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ABSTRACT 

DISLOCATION nucleation from a stressed crack tip is analyzed based on the Peierls concept. A periodic 
relation between shear stress and atomic shear displacement is assumed to hold along the most highly 
stressed slip plane emanating from a crack tip. This allows some small slip displacement to occur near the 
tip in response to small applied loading and, with increase in loading, the incipient dislocation configuration 
becomes unstable and leads to a fully formed dislocation which is driven away from the crack. An exact 
solution for the loading at that nucleation instability is developed via the J-integral for the case when the 
crack and slip planes coincide, and an approximate solution is given when they do not. Solutions are also 
given for emission of  dissociated dislocations, especially partial dislocation pairs in fcc crystals. The leveJ 
of applied stress intensity factors required for dislocation nucleation is shown to be proportional to x/)'u,, 
where 7,,., the unstable stacking energy, is a new solid state parameter identified by the analysis. It is the 
maximum energy encountered in the block-like sliding along a slip plane, in the Burgers vector direction, 
of  one half of  a crystal relative to the other. Approximate estimates of  ~,~j are summarized and the results 
are used to evaluate brittle vs ductile response in fcc and bcc metals in terms of the competition between 
dislocation nucleation and Griffith cleavage at a crack tip. The predictions seem compatible with known 
behavior and also show that in many cases solids which are predicted to first cleave under pure mode I 
loading should instead first emit dislocations when that loading includes very small amounts of  mode II 
and III shear. The analysis in this paper also reveals a feature of  the near-tip slip distribution corresponding 
to the saddle point energy configuration for cracks that are loaded below the nucleation threshold, as is 
of interest for thermal activation. 

1. INTRODUCTION 

ARMSTRONG (1966) and KELLY et al. (1967) advanced the viewpoint of brittle vs 
ductile response as the competition between Griffith cleavage and plastic shear at a 
crack tip. RICE and THOMSON (1974) specifically modeled the shear process as the 
nucleation of a dislocation from a stressed crack tip. The Rice and Thomson approach 
made use of elasticity solutions for a fully formed dislocation (i.e. a dislocation with 
slip equal to the Burgers vector b of some complete or partial lattice dislocation) and 
a core cut-off parameter had to be introduced to derive a nucleation criterion. Here, 
following a suggestion by ARGON (1987), the PEIERLS (1940) concept is used in an 
analysis of dislocation formation at a crack tip. That is, a periodic relation is assumed 
to hold between shear stress and sliding displacement along a crystal slip plane 
emanating from a crack tip, and a solution is then derived for the critical external 
loading which corresponds to dislocation nucleation. 
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With the results so derived, there will be no further need for the introduction of  the 
poorly defined core cut-off at a crack tip in analyzing such phenomena. Indeed, the 
results show that no feature resembling a fully formed dislocation is present at the 
crack tip prior to the instability; the instability begins a slip event leading to a fully 
formed dislocation which moves away from the crack tip. Prior to the instability there 
exists only an incipient dislocation in the form of  a nonlinear shear distribution along 
a slip plane, with maximum deformation equivalent to a slip at the crack tip of  
generally less than a half of that of the fully formed dislocation. The Peierls concept 
has also been used in a recent analysis of dislocation nucleation by SeHOECK (1991), 
started simultaneously with the present analysis. His analysis was somewhat more 
approximate and did not uncover the exact solution for nucleation within the Peierls 
framework that is derived here. The results which follow identify a new solid state 
parameter, denoted 7,,~ and called the unstable stacking energy, which characterizes 
the resistance to dislocation nucleation. 

2. DESCRIPTION OF MODEL 

Suppose a crack tip intersects one of the possible slip planes in a ductile crystal 
[Fig. 1 (a)]. The question addressed here is that of what loading of  the cracked solid 
suffices to nucleate a dislocation from the tip, assuming that cleavage decohesion does 
not occur first. By adopting the PEIERLS (1940) concept, the shear stress T along the 
slip plane is regarded as a (periodic) function of the slip displacement 6 along it. Thus, 
the problem addressed consists of an externally loaded solid containing a crack with 
traction-free surfaces, and with the additional boundary condition that the shear 
traction ~ must be a function of  the slip displacement 3 along a plane of  displacement 
discontinuity emanating from the crack tip. For  the moment it is assumed that there 
is a discontinuity of  slip displacement only along that plane. More precise models in 
which there are discontinuities in both shear and opening displacement (the latter 
relating to dilatancy of  an atomic array during large shear and, also, to the presence 
of tensile stress a across the slip plane) are discussed by BELTZ and RICE (1991 a, b) 
and SUN et al. (1991a). Hence, if s and [] are unit vectors in the slip direction and 
normal to the slip plane, then 3 = u,% - u ; ,  where u, = s ' u ;  u is the displacement 
vector and + and - refer to the two sides of  the slip plane with n pointing from - 
to + .  Within the present simplification, other components of  [] are continuous. Also, 

= n~a~s~ = a,,s, where a~  is the stress tensor. 
The z vs ~ relation is assumed to have a form like in Fig. l(b), i.e. a periodic 

function with period b equal to the Burgers vector of  a full dislocation, and with an 
axis crossing in between, at b/2 in lattices with simple symmetry. Ways of estimating 
the form of  the relation, and why it has been drawn with a vertical tangent at 6 = 0 
and b, are discussed below; adaptations of  concepts so as to deal with complex 
dislocations having stacking faults or anti-phase boundaries are discussed in a later 
section. WEERTMAN (1981) analyzed a similar model but with the ~ vs 6 relation in 
the form of  a rectagular wave. 

The result to be derived in the paper is that dislocation nucleation occurs under 
critical crack tip stress intensity factors which scale with ~ , , s .  Here y,., the unstable 
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FIG. I. (a) Crystal slip plane emanating from crack tip. (b) Periodic relation between stress and shear 
displacement discontinuity (see discussion in connection with Fig. 2 to understand basis for vertical tangent 

at zero slip). (c) Energy associated with slip discontinuity. 

s tacking energy, is identified in Fig. l (b)  as the area under  the r vs 3 curve between 
6 = 0 and 6 = b/2 (more  generally, y,,., is the area between 3 = 0 and the first 6 at 
which z = 0 again).  Figure l(c) shows the energy per  unit area of  the slip plane, 
(1) = S z d6. Thus  y,,~. is the m a x i m u m  value of  q~. One may  take the viewpoint  that  the 
same r vs 6 relation could be used to describe the block-l ike shear,  a long a slip plane, 
o f  one ha l f  o f  a perfect  lattice relative to the other.  Hence • (or, more  accurately,  a 
related energy ~u in t roduced below) cor responds  to the y-energy plot  o f  V[TEK (1968) 
and VITEK et al. (1972), and y ..... the m a x i m u m  value o f @  (and of  q~) along the slip 
path,  is the energy barr ier  to be overcome in block-like shear. 

T o  unders tand the r vs 6 relation, consider  the states of  shear of  an initially 
rectangular  lattice illustrated in Fig. 2. The  relative shear displacement  of  the central 
pair  o f  planes is denoted A; these are separa ted  by distance h and are the pair  o f  
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FIo. 2. Various states of shear for a simple cubic lattice ; state (d) shows the unstable stacking configuration, 
with energy ~',,s per unit area of slip plane. 

planes which will ultimately be displaced a lattice distance b. Lattice configurations 
(a)-(d), starting at the lower left and going clockwise, correspond to points (a)-(d) 
on the z vs A curve. All the configurations shown are homogeneous in the direction 
of  the shear displacement, but not perpendicular to it. When sufficiently sheared, like 
in (c) and (d), there exist configurations in which the lattice is not homogeneously 
strained, like it is in (b), but rather for which the central pair of  planes corresponds 
to a A along the descending part of  the z vs A relation, while the crystal outside is 
stressed at the same level at an amount of  shear corresponding to the rising part of  
the curve. Position (d) corresponds to the unstressed but unstable equilibrium state 
for which the central pair of  lattice planes are displaced by b/2 while the crystal outside 
is unstrained. This is the unstable stacking configuration and the work to create it 
(area under ~ vs A between A = 0 and b/2) is y,~, the same y,, of  Figs 1 (b) and (c), as 
explained next. 

Although the configurations considered in Fig. 2 are homogeneous in the direction 
of shear, PEIERLS (1940) will be followed in applying the ~ vs A relation locally to 



Dislocation nucleation from a crack tip 243 

states of  inhomogeneous shear like along the slip plane in Fig. l(a). Since that 
inhomogeneous shear is modeled here as a displacement discontinuity, of  amount  6, 
along a cut of  zero thickness in an elastic continuum, it is sensible to identify 6 not 
with A, which denotes relative displacement of  points a distance h apart,  but rather 
to write ,5 = 6 + hr /#  so that relative displacement A of atomic planes at spacing h is 
composed of the discontinuity 6 on the mathematical, cut plus an additional amount  
due to elastic shearing by amount  r//~ over a distance h perpendicular to the cut ;/~ is 
the shear modulus. Thus, if z = F(A), of  period b, describes the z vs A relaton of 
Fig. 2, where F(0) = 0 and /~ = hF'(0),  then the r vs 6 relation, z = f ( 6 ) ,  is given 
parametrically by z = F(A) and 6 = A - h r / l ~  = A - - F ( A ) / F ' ( O ) .  This means that the 
resulting r = f ( 6 )  is of  period b and that f ' ( 6 )  is unbounded at 6 = 0, as illustrated 
in Fig. l(b). The transformation from A to 6 as displacement variable preserves the 
area, namely 7,,., under the z vs displacement curve between the origin and the next 
zero of  r. An energy W(A) may be defined from z dA = d~ v ; it is the form in which 
an energy of sheared configurations has been calculated from atomic models [e.g. 
VITEK (1968), VITEK et al. (1972), YAMAGUCHI et al. (1981) and SUN et al. (1991b)]. 
Given that the energy q~(6) of  Fig. l(c) satisfies z d6 = dq), the relation c5 = A - h ~ / l ~  

shows that dq~ = d U d - h z  d r /p  and thus that q~(6) = ~P(A)-hrZ(A)/2/~. 
The simplest case of  a z = F(A) relation is the Frenkel sinusoidal function 

= (l~b/2nh) sin (2nA/b ) ,  (1) 

in which case 

6 = A -  (b/2n) sin (2nA/b)  (2) 

and the energies h v and q) are 

~P = (l~b2/2nZh) sin 2 (hA~b), ~ = Olb2/2n2h) sin 4 (hA~b). (3) 

In this case Y,,, which is the common maximum o f ~  and ~P, is given by y,,~. = #b2/2n2h, 

an estimate that will be considered subsequently along with others. The plots in Figs 
l(b), l(c) and 2 have been drawn based on the Frenkel sinusoid. Assuming in general 
that r = F(A) has the series expansion F(A) = A A -  BA 3 + . . .  near A = 0, with B :~ 0, 
then 6 = ( B / A ) A 3 +  . . .  near A = 0, so that the z = f ( 6 )  relation has the form 
c~ = Bz3 /A4q  - . . .  near r = 0. Thus, a vertical tangent of  f (6 )  always results at 6 = 0. 

