—0 = ——=—==, (O2p)p=0 = .
/8 8 )8=0 T 8)0=0 -

K is the complex stress intensity factor which characterizes the inherently
coupled in-plane modes. The parameter ¢ is given by

1 (3—dw)/p1 +1/p2

A S 1/p1 + (3 — 4u2)/p2
where p atid v refer to the shear modulus and Poisson’s ratio, respectively.
Subscript 1 refers to the material on top, occupying 0 < # < =, which
is taken to be a metal (ie., can sustain a dislocation-like process), and
subscript 2 refers to a ceramic phase (i.e., no dislocation activity is assumed
to occur). We have },(0) = ZI4(0) = 1 and the full functions Z,z(0) are
given by Rice, Suo, and Wang (1990) and can be extracted from discussions
of the bimaterial elastic singular field {e.g., Rice {1988}).

(1.83)

(1.84)
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The generalization of Eqs. 1.77 may now be written as

m{Ar(r), Ao(f))

_ ﬁw—r {Re ko] £y (6;6) + Im [Ke“| B4 (5;6) }

B1 “ e (p)
21r(1—u]/(; g11(r, p; 0, 8) —— 3 dp

21r(1 ~ vy) / g12(r, p; 6, €) —— 359{p) {1.85a)
a (&r(r), Be(r))
i )
(1 *Vl][ g21(r, £; 0, €) aéaf,p) 5
271—(1#1 V1) /(; g22(r, p; 6, 8) —— Bci;;‘gp) P (1.85b)

The kernel functions g;;, ¢12, g21, and gu2 are taken from the elasticity
solution for a Volterra dislocation in the presence of an interfacial crack,
and may be found in complex form (Suo, 1989).

Solutions to the pair of integral Eqs. 1.85 have been found using physi-
cal constants appropriate for copper bonded to sapphire (Beltz and Rice,
1992a) and iron bonded to titanium carbide (Beltz, 1991}. As discussed by
Rice, Suo, and Wang (1990), r*¢ can be replaced by b*¢, and the analysis is
tenable when Kb** has a positive real part.

1.12 Experimental Observations

The actual observation of dislocation emission from crack tips has been
achieved by the use of several experimental techniques. In work by Burns
{1986), etch pit techniques were employed to observe edge dislocations on
slip planes which emanated from a crack which had been cut parallel to the
{110} planes in lithium fluoride. X-ray topography has been used by Michot
and George (1986) to carry out similar observations in silicon. Possibly the
most notable observations of dislocation emission is the T.E.M. work of Ohr
(1985, 1986), which has the advantage that emission could be observed in-
situ in several materials, including fcc and bce metals with a high resolution.
In these experiments, the critical applied stress intensity factor K, to emit
a dislocation was indirectly measured; they were in moderate agreement for
several metals with the theoretical values of K, as predicted by the Rice-
Thomson model. More recently, Chiac and Clarke (1989} directly observed
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emitting dislocations in silicon and claimed reasonable agreement of the
inferred K, with Rice-Thomson modeling.

The first experimental evidence that the macroscopic behavior of an in-
terface could be rationalized based on the competition between dislocation
emission and cleavage was given by Wang and Anderson (1990}, in their
work on symmetric tilt bicrystals of copper. In this work, a directional
effect on the toughness of the grain boundary in a ¥ 9[110](221) bicrys-
tal was observed, in which two specimens were cut and notched along the
boundary such that a crack would run in the opposite directions [114| and
[114], respectively. The specimens were fatigued under a cyclic mode I load-
ing of increasing amplitude. The specimen with the [114] cracking direc-
tion broke along the interface when the maximum normal stress reached
o = 28.1MPa, corresponding to G = 28J/m?. An intergranular fracture
surface with cleavage “tongues” was observed. The other specimen, with
a cracking direction of {114], was loaded under identical conditions and
eventually fractured at a normal stress of 76.7 MPa. The fracture surface
contained large regions of ductile transgranular fracture and plastic tearing,
and the G value, > 210J/m?, was beyond the reliably measurable range
for elastic fracture mechanics. The only difference between these two speci-
mens was the cracking direction, hence it was concluded that the difference
in ease with which dislocations could be nucleated at each crack tip was
the cause of this behavior, as predicted nucleation loads are quite different
for the two growth directions. Further, continuum plasticity analyses by
Saeedvafa {1991) and Mohan et. al. {1991), suggested very little difference
in the stress state ahead of the crack tip, for the two growth directions,
and do not suggest a more macroscopic explanation of the experiments.

