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This paper is concerned with some aspects of nonuniform stressing above a deep creeping portion 
of a fault zone prior to a large crust-breaking earthquake. The model that we use involves a slipping 
crack, representing the deeper, more stably sliding portions of the fault zone, which penetrates upward 
from depth and is blocked in the lower region of the seismogenic zone. When conditions are uniform 
along strike, the upward penetration at the crack front is by mode III in strike-slip fault zones but by 
mode II in thrust or normal fault zones. Two major results are reported. First, we analyze 
approximately, via a linear perturbation formulation, how a tectonic crack front encounters and 
ultimately shears through arrays of localized "asperities" that are distributed parallel to the crack 
front and have a toughness which is greater than that of adjoining segments of the fault zone. Using 
a fast Fourier transform based numerical procedure to simulate crack penetration into asperities, we 
find a notable difference between mode II and mode III crack fronts in that the former penetrates 
approximately twice as far between the asperities as the latter under the same loading level. This is 
interesting because observations of slip distribution in large earthquakes suggest that there is a 
significant aseismic component to the total slip budget in subduction zone earthquakes, which in 
contrast does not seem to be present in strike-slip zone earthquakes, and also that the surface slip 
distribution in continental dip-slip faulting is typically much more irregular than for strike-slip faulting. 
In a simulation involving multiple rows of periodic asperities we note that the more deeply penetrating 
mode II crack front contacts more asperities simultaneously while breaking them at different load 
levels compared to the less flexible mode III crack front, which simply breaks one row of asperities 
and jumps (unstably) to the next. The second major result concerns whether a straight crack front in 
the lithosphere along a strike-slip fault zone is configurationally stable, that is, whether the crack front 
will tend to remain straight as the crack penetrates upward from depth. It is found that for infinitesimal 
perturbations of the straight front beyond a critical wavelength, of the order of the crustal lithosphere 
thickness, the stress intensity factor is higher at the most advanced portions of the crack front rather 
than at the least advanced; the opposite is true at shorter wavelengths. When resistance to crack 
growth is essentially uniform over the fault plane, this means that the straight crack front is 
configurationally unstable at long wavelengths. The issue of configurational stability is related to the 
concept of fault segmentation, which is based on the observation that fault zones, particularly long 
ones, do not rupture along their entire length during a single earthquake. Effect of a vertical gradient 
of fracture resistance is discussed in the appendix, where it is shown that a significant upward gradient 
of resistance to crack growth may completely stabilize the straight crack configuration. 

INTRODUCTION 

The concept that crustal earthquakes involve the loading 
of a shallow crustal zone by slip at depth has been adopted 
by many authors [e.g., Savage and Burford, 1973; Turcotte 
and Spence, 1974; Prescott and Nur, 1981; Li and Rice, 
1983; Tse et al., 1985]. There is general agreement that the 
shallow lithosphere is largely elastic over the time scale of 
interest, so that the earthquake faulting can sometimes be 
modeled as a slipping crack in otherwise elastic surround- 
ings. The crack front penetrates upward from depth along 
the fault zone and is blocked in the lower region of the 
seismogenic layer. The crack surfaces represent the deeper 
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portions of the fault where the slip motion is accommodated 
mostly by aseismic shear due to the prevailing temperature 
and perhaps pore pressure conditions, while the uncracked 
regions, consisting of cooler crustal rocks, are considered to 
be locked in a brittle manner; that is, they do not slide at all 
or do so very little in the form of small earthquakes during all 
but a few moments of the seismic cycle. If overall plate 
motion is to occur, the aseismic deformation below concen- 
trates stress onto, and ultimately shears through, the whole 
locked region. During this process, gradual rupture is pro- 
moted along the lower margin of the slip-deficient zone, 
enabling the upward penetration of the crack front until the 
loss of equilibrium in the form of a large earthquake. 
According to the usual terms of crack mechanics the upward 
penetration at the crack front is by mode III (antiplane shear) 
in strike-slip fault zones but by mode II (in-plane shear) in 
thrust or normal fault zones. 
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Fig. 1. (a) A crack model for stressing in a strike-slip fault zone. 
The idea of the "line spring": the three-dimensional problem has 
been reduced to two two-dimensional problems of (b) a plane stress 
deformation in the y - z plane and (c) a mode III crack in the x - 
y plane. 

Such an elastic-brittle crack model, which we adopt here, 
can be interpreted as [e.g., Rice 1980] the limiting case of 
slip-weakening models when the size of the zone over which 
shear strength degrades is small compared to other relevant 
dimensions such as the width of the locked seismogenic 
layer. Stuart [1979] and Stuart and Mavko [1979] have 
applied such slip-weakening concepts to crustal instabilities, 
and in the appropriate limit their models show cracklike 
penetration of slipping zones into previously nonslipping (or 
little slipping) zones. In recent years a more elaborate crustal 
earthquake model has been developed [Tse and Rice, 1986], 
in which the slip and stress distributions on the fault surface 
are required to satisfy laboratory-constrained rate- and state- 
dependent friction laws with temperature and normal stress 
(and hence depth) variation of frictional constitutive param- 
eters. As can be seen from the Tse and Rice [1986] strike-slip 
results and also those of Stuart [1988], who adopted a similar 
description of thrust faulting, the slip distribution histories 
that result are suggestive of a cracklike upward progression 
of a slipping region into an effectively locked region through- 
out most of the earthquake cycle. Thus the crack model 
which we adopt here, with a fracture criterion to convert 
locked into slipping material at the crack tip, seems often to 
provide an acceptable, if highly simplified, description of 
inhomogeneous fault zone deformation. 

The resistance of rocks in the fault zone against fracture 
(slip) may vary in a nonuniform manner, which deforms the 
penetrating crack front into a complicated profile. In the 
model shown in Figure la for a strike-slip fault, the litho- 

sphere is considered as a linearly elastic isotropic plate of 
uniform thickness H containing a crack of varying depth 
a(z) with a typical wavelength A and an average depth a0 in 
response to a heterogeneous strength distribution along the 
fault. In regions of high thermal gradient, for which the lower 
crust could be expected to relax in shear on the interearth- 
quake time scale, this lithosphere plate represents the middle 
and upper crust. In cooler settings it may include part of the 
upper mantle. Such a plate model with variable crack depth 
has previously been studied by Li and Rice [1983] and Tse et 
al. [1985] using the "line spring" concept originally devel- 
oped by Rice and Levy [1972] for treating part-through 
cracks in elastic plates. However, as pointed out in those 
works, the line spring analyses are valid only at sufficiently 
long wavelengths, requiring A to be significantly larger than 
the plate thickness H. This restriction severely limits the 
validity of the line spring results for short-wavelength appli- 
cations such as those we shall consider, which concern 
effects of localized asperities having a slightly higher fracture 
toughness value than their surrounding regions but having 
size scales much smaller than the plate thickness. To study 
the earthquake mechanism, various authors have used the 
idea of representing the heterogeneous strength distribution 
in a fault plane by asperities [e.g., Madariaga, 1979; Mc- 
Garr, 1981; Lay et al., 1982; Das and Kostrov, 1983]. 

