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A First-Order Perturbation Analysis
of Crack Trapping by Arrays of
Obstacles

A first-order perturbation analysis is presented for the configuration of an initially
straight crack front which is trapped against forward advance by contact with an ar-
ray of obstacles (i.e., regions of higher fracture toughness than their surroundings).
The problem is important to the micromechanics of crack advance in brittle, locally
heterogeneous solids. The formulation is based on a linear perturbation result for
the stress intensity factor distribution along the front of a half-plane crack when the
location of that front differs moderately from a straight line. The trapping solutions
for a periodic array of blocking rectangular obstacles are given using an analogy to
the plane stress Dugdale/BCS elastic-plastic crack model. For a periodic array of
obstacles with a given spacing and size in the direction parallel to the crack front, the
obstacle shape may affect the limit load at which the crack breaks through the array.
When such effects are examined within the range of validity of the linear perturba-
tion theory, it is found that obstacles whose cross-sections fully envelop a critical
reference area give the maximum limit load while others are broken through at lower
load levels. We also formulate a numerical procedure using the FFT technique and
adopting a ‘‘viscoplastic’’ crack growth model which, in an appropriate limit,
simulates crack growth at a critical stress intensity factor. This is applied to show
how a crack front begins to surround and penetrate into various arrays of round
obstacles (with a toughness ratio of 2) as the applied load is gradually increased.
The limitations of the first-order analysis restrict its validity to obstacles only slight-
ly tougher than the surrounding elastic medium. Recently, Fares (1988) analyzed
the crack trapping problem by a Boundary Element Method (BEM) with results in-
dicating that the first-order linear analysis is acceptable when the fracture of
toughness of the obstacles differs by a moderate amount from that of their surroun-
dings (e.g., the toughness ratio can be as large as 2 for circular obstacles spaced by 2
diameters). However, the first-order theory is not only quantitatively inaccurate,
but can make qualitatively wrong predictions when applied to very tough obstacles.
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Introduction

The micromechanics of crack advance through brittle,
locally heterogeneous materials is of fundamental interest. In
general, the fracture resistance (local fracture toughness)
varies along the front of an advancing macroscopic crack due
to microlevel heterogeneities, such as second-phase tough par-
ticles which can cause macroscopic toughening of a brittle
matrix. This is associated with a process referred to as the
““crack trapping,”’ in which the crack front advances
nonuniformly and has segments which are trapped, at least
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temporarily, by contact with tough particles whose fracture
toughness value exceeds the local stress intensity. The prob-
lems involved are of three-dimensional character and often
lack a theoretical treatment due to mathematical difficulties.
Solution procedures based on finite element and boundary ele-
ment analyses can be devised (see Fares, 1988) and they in-
volve heavy numerical computations. This paper gives a
simplified analysis, of limited validity, based on linear pertur-
bation theory for the configuration of an initially straight
crack front which is trapped against forward advance by con-
tact with arrays of obstacles. The obstacles are modeled as
having the same elastic properties as the rest of the elastic
medium, but with slightly higher fracture toughness, so that
the material considered here is treated as elastically
homogeneous. We assume that the crack grows whenever the
local stress intensity factor reaches the local fracture
toughness at some point along the crack front. As the applied
load increases, the crack front penetrates between and partial-
ly into the blocking obstacles and reaches new equilibrium
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states in which the intensity factor equals the fracture
toughness value along the penetrating portions of the crack
front. The distribution of stress intensity factors is calculated
based on the linear perturbation result, developed earlier in
Rice (1985a, 1988), for a half-plane tensile crack with a slight-
ly curved front. The half-plane crack result models finite-sized
cracks, assuming the lengths of the cracks are large compared
to other parameters such as obstacle spacing along the crack
front.

The trapping solutions for a periodic array of rectangular
blocking obstacles are obtained using an analogy, following
Rice (1988), to the two-dimensional plane stress Dugdale/BCS
(for Bilby-Cottrell-Swinden) type of elastic-plastic crack
model. The effects of the shape and size of the blocking
obstacles on the limit load at which the crack breaks through
the obstacles are discussed within the range of validity of the
linear perturbation theory, although those concepts can be ex-
tended to a broader context.

The limitations of the linear perturbation theory are em-
phasized here, in that it is accurate only to the first-order in
crack front perturbations. This restricts the validity of the pre-
sent first-order analysis to obstacles only slightly tougher than
their elastic surroundings, i.e., the fracture toughness ratio (of
the obstacles to surroundings) must be near unity. It will be
discussed in the text that when applied to very tough obstacles,
the first-order theory is not only quantitatively inaccurate, but
can also be qualitatively wrong. Fares (1988) recently per-
formed a BEM (Boundary Element Method) analysis on crack
trapping configurations, based on a fundamental solution
developed by Rice (1985b), for a prismatic opening dislocation
source ahead of a half-plane crack with a straight front. By

comparing the BEM results with those obtained by the first-

order theory, Fares showed that, for simple cosine wave form
perturbations of the crack front, the first-order theory gives
quantitatively acceptable results for the stress intensity factor
distribution (within 7 percent error) when the wave amplitude
is within roughly 0.1 times the wavelength. For the case of
periodically emplaced circular obstacles spaced by 2 diameters
(Figs. 7, 8), which is analyzed both by Fares (1988) and the
present authors, the first-order theory can be applied to
obstacles that are up to approximately twice as tough as the