Most recently, Beltz and Wang (1992) have performed experiments on
copper crystals bonded on the same {221} copper face to sapphire, to form
a layered beam subjected to four-point bending (see Fig. 1.16). Again, a
directional dependence of toughness was observed. In their experiment,
the ductile direction was observed to be [114], the opposite of the ductile
direction with the Wang-Anderson bicrystal specimen. This result was pre-
dicted by theory, however, and is elaborated on in Beltz and Rice (1992a)
in terms of the Peierls-type nucleation model; it follows from different mode
I/II mixture in the two specimens.

1.13 " The Activation Energy for Dislocation
Nucleation

Thus far, the analysis of dislocation nucleation rigorously holds true at zero
Kelvin; i.e., thermal effects are neglected, except possibly through the weak
temperature dependence of the elastic constants that enter the analysis. As
discussed earlier in connection with Fig. 1.4, a saddle-point configuration
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FIGURE 1.16. Diagram of specimen tested by Beltz and Wang {1992): a copper
single crystal with {221} face bonded to sapphire; loaded in bending with crack

tips along [110].

TABLE 1.6, Activation Energies

GG “'“lf'm éﬁkgrn_mm .A_%.mmu_
crit [ room room
0.2 1.25x1071 29.4 239.6
0.3 9.05x1072 21.3 173.5
0.4 6.55%x10°2 15.4 125.5
0:5. 4.62x107% 10.09 88.6
0.60 3.10x10°% 7.29 59.4
0.7 1.90x107% 4.47 36.4
0.8 9.85x10~? 2.31 18.9
08 3.32x1073 0.780 6.36

1.0 0 0 0
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exists with 2D form corresponding to point C. The total energy corre-
sponding to the system at C less the total energy at 4 would correspond
to an activation energy; this energy could be thought of as the amount of
energy due to thermal vibrations necessary to emit an incipient dislocation
which is initially loaded below G..i,. A two-dimensional simplification to
the problem reduces to that of finding a second solution to Eq. 1.55, for a
given applied load. To be realistic, the activation process would take place
over a localized region, i.e. in the form of a dislocation loop that jumps
out. At the time of writing, we have analyzed such solutions only for the
case § = 0, ¢ = 0, and using the Frenkel form of r = f(§) and explicitly
considering slip only, like in Sections 1.2 to 1.4 of the paper. In that case
Eq. 1.55 corresponds to rendering stationary the energy functional {Rice,
1992)

Uls(r)) = Uo +f:° ¢(5(r))dr+f:° L o 5(r)6(r)dr — fom fz%a(r)dr

(1.86)

s|6(r)] = 2«(1—:4_/ \/:d‘s(p [deg, (1.87)

Here U[6{r)] is the energy of a slipped configuration per unit distance along
the crack front. Thus, for G < Geriz {= ~us in this case) and with pin(r)
and 6s,4(r) representing §(r) for the energy minimum and saddle-point
solutions (with values of §(0) corresponding respectively to points A and
C in Fig. 1.4), we can calculate a 2D activation energy

with

AUge = U[(ssa.d(r)] - U[‘smiu(r)] (1‘88)

Results are shown in Table 1.6. Also, we show by the dashed line in Fig. 1.11
the slip function §5,4(r) corresponding to G = 0.9G ., a case for which
§min(r) is also shown.

The actual activation process is inherently three-dimensional, at least as
regards the saddle point configuration. An asymptotic analysis is underway
of this 3D phenomenon by Beltz and Rice (1992b). A very rough approx-
imation to their result for the activation energy AE involves multiplying
the two-dimensional activation energy AU, (an energy per unit disloca-
tion length)-by about five atomic spacings, which is a plausible length scale
for the activation process.

Table 1.6 shows the results (from the two-dimensional analysis, assuming
an activated dislocation length of 5b, AE = 56AU,.) for a partial disloca-
tion in copper and a full dislocation in iron, with a coplanar slip plane and
a mode II loading. The AFE estimates are listed in units of kT as evaluated
at room temperature. An elementary calculation of a “cutoff” AE/kT for
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spontaneous nucleation is discussed by Beltz and Rice {1992b) and uses the
formula

v = n(caness/b) exp(—AE/kT) (1.89)

where v is interpreted as the frequency of spontaneous nucleation events,
n is taken as the number of nucleation sites in a typical span of crack
front, taken here as 1 mm (i.e., n = 1mm/5b} and cyhear is the transverse
shear wave speed, so that cepear/b is an approximate attempt frequency.
Here, cgpear is taken as 3 km/sec. Assuming that v =~ 10°%/sec describes
spontaneous nucleation on a laboratory time scale, solution of Eq. 1.89
gives a borderline of AE/kT = 25. Examination of Table 1.6 leads to the
conclusion that thermal activation would be sufficient (at room tempera-
ture) to spontaneously emit a partial dislocation in copper at loadings of
G = (0.2 — 0.3) G, i¢ or greater, and a full dislocation in iron at loadings of
G = (0.7 — 0.8)G;i; or greater, where Gt is the critical loading for dis-
location nucleation without help from thermal activation. At T = 27, om,
these values for spontaneous nucleation would, e.g., change to approxi-
mately 0.1G¢;i: for Cu and 0.6G . for Fe.