For the localized, short-wavelength effects that we con- 
sider it is very costly to implement conventional numerical 
procedures such as the finite element or boundary element 
method (BEM). In the recent development of three- 
dimensional crack mechanics, Rice [ 1985] developed a linear 
perturbation method for analyzing planar cracks with fronts 
deviating slightly from some regular geometry such as a 
straight line or a circle. Gao and Rice [1986] subsequently 
applied the perturbation method to a shear-loaded half plane 
crack and derived the first-order perturbation solution for 
the shear stress intensity factors along a slightly curved 
crack front. The perturbation results will be applied in this 
paper to analyze approximately how a tectonic shear crack 
encounters and ultimately shears through an array of asper- 
ities that are strung out parallel to the crack front and are 
much smaller in size than other characteristic length dimen- 
sions, such as the depth of the as yet uncracked seismogenic 
zone. Our numerical simulation reveals a notable difference 
between mode II and mode III crack fronts in that the former 

penetrates approximately twice as far between the asperities 
as the latter under the same loading level. While it lies 
beyond the scope of our linearized perturbation analysis, we 
expect that for moderately tough asperities the more deeply 
penetrating mode II crack front segments will more readily 
tend to coalesce unstably with one another ahead of the 
asperities. Therefore the crack front advances and leaves 
unbroken asperities behind, whereas the less flexible mode 
III crack front will more likely tend to break the asperities in 
a seismic manner. This is interesting because observations 
[e.g., Scholz, 1990, p. 317] of the distribution of slip in large 
earthquakes suggest that there is a significant aseismic 
component to the total slip budget in subduction zone 
earthquake cycles, which is not, or has not been perceived to 
be, present to a comparable degree for strike-slip earth- 
quakes. Scholz [1990, p. 157] also compares surface slip 
distributions in the 1983 Borah Peak and 1979 Imperial 
Valley earthquakes. He comments that "... the surface 
slip in the dip-slip case (Borah Peak) is much more irregular 
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than in the strike-slip case (Imperial Valley). This observa- 
tion is fairly typical... "(although no systematic compar- 
ison based on many examples seems to have been done yet). 
The differences in seismic behavior may be explained by the 
different behaviors of mode II and III crack fronts in 

encountering asperities during earthquake faulting, although 
differences in fault zone materials, at least when subduction 
zones are considered, and possibly differences in the unifor- 
mity of loading over large distances along strike make direct 
comparisons difficult. 

To provide further insight, a simulation of crack penetra- 
tion into multiple rows of asperities is presented, which 
indicates that the more deeply penetrating mode II crack 
front interacts with more asperities in different rows and 
breaks them at different loading levels compared to the less 
flexible mode III front, which, for the geometry of our 
simulation, simply breaks one row of asperities and jumps 
(unstably) to the next row. Implications may be that fore- 
shocks in strike-slip fault zones tend to be larger but less 
frequent prior to a major earthquake compared to those in 
tectonically similar thrust or normal fault zones. Our present 
study on the short-wavelength perturbations in crack front 
complements the previous line spring analysis of Tse et al. 
[1985] on stressing of large-scale locked patches along a 
strike-slip fault. 

Another issue to be addressed in the paper is related to 
fault segmentation, a concept which is based on the obser- 
vation that fault zones, particularly long ones, do not rupture 
along their entire length during a single earthquake. There 
are increasing geological and seismological indications [e.g., 
Schwartz and Coppersmith, 1984; Schwartz and Sibson, 
1988] that the location of earthquake rupture is not random, 
that there are recognizable physical properties of fault zones 
which control the nucleation point and lateral extent of 
rupture and divide a fault into segments, that ruptures with 
the same characteristics often repeat in the same location, 
and that independent rupture segments can persist through 
several seismic cycles. It is natural to relate fault segmenta- 
tion to complex structural or geometrical features of fault 
zones: Fault traces meander and cross, mechanical proper- 
ties of faults and their adjoining crust are heterogeneous, and 
fault loading may be due to erratic tectonic processes. 

But some aspects of the segmentation may follow from the 
intrinsic mechanics of faulting to the extent that they would 
be maintained even if all complexity in the Earth's structure 
were eliminated. Such a possibility was demonstrated in a 
fault model by Horowitz and Ruina [ 1989], which produced 
complex slip patterns, even with no complexity in geometry 
or heterogeneity in materiM properties, at least for choices of 
rate- and state-dependent frictional properties which put 
their system rather close to, but on the unstable side of, the 
neutrally stable state. Suggestions that the dynamics of 
uniform fault must inevitably lead to spatiotemporally com- 
plex slip have been made recently based on inherently 
discrete fault mechanics by Bak and Tang [ 1989] and Ito and 
Matsuzaki [1990], who use a cellular automata fault model, 
and by Carlson and Langer [1989], who analyze the dynam- 
ics of a Burridge-Knopoff array of spring-connected rigid 
blocks obeying velocity-weakening friction. The issue re- 
mains somewhat clouded, however. Rice [1991] has noted 
that unlike the Horowitz and Ruina [1989] model, these 
inherently discrete models have no well-defined continuum 
limit as the cell or block spacing is reduced toward zero (the 

models also simplify true elasticity relationships between 
slip and stress distributions on faults to nearest-cell or 
nearest-block stress transfers). The Horowitz and Ruina 
[1989] model, like other fault models based on rate- and 
state-dependent friction [e.g., Tse and Rice, 1986; Stuart, 
1988] or just on simple slip weakening [Stuart, 1979; Stuart 
and Mavko, 1979], has such a limit because of the finite 
characteristic length scale which enters the model, as the 
critical slip distance for state evolution or for slip weakening. 
This issue may be critical to the origin of complexity in the 
inherently discrete models. Rice [1991] presented three- 
dimensional numerical simulations of slip on a vertical fault 
between elastically deformable continua, using rate- and 
state-dependent friction. His examples show cases for which 
spatiotemporally complex slip histories, reminiscent of those 
of the inherently discrete models, result when the computa- 
tional grid spacing is too coarse to properly simulate a 
continuum but for which the complexity disappears, and the 
response settles down to periodically repeated earthquakes 
much like the earthquakes in the two-dimensional Tse and 
Rice [1986] study, with slip histories that are essentially 
identical at each place along strike, as grid spacing is 
reduced to sizes that reasonably model continuum response. 
That is, the complexity disappears (at least in Rice's [1991] 
examples, which do not include the near-neutral-stability 
cases of Horowitz and Ruina [1989]) when each cell of the 
computational grid is made sufficiently small, so that a single 
cell is unable to undergo unstable slip without some of its 
neighbors slipping also (this situation is never attained in the 
inherently discrete models). 