surrounding material. .
Based on the linear perturbation theory, we formulate a

numerical procedure for crack penetration of a periodic array
of blocking obstacles by using the Fast Fourier Transform
(FFT) technique and adopting a ‘‘visco-plastic’’ crack growth
model. In that model, once the stress intensity factor exceeds
the local fracture toughness, the rate of the crack growth is
taken to be proportional to the difference between them at the
same location along the crack front. The crack then continues
to grow until the new equilibrium state is reached. By controll-
ing the rate term in such a viscoplastic formulation, the pro-
cedure may be made to simulate crack growth with the intensi-
ty factor equal, effectively, to the local fracture toughness. We
give several examples of applications of the numerical model
to show how a crack begins to surround and penetrate into ar-
rays of round obstacles as the applied®load is gradually
increased.

Formulation of Crack Trapping and Penetration

Following Rice (1988) in formulating the crack trapping
problem, we consider a half-plane crack in a linear, isotropic
elastic solid. Assume that the crack lies on the plane y =0 with
a straight tip along x=a, parallel to the z-axis (Fig. 1(a)), and
is subjected to fixed applied tensile loadings which induce
mode 1 tensile stress intensity factor

K=K’[z;a0) (¢))
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Fig. 1 A half-plane crack in homogeneous, isotropic elastic medium
with a (a) straight crack front; (b) slightly-curved crack front

along the crack front. The following linear perturbation result
was developed by Rice (1985a) to calculate the distribution of
stress intensity factor K along a slightly perturbed crack front,
along the arc x=a(z) in the plane y =0 (Fig. 1(b))

K(z) = K°[z;a(2)]

+* KOz";a()llaz’) - a(z)] | ,
B 2 dz ()]

to the first-order accuracy in the deviation of a(z’) from con-
stancy; PV denotes principal value. In writing equation (2) for
any chosen z, we have chosen a reference straight crack with
tip along x=a(z).

We will use these half-plane crack results to model the trap-
ping problems of a finite-sized crack, @, now being the crack
length in the x-dimension (e.g., half of the length of a tunnel
crack). We assume that the real intensity factor distribution
along the reference straight crack front varies negligibly with z
and also that the representative perturbation wavelength of
the actual crack front is much smaller than the overall crack
length. Thus the aforementioned half-plane crack result can
be used with K° regarded as uniform along the crack front and
independent of the crack length over the small perturbations
to be considered. Note that the representative wavelength of
the perturbation of the crack front must be consistent with
that of the variation of the nonuniform fracture toughness
along the crack front. Using an integration by part in equation
(2), one can show that

K(z)-K° +* da(z’)/dz’
K° -~ Z'—z

Let K, and K, denote the fracture toughness, or the critical
Ks, for the obstacle-free material and the obstacles, respec-
tively. Now imagine a crack front that is trapped by obstacles
of some given distribution. The crack penetrates between and
partially into the obstacles so that we may assume the K=K,
on the portions of the front between the obstacles and K=K,
on the portions where the obstacles are being partially
penetrated. However, the penetration depth a(z) is unknown
in those penetrated zones. Yet, a(z) is known but K(2) is
unknown where the crack front just contacts the obstacles.
One then needs to solve the singular integral equation (3) for
a(z) and K(z) with the values of either a(z) or K(2) given along
complementary portions of the z-axis. The special solution to
equation (3) with K(z)=K°=K, and a(z)=a,=const, cor-
responds to the initial state when crack penetration is
imminent.

Clearly, equation (3) is strictly valid only if lda(z)/dz]| << 1
over the whole crack front (— o <z < o). This is equivalent to
[K(z)— K°1/K° << 1. Crack penetration into the obstacles
starts when the applied K° is increased from K. Hence, during
a penetration process one always has [K(z)—K°l/K°=|[K,
—K /K, so that the_condition lda(z)/dzl<<1 can be
guaranteed by having [K,—K_]/K.<< 1. In practical terms it
appears that our results are still approximately valid when
[f{c —K_.)/K, is near unity.

+(l/21r)PVS

= /2,,)PVS dz’. A3
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Fig. 2 (a) A crack front trapped by a periodic array of rectangular

obstacles and (b) regions Lyap, Lpen, and R along the trapped crack
front

Analogy to Elastic-Plastic Plane Stress Crack Model

Let us consider the two-dimensional plane stress problem in
the y, z-plane, with an array of cracks along the z-axis on y =0
which can be represented by a continuous distribution of
prismatic opening (edge) dislocations. A remotely applied
uniform stress o, =% generates an opening gap 6=46(2) (i.e.,

net y-direction displacement) between y=0* and y=0~. The
stress ¢, along the z—axis, denoted by o(z), is the sum of o°
and the effect of a continuous distribution of edge dislocations
representing the opening gap between the crack faces. Hence,
we write the following,