There seems to be no method of directly measuring ?us other than perhaps by 
exploiting its significance in the analysis to be developed. However, the type of atomic 
displacements involved in shifting one half of  a crystal relative to the other are 
relatively simple and susceptible to analysis by atomic models, whether constructed 
empirically by matching pair or embedded-atom potentials to measured properties 
(moduli, surface energy, heat of  formation, etc.), or found by quantum electronic 
principles based on density functional theory. Some results based on the former 
approach are given by SUN et al. (1991b). 

3. ANALYSIS OF SIMPLIFIED GEOMETRY WITH COINCIDENT CRACK AND SLIP PLANES 

While geometries like in Fig. l(a), typically loaded by tensile, or predominantly 
tensile, forces relative to the crack plane are of  primary interest, the problem posed 
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is solvable only by numerical methods (BELTZ and RICE, 1991a, b). Tensile loading 
of  that configuration of  Fig. 1 (a) causes high shear stress z (at least, when slip 6 is 
precluded) along any slip plane in the general range of, say, 0 = 30-120 ° ; the mode 
I crack tip field has highest shear stress along 0 ~ 70 °. Some of  the same features of  
the configuration of  Fig. 1 (a), namely, shear along a highly stressed plane emanating 
from the crack tip, are preserved in the simplified configuration of  Fig. 3, for which 
an exact solution will be derived. In that simplified case, the most stressed slip plane 
is assumed to be coplanar with the crack (0 = 0), with s in the xrdirect ion,  so 
emerging dislocations are of edge character relative to the tip, and the external loading 
is by in-plane (mode II) shear. A nearly identical analysis may be followed when s is 
in the x3-direction, so that emerging dislocations are of  screw type relative to the tip, 
and loading is by anti-plane shear (mode III). 

Along the prolongation of the crack into the slip plane in Fig. 3, 6 = uf - u 7  and 
= a2~, where z = f ( 6 )  like in Fig. l(b) ; u2 and u3 are continuous there. Recognizing 

that this configuration is being analyzed as a simplified analog of more realistic tensile- 
loaded cases like in Fig. l(a), the applicability of  the z vs 6 relation is not extended 
back onto the crack faces in Fig. 3 but, rather, it is assumed that the crack faces are 
traction-free (tr2j = 0, j = 1, 2, 3). 

The crack is assumed to be sufficiently long that any region near its tip where 
significant slip develops, prior to unstable dislocation nucleation, is assumed to be of 
negligible length compared to crack length and over overall dimensions of the cracked 
solid, such as distance to boundaries and to points of  external force application. In 
that case it suffices to consider the crack as a semi-infinite slit in an unbounded solid, 
with all loadings applied at infinitely remote distance so that all that needs to be 
considered is the singular crack tip stress field, characterized by stress intensity factors, 
Kt, Kl] and KIN, that the loadings would induce in the linear elastic model of the actual 
solid. At present, only K.  is assumed to be non-zero, such that the stress field ahead 
of the crack tip (x2 = 0, x, > 0) in the linear elastic model of  our solid, when restrained 
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FIG, 3. Coincident crack and slip plane, mode II loading. 



Dislocation nucleation from a crack tip 245 

against slip 6, is 0-2t = ro = Kn/~/2m ~, 0-22 = 0"23 = 0,  with r = xl, and the Irwin energy 
release rate G is, in the isotropic case, 

G = (1 - v) g~t/21~, (4) 

where It is the shear modulus and v the Poisson ratio. 
A similar argument to that used by RICE (1968a, b) is now followed, based on the 

path-independent J-integral, in proof  of  the equivalence of the Griffith criterion 
G = 2y, (),~ = surface energy) for tensile crack growth under mode 1 loading to the 
criterion derived from the tensile-decohesion analog of the model described so far 
here (i.e. from a model in which 0-22 is a function of opening displacement, u~ - u 2 ,  
along the prolongation of the crack plane, with that function increasing to a maximum 
and then diminishing to zero at large opening displacements, such that its integral 
from 0 to ~ is 2Z~). That  same equivalence was demonstrated earlier by WILLIS (1967), 
using integral representations of  the linear elastic solution for the field outside the 
decohesion zone, and the Willis method can be adapted to the present analysis of  
shear dislocation emission at a crack tip. See ESHELBY (1970), RICE (1987) and RICE 
and WANG (1989) for related discussions. 

The J-integral is 

J = f r  [111 W(Vu) - ll~,0-:,ll ~ll#/~X I] d s ,  (5) 

where W is the strain energy density, 0-~/~ = O[W(Vu)]/c3(Outs/c~x~) is the stress tensor, 
s is the arc length, and, here, n is the unit outward normal to the path F, where F 
starts on the lower crack surface, surrounds the crack tip and any slip zone in its 
vicinity, and ends on the upper crack surface. The integral is independent of path 
when evaluated for any 2D solution u(x) of  the elastostatic equilibrium equations 
Oa, t~/dx~ = 0, at least when the elastic properties are invariant to translation in the x ~- 
direction. The path independence applies not only for conventional stable elastic 
solutions corresponding to a minimum of the energy functional U[u(x)], but also to 
2D fields u(x) corresponding to other extremals of  U[u(x)] such as saddle-point 
configurations, of  interest for activation over energy barriers: the field equations 
Oa~lj/Ox~ = 0 are satisfied at all extrema. Here U is the energy of the stressed solid per 
unit distance along the crack front. 

When we assume that the elastic solid outside the slit in Fig. 2 is linear elastic, we 
may calculate the energy U associated with any solution of the elastic field equations 
as follows : let U,, be the energy of the loaded elastic solid according to the conventional 
solution in which 6 is constrained to be zero along the slit and the shear stress ahead 
of  the crack is r,, = K . / x / ~ ' .  Thus, for the actual slipped configuration, U[6(r)] = U,, 
+ the energy of the slip plane due to slip 6 + the energy change of the linear system 
lying outside the slit due to introduction of 6 and change of its stress field from z,, to 
"r: 

U[6(r)] = U.+ ~b[6(r)] dr - ~[r,,(r) +z(r)16(r) dr. (6) 

Let the functional s[6(r)] be the reduction in stress along the line ahead of  the crack 



246 J .R.  RIcE 

due to the introduction of slip 6(r) ; s[~(r)] corresponds to to( r ) -  r(r) and is given for 
the isotropic solid by the principal value integral 

~ f o : ' ~ f ~ d 6 ( p ) / d P d p .  (7) 
s[6(r)] - 2n(i--  v) r - p  

Thus the energy functional U[6(r)] of the loaded cracked body with slip distribution 
6(r) is 

f: 5: £- ,,, UD(r)] = U,,+ ~[a(r)] d r +  ½s[a(r)]~(r) d r -  

and the problem posed in connection with Figs 3 and 1 (b) can be stated as the problem 
of finding the extrema of this functional. The conditions for such extrema are readily 
derived (it helps to recall that by elastic reciprocity 

f s[6,] ,~2dr = f s[,5216, d," 

for any two functions 6~ and c52) and are given by functions 6(r) satisfying 

K u / x / ~ r -  stf(r)] = d~[6(r)]/dt6(r)]. (9) 

The left side of (9) is the formula for z obtained by considering the stresses in the 
elastic cont inuum adjoining the slit and the right side is the formula for r when it is 
recognized that z = r(6) - d ~ ( 6 ) / d 6  according to the condit ion specified on the slit. 
The numerical solution of such equations is discussed by BEL'rZ and RvcE (1991a, b). 
Since z-= K . / x / ~ r - s [ 6 ( r )  ] must be finite at r = O, all such solutions meet the 
condition 

f f  dp, (10) 
d6(p)/dp 

I l l - -  N / / ~ l  __ ,,) 

equivalent to saying that the crack tip is totally shielded by the slip distribution. 
Since J has the same value for all paths which do not traverse the crack or slip zone 

ahead of it, we can advantageously evaluate J on two contours. Fr~r and F~t, ; Fr,,r lies 
far from the crack tip and the nonlinear perturbation of the linear elastic field due to 
the incipient slip process near the tip. whereas Fsl~t coincides with the upper and lower 
surfaces of the slit lying ahead of the crack tip on which the displacement u~ is 
discontinuous by (variable) amount 6. The value of J on Fr~r will depend only on the 
remote linear elastic field characterized by Ku and, as is well known in that case, the 
result is J = G. The value along Fs~it can be written as 

;0 ;: f? J = - azl O(u~( -u~) /Oxl  dxl = - r Cg6/Oxldxl = ~d6 ~ ( I ) (~ t ip )  , 

(11) 

where 6ti p is the slip displacement discontinuity at the crack tip. Since J is independent 
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of  path, the two evaluations must agree and hence the amount  of  slip at the crack tip 
associated with any static solution must satisfy 

G -- (1--v)K~l/2# = (I:)(6tip). (12) 

For anisotropic solids the same result applies but with ( 1 -  v ) / 2 p  replaced with the 
appropriate  compliance factor from the STROH (1958) and BARNETT and ASARO (1972) 
results relating G to K..  

Thus as the applied K .  and hence G increases from zero, one first follows the rising 
branch of the ~(6) function of  Fig. 4, having solutions for 6tlp like that illustrated at 
point A. Such 6~ip [=  6(r) at r = 0] are reasonably assumed to correspond to functions 
6(r) that give minima of  U[6(r)]  and that represent an incipient, but not yet fully 
formed, dislocation at the crack tip. It is evident that no static solution can exist 
when G exceeds ?,.,, the maximum value of  O, and hence the incipient dislocation 
configuration discussed loses stability at 

G -= (1--v)K?,/21.t = )',,s, (13) 

which therefore corresponds to nucleation of a full dislocation. The slip •tip at the 
crack tip when instability is reached is well short of  that (namely, b) for a full 
dislocation, and corresponds to b/2  in lattices with simple symmetry. Thus no feature 
resembling a fully formed dislocation is actually present at the crack tip prior to the 
instability at which the full dislocation is nucleated. 