Thus the extent to which fault models that are uniform 

along strike can produce slip distributions which are not 
uniform is far from resolved. In this paper we use the simple 
elastic-brittle crack model to address the issue. In the case of 

a homogeneous strike-slip fault model, with a fracture tough- 
ness that is uniform over all the fault plane, we show that a 
critical wavelength Acr exists which is of the order of one to 
a few times the elastic plate thickness. Above Acr a straight 
crack front has the possibility of becoming configurationally 
unstable even in the absence of any variation in geometry or 
material properties in the fault plane. Our analysis is based 
on an asymptotic interpolation between the line spring 
results of Tse et al. [1985] at long wavelengths and the half 
plane crack perturbation results of Gao and Rice [1986] at 
short wavelengths. An approximate first-order formula is 
constructed for calculating the stress intensity factor along a 
perturbed crack front at all wavelengths; the interpolation is 
shown to be consistent with some three-dimensional finite 

element results. At wavelengths larger than Acr the stress 
intensity factor is greater at the most advanced, rather than 
the least advanced, portions of the wavy crack front; the 
opposite is true at wavelengths shorter than Acr. However, 
the spatial variation of fracture toughness also plays a key 
role in the configurational stability analysis, and we show in 
the appendix that introduction of a positive upward gradient 
in fracture resistance can cause configurational stability to 
be retained at wavelengths far beyond Acr. 

BACKGROUND 

In studying the faulting processes with a perturbed crack 
front in a lithospheric plate one may use a half plane crack in 
an infinite solid to model problems at short wavelengths and 
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Fig. 2. (a) A half plane crack with a slightly curved crack front. (b) 
The reference straight crack front. 

use the line spring model at sufficiently long wavelengths. 
For convenience, we briefly review the basic perturbation 
and line spring equations below. 

Perturbation Solutions for a Half Plane Crack 

Consider a shear loaded half plane crack on the plane y = 
0 with a slightly curved crack front along the arc {x - a(z), 
y - 0} in an infinite solid (Figure 2a). Assume that the stress 
concentration at the crack tip is measured by shear stress 
intensity factors K•ø[a0] (a - II, III) when the crack front 
lies along a reference straight line x = a0 parallel to the z 
axis (Figure 2b). For the perturbed crack front, Gao and 
Rice [1986] have derived 

1 2-3v gli(Z ) = K•i[a(z)] 1 + 2rr 2- v 

• + • da( z')/dz' } ß PV ...... dz' 
o• Z' --Z 

2 da(z) 
gIøii[a( z) ] (la) 

2- v dz 

1 2+v Kiii(Z ) = Kiøii[a(z)] 1 + 2re 2- • 

f_•-• da(z')/dz' } ß PV ...... dz' 
o• Z' --Z 

2(1 - v) da(z) 
+ r•øi[a(z)] (lb) 

2- v dz 

to the first-order accuracy in the deviation of a(z) from 
constancy. Here PV denotes principal value in the Cauchy 
sense, and v is the Poisson ratio. In writing (1) for any given 
z, we have chosen a reference straight crack front along x = 
a(z). 

It is commonly assumed that fracture processes are con- 
trolled by the energy release rate 

(1 -- 12)(Kii ) 2 + (KIii)2 
G = (2) 

(it is shear modulus) at the crack front or controlled by the 
maximum shear stress intensity factor 

K: (Ki2i + Ki2ii)•/2 (3) 

That is, cracks grow only when G or K reaches a critical 
value. For a strike-slip fault the stress concentration at the 
straight crack front is by mode III only, but when the front 
is perturbed to the curved position x = a(z), a mode II 
intensity factor gii(Z ) of first order of magnitude will be 
induced according to (1), giving a second-order contribution 
to the control parameters G or K. Similarly, for thrust or 
normal faults where mode II dominates, it may be shown 
that KIII appears as second-order small quantities in G or K. 
Therefore for these special cases treated in the present 
first-order analysis the coupling effect between the shear 
modes can be ignored so that the perturbation equations (1) 
are rewritten as 

K(z) - gø[a(z)] 1 + PV ..... dz' (4) 
2re • z' - z 

for all crack modes, where the constant coefficients M, are 

M I = 1 Mii = (2- 3v)/(2- v) 
(5) 

Mii I = (2 + v)/(2 - v) 

For completeness, we have included the mode I pe•urbation 
result so that (4) and (5) correspond to a tensile crack when 
a = I, a strike-slip fault when a = III, and a thrust or normal 
fault when a = II. 

Line Spring Model 

The idea of the line spring model is to reduce the compli- 
cated three-dimensional crack problem shown in Figure la 
into two two-dimensional plane problems shown in Figures 
lb and l c. The lithosphere is represented as a two- 
dimensional elastic plane containing a line of slip disconti- 
nuity along the z axis representing the fault trace (Figure 1 b). 
Using dislocation theory, it may be shown that the thickness 
averaged shear stress o-(z) is related to the thickness- 
averaged slip rS(z) along y = 0 by [e.g., Li and Rice, 1983] 

it(1 + v) f_• 1 Or3(z') or(z) = cr• - dz' (6) 
2rr • z- z' Oz' 

where the integral term represents the contribution due to 
the slip dislocation distribution rS(z). On the other hand, the 
slip rS(z) at a chosen position z is regarded as being induced 
by the local stress tr(z) according to the two-dimensional 
mode III crack in Figure l c with crack depth taken as the 
local value a(z). 

For a two-dimensional mode III crack with a straight 
crack front at x - a subjected to a remote stress tro•, the 
stress intensity factor has the known solution [Tada et al., 
1985] 

Kø[a]- o-•[2H tan (z-a/2H)] •/2 (7) 

The thickness averaged slip b is related to cr• by 

i• = tr•/k (8) 

where the stiffness k can be derived from the compliance 
relation 
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Oa •-• (ø'ø•H) 2 2/_• (9) 

following the definition of the energy release rate (on the 
right side) as the decrease in the total potential energy 
(within the brackets) per unit crack extension. Substituting 
(7) into (9), noting that 1/k = 0 when a - 0, and integrating 
both sides of (9) with respect to the crack depth parameter a, 
one obtains [Li and Rice, 1987] 

1 4H 

k(a) rclx 
lB 

cos (rr a/2H) 
(10) 

It is assumed in the line spring model that •i(z) and rr(z) in 
(6) are related by 

i•(z) = rr(z)/k[a(z)] (11) 

where k[a(z)] is taken to be the two-dimensional solution 
(10) with the argument a replaced by the local crack depth 
a(z). Solving the coupled equations (6) and (11) for rr(z) and 
/•(z), the stress intensity factor along the curved crack front 
is given by 

K(z) = rr(z){2H tan [rca(z)/2H]} •/2 (12) 

BREAKING OF LOCALIZED ASPERITIES 

ALONG A CREEPING FAULT 

where t is a "time" parameter and p represents the "viscos- 
ity" of the system. By making p sufficiently large or else (as 
we do) by waiting sufficiently long for a new equilibrium 
configuration of the crack front to be approached after each 
small increase of load, we can make (stable) crack growth 
occur arbitrarily close to the condition that K = Kc every- 
where along the crack front during growth. 