— a0 o ’ ’
oo L py[ " de /i
E 27 - Z2'—Z

Equation (4) may be rearranged to coincide exactly with (3)
provided that one makes the identifications (Rice, 1988)

2[0(2) - 0"V E~[K(z) - K°VK®;  8(2)—a(2). &)

Thus, the three-dimensional linearized perturbation problem
of a crack trapped by, penetrating between, and partially into
an array of blocking obstacles has the following two-
dimensional plane stress analog: The z-axis is divided into
the following two parts, L, and L., analogous to the con-
tact and penetration regions along the crack front (see Fig.
2(b)). Along L,,,, the plane stress opening gap is prescribed,
i.e., as a given distribution of prismatic opening dislocation
corresponding to &(z) =a(z). Along the portions of L., bet-
ween the obstacles, conditions correspond to an array of plane
stress cracks with the stress sustained along the crack faces
prescribed as a(2) = o° + E(K, — K°)/2K°. The region denoted
as R in Fig. 2(b), as a part of L, is analogous to a
Dugdale/BCS line plastic zone in plane stress, along which
6(2)=o® + E(K,— K°)/2K°. The region L,,, reduces, and R in-
creases, with increase of the ‘‘applied’’ stress intensity K°, as
the crack front gradually penetrates into the obstacles. The
size of the zones R must be determined as part of the solution
by imposing the condition that K(z) be finite (equal to K,) as
the border between L,,, and R is approached from within
L,,,. A special case when K .—o, corresponding to im-
penetrable obstacles, has the analogy of purely-elastic plane
stress cracks without plastic regions.

The plastic flow in the aforementioned analogous two-
dimensional plane stress problem, of an array of cracks in an
elastic-plastic sheet, is confined to line plastic zones along the
z-axis. Thus o(z) = 6.(>0?) along the plastic zones R, where
the Dugdale/BCS tensile yield strength &, is identified as
o° + E(K,—K°)/2K°. The portions of L,., complementary to
R correspond to loaded crack faces on which
a(z)=0.(< 0% (0. =0+ E(K.— K°)/2K").

dz’. O]
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Hence, the solutions for the three-dimensional problem of
crack trapping by obstacles can be simply extracted from the
known two-dimensional Dugdale/BCS plane stress crack
model solutions, or from new solutions that can be generated
by solving the integral equation or, perhaps, by solving an
alternative numerical model of the two-dimensional plane
stress problem.

Gradual Penetration of a Periodic Array of Obstacles

Figure 2 shows a periodic array of obstacles with center-to-
center spacing of 2L and a gap 2H between them. The
obstacles have flat edges, parallel to the z-axis, and are
aligned so that the crack front encounters them simultaneous-
ly. Thus they could represent aligned rectangular-shaped
obstacles of sufficiently large (see the following) extent d in
the x-direction. As remarked, the trapping solution may be
developed directly from the analogy to the two-dimensional
solution of plane stress Dugdale/BCS model. The
Dugdale/BCS model for a periodic crack array has been
solved by Bilby and Swinden (1965) and Smith (1966). In par-
ticular, the parameters R and a,;,, characterizing spread of
the crack into the obstacles as defined in Fig. 2(b), are given
by:

R=H{(1/¢) arcsin[sine/sinu] — 1}
_ 2H wsina S /2

s €

Qmin
®

cos¢ [ sin(¢ + p)

(1 —sin?asin?¢)* sin(¢ — p) ]d¢ ©

where
p=m(K,—K)/2K.—K.), «=K.—-K)/K°

e=wH/2L, a=w(H+R)/2L. (@]
These results are meaningful for the range
K.<K°<K.+f(K.—K,) ®

where f=(L — H)/L is the line fraction of contact zones. The
crack front is predicted, within the linear perturbation for-
mulation, to completely penetrate the obstacles (i.e., Ly,
shrinks to zero in Fig. 2()) at the upper limit. Of course, the
linear perturbation procedures themselves are rigorously valid
only for K? slightly greater than the lower limit K. Note that
p=m/2 corresponds to the lower limit and u=e to the upper
limit.

The upper limit in (8) gives the limit load at which the crack
front just breaks through the array of obstacles,

K°=K, +flK.~K,). ©)

This predicts the maximum load that the crack obstacle system
can sustain within the range of validity of the linear perturba-
tion theory.-

However, the limit load K? can be calculated exactly (Rice,
1988) if K(z) is known everywhere along the crack front when
the final failure of the crack obstacle system occurs. This
would be true if the obstacles are fully penetrated prior to the
final failure, so that the local K(z) is everywhere equal to the
local toughness. Since it is assumed here that the straight-
crack-front value K° of equation (1) can be regarded as con-
stant, it is necessary that

(K%? = <[K@)*> 10)

be satisfied for any crack front configuration a(z) in Fig. 1(J).
Here the brackets denote an average along the entire z-axis.
Equation (10) can be proved by considering the energy release
in a unit translation of the crack front in the x-direction
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without any change of the crack front shape. If no instabilities
occur, K(z) is known everywhere at final breakthrough, i.e.,
K(z)=K, on regions between the obstacles and K(z)=K,
within the obstacles. Hence, equation (10) gives the exact
value of the limit load K as

K'=[K?+fK2-K2)". (11)

This agrees with equation (9) to first-order in (f{c —K_,)and a
table comparing the results over a range of parameters is given
by Rice (1988).