1.14 Summary and Conclusions

A new analysis of dislocation nucleation from a crack tip is outlined based
on the Peierls concept as applied to a slip plane emanating from the tip.
An exact solution for the nucleation criterion is found using the J integral
when the crack and slip plane coincide, at least within simplifying assump-
tions that consider only shear sliding between lattice planes, in forming a
dislocation. The exact solution is also extended to the nucleation of disso-
ciated dislocations, with complete results found for the nucleation of a pair
of Shockley partials in fce solids. For cases of greater interest, in which the
slip and crack planes do not coincide (4 3 0) but, rather, intersect along the
crack tip, an approximate solutions for the nucleation criterion are given
based on effective shear stress intensity factors along the slip plane, and ex-
act solutions from numerical solution of appropriate integral equations are
also discussed, including those which take fully into account the coupling
between tension and shear across the slip plane.

The core width of the incipient dislocation at the threshold of instability
is estimated to be about 3 times the corresponding width for an isolated dis-
location in an otherwise perfect lattice, so that conditions seem favorable to
use of the Peierls concept. Further, while previous treatments of nucleation
have generally been based on elasticity solutions for fully formed disloca-
tions located very near the crack tip, this analysis shows that maximum
shear slippage at the tip is, at the moment of instability, only of the order
of half that for a fully formed dislocation.
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The results highlight a new solid state parameter v,,, called the unstable
stacking energy, which measures the resistance to dislocation nucleation at
a crack tip. Critical stress intensity factors at nucleation scale with /7.
Here ~ys is the maximum energy, per unit area, encountered in the block-
like shear of one half of a crystal relative to the other, along a slip plane in
the direction of shear which forms a lattice dislocation. Also, some features
of the 2D activated configuration (energy saddle point) have been derived
for a crack tip loaded below the level for instantaneous nucleation.

There are, at present, only quite uncertain estimates of v,5. The sheared
atomic lattice geometry to which it corresponds is however, a relatively
simple one, periodic in the two directions along the slip plane and involv-
ing simple block-like translation of atoms above and below. Thus, it is to
be hoped that the parameter may be susceptible to quantum electronic
calculation, and such work is encouraged (the same for stacking fault and
anti-phase boundary energy terms, which also enter the nucleation criteria
for dissociated dislocations).

Allowing for considerable uncertainties in «,,, the evaluation of the com-
petition over whether the condition for Griffith cleavage, or for dislocation
generation and blunting, is met first at a crack tip leads to results that
seem generally consistent with known brittle versus ductile response of fcc
and becc metals. The results also suggest that the outcome of this compe-
tition is often extremely sensitive to small amounts of mode II and mode
IIT shear loading superposed on a basic mode I tensile loading; the shear
loadings promote ductile response.

The new analysis of dislocation nucleation given here, like that formu-
lated by Rice and Thomson {1974), is developed only for cases in which
the crack tip lies in a slip plane. It has been noted {Argon, 1987; Drag-
one and Nix, 1988) that the maximally stressed slip plane is sometimes
one which intersects the crack tip at a single point but does not contain
it. There seems to be no simple way of extending the present approach to
such cases.

Added Note: Our analysis of partial dislocation emission in §1.5 and §1.6
is incorrect in the following sense. As A.S. Argon and J. F. Knott indicated
to us, the atomic geometry of the fec slip plane forces partials to nucleate
in an ordered sequence, not competitively. Our equations are correct if used
first to evaluate the loads for nucleation of partial A (as in Eq. (1.26)) and
then to evaluate the load for partial B {as in Eqs. (1.20) and (1.32}}. For
the crack geometry considered in §1.6 and §1.10, the proper sequence is first
a partial with ¢ = £60°, and then the partial with ¢ = 0°. Consequently,
Eq. (1.67) should become ~, /v,, > 11.8, for emission before cleavage under
mode I, and 7, /Yus > 5.3 under mode I plus 10% shear modes. The stacking
fault energy -,y does not affect the nucleation of the first partial at § =
+60° and the second, at ¢ = 09, follows spontaneously for the near-mode
I conditions assumed. With the ~17% correction to the K*// concept,
the conditions for dislocation nucleation before cleavage in §1.10 change as
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follows: For a mode I load Eq. (1.80) should read ~, /7y, > 9.8 (fcc) or 5.2
(bce), and for mode I plus 10% shear modes Eq. (1.81) should read v, /vy, >
4.4 (fcc) or 2.4 (bec). These corrections do not affect our conclusions on
brittle vs. ductile response for the fcc metals.

We are pleased to dedicate the paper to Professor Frank A. McClintock.
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