The local stress intensity K = K(z, t) is related to a(z, t) 
by the perturbation relation (4) at a given time t. In principle, 
one can solve the coupled equations (4) and (13) for K(z, t) 
and a(z, t). The final equilibrium profile corresponds to 
a(z) = a(z, o•) after each step increase of the load. While it 
is often impossible to solve these coupled equations analyt- 
ically, numerical procedures can be designed by discretizing 
the governing equations into small time steps and then 
updating a(z, t) and K(z, t) according to (4) and (13) for 
each step. The time step At for any given value of p can be 
adjusted to achieve the optimum rate of numerical conver- 
gence. 

We apply the above simulation procedure to crack pene- 
tration of periodic arrays of asperities with center-to-center 
spacing of 2L. The asperities have a fracture toughness •c 
which is twice the toughness K c of their surrounding re- 
gions. Also, assume a crack length a and a shear load rr in 
the effective sense so that the stress intensity factor for a 
straight front can be written in the form 

Kø[a] = frr(a) •/2 (14) 

Consider a shear crack representing a slipping fault zone 
at depth which penetrates into arrays of asperities in the 
seismogenic layer. Assume that the asperity size is much 
smaller than other relevant tectonic length dimensions so 
that the half plane crack formula (4) can be applied to the 
perturbations caused by those asperities. 

First observe that other than the coefficient M, the shear 
mode perturbation formulae shown in (4) and (5) are com- 
pletely analogous to that of the tensile mode I crack. An 
analogy is then established between the process of a slipping 
crack penetrating asperities and that of the "crack trapping" 
in which a mode I crack advances nonuniformly in a com- 
posite material with crack front segments trapped by contact 
with the second phase tough inclusions whose fracture 
toughness exceeds the local stress intensity. This process 
has been identified as one of the important toughening 
mechanisms for materials in engineering applications. In an 
earlier study on crack trapping, Gao and Rice [1989] used 
the mode I perturbation formula and devised a fast Fourier 
transform (FFT) numerical procedure for simulating crack 
penetration into periodical arrays of blocking particles. We 
shall use the same procedure to simulate the penetration of a 
shear crack into periodic arrays of asperities in a fault plane. 

For convenience, the numerical procedure of Gao and 
Rice [1989] is reviewed in a form suitable for the present 
application. Assume that the fracture toughness varies in the 
fault plane by a function Kc = Kc(x, z). The slipping crack 
will grow at positions along the crack front where the stress 
intensity factor K(z) exceeds the local toughness Kc. To 
simulate the crack penetration process, it is convenient to 
use the following "viscoplastic" crack growth model 

Oa(z, t)/Ot=p[K(z, t)-Kc(a(z, t), z)] 

Oa(z,t)/Ot=O 

K>K c 

otherwise 
(13) 

f being a geometric constant independent of a and rr. Before 
the penetration starts, the crack front lies along a straight 
line at x = a i, and crack growth is imminent at a load level 
that meets the condition frr(ai) 1/2 - K c. With further 
increase of the load the crack front will grow into a new 
equilibrium state having a slightly curved profile. Let a(z, t) 
and K(z, t) be expanded into Fourier series, 

[ ] a(z, t) =Re E An ein•rz/L 

] K(z, t) = Re Kn e in,rz/L 

Substituting (15) into (4) and carrying out the principal value 
integrations, one may show that the Fourier coefficients A n 
and K n are related by [Gao and Rice, 1986] 

K0 = Kø[A0] = fcr(Ao) •/2 

= !dKø[Ao] nrrM, K0[A0] 'An iron [ •l•00 2L 

=-•- •0 • 'An 

(16) 

These relations are valid only for small perturbations, i.e., 
when L/Ao and I Anl/Ao << 1. 

Using the FFT method to carry out the expansion and 
inversion of the Fourier series in (15), one may devise the 
following iteration procedure for simulating the process of 
the crack penetration into asperities: At a load level rr of 
interest the initial crack front profile a(z, 0) (taken as a 
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Fig. 3. A crack penetrating a periodic array of straight-edged asperities with •c/Kc = 2: (a) mode I and II and (b) 

mode I and III. 

constant at the start of the procedure) is expanded into a 
Fourier series via a FFT expansion, and the coefficients K n 
in the second equation of (15) are calculated from the 
perturbation equations (16). A FFT inversion by (15) gives 
the distribution of K(z, 0). Equation (13) is then used, for a 
chosen time interval At and constant p, to calculate the 
amount of growth Aa(z, 0) for one period -L < z < L, 
therefore updating a(z, At) as a(z, O) + Aa(z, 0). The 
above procedure is repeated to calculate the subsequent 
growth until the final equilibrium state is achieved in which 
a(z, t) no longer increases by any substantial amount (e.g., 
less than 10-6L), indicating that the conditions K(z) = K c 
and K(z) = •c are satisfied to the accuracy required along 
the corresponding portions of the crack front. Then the load 
o-may be increased by another step and the same sequence 
of steps followed. The above procedure can be made rapidly 
convergent if the time steps are properly chosen (scaling 
inversely with the arbitrarily chosen constant p). 

Figure 3 depicts the crack front penetration profiles in one 
period - 1 < z/L < 1 for a periodic array of asperities having 
flat edges. The asperities are spaced at 2L with a gap L 
between them and aligned parallel to the z axis so that the 
crack front encounters them simultaneously. The initial 
crack length a i is taken to be 10 times L (a i ought to be large 
compared to L, since this is based on a half plane crack 
analysis) with 

fcri(ai) 1/2 = Kc (17) 

A nondimensional load parameter defined as [r = o-/o- i is 
used to indicate the global level of the tectonic stressing. The 
fracture toughness •c of the asperities is taken as twice the 
value of K c. As the load parameter [r is increased with a step 
increment of 0.1, equilibrium profiles of a mode II crack 
front are shown as solid lines in Figure 3a, while those of a 
mode III crack front are shown similarly in Figure 3b. The 
mode I crack trapping profiles computed by Gao and Rice 
[ 1989] are shown as dotted lines for comparison. The results 
indicate that the mode II crack front penetrates approxi- 
mately twice as far between the asperities as the mode III 
crack fronts under the same loading level. A mode I crack 
front appears to be more flexible than a mode III front but 
less so than a mode II front. At the present toughness ratio 
•c/Kc - 2 the full penetration of the asperities occurs when 
•- reaches 1.5. 

Rigorously, the penetration curves in Figure 3 as predicted 
from the linearized perturbation theory are correct only to 
the first-order accuracy in the crack front deviation from a 
straight line. Recently, Fares [1989] has performed a BEM 
analysis of the crack trapping and showed that for a mode I 
crack front blocked by sufficiently tough particles, there is a 
maximum local stress intensity factor K(z) - WKc, which 
can be generated at the crack front prior to final instability. 
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If the toughness ratio l•c/Kc is less than W, the crack front 
will eventually break through the blocking particles. But if 
the toughness ratio is more than W, the penetrating crack 
front segments will tend to coalesce unstably with one 
another ahead of the particles so that the crack front 
bypasses the still intact particles, causing the so-called 
"crack bridging" process which has been identified as 
another important toughening mechanism of a brittle matrix 
by inclusions [e.g., Krstic, 1983]. Similar phenomena are 
expected to exist for shear crack penetration into asperities. 
While it lies beyond the scope of our linearized perturbation 
analysis, we expect that for moderately tough asperities the 
more deeply penetrating mode II crack front segments will 
more readily tend to coalesce with one another, so that the 
crack front advances and leaves unbroken asperities behind, 
whereas the mode III crack front will require a significantly 
higher asperity toughness to do so. For a mode I crack front 
the transition from particle breaking to particle bridging is 
found to occur at W = 3.52 for round particles spaced by two 
diameters. On the basis of the perturbation analysis for all 
three modes we expect a lower ratio at transition in mode II 
and higher in mode III. Further work for the mode I case, 
which goes beyond first-order perturbations, has also been 
reported by Bower and Ortiz [1990], who fully developed a 
technique of successive perturbations suggested by Rice 
[1989] and applied it, among other cases, to crack growth 
around obstacles. 