However, crack obstacle systems can also fail by
mechanisms involving instabilities that occur before the crack
front has fully penetrated the blocking obstacles, in which case
(11) does not apply. The BEM analysis of Fares (1988) showed
that for a crack trapped by sufficiently tough obstacles, there
is a maximum local K(z) = WK, which can be generated at the
crack front prior to final instability. When the obstacle
toughness X, is more than WK_, the penetrating crack front
segments coalesce with one another and the crack front
bypasses the still-intact obstacles. This mechanism of the final
instability is completely different from anything explainable
within the first-order theory. In fact, the first-order theory
predicts that failure always occurs by having the crack front
break through the obstacles, and the K° at breakthrough in-
creases linearly with the obstacle toughness. The first-order
theory also implies that an arbitrarily large local X(z) can be
developed where a crack is blocked by a sufficiently tough ar-
ray of obstacles. Therefore, the first-order theory can be even
qualitatively, as well as quantitatively, wrong when applied to
tough obstacles.

Hence, W is defined as a critical parameter which sets the
upper limit of the obstacle toughness value K, = WK for hav-
ing a breakthrough mechanism as predicted by the first-order
theory. In other words, W sets the boundary between the
breakthrough mechanism in which case the first-order theory
is at least qualitatively correct and the bypass mechanism
(coalescence of penetrating crack front segments beyond an
unbroken particle) which is completely beyond the scope of
the first-order theory. This W can only be determined through
more accurate formulations such as the BEM analysis of Fares
(1988). Since the maximum local K(z)=WK_, when the
penetrating crack front segments start to coalesce unstably,
would be determined solely by the configuration of the
obstacles, W is dependent on that configuration. For a given
center-to-center spacing and obstacle size measured in the z-
direction, parallel to the crack front, W is sensitive to the
obstacle size d in the x-direction. As a limiting case, W ap-
proaches infinity when d— o, as in the case of straight-edge
obstacles with semi-infinite extent in the x-direction. The
toughness ratio K,/K, should be significantly smaller than W
to get quantitatively acceptable results from linear analysis.

Even if the breakthrough mechanism is guaranteed by hav-
ing K./K_ < W, there exists another type of instability which
leads to final failure before the state of full penetration of the
obstacles is attained. In these cases K(z) is not known
everywhere at breakthrough (unknown along the unpenetrated
portion of the obstacle). For convenience we will refer to such
breakthrough processes that become unstable prior to the full
penetration of obstacles as ‘‘irregular’’ processes, and others
for which K(z) is known everywhere at breakthrough as
“regular’’ processes. In the next section we explore the critical
parameters associated with irregular processes within the first-
order theory. It will be shown that for rectangular obstacles of
given L and H as shown in Fig. 2, a critical length d* can be
defined so that the penetration process is regular if d>d* and
irregular if d<dt.

Therefore, the failure processes of a crack trapped by block-
ing obstacles fall into three categories. Taking rectangular

Journal of Applied Mechanics

obstacles of given L and H as in Fig. 2(a) as a demonstration,
there are two critical parameters W, dL. If the toughness ratio
K./K > W, the crack will bypass the obstacles without break-
ing them (category 1). When K_./K_. < W, the crack will break
the obstacles by penetration. The penetration process will be
regular (category 2) if d<d’ and irregular (category 3) if
d>d". The first category involves the mechanism of crack
bypassing the unbroken obstacles, which is completely beyond
the scope of the first-order theory. We will restrict our atten-
tion to the latter categories (2 and 3) of breakthrough
mechanism.

For regular processes the obstacles are gradually penetrated
by the crack until final breakthrough. The argument leading
to equation (11) for rectangular obstacles can be readily ex-
tended to arbitrarily-shaped, but symmetric (about the x-
direction), blocking obstacles in a periodic array. Let us
define f(x,) as the line fraction of the obstacles on a straight
line located at x=x, parallel to the original crack front. (For
rectangular obstacles of Fig. 2, the line fraction f(x,) is a con-
stant which takes the value of (L — H)/L). Equation (11) then
gives the exact value of the limit load K°, provided that
f now represents the maximum line fraction, i.e.,
f= Jrrxgaxf(xo). In fact, this is also the upper bound for limit

load for irregular penetration processes in the third category.
For general, possibly asymmetric blocking obstacles, the limit
load for regular processes can still be calculated from (11), but
the line fraction f now depends on the crack front profile at
final breakthrough. Again considering the energy release in a
unit rigid translation of the crack front in the x-direction at the
final breakthrough, one easily concludes that f= S/2L where S
represents the projection in the z-direction of all the crack
front segments within the obstacles in one period. This is even
true for mulitrow systems of periodic arrays of obstacles (see
later examples), in which case the bowing-out crack front will
encounter obstacles in different rows.