As further shown in Fig. 4, the equation G = @(6,~p) for G < ?,,., has multiple roots, 
illustrated by solution points A, C, A', A", . . . .  Points A', A", etc. have a clear 
interpretation as corresponding to incipient dislocation configurations after one, two, 
etc. full dislocations have already been formed from the crack tip. Since A and A' 
may be presumed to correspond to stable solutions, minimizing U[6(r)], it should be 
expected that there is a saddle-point configuration between these two states, also an 
extremum of U[6(r)]. That  saddle-point configuration evidently has a slip 6ti p a t  the 
crack tip given by point C in Fig. 4, and hence we are able to calculate an important  
feature of  the activated configuration, at least in a 2D treatment. This is of  limited 

B 

0 I' b/2 b 3b/2 2b 5b/2 
6tip 

FIG. 4. Solution for the slip displacement at the crack tip, for stable solution A (and A', A", . . . .  cor- 
responding to one, two, or more previously emitted dislocations), and for 2D saddle-point configuration 

C. 
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use because the actual saddle-point configuration, defining the activation energy for 
an analysis of  thermally assisted dislocation nucleation when G < ~',,s, will involve a 
3D elastic field associated with a localized outward protrusion of  slip from the stable 
2D incipient dislocation distribution corresponding to point A. Further discussion of 
activated states in dislocation nucleation is left to later work. 

The same analysis as above may be followed for a crack tip loaded under mode III  
conditions and for which the slip direction s is in the x3-direction, so that the emerging 
dislocation is of  screw type. t is now identified as a23 and 6 as u ~ - u 3 .  The above 
equations hold with K.  replaced with Kin, and with (1 - v )  replaced by 1, so that the 
nucleation condition is then 

G - K~I/2# = "/,,.,. (14) 

An alternate derivation of (12), styled on WILLIS' (1967) analysis of  the tensile 
crack, is as follows: the stress at distance r ahead of  the crack is t0(r) - s [a ( r ) ] ,  or 

t ( r ) _ K i ,  It fo~.dg(p)/dPdp (15) 
x / ~  2~z( 1 - v) r -  p 

and the requirement of  no singularity at the tip forces Kn to be related to an integral 
involving d6(p)/dp as in (10). Using (10), the expression for t may be written as 

t(r) - 2n ( i - -v )  p r - p  (16) 

so that 

f0 ~ db(r) # fo~-'~,/~ld6(p) d6(r) - t(r) ~ r r  d r -  2~( i - -v )  ,0 r - p  dp dr  dpdr. (17) 

r and p can be interchanged in the integrand on the right or, better, the integrand can 
be replaced by half the form shown plus half of  what results when i" and p are 
interchanged. Since 

1 iN//~ 1 l~lpz 1 1 
+ - (18) 

r - p  2 p - r  x / ~ '  

this shows that 

"c(r) dr P db(r)/dr "~2 1 -  v , 
. . . .  dr - Kfi, (19) 

4~(1 - v) 2p 

where (10) is used in the last step. Noting now that t = dcl)(6)/d6, with 6 = 0 at r = oo 
and 6 = 6,ip at r =  0, this shows that ( 1 - v ) K ~ / 2 #  = ~(¢Stip) , as derived from the J- 
integral. 

As this point, there are three generalizations of  the results in need of consideration : 
(1) How do we deal with the nucleation of general dislocations, combining both edge 
and screw components,  at crack tips under general mixed-mode loading? (2) How do 
we model the nucleation of dislocations in dissociated form, with first one partial 
dislocation nucleating, leaving a faulted plane behind it, and then the remainder of  
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the dislocation nucleating under increased external loading (e.g. fcc metals in which 
partial dislocations on {111} planes are separated by stacking faults, and ordered 
alloys in which superlattice dislocations dissociate into partials separated by an anti- 
phase boundary)? (3) How do we deal with realistic configurations for which the slip 
plane and the crack plane do not coincide [i.e. 0 ¢ 0 in Fig. l(a)]? Reasonably exact 
results will be derived next for (1) and (2) within a "constrained-path" approximation,  
that is already tacit in the results presented so far, and then for (3) an approximate 
procedure will be given for transcribing results derived in the 0 = 0 case to cases with 
0 ¢ 0 .  

4. RESULTS FOR GENERAL SHEAR LOADING, COINCIDENT CRACK AND SLIP PLANES 

Suppose now that the solid of  Fig. 3 is loaded in combined modes I, II and III (Fig. 
5) so that stresses on the slip plane in the absence o f any  relaxation would be a2~ = Ku/ 
x//2r~r, cr22 = KJx/2rcr and a23 = KoJx/2rc,~". In general the displacement discontinuity 
on the slip plane could have components  in the 1-, 2- and 3-directions, 6~ = 
ui ~ - ui-, 62 = u~ - u2- and 63 = u~ - u3. The energy ~* (6 b 62, 63) of  the slip plane 
is now related to the stresses by a2, = 0~*(61, 6> 63)/~6~ and an application of the 
J-integral paralleling that in the previous section shows that solutions of  the static 
elastic equations for this case must have relative displacements (6 u~p, •2tip, 63tio) at the 
crack tip satisfying 

G = [(1 - v) (K~ + Kt~) + K2u]/2p = ~*(6uir,, 02tip, 63tip). (20) 

This condition, however, does not let us determine a nucleation condition since now 
there are too many degrees of  freedom at the tip. 

A solution can be found if we make the assumptions that the relative motion along 
the slip plane is pure shear (so that opening 6z = 0), and that a certain direction or 
more generally that a certain set of  crystallographically equivalent directions within 
a slip plane are far less resistant to shear than are any other directions. Such directions 
would, of  course, coincide with the observed slip directions s, i.e. the directions of  

FtG. 5. General mixed-mode loading. Relative displacement along the slip plane assumed to follow a 
constrained path of pure sliding, without opening, along slip direction at angle ~b. 
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Burgers vectors b. Calculations from atomic models (YAMAGUCHI et al., 1981 ; SuN 
et al., 1991b) of slip plane energies for different directions of shear do indeed show 
very large differences in energy. Thus let the angle ~b denote the angle of  the easy slip 
direction on the slip plane, where ~b is measured from the x~-axis (Fig. 5) so that 
~b = 0 corresponds to an edge dislocation, whereas ~ = n/2 corresponds to a screw 
dislocation, relative to the crack front. When there are several such directions, we 
shall regard ~b as denoting the first such direction to meet the nucleation condition, 
derived below, under the given ratio of  KHI to K[[ loading. 

The approximation is now made that the resistance to slip along directions other 
than ~, and the resistance to tensile opening, is so great that the relative displacement 
can be regarded as being constrained to a pure slip path at angle qS, so that 

31 = 3cos~b, 6,_ = 0, 63 = 6sin4~, (21) 

where 6 is the slip along direction ~b. Thus, if 

r = a21 cos~b+a2~sin$ (22) 

denotes the resolved shear stress in the slip direction, it may be assumed as a boundary 
condition along the slip plane that r is related to 6 like in Fig. l(b), and that (I) of 
Fig. l(c) is given as before as (I) = S r d6. Because of the constraint on the relative 
displacements, it will no longer be the case that the slip process relaxes the stress 
singularity at the crack tip. Thus, in addition to the K[, K[[ and K.t characterizing the 
remotely applied loading, there will also be non-zero stress intensity factors Kt,~p), 
Ku(.p~ and Km<ap) remaining at the crack tip at x~ = 0. 

Evaluation of the J-integral along the path F~-~r gives 

J = G - [(I-v)(K~+K~t)+K~t]/21~ (23) 

whereas in evaluating the contribution along Fs~, the contribution from the crack tip 
singularity has to be included now. thus giving 

J =  {(l-v)[K~t~p,+K~,,p, l+K~l. ,~pl}/2~- a2~O6~/Ox.dx. 

= {(1 - v)[K~t~p, + K~(,p,] + K(],.,p)}/2~,+O(6,~p), (24) 

where it has been noted that a2. c~6~/Sxl = T 06/tgxl = OO(6)/Oxl in view of the 
constraint on the slip path. The following conditions may be brought to bear: since 
r is bounded at the tip, 

Kll(tip)cos ~b + Ku[,ip) sin ~ = 0. (25) 

Using the separate mode I, II and III solutions for the effect of slip on alteration of  
the stress intensity factors gives 

[K, -- K[I.p ), KH - -  K l l ( t i p ) ,  Km -- K[[,.ip)] 

/~ I. * d dp 
x / . ) r r ( l_v  ) ~o d p [ 6 2 ( p ) , 6 . ( p ) , ( 1 - v ) 6 3 ( p ) ] ~ .  (26) 

i 

When the above constraints on the 3. are used, this gives 
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Klitip) = KI and (1-v)s in4 ' [gu-Ktmip)]-cos4 ' [Kul-Ktut t ip l ]  = 0. (27) 

Ku(tipl and Kill(tip) may therefore be solved as 

(sin 4', - c o s  4') 
[Kll(tip), Klll(tip)] = (28) cos 2 4' + (1 - v) sin 2 4' [(1 - v) sin 4 ' K . -  cos 4'Kut], 

and when these results are substituted into the two expressions for J above, and the 
expressions equated, it is found after a little manipulation that the slip 6t~p at the crack 
tip is given by 

1 - v (cos qSKu + sin ~Kul) 2 
2/~ cos24 '+ ( l -v ) s in2q5  = d0(6tip). (29) 

This coincides with the results of the last section for mode II loading in emission of 
an edge (4' = 0) dislocation and for mode III loading in emission of a screw (4' = n/2). 
Since the maximum of • is ";,,.~, the nucleation criterion is therefore 

cos 4'Ku +sin  4'Kui = 2X/I- v [cos24'+ ( I - v )  sin2 4']y,,.,. (30) 

(assuming that the left side is positive; a minus sign should precede the right side if 
not). The combination 

K = cos 4'Kll+sin 4'K,u (31) 

which enters the criterion has an evident interpretation as the intensity factor for the 
resolved shear stress along the slip direction. 

The combination [ ( 1 -  v) sin 4 'Ku-cOs 4'Kul] of (28) which gives the strength of 
the non-relaxed shear stress intensities at the crack tip also has a simple interpretation. 
Recall that, for the elastic singular field at a crack tip, displacement discontinuities at 
some small distance r behind the tip are 

4 
[u~ -u2,u-~ -u~ ,u~  -u3]  ,u [ (1 -v )Kl , ( l -v )gu ,  Kul], (32) 

so that (1--v)Ki, ( 1 -v )Ku  and Klu may be interpreted as displacement intensity 
factors. Hence the combination [(1 - v )  sin 4 'Ku -  cos 4'Kin], to which the non-relaxed 
shear stress intensity factors are proportional, is just the shear displacement intensity 
factor resolved in a direction orthogonal to the slip direction. Another interpretation 
of (27) is that this shear displacement intensity factor retains the same value at the 
crack tip as it has for the externally applied loading. 