In the asperity models of Lay and Kanamori [1981] and 
Lay et al. [1982] for subduction zone earthquakes, asperities 
representing highly stressed regions are assumed to be fully 
coupled to seismic activities while less stressed regions 
normally slip aseismically but may be ruptured in response 
to rupture of the asperities. Scholz [1990] pointed out that 
the aseismically slipping regions in subduction zones should 
be further divided into two categories, namely, those that 
slip aseismically but may be ruptured in response to rupture 
of the asperities and those that always slip aseismically and 
do not rupture in response to rupture of adjoining regions. 
Analogously, our crack model also involves two distinctly 
different regions: asperities with higher fracture toughness 
which rupture seismically and the rest of the surroundings 
with much lower slip resistance, representing largely aseis- 
mic slipping regions. In the faulting process, tough asperities 
may be left intact (unbroken) as the slipping zone advances 
and coalesces ahead of them. The regions surrounding 
asperities are thus also divided into two categories: the 
penetrated regions which always slip aseismically and the as 
yet unpenetrated regions which may be ruptured in response 
to rupture of asperities. 

The interesting result that mode II crack fronts are more 
flexible than mode III crack fronts does seem to be consis- 

tent with differences in seismic coupling in strike-slip and 
subduction zone environments. Scholz [1990, p. 317] re- 
viewed observations of the distribution of slip in large 
earthquakes and stated that "... aseismic slip is a rare 
phenonmenon in faulting in continental crust .... However, 
a lack of complete seismic coupling seems to be common in 
subduction zones ..... "Due to the "rigidity" of mode III 
crack front segments, the aseismic slip component in strike- 
slip zone earthquakes would be much smaller compared to 
that in subduction zone earthquakes, at least if all other 
features of the fault interface were (as they are unlikely to 
be) closely similar in the two situations. 

An interesting connection can be made between the above 
behavior of a crack front and that of a crystal dislocation 
loop. To see this connection, first consider a closed disloca- 
tion loop in an elastic solid. It is well known that the edge 
portions of the dislocation have higher line tension (self- 
energy) than the screw portions, so that the equilibrium 
shape of the loop will be approximately an ellipse with its 
major axis parallel to the Burgers vector [e.g., Nabarro, 
1967, pp. 86-87]. In that configuration the edge portion of the 
loop would appear to be more flexible than the screw 
portion. Gao [ 1988] made a perturbation analysis of a nearly 
circular shear mode crack and found that the equilibrium 
shape of the crack is also approximately an ellipse with the 
major axis parallel to the direction of the applied shear 
stress. In that case, the mode II portion of the crack front 
deforms more (with larger curvature) and thus is more 
flexible than the mode III portion of the crack front. Simi- 
larly, it is easily seen that the difference in line tension 
between edge and screw dislocation segments would lead to 
the conclusion that an edge dislocation line will tend to bow 
out deeper between two pinning points (as in the Frank-Read 
process) than a screw dislocation under the same level of 
applied shear stresses [e.g., Mitchell and Smialek]. Clearly, 
this is in qualitative agreement with the behavior of shear 
mode crack fronts shown in Figure 3. 

Figure 4 shows a simulation of the shear crack fronts 
penetrating multiple arrays of circular shaped asperities 
(with radius taken as 0.1L and toughness ratio as 2). Three 
rows of asperities are displayed, and each row contains one 
more asperity so that the penetrating crack front encounters 
a stronger resistance as it advances upward into the seis- 
mogenic layer. Compared to the mode III crack front, the 
more flexible mode II front interacts with more asperities in 
different rows. As the crack front penetrates into the first 
row, part of the front also contacts asperities in the second 
row, and the interaction effect increases the overall resis- 
tance against penetration. The final breakthrough occurs at 
?r = 1.30. The mode II front interacts with more asperities 
and breaks through them in multiple unstable events of 
limited extent and at different load levels, while the less 
flexible mode III crack front tends to break simultaneously 
one row of asperities and then to jump (unstably) to the next 
row. Note that in the simulation we have assumed that the 

asperities share the same fracture toughness. This assump- 
tion may not be generally valid, but to the extent that it may 
be a good approximation in some cases and the breaking of 
asperities is recorded in the form of foreshocks prior to a 
major earthquake, the above observation implies that for 
comparable stressing environments the foreshocks occurring 
in strike-slip fault zones would tend to be less frequent but of 
larger magnitude when they do occur when compared to 
those in thrust or normal fault zones of similar fault zone 

properties. 

CONFIGuRATIoNAL STABILITY OF A HOMOGENEOUS 

STRIKE-SLIP FAULT ZONE 

In the previous section we discussed one aspect of the 
nonuniform stressing in a creeping fault on a sufficiently 
short-wavelength scale by considering penetration of a con- 
tinuously slipping zone into localized asperities having a 
much smaller dimension than overall length scales of the 
seismogenic layer. If the toughness distributions had been 
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Fig. 4. Profiles of a crack penetrating three rows of round asperities (•c/Kc = 2) as the load 5- is increased from 1.0 
to 1.3 on a step 0.02: (a) mode II and (b) mode III. 

nearly uniform along strike, the crack fronts would have 
advanced upward as nearly straight lines, suggesting that a 
crack front is configurationally stable with respect to short- 
wavelength perturbations [Rice, 1985; Gao and Rice, 1986]. 
However, we show below that a straight crack front config- 
uration is intrinsically unstable for perturbations of suffi- 
ciently long wavelength in the absence of any heterogeneous 
toughness distribution on the fault plane. Also, we hasten to 
point out that the variation of fracture strength significantly 
influences the stability analysis. For example, we show in 
the appendix that the straight crack configuration can be 
stabilized at long wavelengths when there is a toughness 
distribution that is uniform along strike but has a significant, 
positive vertical gradient. 