Assuming [K.—K_/K, is sufficiently small, both regular
and irregular crack penetration processes can be studied by
first-order perturbation theory. In particular, the irregular
processes deserves special attention. We next report a quan-
titative study on the role of the shape and size of the obstacles
in crack penetration processes and discuss the limit load for ir-
regular processes. The case discussed previously, for crack
trapping by periodic array of rectangular obstacles with large
x-dimension shown in Fig. 2, is important in the following
discussions. For convenience we will refer to it as the ‘‘model’’
case.

Irregular Processes in Crack Penetration of an Array of
Obstacles

_The problem is addressed on the assumption that
[K.—K_ )/K, is within a range suitable for linear perturbation
theory. Referring to the model case shown in Fig. 2, we denote
the value of a,, at the complete penetration of the obstacles
(i.e., R=L—H) by at, and define the area between the line
x=al and the crack front within an obstacle by AL (Fig. 3(a)).
Taking the upper limit p=e=(1 — f)7/2 in equations (6), one
obtains

a 4

& — =2 3
a d K.—K, S n[ s.m(f7r/2+¢) ]d¢- 12
L = K. +f(K.—K_.)Jo sin(fr/2 — ¢)

Hence, a /L is expressed as a function of the line fraction f of
the obstacles and the toughness ratio K./K,.. Now imagine an
array of arbitrarily-shaped, but symmetric (about the x-
direction), obstacles spaced by 2L with a minimum gap of 2H
in the z-direction. We choose a model case with parameters H,
L for reference. If an obstacle can fully contain the area 4-
associated with the chosen reference (Fig. 3(b)), then at
breakthrough the crack is undergoing exactly the same state as
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Fig. 3 (a) Area at distinguishing between regular and irregular
penetration processes; shapes of obstacles that cause (b) regular and
(c) irregular processes; (d) round obstacles

the reference model case. Therefore, the penetration process is
a regular one so that equation (9) applies to give the limit load
based on the maximum line fraction f of the obstacles in the z-
direction. For example, it can be proved that a* <L — H (the
proof can be achieved by choosing a variable u=(L —H)/L,
then forming a function g(x) = a* /L —u and proving that g(u)
is monotonously decreasing from zero over the interval [0, 1]).
Therefore, the crack penetration of an array of round
obstacles with radius equal to L — H is a regular process (Fig.
3(d)), in which case the limit load is predicted by equation (9)
for maximum line fraction f=(L —H)/L.

However, if the shape of the obstacle can not fully envelop
the area AL of the reference state, but rather is contained
(below its maximum width line) fully within A% (Fig. 3(c)), the
full penetration of the obstacle will not be possible at the mo-
ment of final breakthrough. That is, an instability will lead to
breakthrough prior to the full penetration and the penetration
is irregular. Therefore, the area AL is the critical parameter
that distinguishes between the regular and irregular processes.
The actual breakthrough loads for irregular processes are
smaller than those predicted by equation (9) using the max-
imum line fraction f.

Usually the calculation of limit loads for irregular processes
requires numerical search for the occurrence of instability.
However, there are some some cases for which direct analysis
suffices. For example, consider a periodic array of obstacles
with shape shown in Fig. 4(e). Apparently the penetration
would be a regular one if the height d of the base portion of
the obstacles is greater than at, i.e., d>a’. When d<a*, the
process is an irregular one if the angle y <#/2. Let us look at a
moment at which the crack has penetrated into the obstacle an

amount characterized by the parameter p shown in Fig. 4(a). It -

can be argued that the shown state, if in equilibrium with the
imposed load, is the same as another model case with
parameter H’ defined by H' = H+ p. It follows from equa-
tions (6) that

/2
d+ptany = 4f wsine S
™ ®
COso sin(¢+ u)
(sin?p — sinesin?¢)!/2 [ sin(¢ —p) ]d¢ a3

where e=7H’/2L and p, w are as defined in equations (7). If
we take the derivative of both sides of equation (13), with
respect to p, keeping other parameters constant, we can solve
for the quantity dK°/dp for any p. If dK°/dp> 0 the current
state is a stable one, in the sense that the load X needs to be
increased to increase the penetration p. Instability (failure) oc-
curs when dK°/dp <0 with the critical point reached when the
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Fig. 4 (a) A special shape of the blocking obstacles; parameter p
describing the crack penetration into the obstacles and (b) an example
of an irregular penetration process caused by rectangular obstacles
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Fig. 5 Critical angle ¢ for the obstacle shape shown in Fig. 4

equal sign is taken. An important case is dK°/dp | p=0=0,
which determine a critical angle ¥, below which the instability
occurs instantly when p=0. After some algebraic manipula-
tions, it can be shown that

/2
tany, = % wS
B
cosecosgsin?p [ sin(e + p) ]
(sin? — sin?esin?¢)3/2 Sn(b—p) de 14)

where e=7H/2L at p=0 and w, p are determined further by
solving (13) for K, using p=0. That is
x/2

4L
d=
7l'2

wsine S
®

coso sin(¢ + w)