It is revealing to manipulate (23) and (24) for J, using (27) and (28), to show that 

G - [(I - v) (K? + K?,) + K~I]/2 u 

1--v , 1 1 [ ( l - v ) s i n 4 ' K l l - c o s 4 ' K m ]  z+q)(atm), (33) 
- Kr + 2,, cos24'+/l-v)sin- 4' 

where the last set of terms involves the unrelaxed displacement intensity factors in 
tension and orthogonal shear. Indeed, comparing with (20) for the more general case 
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when the relative displacement is not constrained, it is seen that (1)*(c~Jtip, 62tip, c~3tip) of 
the unconstrained treatment exceeds (D((~tip) by the sum of the quadratic terms involv- 
ing those two unrelaxed intensity factors. The point of view can be taken that the 
energy O* increases rapidly when the 6s deviate from those of the low-energy con- 
strained path, and that the difference between (I)* and • reflects the effect of modest 
deviations of the 6s at the tip from those of the constrained path. The constrained- 
path approximation made would, presumably, be suspect if the difference between ¢I)* 
and • in a given case was much larger than O. 

Another aspect of the constrained-path approximation is that we really only know, 
in general, the end points of the path from an undislocated state to a completely 
dislocated state, at 6 = b. It must be expected that, in general, the path actually chosen 
would deviate along the way from a straight line connecting the endpoints. For 
example, some tendency for dilatant opening across a lattice plane (62 :A 0) must, in 
general, accompany shear, and the shear path itself may have some curvature in the 
slip plane. A particular embedded-atom model for iron, used in molecular dynamics 
simulations by CHEUNG (1990), provides an example for which the constrained-path 
approximation is not so good, in that high tensile stress across slip planes at a crack 
tip noticeably reduces the resistance to dislocation emission (CHEUNG et al., 1991). 
These features are important in certain cases, but lie beyond the present level of 
approximation. They require a more detailed formulation including numerical solu- 
tion of coupled integral equations for the distribution of the 6s; the coupling of 
dilatant opening and shear has been analyzed based on such numerical solutions in 
related work by BELTZ and RICE (1991a, b) and SUN et al. (1991a) and, for the Cheung 
et al. model of iron, confirm their conclusions. Calculations like those in BELTZ and 
RICE (1991a, b) show that a reasonable approximation in some cases to the effects of 
normal stress on shear is to simply identify y,.,. in (30) as the relaxed value, associated 
with shear under vanishing cr22. This may be justified as another type of constrained- 
path approximation, where the 62 chosen is that which would correspond to a22 = 0 
along the slip path. We may then derive (30) with the relaxed y,,., through a derivation 
like that above, but with the J-integral in (23) and (24) written exclusively for the 
shear part of the deformation field. 

5. NUCLEATION OF DISSOCIATED DISLOCATIONS, COINCIDENT CRACK AND SLIP 
PLANES 

Suppose that a complete lattice dislocation in a certain crystal is composed of two 
partial dislocations with respective Burgers vectors bA and bB, where these share the 
same slip plane and are separated by a faulted portion of slip plane with energy y.,j 
(stacking faul t  energy) per unit area. The simplification that the crack plane and slip 
plane are coincident as in Fig. 5 is used and the constrained-path approximation is 
made for each partial dislocation individually. Thus, partial dislocation A is created 
by slip 6A from 0 to bA along a definite direction at angle ~bA (the first of the different 
possible partial dislocation directions on the slip plane to meet the nucleation 
condition, under the prevailing Km/K .  ratio), and then partial dislocation B can come 
into existence by slip 6B from 0 to bn at angle ~bB (taken to be the most favorable of 
the allowed crystal directions for continuation of slip as a second partial). For { 111 } 
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FtG. 6. Energy vs slip for two partial dislocations which combine to form a complete lattice dislocation ; 
;'.,t is the energy per unit area of the stacking fault. 

planes in fcc lattices, with partials of  Burgers vectors in (211)  directions summing to 
complete (110)  dislocations, 4~ and ~b~ differ by 60'. [ANDERSON (1986) previously 
analyzed partial dislocation nucleation within the Rice-Thomson framework.] 

Energy functions (I) for the two partials are shown in Fig. 6. The first slip over bA 
carries the energy ~A from zero, through the peak at 7 ...... and to a residual state of 
energy 7,v; the next slip starts with energy q)A at 7.~ goes through the same peak i' ..... 
and returns to zero after slip bB, a complete dislocation having then been formed. 

Let 

KA = Kt tcos (aA+KmsinqS .4 ,  K8 = KucosqSB+KmsinthB. 

The analysis of  the previous section shows that the first partial nucleates when 

2/1 
KA = K.,cri, -= 1 _ v  [cos2 qSA+(1--V) sin2~A]?', .... 

(34) 

(35) 

However, the fully formed partial dislocation which emerges, of Burgers vector bA, 
leaves a faulted plane of energy 7~r behind it and thus is not swept indefinitely far 
away by the stress field but instead remains in the vicinity of the crack tip. Let rA be 
the position of the core of that partial dislocation. It is determined by equilibrium 
between Peach-Koehler  configurational forces; that due to the applied stress field 
K A / , , / / ~  " must balance the sum of the dislocation image force due to the presence of 
the stress-free crack surface (RICE and THOMSON, 1974) and the force ~;.~r tending to 
annihilate the fault. (This defect can be treated as a classical, singular line dislocation, 
without considering its spread-out core, since it will be seen that r4 is typically very 
large compared to bA.) Thus, r,~ is the (largest) root of 

K A b ~ / 2 x ~ < i  = 7~/+Itb] [cos2 ~b,~+ ( 1 -  v)sin2 ~A]/4rt( l -  v)rA, (36) 

from which it is found that 

/~bA 

(1 - v ) ~  
K A [1 - -  N / I  - -  ('ys/-/')'..,) ( K.4criJ K4) 2] 

cos-" ~b A + (1 -- v) s i n "  OA 
(37) 
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(the combination on the left will be needed shortly) and that 

2 2 rA (KAerit/KA) [COS ~.4+(1-v) sin2dp,4](#bA/yu.~) 
(38) 

bA 47z(l--v)[1--x/1 K K 2 2 - (~'.~;D',,3( A . . /  .,) ] 

The last expression, to be used after nucleation (KA >~ KAcrit), defines a rapidly increas- 
ing function of  KA. It is least when KA = g A c r i  t ,  and then gives the position rA to which 
the partial jumps just after nucleation. Later estimates of  #bA/y,,s ranging from 25 to 
40 will be seen for fcc metals, and ~sy ~ )'J4-Y,,s/2 seems to be representative (smaller 
values give larger rA). These lead, for ~bA = 0 and v = 0.3, to rA/b ,~ 30-250. 

The simplest way to address emission of  the second partial is to note that the first 
partial dislocation has the effect of:  (i) modifying the KH and KH~ at the tip (say, to 
values ~ and K*O, and (ii) resetting the energy of  the unslipped state from zero to 
~,y (Fig. 6) so that the peak energy to be surmounted for the instability leading to 
dislocation B to occur is reduced from y,,~ to ~ - y ~ f .  With those factors taken into 
account, the result of the last section can just be used so that, at instability 

K * -  K*cos~bB+K*lsin~bB = [cos ~bB+(1--v)sin2qSB](7,~--y,z). (39) 

(When the expressions for K* and K*,, given next, are taken into account, the same 
result could be derived, alternatively, by applying the J-integral, in the style of the 
last section, to the entire dislocated array, partial dislocation A, the associated stacking 
fault zone, and incipient partial dislocation B.) 

The expressions for K* and K*~ are derivable from (26) as 

K~ = Kii-labAcos(aA/(l-v) 2x//~A, K~, = K,,,--I~bAsinc~A/ 2x/~A. (40) 

Using (37) for the latter terms, the quantity K* entering the criterion for nucleation 
of the second partial is given by 

IC~= KB-rlKa+rlx/K~-Zl~y~f[cos2 dpA+(l-v)sin2 c~A]/(1-v), (41) 

where 

cos ~bA cos 4~B + (1 -- v) sin ~bA sin ~bB 
r /=  cos2 ~bA + ( 1 -  v) sin2 ~bA 

(42) 

The resulting nucleation criterion is a little complex to study in general, but it takes 
a simpler form in a special case of  considerable interest for fcc metals, in which 
~bA = 0 ° and I~bst = 60 ° ( +  or - chosen according to the sign of  KN0. The 0 ° partial 
will be the first nucleated only if K8 < (x/:4--~v/2)KA, which is equivalent to IK.II < 
( ~ - 1 ) K . / w / 3  or, for v = 0.3, to [Kml < 0.44K., a condition which is now 
assumed to hold. The first partial nucleates when 

KH = x/2/~y.s/(1 -- v) (43) 

and the condition for nucleation of  the second, given above, now simplifies to 

x/~ IK.,I +~/K~ - 2#y+fl(1 - v )  = x/2/~(4-- 3v) (y+,,- y.,:)/(1 - v). (44) 
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Since this equation takes effect only after KH reaches the value to nucleate the first 
partial, the K,  which enters it will always be at least as large as that of  (43), and hence 
the quantity of  which the square root is taken is always positive since (since Vus > Vsl). 

Three possibilities exist, depending on Kin: (i) when Km is zero or sufficiently small, 
Kit must be increased to nucleate the second partial; (ii) for }K.II greater than a 
certain limit gm(sp ) given below, the second partial nucleates spontaneously once the 
first has formed ; no increase in K,  is then required ; and (iii) for Ig.xl yet larger, the 
analysis ultimately becomes untenable because, instead, the [qS[ = 60 ° partial nucleates 
first, and we have to start from the beginning, interchanging ,4 and B. 

The greatest K.  to nucleate the second partial results when K l l  t = 0 ,  in which case 

K~x = x/2kt[(4-  3v)v,,.,- 3(1 - v)Vsy]/(1 - v). (45) 

When v = 0.3 and 7.,f = ~.,/3, this is 55% higher than the K.  to nucleate the first 
dislocation. The required increase in K.  diminishes to zero when Igml = g.~sp~, where 

Klll(sp ) = x/2/~(y.,s-- ysf)/(l -- v) ( 4x/4--3v-3v-- l ) /x/~ (46) 

is calculated by setting KH equal to that to nucleate the first partial. For  the numerical 
values above, Kmtsp) is 0.36 times the K.  to nucleate the first partial. The range of Km 
for which there is spontaneous nucleation of the 60 ° partial persists up to a limit given 
by the same expression as for K.tcsp) but with (Y,,,-Y~I) increased to y,~; beyond that 
limit, it is the 60 ° partial which nucleates first. 

Nucleation by the partial mechanism discussed here is considered again in the next 
section, where slip planes at angle 0 :~ 0 are considered. 

6. APPROXIMATE NUCLEATION CONDITION, SLIP PLANE NOT COINCIDENT WITH 
CRACK PLANE 

In general the most highly stressed slip plane will make a non-zero angle 0 relative 
to the crack plane, like in Fig. 7, and the Burgers vector direction along that plane 
will make an angle ~ with a line drawn perpendicular to the crack tip, similar to 
Fig. 5. 