Perturbation Analysis and Configurational Stability 

For a straight mode III crack front along a strike-slip fault 
trace, consider the following cosine wave perturbation (as in 
Figure la): 

a(z) = a0 + A cos (2rrz/A) (18) 

where A is assumed to be small compared to any other 
relevant length dimension. For the short-wavelength regime, 
when A << a0, A << H - a0, the model of a half plane crack 

in an infinite solid applies, and substituting (18) into (4) gives 
[Gao and Rice, 1986] 

K(z) = Kø[a0] 

(dKø[ao] (2 + •,)rr KO[ao])A cos (2fez/A) (19) + Yaa -(2- 
where the expression for Kø[a0] has been given by (7). On 
the other hand, for the long-wavelength regime when A >> 
a0, A >> H - a0, the approximate line spring model applies 
and substituting first-order expansions 

O'(Z) = 0"• + O' A COS (2'rrz/A) 

15(z) = croo/k(ao) + •A COS (2rrZ/A) (20) 

k[a(z)] = k(ao) + k'(ao)A cos (2rrz/A) 

into the governing line spring equations (6), (10), and (11), 
one may derive 

O' A [2rr(1 + •,)A/A] tan (rrao/2H) 
-- = (21) 
croo 1 + 4(1 + v)(H/A) In [1/cos (rrao/2H)] 

The stress intensity factor along the perturbed crack front is 
then given by 
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•ra(z))l/2 K = o'(z) 2H tan • = Kø[a0] 
2H 

(dKø[ao] O' A + k' •/• A•r Kø[aø] A cos (2•rz/Z) (22) 
Combining (19) and (22), we find that K(z) can be generally 
written as 

(dKø[ao] C KO[ao])A cos (2rrz/A) K(z): Kø[ao] + • • 
where the coefficient C = C(ao, A) takes the value 

2 • ( 1 + •) tan (• a 0/2H) 
c = 

1 + 4(1 + •)(H/A) In [1/cos (•ao/2H)] 

at long wavelengths and 

c = (2 + .)•/(2- .) (25) 

at sho• wavelengths. 
Assuming that fracture toughness prope•ies are uniform 

on the fault plane and that the crack growth rate is an 
increasing function of K, then the amplitude of the cosine 
perturbation (18) will grow if the maxima of K(•) and a(•) 
are in phase but decay if they are out of phase. Thus 
according to (23), disturbances of wavelength A will decay in 
amplitude during crack growth if 

dKø[ao]/dao < (C/A )Kø[ao] (26) 

and in this case the straight crack front is said to be 
configurationally stable. Apparently, the stabiliW condition 
(26) is met only for sufficiently small A since according to (7) 

dKø[ao]/dao = •Kø[ao]/2H sin (•ao/H) > 0 (27) 

If the stability condition (26) is violated, which is the case for 
sufficiently large A, then a small perturbation will be enlarged 
during crack growth so that a straight crack front becomes 
configurationally unstable. The critical condition is reached 
when 

dKø[ao] C(ao, Acr) 
• = Kø[a0] (28a) 

dao Act 

or 

= -- sin (28b) 
C(a0, • •) 

The line spring expression (24) predicts a critical wavelength 

Act = 4(1 + •)H•2 sin 2 (•ao/2H) - In [1/cos (•ao/2H)]• 

(29) 

while the short-wavelength expression (25) predicts 

A cr = [2(2 + v)H/(2 - v)] sin (rrao/H) (30) 

(which is out of the range of validity of the half plane crack 
model, since A is then comparable to one or both of a0 and 
H - a0). These approximate results for Acr are plotted in 
Figure 5a in comparison with three-dimensional finite ele- 
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Fig. 5. The critical wavelength in perturbations of a straight 
mode III crack front along a strike-slip fault: (a) perturbation 
solutions versus FEM result; (b) prediction from equation (31) 
versus FEM result. 

ment results to be described shortly. Although our conclu- 
sions on configurational stability have to be modified when 
the fracture toughness varies in the fault plane, as discussed 
in the appendix for the case of an upward toughness gradi- 
ent, Acr remains of interest since it marks the transition of 
perturbations of a and K from being in-phase to out-of-phase 
with one another. 

Finite Element Calculation 

To examine the perturbation results for Acr in the interme- 
diate regime, where neither of the simple limiting case 
models above applies, we have performed a complete three- 
dimensional finite element method (FEM) calculation for the 
perturbed cosine crack front to determine the exact values 
(within the FEM precision) of Acr/H as a function of a o/H. 

The FEM mesh layout is shown in Figure 6a. The sym- 
metry of the periodic crack front profile permits us to 
consider only one-quarter of the body within one period 0 < 
z < A by imposing the symmetry conditions (ux = O, u z = 
0) along the uncracked region in the fault plane y = 0 and 
(ux = O, Uy = 0) along the x - y section planes at z - 0 and 
z = A/2. We use the 27-noded isoparametric Lagrangian 
element (eight nodes at vertices, 12 at midsides, six at face 
centers, and one at the body center; see Figure 6b) for the 
general mesh and the collapsed quarter-point singular ele- 
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Fig. 6. (a) The FEM mesh layout in the half period 0 < z < A/2 

along the periodic wavy crack front. (b) The 27-noded element. (c) 
Quarter-point crack-tip element. 

ment (Figure 6c) at the crack tip. The three-dimensional 
mesh is constructed from a two-dimensional layout in the 
x - y plane by copying the same mesh over different x - y 
section planes along the z direction. Nodal positions on 
elements near the crack tip region are then slightly perturbed 
in the x direction following the cosine wave crack front 
profile. The FEM results are further improved by including 
"transition elements" [Lynn and Ingraffea, 1978] outside 
the crack tip singular element layer. Within the capacity of 
the convex computer that we use, a maximum of 220 
elements are taken which leads to a total three-dimensional 

mesh of 2211 nodes with 3 degrees of freedom per node. To 
test our FEM mesh, we first considered the two-dimensional 
antiplane strain case of a straight mode III crack front and 
calculated the stress intensity factor by directly matching the 
asymptotic displacement variation at the crack tip and also 
by the virtual crack extension method (i.e., local J-integral 
method; see, for example, Parks [1978]). The result based on 
the direct displacement method shows about 1% error com- 
pared with the analytic solution given in (7), while the result 
predicted from the virtual crack extension method is accu- 
rate to within 0.1%. 

For a perturbed crack front, both the displacement 
method and the virtual crack extension method show con- 

sistent prediction for the critical wavelength Act, with data 
displayed in Figure 5a for 10 different ratios of ao/H. It is 
noted that even at the maximum value of Acr/H around 4.5, 
the FEM result still shows about 10% difference compared to 
the line spring prediction. This seems somewhat inconsistent 
with previous reports (e.g., see results cited by Parks et al. 

Fig. 7. The coefficient C appearing in equation (23): approxima- 
tion (31) versus asymptotic expressions (24) and (25). 

[1981] and Delale and Erdogan [1982]) that for part-through 
elliptical tensile cracks in plates the line spring model agrees 
well with the FEM calculations when the surface length of 
the crack is of the same order as the crack depth. By varying 
the perturbation amplitude A and increasing the number of 
elements dramatically, both near the crack tip region and 
along the global plate dimensions, we have not found any 
change in our numerical values for Act. This small difference 
between the mode III FEM and line spring results may 
reflect the neglect of plate bending (in addition to plane 
stress) deformation fields in the mode III line spring model as 
formulated. Such bending effects were included in the mode 
I line spring model [Rice and Levy, 1972]. The variable depth 
of our mode III crack implies (in the language of plate 
bending theory) a variable "twisting moment" along the 
plate edge, and the numerical discrepancy at large ,X may be 
due to its neglect in the line spring model. 