(sin?p — sin%esin?¢) /2 [ sin(¢ —p) ] dé. (15)
When the geometrical angle y is less than y, the limit load K°
at which the crack breaks the obstacles is then determined
directly by equation (15). We observe that y.=7/2 for p=¢
corresponding to the upper limit in (8), so that at that limit the
crack breaks through the obstacles with any ¢, up to ¢y =90
deg (corresponding to the model case). As d—0, as for a very
thin obstacle, p—#/2 and y.—0. Usually 0<y < w/2. The
value of ¢, is plotted in Fig. 5 against d/a’, the height of the
obstacle nondimensionalized by o*, for H/L=0.5 and
K./K.=2. It is shown that ¢, is increasing in a rather linear
fashion with d/a* until d/at =0.9, after which a sharp in-
crease toward 90 deg is then observed. A rectangular obstacle
with ¥ =0 and d<a’ can then be always categorized as Y <y,
(Fig. 4(b)), and the limit load at which a crack breaks through
an array of rectangular-shaped obstacles is deter-
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mined by the equation (15) when d<a‘. Hence, one can
define a critical length @-(=at) for rectangular obstacles so
that the crack penetration process is regular if d>d~ and ir-
regular if d<dt.

Finally, if ¥ > ¢., instability will occur at some p>0 and a
similar critical location can be determined by the condition
dK°/dp=0. We do not present the details of the analysis.

Numerical Formulation of Crack Penetration of
Periodic Arrays of Obstacles

Within the range of validity of the linear perturbation
theory, we have discussed the problem of crack trapping by a
single array of obstacles based on an analogy to the two-
dimensional Dugdale/BCS plane stress crack model. The solu-
tions are given for characteristic quantities such as the
penetration depths and the limiting X value at which the final
breakthrough occurs. In the following we formulate the trap-
ping problem by an alternative, more powerful numerical pro-
cedure. The results are compared to those previously derived
as well as applied to other cases for which analytical solutions
are not know.

General Numerical Formulation. For the general formula-
tion consider that the fracture toughness varies in space so that
on the crack plane, K. =K (x, z). The crack will grow at the
positions along the crack front where the stress intensity factor
exceeds the fracture toughness K.. We adopt the following
“‘viscoplastic’’ model for the crack growth

daz,n) | PK@D-Kc(azn.)]  K<K,

ot 0

(16)
otherwise

where t is a time parameter in this model and p is a coefficient
that represents the “‘viscosity’’ of the system. By making p suf-
ficiently large, or else (as we do) by waiting a sufficiently long
time for a new equilibrium configuration of the crack front to
be approached after each small increase of load K° in a “‘stair-
case’’ load versus time history, we can make (stable) growth
occur arbitrarily close to the condition that K=K_ during
growth. Mastrojannis et al. (1980) have used a similar (but
higher order) criteria in analyzing planar crack growth in-
duced by hydraulic fracturing. .

Note that in equation (16), K = K(z,?) is related to a(z,?) by
equation (3) at a time ¢. In principle one can solve the coupled
equations (3) and (16) for K(z,f) and a(z,?). Apparently
a(z) =a(z,), after step increase to the K° of interest, is the
final equilibrium crack profile, corresponding to the sort of
solution for crack penetration discussed in the previous sec-
tions. While it is often impossible to solve the coupled equa-
tions analytically, numerical procedures can be designed by
discretizing the equation (16) into small time steps, and for
each step updating a(z,?) and K(z,) according to (3). The time
step At for any given value of p can be adjusted to speed up the
convergence of the solution. We will apply this procedure to
the periodic array of blocking obstacles in the following.

Tunnel Cracks With Periodic Arrays of Obstacles. Con-
sider a tunnel crack lying in a homogeneous, isotropic elastic
solid, having length 2a along the x-axis, and subjected to a
remote tensile stress o that induces

K°=K[a) = oVTa an

along the crack front. The crack advance is blocked by an ar-
ray of obstacles. Assuming the half-size of the tunnel crack is
initially equal to a;, crack growth will be imminent once the
load o reaches a point that condition K°=oVra; =K, is
satisfied, where here K is the minimum fracture toughness of
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the elastic medium along x=a;. With further increase of the
load, the crack will grow into a new equilibrium state having a
slightly curved front. Now expand a(z,?) and K(z,f) in Fourier
series,

Kz= ), K,em L, (18)

n=-—o

0o
a(z, t) = E A,, ein¥z/L ,

n=-—o

where we recall that 2L is the obstacle spacing. Here
A,=A4_,, K,=K_, are necessary for a(z,t), K(z,?) to be real
valued. Substituting equations (18) into equation (3), and car-
rying out the principal value integrations, one finds (Rice,
1985a),

Ko=K[Aj)=0VTA, and, for n0,

(S oS

dA,

Equations (19) replace equation (3) in the case of periodic ar-
ray of obstacles. Since equation (3) is for a half-plane crack
and valid only to the first order in da/dz (or da(z, t)/8z)),
equations (19) are only valid when L/A,, 14,1/4,<< 1.