KI . . . . . . .  -~ 
~--~K II /J, 

. . . . . .  i II 

FIG. 7. Slip plane inclined at angle 0 with the prolongation of the crack plane ; slip direction inclined at 
angle ~ with the normal to the crack tip. 
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Supposing that the solid is loaded so as to induce a general set of  intensity factors 
Kt, KH and Km at the crack tip, the in- and anti-plane shear stress components acting 
along the slip plane, according to the linear elastic solution, are 

aor = [K~f~(0) + KHfI~(O)]/x/~', cro3 = Kmfm(O)/x/C~r, (47) 

where, for the isotropic case, 

f~(0) = cos 2 (0/2) sin (0/2), fu(0) = cos (0 /2 ) [1 -3  sin 2 (0/2)], f~l,(0) = cos (0/2). 
(48) 

The form of  these results motivates the notion of  effective mode II and mode III 
intensity factors along the slip plane at angle 0. These are defined as 

Kex~ = K~f~(O)+KHft,(0), K ~  = Ki,,fm(0). (49) 

As a simple approximation, it may now be assumed that the nucleation conditions 
derived for 0 = 0 in all the earlier sections of  this paper apply as well to an inclined 
slip plane, 0 :/: 0, when Ktl and Kill are replaced in expressions earlier in this paper 
with the effective intensity factors K ~  and KT~ above. Thus, the basic nucleation 
condition of (30) for a complete dislocation becomes, approximately when 0 :# 0, 

~(O)Ki +ftl(0)Kii] cos ~b + fm(O)Km sin ~ = X / l ~  v [cos z q~ + (1 - v) sin 2 ~b]7,s 

(50) 

and corresponding results are given shortly for nucleation of a dissociated dislocation. 
For pure mode I loading, in which case G = (1-v)K~/2p,  the above criterion 

reduces to 

1 +(1  - v )  tan 2 q5 
G = 8 (1 +cos0)  sin20 )'us (51) 

for dislocation nucleation, which may be compared to 

G = 27, (52) 

(~ = surface energy) for Griffith cleavage. Hence, crack tip blunting by dislocation 
nucleation should occur before conditions for Griffith cleavage decohesion are met if 
the latter G exceeds the former, which happens for the isotropic solid when 

y~ 1 + ( l - v )  tan2~ 
- -  > 4 ( 5 3 )  
),,~. (1 +cos  0) sin 2 0 " 

Cleavage occurs before the tip can blunt when the inequality is reversed. The critical 
y~./y~, ratio is, however, usually quite sensitive to deviations from pure mode I loading. 
For example, if x and z denote fractional shear loadings, defined by writing K t t=  XKl 
and K m =  zKl, then the inequality to be met for emission before cleavage is 
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~, 4 [ l + x 2 + z 2 / ( 1 - - v ) ] [ l + ( l - - v ) t a n 2 4 9 ]  
- - >  (54) 
7,,, ( l + c o s O ) [ s i n O + ( 3 c o s O - - i ) x + 2 z t a n 4 9 ]  2" 

Consider  a case of  interest for bcc solids: a crack on a { 100} plane with tip along 
a (100 ) - t ype  direction, so as to intersect a { 110} slip plane on which (111 ) slip can 
occur. In that  case, 0 = 45 ° and ~b = arc tan (1/~/2) = 35.3 °. Thus,  for pure  mode  I 
loading we require 7,/7,, > 6.3 for dislocat ion nucleat ion to occur  before Griffith 
cleavage, but  the required ratio reduces nearly by a half, to 7.,/7,.,. = 3.5 (if v = 0.3), 
when K,, and K, ,  are just  10% of  K, (i.e. x = z = 0.1). Impl icat ions  for  specific solids 
are discussed later, af ter  reviewing some est imates o f  7,,,. 

For  the nucleat ion of  dissociated dislocations with 0 ¢ 0, a geomet ry  of  interest for 
fcc solids is considered,  with a crack on a { 100} plane and tip a long a (110 )  direction, 
and it is assumed that  the mos t  stressed { 111} slip plane is that  at 0 = 54.73 '~, and 
that  the loading is such that  the first partial  to nucleate involves slip a long the (211 )  
direction a t  ~A = 0 ° with the second at  ~B = 60°. Then  KA and KB of  the earlier 
discussion of  dissociated dislocations can be replaced by K3 fr and K~ r, defined like KA 
and K~ in (34) but  in terms of  K ~  and K ~ .  Fo r  the special 0 and ~s considered,  these 
quanti t ies  are 

K~ fr = 0 .363(Kt+0 .897K. ) ,  K~ fr = 0 . 7 6 9 K . , + 0 . 5 K ~  rr. (55) 

It  is assumed that  K .  ~> 0 and K. ,  >~ 0. I f  not ,  the same p h e n o m e n a  will occur  relative 
to 0 = - 5 4 . 7 3  ° if K .  < 0 and to q~B = - 6 0  ° if K. l  < 0, so K ,  and Kill can here be 
interpreted as I/(1,1 and Ig.~l. 

Reading  f rom the earlier results, interpreted approx imate ly  in terms of  the effective 
shear stress intensity factors,  the 0 ° part ial  will indeed be the first to nucleate when 
K m <  0.179(K,+0.897K, , ) ,  and the nucleat ion condi t ion [from (35)] for  that  first 
part ial  is 

K~ + 0.897Ktt = 2.75x/2pT, ,d( l  - v). (56) 

This is shown as the dashed line in Fig. 8, which is ana logous  to the mixed-mode  

Nucleation of 2nd partial dislocation, at ~b B = 60 degrees 

5 - kL = KL / [21ATus/(l_v)]l/2, 

[ _ _  L = I , I I , ~  ] 
4 

"" - ~  kli I = 0.0 (for 9 = 54.74 degr., 
kI ~ ~ ~ 0 1 v = 0.3, Tsf = Tus/3) 

3 0 2  

1 

o ,'>,'->., 
0 1 2 3 4 5 kH 

FIG. 8. Combinat ions  of  Kt, Kn and Kt.  for nucleation of  the second of  two partial dislocations in a fcc 
crystal with crack on { I00} plane, with tip along (110)  direction so that the relevant {111} slip plane is 

at 0 = 54.74 ° ; the first partial is assumed to nucleate with ~ = 0 ° and the second with ~ = 60 °. 
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nucleation diagrams of LIN and THOMSON (1986). The nucleation condition for the 
second partial, at ~bn = 60 °, is then, from (39), (41), (42) and (55), 

0.769Km+O.5~[O.363(K~+O.897K.)]2 21~ - 

( 4 -  3 v)/.t 
- ~ / 2 ( 1 - - v )  (7,,~--Z¢)- (57) 

For pure mode I loading, this is 

Kj = 2 .75x/2#[ (4-  3v)y,,~- 3(1 - v)y,f]/(l - v), (58) 

or KI = 4.26x/2117,,~./(1 --v) when v = 0.3 and "f.¢ = ?,,.,./3. The combined loading result 
is plotted in Fig. 8, based on v = 0.3 and 3',f = y,,J3, for various values of Kin. The 
nucleation condition is extremely sensitive to K.~: while the numerical factor 2.75 in 
(56) above increases to 4.26 for nucleation of the second partial when K m =  0, that 
factor is reduced back to 2.75 (so that there is spontaneous nucleation of the second 
partial) when K.~ is increased so that an analogously defined numerical factor for 
Kt. reaches only 0.404. 

From (56) and (52), the first partial will nucleate before the Griffith cleavage 
condition is met, under pure mode I loading of the fcc configuration considered, if 
?d]',,,. > 3.8. Since ~b~ = 0, this result is insensitive to mode III loading, at least as long 
as ]K.d < 0.179K,, so that the q~ = 0 ° partial is actually the first to nucleate. If 
there is also a 10% mode II loading (x = 0.1), the inequality changes somewhat, to 
7dTu.~ > 3.2. 

Under pure mode I loading, the second partial, and hence the complete fcc dislo- 
cation, nucleates before Oriffith cleavage if', from (58) and (52), 

75/7~ > 3 .8[4-  3 v -  3(1 - V)TST,,s], (59) 

which is 7.,./7,,.,- > 9. I when v = 0.3 and 7.~f = 7,,.,/3. However, as anticipated from the 
discussion above, this result is extremely sensitive to small shear mode contributions, 
especially in mode III. Thus, for loading with K.  and K~ll, both 10% of  Kt, and with 
v = 0.3 and 7.¢ = 7,,d3, the inequality becomes 7.,-/7,,~ > 4.2, so that there is a reduction 
to less than a half of the 7d7,,s value required for nucleation prior to cleavage under 
pure mode I loading. 

Because of the strong sensitivity to shear loadings illustrated here, and in the earlier 
bcc discussion, it should rather commonly be the case that dislocations emerge from 
(nominally) tensile loaded cracks in solids which violate the 7.,./7,,~ requirement for 
ductility under pure tensile loading by as much as, say, a Factor of 2. 

7. COMPARISON WITH NUCLEATION MODEL BASED ON FULL DISLOCATION AND 
CORE CUT-OFF 

In general, previous treatments of dislocation nucleation (RICE and THOMSON, 
1974; LIN and THOMSON, 1986; ANDERSON, 1986) have modeled a pre-instability 
dislocation feature at the crack tip as a fully formed dislocation in the configuration 
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either of  a line lying parallel to the crack tip and displaced a distance r from it, or of  
a localized dislocation loop emerging from the crack tip. The line model is easier to 
treat and can be compared directly to the result of  the previous section. The net 
configurational force P on such a dislocation is the sum of that due to the applied 
loading plus the image-like effect caused by the traction-free crack faces nearby (RICE 
and THOMSON, 1974) : 

P = { [Kcfi(0) + Kllfll(0)]cos ~ + Kt,fm(0) sin ¢}b/x/~" 
-pb2[cos2 4)+(l-v)sin2 c~]/4~(1-v)r. (60) 

A nucleation condition has traditionally been extracted from this expression by 
assuming that nucleation will occur if P > 0 whenever r > ro ( =  core cut-off). That  
gives, as the threshold for nucleation (i.e. making P = 0 when r = ro), 

[K,f~(0) + K n f n ( 0 ) ]  c o s  ~b --[- K i n . f i n ( 0  ) sin ~b 

= #b[cos 2 q5 + (1 - v) sin 2 ~b]/2(l - v)x/2~r,,. (61) 

If  r,, is chosen in a certain way. this can be made to coincide with the more exact result 
(50) of  the previous section. Thus, for dislocations of respective edge and screw 
character relative to the crack, the choice of  r,, would be 

(ro)eclg c = pbZ/16zt(1 -v)~, ..... (r,,) ....... = l.tb2/16g7,,s. (62) 

Estimates of 7,,., discussed later for metals range from approximately 0.025#b to 
0.10pb. Thus, with v = 0.3, the fully-formed line dislocation model gives results in 
agreement with those derived more convincingly here, based on the Peierls concept, 
if the core cut-off radius r,, ~ 0.28-1.14b for edge dislocations and r,, -,~ 0.20-0.80b for 
screw dislocations. 