An Approximate Perturbation Formula Valid 
for All Wavelengths 

On the basis of the perturbation results at long and short 
wavelengths as well as the FEM calculation, we may con- 
struct an approximate expression for the coefficient C which 
appears in the K expression (23). One simple expression that 
matches the asymptotic behaviors (24) and (25) and approx- 
imately fits the FEM result for Act is 

(2 + v)rr 1 
C(ao, A) = 

2- v 1 + A 2/[ 16a0(H_ a0)] 

2rr(1 + v) tan (rcao/2H) 
+ (31) 

1 + 4(1 + v)(H/A) In [1/cos (rcao/2H)] 

The Acr/H predicted from the above C approximation is 
compared with the corresponding FEM result in Figure 5b. 
We also plot (31) with the associated asymptotic expressions 
(24) and (25) in Figure 7. 

On the basis of the C approximation (31) for all wave- 
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lengths and the K expression (23), the previous FFT method 
may be directly extended to study a perturbed mode III 
crack front in response to a periodic toughness variation in 
the fault plane with period equal to 2L of the same order as 
the lithosphere thickness. The same steps as summarized 
from (13) to (17) can be followed after replacing (14) with 

K o = Kø[Ao] = rro•[2H tan (rrAo/2H)] •/2 

= [dKø[Ao] nC(Ao, 2L/n) KO[Ao] g'n ['•-'•0- A n 

(32) 

We leave such investigations to future work. 

DISCUSSION AND CONCLUSIONS 

In this paper some aspects of the nonuniform stressing 
along a creeping fault are studied based on a model which 
represents the slipping portions of a fault as a shear crack 
penetrating upward into the more brittle seismogenic layer. 
Two major results are reported. First, we have analyzed 
approximately, via a first-order perturbation formulation, 
how a crack front encounters and shears through periodic 
arrays of localized asperities of slightly higher fracture 
resistance than their adjoining segments of the fault plane. 
The configuration of a shear crack, as it gradually penetrates 
into the asperities at increasing tectonic stress levels, is 
calculated by equating the local stress intensity factor to the 
local fracture toughness at every point along the crack front. 
We find notable differences between mode II and mode III 

crack fronts in that the former penetrates approximately 
twice as far between the asperities as the latter under the 
same loading level. Observations [e.g., $cholz, 1990] of the 
distribution of slip in large earthquakes suggest that there is 
a significant aseismic component to the total slip budget in 
subduction zone earthquakes, which, in contrast, does not 
seem to be present in strike-slip earthquakes and suggest 
also that continental dip-slip earthquakes have surface slip 
distributions which are typically much more nonuniform 
along strike than for comparable size strike-slip earthquakes. 
Our analysis thus presents one possible physical mechanism 
for such differences in seismic behavior. The simulation of 

crack penetration into a multiple arrays of asperities, mod- 
eling the increasing fracture resistance at more inner regions 
of the seismogenic layer, shows that the mode II crack front 
interacts with more asperities simultaneously and breaks 
them at different loading levels compared to the less flexible 
mode III crack front which simply breaks one row of 
asperities and jumps (unstably) to the next row. To the 
extent that such a periodic asperity setting provides an 
approximate description of faulting, this fundamental differ- 
ence between mode II and III cracks may indicate that 
foreshocks in strike-slip fault zones tend to be larger but less 
frequent prior to a major earthquake compared to those in 
thrust or normal fault zones of comparable material proper- 
ties. 

Rigorously speaking, the linearized perturbation theory is 
correct only to the first-order accuracy in the crack front 
deviation from a straight line. Hence the first-order pertur- 
bation analysis applies to asperities only slightly tougher 
than their surrounding regions. For moderately tough asper- 
ities, while it lies beyond the scope of our linearized analy- 
sis, we expect that the more deeply penetrating mode II 

crack front segments will more readily tend to coalesce 
unstably with one another, so that the crack front advances 
and leaves unbroken asperities behind, whereas the mode III 
crack will require a significantly higher asperity toughness to 
do so. For mode I cracks penetrating second phase inclu- 
sions the transition from breaking through to surrounding 
particles has been studied by Fares [1989] and is found to 
occur at a toughness ratio of approximately 3.5 for a row of 
circular obstacles with two diameter center-to-center spac- 
ing; on the basis of the linearized perturbation analysis for all 
three modes, we tentatively expect a lower ratio at transition 
in mode II and higher in mode III. 

The second major result reported in the paper is con- 
cerned with whether a straight mode III crack front in the 
lithosphere along a strike-slip fault will remain in the straight 
configuration as the slipping crack penetrates upward to 
cause a major earthquake. By examining the short- and 
long-wavelength perturbation results, we have shown that a 
critical wavelength Acr of the order of the lithosphere thick- 
ness H exists above which the stress intensity factor is 
enhanced rather than diminished at the most advanced 

portions of the crack front. A full three-dimensional finite 
element calculation is then performed to determine the exact 
value of Acr/H at different crack depths. If the resistance to 
crack growth is essentially uniform over the fault plane, then 
the straight crack front is configurationally unstable when 
A > Acr, although significant gradients of fracture resistance 
can completely stabilize the straight front, or stabilize it to 
longer wavelengths (see the appendix). 

A somewhat related configurational stability problem for 
rupture of a single circular asperity has been previously 
considered by Gao [1989]. In that case it was found that the 
circular shape is configurationally stable as long as rigid 
rotations are fully suppressed at remote field. Thus circular 
asperities are expected to remain in circular shape during 
quasi-static crack growth. Interestingly, this is consistent 
with the dynamic analysis of Das and Kostrov [1983] on 
breaking of a single asperity. They found that the rupture 
front undergoes a "double pincer" movement starting from 
the initiation point, indicating that an initially circular asper- 
ity tends to retain its circular shape during rupture. 

The analysis on configurational stability of fault zones is 
also motivated by the observation that fault zones, particu- 
larly long ones, often do not rupture along their entire length 
during a single earthquake. This phenomenon has been 
generally referred to as fault segmentation in the earthquake 
research community. Increasingly, geological and seismo- 
logical studies [e.g., Schwartz and Coppersmith, 1984; 
Schwartz and Sibson, 1988] indicate that the location of an 
earthquake rupture is not random, that there exist recogniz- 
able physical properties of fault zones which control the 
nucleation point and lateral extent of rupture and divide a 
fault into segments, that ruptures with the same character- 
istics often repeat in the same location, and that independent 
rupture segments can persist through several seismic cycles. 