For a single cosine wave perturbation assume that 4,=0
for Inl>1 so that a(z)=A,+2A4,cos(wz/L). In this case, it
follows from (19) that

romr 1+ (1-2) 2

cos(vrz/L)] . (20)

Fares (1988) has shown that the error of (20), when
A,/Ay<k1, is within seven percent for 4, =0.1L but can be
as large as 20 percent for 4, =0.2L. It is seen from (20) that
K(z) is predicted to be linear with A, and when A4,/L exceeds
1/, K(2) is predicted to be negative at the most protruding
parts of the crack front, e.g., z=0. This is why the first-order
theory can be qualitatively wrong when applied to tough
obstacles in which case large crack front perturbations might
occur. By contrast, the BEM results of Fares (1988) show that
K(z) attains the smallest, but always positive, value at the most
protruding parts along the crack front.

The fast Fourier transform (FFT) method is used to carry
out the expansion and inversion of the Fourier series in equa-
tions (18). The numerical procedure of solving for the
equilibrium profile a(z) at a given load ¢ is then formulated as
follows: The initial shape function a(z,0) (e.g., a constant at
the start of the procedure) is expanded into a Fourier series by
the FFT method, and the coefficients K, in the second of
equations (18) are calculated by equations (19). A FFT inver-
sion (or summation) by equation (18) gives the distribution of
K(z,0). Equation (16) is then used, for a chosen time interval
At (sufficiently small for numerical convergence) and constant
(arbitrary) p, to calculate the amount of growth Aa(z,0) for
one period 0<z<2L, therefore updating a(z,Af) as
a(z,0)+ Aa(z,0). This procedure is repeated to calculate the
subsequent growth until the final equilibrium state is achieved
in which a(z,?) no longer increases by any substantial amount
(e.g., less than 10-6L), indicating that conditions K(z)=K_,
K(z)= K, are satisfied to the accuracy required along the cor-
responding portions of penetration. Then the applied stress
may be increased by another step and the same sequence of
steps followed. We have found that this procedure is a rapidly
convergent process for properly chosen time steps (scaling in-
versely with the constant p).

In order to compare the numerical solution to the previously
derived results, we consider again the model case of crack
penetration into a periodic array of semi-infinite obstacles
spaced at gaps of 2L as shown in Fig. 2. Figure 6 depicts the
obstacles (as lightly-shaded regions) with H=0.5L and the
trapped crack front profiles in one period —1<z/L<1. The
initial crack length g; is assumed to be 10 times L for the solid
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Fig. 6 Crack penetrating a periodic array of straight-edged obstacles
aligned in front of a crack with toughness ratio K./K. = 2. For solid line
curves a; =10L and for dashed line curves a; = 100L.
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Fig.7 An array of round obstacles spaced by 2 diameters and the crack
trapping profiles when toughness ratio Rcch =4 (note that the first-
order theory gives qualitatively wrong predictions at the higher ¢ values
in this case, see text)

line curves. The load o; for penetration to start and the initial
crack length g; are related by

oNTa; =KC' (21)

We define a nondimensional load parameter as 6=0/0;.
The fracture toughness K. of the obstacles is taken as twice the
value of K,.. The crack front trapping configurations are
shown in solid lines in Fig. 6. The full penetration, which is
also the final breakthrough in this special case, occurs when &
reaches 1.5, as predicted in equation (9). Also shown in Fig. 6
in dashed lines are the corresponding curves when a; = 100L,
in which case the half-plane crack is better approximated. We
see that the curves for a;=10L are very close to those at
a;=100L. The penetration curves also match closely the
previously derived a;;;, and R of equations (6).

Before concluding this section, we further consider a crack
penetrating an array of round, circular-shaped obstacles
spaced by 2 diameters (Fig. 7). To examine the validity range
of the first-order theory, let us first assume a toughness ratio
(K./K.) of 4. The trapping configurations are shown in Fig. 7
and the final breakthrough occurs at 6=2.5. Fares (1988)
calculated the stress intensity factor distribution correspon-
ding to these first-order-accurate trapping configurations. His
results show that only the first profile, corresponding to
=1.3, gives the correct K(z) distribution, i.e., K(2)=K,
along the penetrating portion of the crack front. As shown in
Fig. 7, the maximum perturbation for the first trapping profile
is slightly greater than 0.4L, which is reasonably consistent
with the BEM results on the single cosine wave perturbation
shown before. Fares (1988) also pointed out that in this case
the maximum local K(z) which can be generated along the
crack front is only 3.52K, i.e., W =3.52. The final failure oc-
curs at §=2.35, by having the crack front bypass the still-
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" Fig.8 Crack trapping profiles for round obstacles with toughness ratio

R/K. =2, when the load o is increased (a) from 1.1 to 1.5 with a step in-
crement of 0.1 and (b) from 1.4 to 1.5 with a step increment of 0.01

intact obstacles. The first-order-accurate trappings configura-
tions at the higher & values in Fig. 7 are, hence, even
qualitatively wrong.