8. W I D T H  OF THE INCIPIENT DISLOCATION ZONE AT INSTABILITY 

The width of the incipient dislocation zone at the moment  of  instability is also of  
interest. It will be seen that the width at a crack tip is, at the moment  of  instability, a 
moderately broad feature compared to a lattice spacing, thus making more appro- 
priate the use of  the Peierls concept. Indeed, PEIERLS (1940) laments towards the end 
of his paper  that the dislocation core size which he calculated, for an isolated dis- 
location in an otherwise perfect lattice, was sufficiently narrow compared to b that 
the concept of  a continuously distributed core displacement, amenable to analysis by 
continuum elasticity, becomes problematical. The results for nucletion at a crack tip 
appear  to be more favorable. 

The core width at nucleation instability cannot be obtained exactly from our present 
considerations and requires a full numerical solution of (9). Some such results have 
been obtained by BELTZ and RICE (1991a) based on a r = f ( 6 )  relation obtained from 
the Frenkel sinusoid. However, an elementary estimate of  the width of the core region 
can be made in the following inverse manner :  since the r = f(6) relation rises from 
6 = 0 with an initially vertical tangent, matters are simplified by considering model 
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relations f(6) for which 6 -- 0 up to a finite value of  r. In that case the zone of the 
incipient dislocation, with 6 > 0, will be limited to some finite distance R, to be 
estimated, ahead of  the crack tip. I f  T(x~) denotes the spatial distribution of stress 
over 0 < x~ < R, then by using an elementary elastic solution for semi-infinite cracks 
[e.g. RICE (1968b)] one may see that for pure mode II loading of an incipient edge 
configuration with 0 = 0 (like for Fig. 3), the distribution o f f  on x~ < R is given by 

dt - 4-  
2 ( 1 - v )  dxl 2x/~(R_x, ) 7r x l - - t  R - x ,  

whereas the distribution of  stress a~2(x~, 0) (=T)  along xt > R is given by 

K.  1 fo R r(t) R - t  dt. 
- .- Tt 

(63) 

(64) 

The idea, now, is to assume a distribution o f z  with xt, vanishing at x~ = 0 [so as 
to correspond to maximum ~(,~) there, and thus to be consistent with the crack tip 
configuration at nucleation instability]. R is related to K .  so as to cancel any singularity 
at x~ = R, and then a distribution 6(x,) is calculated, constraining parameters of  the 
model so that fi(0) = b/2. This procedure will define a r vs 6 relation and, if the 
relation looks not too unreasonable, the procedure may be accepted as giving an 
approximate solution. 

To keep things simple, a distribution o f t  with x~ in the form of a parabola can be 
assumed, vanishing at x. = 0 : 

z = (3Tm,,,/4)(x,/R)(4-- 3x,/R), (65) 

where r ..... is the maximum value ofT, attained at x, = 2R/3, whereas the value o f t  at 
x~ = R is 3rmax/4. The factors of  4 and 3 are chosen for aesthetic reasons, as they may 
be shown to define the unique parabola for which the present procedure gives a 
distribution of  a2~ ( =  r) which is not only continuous but has a continuous slope at 
X l = R. To cancel the singularity, 

R = 25rcK~/lZ8r~,~ = 25rcy,,4~/64(1 - v)r~.~, (66) 

where the J-integral analysis ensures that Y,,s here will be consistent with the T = f(6) 
relation implied by the analysis. The integrals above then show that 

/.t d6(Xl) 3Tmax I12 ( ) 1 2(1 v) d x , -  2zt ( 1 + 2 ~ - 3 ¢ 2 ) 1 n  l + x / ~  + ( 3 ~ - l ) x / ~  (67) 
- i i _ v / ¢ l  

on xt < R, where ~ = (R -x t ) /R ,  and that 

3rrnax 
a2~(x,,O) =~- [ ( l -2q -3~ l~ - ) tan -~ ( l / x /~ )+(3q+l )x /~]  (68) 

on xl > R, where q = (xi--R)/R. 
Demanding now that b/2 be the integral of  - d f / d x t  from x~ = 0 to x~ = R, 
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b/2 = 2.5465(1 - v)"CmaxR/# (69) 

is obtained which, when combined with the expression for R above, shows that 

)',,, = Zmaxb/3.125 (70)  

is a feature of  the z = f(6) relation implied by the assumed parabolic stress distri- 
bution. The relation itself, having threshold 0.75z . . . .  is plotted in Fig. 9(a), as obtained 
by cross plotting r and 6 from the above equations along 0 < x~ < R, and has, perhaps, 
a not too unreasonable shape. The numerical factor of 3.125 in (70) compares well 
to rt, which is the similar factor based on r = f(6) from the Frenkel sinusoid. Figure 
9(b) shows the resulting spatial variations of z and 6, and the above elimination of 
Zm,x shows that the distance R is given by 
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FIG. 9. (a) Form of the r vs ~5 relation, and (b) distribution of  r and c~ at nucleation instability, implied by 
a parabolic variation of  z with .r~ over distance R, estimated (see text) to typically be of  order 2-7b. 
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R = 0.1257/~b2/(1-v)y,.,.. (71) 

Since (next section) representative estimates of  ~,,,.~ for metals run from about  0.025/~b 
to 0.10/lb, this gives (with v = 0.3) R ~ 2-7b, a substantial size. 

If  y,,~. in the above expression for R is estimated from the Frenkel sinusoid, then 
~,,~ = #b2/2x2h and R = 2.48h/(1 - v). This may be compared with Peierls' width, also 
based on the Frenkel form, of  h / 2 ( 1 - v )  (HIRTH and LOTHE, 1968) for an isolated 
dislocation. This width is the distance over which T diminishes from its peak value to 
its unstable zero value at 6 = A = b/2. The corresponding width is 2R/3 for the crack 
tip model discussed above, and 2R/3 = 1.65h/(l - v), which is 3.3 times the width for 
Peierls' isolated dislocation. This shows the core broadening in an elementary way. 
The numerical solution of  BELTZ and RICE (1991a), based on the Frenkel sinusoid 
with h = b and with v = 0.3, gives a similar result with the numerical factor estimated 
here as 3.3 being about  2.8 instead. 

NABARRO (1947) solved the problem corresponding to that of  Peierls for the case 
of  two coplanar dislocations of  opposite sign, attracting one another  and subjected 
to a stress just sufficing to hold them in unstable equilibrium, in an otherwise perfect 
lattice. This is a nice analog of the problem of dislocation nucleation from a crack 
tip, particularly when it is recalled that RICE and THOMSON (1974) show that the self 
force on a line dislocation at distance r from a crack tip is the attractive force caused 
by an oppositely signed dislocation lying at distance 2r away in an uncracked, 
otherwise perfect solid [e.g. (60)]. Like what is inferred here, NABARRO'S (1947) results 
show that the core widens considerably from the Peierls size as the two dislocations 
are brought close to one another. 

9. ESTIMATES OF THE UNSTABLE STACKING ENERGY, ~us 

Frenkel estimates. The simplest estimate of  ),,.,. is based on the Frenkel sinusoid. 
This is rewritten here, for shear relative to atomic planes spaced by h, as 

r = (/.tslipbeff/2~h) sin (2nA/bcrr) (72) 

to emphasize that the modulus,/~s~o, should be that for shear relative to the slip system, 
and given as/Is~p = (cl ~ - c~ 2 + C44)/3 for the fcc and bcc crystal slip systems considered 
here. Also the Burgers vector is replaced by an effective value, b~rr, to emphasize that 
in some cases the A ( =  bcrf/2) at maximum energy Y,s, i.e. at the unstable zero of r, 
may not coincide with b/2. Thus 

YuslFrenkel) = I-qlipb~rr/27z2h. (73) 

This result is shown in the dimensionless form ~',,.~vr~,ke~/l~s~pb as the first numerical 
column of  Table I for partial dislocation on { 111 } planes in fcc solids and for complete 
dislocation on two common slip planes, {110} and {211}, in bcc solids. For  the fcc 
and first bcc case b¢~ = b (where, consistently with earlier use, in the fcc case b 
corresponds to that of  a Shockley partial). However,  the Frenkel model is expected 
to give a poor  representation of the r = F(A) relation for shear on the {211} plane in 
the bcc case (VITEK et al., 1972), especially for shear in the twinning direction on that 
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TABLE 1. Esthnates  oJ'Y,~/l~lipbt 
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Solid 

Density functional, 
Frenkel Embedded-atom homogeneous simple 
sinusoid models, block- shear strain 

(b~rr/2n2bh) like shear (Wmaxh/#~lipb) 

(1) fcc. partial dislocations. (211)~111}, b = ao/x/6, h = ao/x/3, b~rr = b: 
AI 0.036 0.026(u) 0.042(r), 0.043(u) 
Cu 0.036 - -  0.042(u) 
Ir 0.036 - -  0.034(r), 0.043(u) 
Ni 0.036 0.026(u) - -  

(2) bcc , ( l l l ){ l l0} ,  b=x/3ao/2 ,  h=ao/~/2 ,  b~fr=b: 
Fe 0.062 0.038(r), 0.045(u) - -  

(3) bcc, (111){211}, b = xf3ao/2, h = ao/x/6, b,.tr = 2b/3-b: 
Cr 0.048-0.108 - -  0.069(u) 
Mo 0.048-0.108 - -  0.056(u) 
Nb 0.048-0.108 - -  0.093(u) 
V 0.048-0.108 - -  0.100(u) 
W 0.048-0.108 - -  0.060(u) 

"~r = relaxed in direction normal to slip plane: u = unrelaxed. 

plane, in which direction it is possible that slip energy ~ (or h o) has a local maximum 
corresponding to the twinned structure, as it climbs towards 7,,.,.. The geometry of 
shear in the anti-twinning direction (PAXTON et al., 1991) seems somewhat simpler 
and the Frenkel model might apply approximately with the A at y,.~ reduced from b/2 
to a value perhaps as low as b/3. Thus, for that case, bert is given a range 2b/3-b  in 
Table 1, resulting in the ~,,.,.(Vre,k~) range shown. 