Although it is natural to attribute fault segmentation to 
complex structural or geometrical features of fault zones, 
some aspects may follow from the intrinsic mechanics of 
faulting to the extent that they would be maintained even if 
all complexity in the Earth's structure were eliminated. 
Horowitz and Ruina [ 1989] have demonstrated that complex 
seismic slip patterns can in special near-neutral stability 
cases be generated even with no complexity in fault geom- 
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etry or heterogeneity in material properties. Interestingly, 
our analysis shows that a spatially homogeneous strike-slip 
fault zone with completely uniform stressing and material 
properties is intrinsically unstable at sufficiently long wave- 
lengths. Following this line of investigation, more elaborate 
crustal earthquake models should be developed, for exam- 
ple, by incorporating in our type of three-dimensional anal- 
ysis the model of Tse and Rice [1986] in which the slip and 
stress distributions on the fault surface are required to 
satisfy laboratory-constrained rate- and state-dependent fric- 
tion laws with properties that vary with temperature and 
thus with depth. The limited realization of such modeling 
with frictional properties that are uniform along strike at 
each depth hints that uniform fault models are inadequate to 
explain spatiotemporally complex slip. This is at variance 
with conclusions from inherently discrete models [Bak and 
Tang, 1989; Carlson and Langer, 1989; Ito and Matsuzaki, 
1990], and the issue remains to be resolved. 

APPENDIX' EFFECT OF A VERTICAL GRADIENT 

OF FRACTURE RESISTANCE 

Since temperature, normal stress, and pore pressure 
within a fault zone vary with the vertical coordinate x, we 
assume here that the fracture toughness K c = Kc(x, z) 
varies significantly with x. In order to test if small along- 
strike perturbations in toughness will cause much larger 
deviations of the crack front from a straight line, which 
would signal configurational instability, we assume that 
Kc(x, z) is nearly independent of z. That slight z depen- 
dence can be represented by a Fourier superposition, with 
coefficients dependent on x. Since we will linearize in the 
amplitude of any nonuniformities in the z direction, it 
suffices to consider a single Fourier component, for exam- 
ple, 

Kc(x, z)= Kcl(X) 1- e(x) cos - ' (A1) 

where ]e]<< 1, and to superpose results later. 
The crack shape taken in response to that mode of 

nonuniformity along strike will be of the form a(z) = a0 + 
A cos (2½rz/A), at least within the linearization, where we 
assume ]A] << a 0, ]A] << H - a 0. To obtain •r and A, the 
local K(z) of equation (23) is set equal to Kc(a (z), z) so that, 
using equation (27) and appropriate linearizations, the frac- 
ture criterion K = K c is 

•r[2H tan (•rao/2H)] 1/2 1 + 2H sin (•rao/H) 

I clao' 
I dKcl + A dao e(ao)Kcl(a o) cos (2½rz/A) (A2) 

This criterion will be met if 

tr = Kcl(ao)/[2H tan (•rao/2H)] 1/2 (A3) 

which describes the stress to sustain upward growth of a slip 
crack with straight front, and 

A = e(ao)/Q(ao, A) (A4) 

where 

dKcl(ao)/dao C(ao, A) ,rr 
Q(ao, A) = + - 

Kcl(ao) A 2H sin (•rao/H) 

(A5) 

Since C(a, A) > 0, Q(a, A) > 0 for sufficiently small A, 
and the crack profile then undulates in phase with the 
reduction of toughness. However, if there exists a suffi- 
ciently large wavelength A such that Q(a o, A) = 0, the 
straight crack profile is configurationally unstable to pertur- 
bations of that wavelength. When dKcl(ao)/da o = 0, the 
critical A defined by Q(a o, A) = 0 is the same Acr discussed 
in connection with Figure 5, confirming our earlier results for 
configurational stability for crack growth over a fault zone of 
essentially uniform toughness. 

Since we lack direct constraints on dKcl(a)/da, we pro- 
ceed as follows. The straight-crack-front fracture criterion of 
equation (A3) gives tr = tr(a0) and, when differentiated, 
shows that 

do'(ao)/dao dKcl(ao)/dao ,n' 

o'(ao) Kcl(ao) 2H sin (•rao/H) 
(A6) 

Thus, for example, the assertion that dtr/da o > 0 shows that 
dKcl/da o must exceed a certain positive lower bound. We 
can use the last expression to rewrite the denominator Q of 
the perturbation (A4) and (A5) as 

do'(ao)/dao C(ao, A) 
Q(ao, A) = + (A7) 

o'(ao) A 

This shows that as long as the straight-crack-front configu- 
ration grows upward in the lithosphere under increasing 
tectonic stress tr, Q > 0 for all A. Thus the vertical gradient 
of Kcl stabilizes the straight configuration against small 
amplitude perturbations of all wavelengths. 

The condition dtr/dao > 0 may be too restrictive for 
realistic representations of tectonic loading. Rather than 
develop a realistic loading model, such as loading by shear 
flow in an underlying upper mantle region below a loosely 
coupled crustal plate [e.g., Li and Rice, 1987], we adopt a 
simpler scenario here. Let us isolate a width W of the plate, 
extending from y = -W/2 to y = W/2 in the horizontal 
direction perpendicular to the strike and regard the relative 
horizontal displacement A in the strike slipping direction as 
a given, nondecreasing, variable. Then using k = k(a o) of 
equation (10) and assuming that W is comparable to or larger 
than H, 

A(a0) = Wo'(ao)/lx + tr(ao)/k(a o) (A8) 

where the last term represents the additional compliance of 
the part-cracked fault zone. Thus one finds 
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dA(ao)/dao drr(ao)/dao 

o-(ao) 

2 tan ( rr a o/2 H) 

W + (4H/rr) In [1/cos (•rao/2H)] 

dKcl(ao)/dao •r 

Kcl(ao) 2H sin (•rao/H) 

2 tan ( rr a 0/2H) 

W + (4H/rr) In [1/cos (,rao/2H)] 

and we may rewrite Q as 

dA(ao)/dao C(ao, A) 
Q(ao, A) = + • 

A(ao) A 

(A9) 

2 tan ( rr a 0/2 H) 

W + (4H/rr) In [1/cos (,rao/2H)] 
(A10) 

At the onset of dynamically unstable crack growth the 
crack has reached a length a 0 at which dKc•(ao)/da o is 
sufficiently small that dao/dA -• *•, which is equivalent to 
dA(ao)/dao -• O. Whenever the cracked fault zone is suffi- 
ciently close to this condition, so that the sum of the first and 
third terms in Q is negative, the straight front configuration 
will be unstable to sufficiently long wavelengths A, since 
there will exist a A at which Q(ao, A) = 0. As an example, 
suppose that the system is sufficiently close to dynamical 
instability that dA(ao)/da o is negligibly small and that this 
happens, for example, at a 0 = H/2; there results A -• 3W + 
1.3H at configurational instability (observe from Figure 7 
that when ao/H = 0.5, C is nearly 6 for a wide range of 
MH). If W is taken to be of the same order as H, the above 
wavelength is comparable to Act = 4H (from Figure 5b) for 
the case when the fracture toughness is essentially uniform. 
If dK•.•/dao were not close to that for dynamic instability, 
the result A = 3 W + 1.3 H would be a lower bound to the 

A at configurational instability, and a significant increase of 
dKcl/dao might preclude configurational instability at any 
wavelength. 
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