This indicates that it is necessary to reduce the toughness
ratio substantially in order to apply the first-order theory. The
maximum perturbation of the crack front should be kept
within a reasonable range. Figure 8(e) depicts the trapping
profiles when the toughness ratio is reduced to 2. In this case
the maximum perturbation is below 0.6L and the linear per-
turbation theory can be regarded as an acceptable approxima-
tion. In Fig. 8(b) a more detailed picture of the crack
penetrating the round obstacles is shown as the applied load is
gradually increased from 1.4 to 1.5 with a step increment of
0.01. The complete breakthrough of the whole array of
obstacles occurs when = 1.5. This confirms the previous con-
clusions that the penetration of round obstacles is a regular
process when the toughness ratio is low enough for analysis
within the first-order theory. The penetration of the obstacle
starts at a load level lower than but close to the final
breakthrough load (in our case &y, = 1.44). One may see in
Fig. 8(a), (b) that the crack initially grows by following closely
the outer curvature of the obstacles and starts penetrating the
obstacle when = 1.44. Shortly after the start of penetration
the final breakthrough occurs. This occurs because the cir-
cular boundary of the obstacles is close to the bounding curve
of AL. A limiting case is when the shape of the blocking
obstacles exactly coincides with the contour of AZ. Then no
partial penetration of the obstacles will occur before the final
breakthrough.

Some Further Case Studies

Here we give several examples of using the viscoplastic/FFT
numerical model to show how a crack starts to penetrate and
surround round obstacles, emplaced in the form of multirow
periodic arrays, as the applied load is gradually increased. A
toughness ratio of two is assumed for each crack obstacle
system. The obstacles are shown as lightly-shaded regions in
Figs. 9-12.
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Fig. 9 Case 1: a crack penetrating two rows of periodic arrays of

round obstacles with diameter equal to 0.3 times the obstacle spacing
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Fig. 10 Case 2: a crack penetrating two rows of periodic arrays of
round obstacles with diameter equal to 0.3 times the obstacle spacing
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Case 1. Figure 9 shows a two-row periodic array of round
obstacles (lightly-shaded circular regions) in one period
—1<z/L< 1. The radius of the obstacles is taken as 0.3L. As
can be observed from the resulting crack front trapping con-
figurations, the crack penetration starts by following the cir-
cular boundary of the round obstacles in the first row. When

load & is increased to 1.2, the central part of the penetrating

crack front touches the second row of obstacles, and at
.d=1.4, the first row of the obstacles is fully penetrated. The
final breakthrough occurs at 5=1.55.

Case 2. We consider in the second case two rows of round
obstacles, still with radius 0.3L, but with one more obstacle in
the second row as shown in Fig. 10. The trapping profiles
display more complicated features when the applied load & is
increased by step increments of 0.1. The first row gets
penetrated at =1.3 and the final breakthrough occurs at
o=1.71.

Case 3. In Fig. 11 three rows of blocking round obstacles
are shown, each with radius equal to L/2V3. The lines that
join the centers of neighboring obstacles are inclined by 30 deg
relative to the z-axis (horizontal line). The final breakthrough
occurs at 6= 1.87. This obstacle arrangement is interesting, in
that a toughening ratio (K°/K_) of 1.87 is achieved with the
area fraction of the obstacles less than 0.5. This occurs
because at final breakthrough a large portion of the crack
front lies within the obstacle region. Hence, this type of
obstacle arrangement is quite efficient in toughening the
elastic matrix material. This suggests an interesting prob-
lem to find the optimum arrangement for the obstacles at a
given volume fraction such that the maximum toughening can
be achieved. We leave it as future work to address such issue.

Case 4. Finally, we give a simulation of a crack
penetrating smaller particles (with radius taken as 0.1L) as
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a crack penetrating three rows of periodic arrays of
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Fig. 11 Case 3:

round obstacles with diameter equal to 1/2V3 times the obstacle
spacing

KC/KC =2,
[a(z) — ai]/L

=102 to 128 step 0.02

04

1.02
E/ L 05 1.0

Fig. 12 Case 4: a crack penetrating three rows of periodic arrays of
round obstacles with diameter equal to 0.1 times the obstacle spacing

T
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shown in Fig. 12. Again, three rows of blocking round
obstacles are shown, each row contains one more obstacle
such that it is harder to break than the previous row. As the
obstacles in the first row have a large spacing, part of the
crack front contacts the second row and the interaction effect
results in stronger resistance to crack penetration. Such in-
teraction becomes smaller between the second and third row
and the final breakthrough occurs at =1.30.

These case studies clearly show that significant toughening
of a brittle matrix can be achieved through crack trapping by
obstacles (e.g., second-phase particles, inclusions, etc.) by
having the obstacles emplaced in a ‘‘good arrangement’’ such
that the bowing out crack front encounters the maximum
number of obstacles in final breakthrough. In these discus-
sions we have excluded the possibility of having crack bypass
tough obstacles (see previous discussions in the text). That
mechanism gives rise to unbroken ligaments behind the crack
front, which cause an additional toughening effect, referred to
as the “‘bridging effect” in the literature, by reducing the ef-
fective crack front stress intensity factor. One expects that, in
reality, these mechanisms will have a combined toughening ef-
fect on a brittle matrix containing tough second-phase
inhomogeneities.

While our considerations here are for tensilc (mode I)
cracks, the corresponding equations of the first-order pertur-
bation theory are of closely similar form for those loaded in
mode II or mode III shear (Gao and Rice, 1986). Thus, to the
extent that a shear crack adequately models a tectonic fault,
the present considerations may be of interest for faulting in
regions of heterogeneous shear toughness.
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