To go beyond these simple estimates requires models of  atomic potentials in solids. 
In principle, the energy )'u.~ could be determined by a quantum mechanical compu- 
tation, based on (electron) density functional theory in the local density approxi- 
mation, of  the ground state energy of the configuration for which one half of  a lattice 
is rigidly shifted relative to the other along a slip plane, so as to coincide with the 
unstable stacking [like in configuration (d) in Fig. 2]. The analysis of  such atomic 
geometries seems consistent with the present level of  development of  density functional 
computations,  and is to be encouraged in the future. 

For the present it is necessary to be content with empirical atomic models. A 
recently developed class of  these, going beyond pair potentials and thus avoiding 
Cauchy symmetry of  crystal moduli, have been formulated within the embedded-atom 
me thod  (DAw and BASKES, 1984) and have found extensive applications to solid state 
phenomena,  including interfacial structure and deformation and fracture. A few 
results for Yu.~ based on such models are now summarized. 

Embedded-atom models.  Such embedded-atom models as have been introduced 
seem to lead to lower estimates of  y,,, than does the Frenkel model. The results will 
be different for direct shear with no relaxation in the direction normal to the slip plane 
(the most  commonly available case), and for relaxed shear for which the lattice spacing 
h is allowed to dilate during shear so as to keep zero normal stress. 
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CHEUNG (1990) [see also CHEUNG et aL (1991)] employed an embedded-atom 
model for bcc Fe and, from plots of his potential for {110}(l l l )  shear, it may be 
inferred that ~us(EgM) = 0.43 (relaxed) to 0.52 (unrelaxed) J/m 2. The dimensionless 
~us(EgM)/12slipb is entered for Fe in the second numerical column of Table 1 where, here 
and next,/asl~p is the slip system shear modulus that is consistent with the embedded- 
atom potentials used. 

SUN et al. (1991b) and Sun (private communication, 1991) have done similar 
calculations based on embedded-atom models for {11 l} (211 ) shears forming partial 
dislocation in fcc metals. These are for the respective cases of Al modeled by the 
potentials of HOAGLAND et al. (1990) and FOILES and DAW (1987), and Ni by 
potentials of FOILES et al. (1986). These results, both unrelaxed, are ~us(EAM) ~ 0.092 
J/m 2 for A1 and 0.260 J/m 2 for Ni; both numbers correspond to nearly the same 
~us(EgM)/ ,Usl ipb ,  of 0.026 as entered in Table 1. Relaxed ~,,.,'IEAM) values are not presently 
available for AI and Ni. 

It may be noted that the unrelaxed values of ~'u.,.(EAM)/#s~ipb cited for Fe, Ni and AI 
are all of the order of 72-73% of the corresponding 7,,~.(Frenkel)///slipb. Thus, for later 
purposes (Table 2) in dealing with { 111 } plane partial dislocations in a large class of 
fcc solids and with {110} plane dislocations in a large class ofbcc solids, for most of 
which embedded atom model results for 1,,,~ are not available, the rough estimate 
Yus(EAM) = 0-77us(Frenkel)  is tentatively used in all cases. 

Densi ty  func t iona l  theory. No directly relevant calculation for the block-like shear 
of one part of a metal crystal relative to another seems yet to have been reported 
based on quantum mechanics via density functional theory. However, such cal- 
culations appear to be feasible, as DUESBERY et al. ( 199 l) have reported energy surfaces 
for shear of Si along { 111 } planes in a manner corresponding to the introduction of 
an intrinsic stacking fault. The DUESBERY et al. (1991) work also shows that empirical 
potentials, as available for Si, may agree reasonably with the quantum mechanical 
calculations for one direction of shear but poorly for another direction on the same 
crystal plane. 

PAXTON et al. (1991) used density functional theory in the local approximation 
to analyze stress-strain relations of homogeneously strained crystals, in fcc cases 
corresponding to simple shear parallel to { l l 1 } planes in (211 )-type directions, and 
for bcc cases to simple shear parallel to {21 l} planes in (111)-type directions. These 
are shears leading to twinning transformations (in the softer direction of shear in each 
case). Paxton et al. report the maximum stress and also the maximum strain energy 
(say, Wmax, on a unit volume basis) encountered for simple shear in the twinning 
direction and in the opposite, or anti-twinning direction. The strain energy maximum, 
Wmax, is a rough analog of }'us. Both correspond to maximum energies along a shear 
path, but for block-like shear of one half the lattice relative to the other in the case 
of y,,., [like in Fig. 2, illustration (d)], and for homogeneous simple shear strain of the 
entire lattice in the case of W m a  x. 

A quantity somewhat like Vu.,. may be formed from Wm~x in the following way : since 
Wmax is the maximum energy per unit volume in simple shear strain, Win.J7 is the 
maximum energy per unit area of slip plane associated with an interplaner separation 
h. This might be considered comparable to y,,. and thus the final column in Table 2 
shows Wmaxh/I.tslipb based on Wmax from PAXTON et al. (1991) and using experimental 
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/~,p values [expected to correspond within about 10% of those estimated from the 
density functional calculations (Paxton, private communication, 1991)] ; Wm~., for the 
twinning sense is used for the fcc partial dislocation comparisons, and in the anti- 
twinning sense, suggested in PAXTON et al. (1991), for complete {211 } bcc dislocation 
comparisons. It is interesting that these values seem approximately compatible with 
the Frenkel estimates. 

The experimental values for P~,o used in the last column of Table 1 (and in Table 
2) are from HmTH and LOTHE (1968) and, if not there, from BRANDES (1983) or 
ANDERSON (1986). Lattice parameters a,,, used to get b, are from ASHCROFT and 
MERMIN (1976). 

10. DUCTILE VS BRITTLE CRACK TIP RESPONSE 

In using the results of  this paper to discuss ductile vs brittle response, in the sense 
of asking whether conditions for dislocation nucleation will or will not be met prior 
to Griffith cleavage, it is well to keep the following factors in mind. 

(a) Dislocation nucleation is a process susceptible to thermal activation. The analy- 
sis given here is, essentially, of  temperature T =  0 response. The critical Ks for 
nucleation will be reduced somewhat at finite T. The Peierls concept gives a route to 
treat thermally activated nucleation and some related concepts have already been 
uncovered in the J-integral analysis of the crack tip shear (Fig. 4, point C) in the 2D 
saddle point configuration of 6(r). The fuller evaluation of the activation energy for 
dislocation nucleation is beyond the scope of the present work and a followup paper 
is planned on it. While the K level for dislocation nucleation in some finite waiting 
time can, in principle, be reduced arbitrarily by an increase in T (some solids may 
melt before there is any substantial reduction), it is interesting that the K for cleavage 
cannot be reduced arbitrarily and always has the Griffith level (at that T) as a lower 
bound. Thus an increase in T should generally ease dislocation nucleation more than 
cleavage, and favor ductility. The considerations in the rest of  this section are for low 
T, when thermal activation is not an important factor. 

(b) The present analysis of dislocation nucleation is approximate in many respects, 
and thus it will be difficult to draw definitive conclusions on ductile vs brittle response 
in the several borderline cases that will be seen to arise. Elastic anisotropy has not 
been accounted for in the nucleation criteria presented, the treatment of  0 # 0 is 
approximate based on the K cfr idea, and effects of  normal stresses on dislocation- 
forming shear motions have not been considered [along with other possible limitations 
of the constrained-path procedure (Section 4)]. Most importantly, perhaps, we have 
no very reliable estimates of ~,,,~ ; the Yus~Vrc,kc~) and Yus~EAM~ values of Table I may contain 
large errors. Also, reliable values of 7.,r, needed in the fcc cases, are not available for 
most solids. 

(c) Dislocation processes not directly associated with nucleation from a crack tip 
may actually control brittle vs ductile response in many cases. For example, in soft 
solids with a high density of  mobile dislocation, it may never be possible to build up 
enough stress at a crack tip to meet either a Griffith cleavage or a dislocation nucleation 
criterion, so the issue of which requires the greater local K value becomes irrelevant. 
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Also,  in solids for  which d i s loca t ion  mobi l i ty  is low, easy nuc lea t ion  o f  d i s loca t ions  
f rom a c rack  tip does  no t  necessar i ly  imply  re laxa t ion  o f  stresses ; c leavage m a y  occur  
because  such d is loca t ions  canno t  move  readi ly  enough  away  f rom the c rack  tip so as 
to relax stress in its vicinity.  

Accep t ing  these l imi ta t ions ,  cons ider  Tab le  2. Es t imates  o f  the surface energy y~ at  
T = 0, based  on measurement s  tha t  have been ex t r apo la t ed  to low t empera tu r e  or,  
where no ted  by  the cross,  on  cor re la t ions  thus es tabl i shed  with fo rma t ion  energies,  
are  shown in the first co lumn  based  on TYSON (1975). Shear  modu l i  ]-/slip and  b are  
also shown (b is for  a Shockley  par t i a l  d i s loca t ion  in the fcc and  d i a m o n d  cubic  
cases, and  for  a comple te  d i s loca t ion  in the bcc cases),  and  the F renke l  es t imate  
Y,,.,~V~,k~) = Iz.~j~pb2/2rr 2h is ca lcu la ted  f rom them, as 0.036#~,pb for  par t ia l  d i s loca t ions  

in fcc and  ra ther  uncer ta in ly  d i a m o n d  cubic,  and  0.062#~pb for  comple te  d i s loca t ions  
on the {110} p lane  in bcc. 

We can therefore  ca lcula te  the ra t ios  o f  y,/y,,, shown in the last  two co lumns  o f  
Table  2, based,  respect ively,  on Y..(F,~.k~) and '~us(EAM), with the la t ter  a p p r o x i m a t e d  as 

0.7yus(Frenkel). 

TABLE 2. Material properties and Y~/7~ ratios 

y., (T = 0) lq,p b ~),L~(l"renkel) 
Solid (J/m 2 ) (GPa) (nm) (J/mz ) "~s/Yus(Frenket) Ys/'~u.,(EA M) 

fcc metals : 
Ag 1.34 25.6 0.166 0.15 8.8 12.5 
A1 1.20 25.1 0.165 0.15 8.1 11.5 
Au 1.56 23.7 0.166 0.14 11.0 15.7 
Cu 1.79 40.8 0.147 0.22 8.3 11.8 
Ir 2.95]" 198 0.156 1.1 2.7 3.8 
Ni 2.27 74.6 0.144 0.39 5.9 8.4 
Pb 0.61 7.27 0.201 0.053 11.6 16.6 
Pt 2.59 57.5 0.160 0.33 7.8 11.2 

bcc metals : 
Cr 2.32 131 0.250 2.0 I. 1 1.6 
Fe 2.37 69.3 0.248 1.1 2.2 3.2 
K 0.135" 1.15 0.453 0.032 4.0 5.7 
Li 0.53]" 3.90 0.302 0.073 7.3 10.4 
Mo 2.28 131 0.273 2.2 1.0 1.5 
Na 024]" 2.43 0.366 0.055 4.4 6.2 
Nb 2.57 46.9 0.286 0.83 3.1 4.4 
Ta 2.90 62.8 0.286 1.1 2.6 3.7 
V 2.285. 50.5 0.262 0.82 2.8 4.0 
W 3.07 160 0.274 2.7 1.1 1.6 

Diamond cubic : 
C 5.79]" 509 0.145 2.7 2.2 3.1 
Ge 1.205. 49.2 0.231 0.41 2.9 4.2 
Si 1.565" 60.5 0.195 0.42 3.7 5.2 

t~', based on correlation with formation energy (TYSON, 1975). I.tslip=(Ctl--Clz+C44)/3. b= 
bo~ni~l = a0(211)/6 for fcc and diamond cubic; b = a0( l l l ) /2  for bcc. Y,.,~,k,, = 0.036/Alipb for fcc 
and diamond cubic ; ?~,(F~nkcJ) = 0.062/~pb for bcc. Y,,aEAM) equated to 0-77~,~F~,k,n. 
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To recall now the conclusions drawn in Section 6, it was shown that the dislocation 
nucleation condition is met before that for Griffith cleavage, for the {100} cracks 
considered, if, under pure mode I loading, 

7.,./7,,s > 9.1 (fcc) or6.3 (bcc). (74) 

Both required ratios were strongly reduced by small deviations from pure mode I, the 
fcc case most. For  example, with shear mode stress intensity factors set at 10% of Kt, 
the requirements for dislocation nucleation to occur before Griffith cleavage dropped 
to 

~s/Tu~ > 4.2 (fcc) or 3.5 (bcc). (75) 

(The fcc numbers in each case also depend on ),.q/V,,.,., which has been taken as 1/3 in 
the above inequalities ; v = 0.3 is used there too.) 

If the )',,.~'tEAM~ estimates are tentatively accepted as being close to correct, thus using 
the last column in Table 2 as estimates of ~'s/7,,., the following conclusions are arrived 
at for the fcc metals : all the fcc metals except Ni and Ir are incapable of cleaving. If 
the small disparity between 9.1 and the 8.4 ratio shown for Ni is real, and not just an 
artifact of the approximations made, then Ni should be cleavable under pure mode I 
loading. Still, a very small amount  of loading in the two shear modes (of order 2% 
of K,) suffices to cause ductile response. Ir would still cleave even with a 10% shear 
mode loading but would behave in a ductile manner with slightly greater shear present. 
This is consistent with the known cleavage oflr .  If the conclusions on Ni being cleavable 
under pure mode I are supported after accounting for some of the approximations of 
the present treatment noted in (b) above, then it may be fruitful to attempt careful 
mode I loading tests on Ni crystals at low T to look for cleavage. As an indication 
that Ni may, plausibly, be thought of as a borderline material, in a brittle vs ductile 
sense, it is interesting to note that grain boundaries in Ni are rather easily rendered 
cleavable by segregation of  S there and by the presence of H. 

If the true ~,,.~ is close to the Frenkel estimate then, according to Table 2, even Pt, 
A1, Cu and Ag should be borderline cleavable at low T if loaded in perfect mode I, 
at least if consideration of  elastic anisotropy and other factors of  (b) above do not 
change things. However, a little loading in the two shear modes, less than 1% of K~ 
for Ag, 2% for Cu and A1, and 3% for Pt, shifts the balance in favor of dislocation 
nucleation. 

This simplified discussion of fcc solids has assumed the same ~,,.,./ps~pb in all materials 
and also the same V.,f/V,,,. 

For the bcc metals, again first assume the V,,sCEAM~ is close to correct so that the last 
column of  Table 2 gives Vsh',,s. Then the alkali metals, Li, Na and K, are the standouts 
in terms of  ductility. The ~'s/?,,~ for Li is well above the margin of  6.3 for pure mode 
I, and Na is so near that a lot less than 1% loading in the shear modes (or perhaps a 
Tonly  moderately above 0) would favor dislocation nucleation over Griffith cleavage 
in it, and about 2% shear modes loading would suffice for K. This is consistent with 
the general malleability of  the alkali metals. 

The vanadium subgroup of  the transition metals, in the order Nb, V and Ta, also 
stand out in Table 2. They fall below the threshold for the ductile crack tip response 
for pure mode I loading, but fit comfortably within the border for ductile response 
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when mode I is accompanied by 10% loadings in the shear modes. Fe is predicted to 
be clearly cleavable, although it should be ductilized by 12% or so shear loadings. Fe 
may also be a case for which there is relatively strong sensitivity of  the effective Yu.,. to 
normal stress, as suggested by the relaxed-unrelaxed difference for it in Table 1 and 
by CmSUNG et al. (1991); that would favor more ductile response. By comparison, 
the chromium subgroup of  transition metals, Cr, Mo and W, seem by our criterion 
to'be irredeemably brittle. 

If the Frenkel estimates of ~u.~ are, instead, somewhat closer to the mark, then the 
results of  Table 2 still suggest that Li cannot be cleaved. The other alkali metals are 
less borderline, but fit well within the 10% shear mode margin, whereas the vanadium 
subgroup would require about 11-14% shear for ductilization, and Fe around 15%. 

Diamond cubic non-metals are also shown in Table 2 and ~,,~ has been listed 
for them as for fcc metals, assuming that dislocations are generated by a partial route 
on { 111 } planes. All of  the diamond cubic solids are predicted to be cleavable by these 
considerations. It is interesting, however, that Si and Ge rate higher than Ir which, 
while known to cleave, can nevertheless show substantial dislocation elasticity. Thus, 
while the ~.,./7,,s ratios suggest that Si should show dislocation nucleation from a crack 
tip at low temperatures if shear mode loadings of the order 10% of  Kt are present, 
the low mobility of any such dislocations, once nucleated, may condemn Si even then 
to a brittle response. It will be interesting to see what the relatively high )'s/~us for Si, 
among the cleavable fcc and diamond cubic solids, implies for nucleation eased by 
thermal activation at higher T. 

Since the rough ~,,s estimates used in Table 2 scale directly with #~pb for a given 
crystal class, the characterization of  a crack tip response as brittle or ductile on the 
basis of the size of ~'.,./7,,.~ shown in Table 2 is equivalent to characterization on the 
basis of y.~/~s,pb, much as advocated by ARMSTRONG (1966) and RICE and THOMSON 
(1974). 

11. SUMMARY AND CONCLUSIONS 

A new analysis of  dislocation nucleation from a crack tip is presented based on the 
Peierls concept as applied to a slip plane emanating from the tip. Shear stress along 
the slip plane is a periodic function of the amount  of slip. An exact solution for the 
nucleation criterion is found when the crack and slip plane coincide, at least within 
the simplifying assumption that shear sliding between lattice planes, in forming a 
dislocation, is negligibly affected by normal stress. The exact solution is also extended 
to the nucleation of  dissociated dislocations, with complete results found for the 
nucleation of  a pair of Shockley partials in fcc solids. For  cases of greater interest, in 
which the slip and crack planes do not coincide (0 # 0) but, rather, intersect along 
the crack tip, an approximate solution for the nucleation criterion is given based on 
effective shear stress intensity factors along the slip plane. 

The core width of  the incipient dislocation at the threshold of  instability is estimated 
to be about 3 times the corresponding width for an isolated dislocation in an otherwise 
perfect lattice, so that conditions seem favorable for the use of  the Peierls concept. 
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Further, while previous treatments of nucleation have generally been based on elas- 
ticity solutions for fully formed dislocations located very near the crack tip, this 
analysis shows that maximum shear slippage at the tip is, at the moment of instability, 
only of the order of half that for a fully formed dislocation. 

The results identify a new solid state parameter ~,,,~, called the unstable stacking 
energy, which measures the resistance to dislocation nucleation at a crack tip. Critical 
stress intensity factors at nucleation scale with x//~.,. Here 7,L~ is the maximum energy, 
per unit area, encountered in the block-like shear of one half of a crystal relative to 
the other, along a slip plane in the direction of shear which forms a lattice dislocation. 
Also, while the concept is not fully developed here, some features of the 2D activated 
configuration (energy saddle point) have been derived for a crack tip loaded below 
the level for instantaneous nucleation. 

There are, at present, only quite uncertain estimates of ~,,,., The sheared atomic 
lattice geometry to which it corresponds is, however, a relatively simple one, periodic 
in the two directions along the slip plane and involving simple block-like translation 
of atoms above and below. Thus, it is to be hoped that the parameter may be 
susceptible to quantum electronic calculation, and such work is encouraged (the 
same for stacking fault and anti-phase boundary energy terms, which also enter the 
nucleation criteria for dissociated dislocations). 

Allowing for considerable uncertainties in ~,,,~, the evaluation of the competition 
over whether the condition for Griffith cleavage, or for dislocation generation and 
blunting, is met first at a crack tip leads to results that seem generally consistent with 
the known brittle vs ductile response of fcc and bcc metals. The results also suggest 
that the outcome of this competition is often extremely sensitive to small amounts of 
mode II and mode III shear loading superposed on a basic mode I tensile loading; 
the shear loadings promote ductile response. 

There is much to improve on the continuum mechanics of the present analysis. 
Elastic anisotropy will be relatively straightforward to incorporate, especially at the 
level of the present development, since every step is readily generalized to cases of 
general rectilinear anisotropy. The accuracy of the treatment of inclined slip planes 
by the effective shear stress intensity factor concept needs more careful assessment, 
and this is partly underway [e.g. BELTZ and RICE (1991b)]. 

The present approach fails when there is more than a single kinematic variable 
describing relative motion on the slip plane. This occurs when coupling between 
different displacement modes is strong, so that one must consider the interaction of 
dislocation shear displacements with opening and/or orthogonal shear displacements 
along the slip plane. In this case the requisite input to the nucleation formulation 
includes much more than ~,s, and involves a full potential of form O*(6~, 62, 63) 
along the slip plane. A numerical solution to a system of coupled non-linear integral 
equations is then necessary. Some of the simpler cases have been studied (BELTZ and 
RICE, 1991a, b; SUN e t  a l . ,  1991a) but a comprehensive understanding of the results, 
and of the materials and/or situations in which coupling is important, is not yet at 
hand. Finally, the new analysis of dislocation nucleation given here, like that for- 
mulated by RICE and THOMSON (1974), is developed only for cases in which the crack 
tip lies in a slip plane. It has been noted (ARGON, 1987; DRAGONE and NIX, 1988) 
that the maximally stressed slip plane is sometimes one which intersects the crack tip 
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at a single po in t  but  does  not  con ta in  it. There  seems to be no  s imple way o f e x t e n d i n g  
the present  a p p r o a c h  to such cases. 
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