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ABSTRACT

AN ASYMPTOTIC singular solution of the HRR type is presented for mode I tensile cracks in ductile single
crystals. These are assumed to undergo Taylor hardening with a power-law relation between stress and
strain at sufficiently large strain. Results are given for a crack on the (010) plane with its tip along the
[101}] direction, and for a crack on the (101) plane with its tip along the same [101] direction in a fcc
crystal. The yield surfaces for both of these orientations are identical and thus, for the “small strain™
formulation, the same macroscopic solution applies to both. The near-tip region is divided into angular
sectors which are maps of successive flat segments and vertices of the yield surface. While the solution here
involves 14 different sectors referring to stress states corresponding to flat and vertex segments of the yield
locus, RICE's (Mech. Mater. 6,714, 1987) asymptotic solution for the elastic-ideally plastic crystals involved
only 7 sectors which mapped into the vertex points of the yield surface. The perfectly plastic limit of the
HRR fields here reduce to 7 stress states of RICE (1987). In this limit, the HRR displacement fields remain
continuous resulting in a discontinuous yet bounded and nonzero strain field. In contrast, the elastic—
ideally plastic solutions have discontinuous shear displacements across sector boundaries. Furthermore
the contours of constant effective strain here have various peaks and troughs at sector boundaries and lean
backward relative to the direction of crack growth. Conversely. in the recent finite element solutions for
elastic-ideally plastic single crystals by Hawk (preliminary summary of results is included in RICE et al.,
Ini. J. Fracrure. in press. 1989), the plastic zones lean forward and the strain field is consistent with a Dirac
singular form similar to RICE’s (1987). Thus it is conjectured that, similar to the anti-plane shear case of
Rice and SAEEDVAFA (J. Mech. Phys. Solids 36, 189, 1988), the single crystal HRR fields are dominant
only over part of the plastic region immediately adjacent to the crack tip, and that their domain of validity
vanishes as the perfectly plastic limit is approached.

INTRODUCTION

RicE (1987) presented an asymptotic solution for the stress and deformation field very
near the tip of a mode I crack in an ideally plastic ductile crystal. Two specific
orientations, a crack on the (010) cube face with its tip along the [101] face diagonal
and a crack on the (101) plane with its tip along the same diagonal, were considered
in fcc and bec crystals for both stationary and quasi-statically growing cracks. In the
case of stationary cracks, the stress field was found to be piecewise constant in angular
sectors mapping into vertex points of the yield surface and changed discontinuously
between sectors. The displacement and strain fields were not fully determined,
although it was shown that there must be a shear displacement discontinuity across
the sector boundaries for elastic-plastic crystals. The full solution could only be
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FiG. 1. Coordinate system used.

obtained with the aid of a complete elastic—plastic analysis, recently obtained by
Hawk (see RICE er ai., 1989) by finite element methods.

In this paper. a solution of the HRR type for the near-tip field of tensile loaded
cracks in strain hardening single crystals is presented. with the assumption that there
is a power-law relation between stress and strain. The analogous anti-plane shear case
was presented in Part I (RicE and SAEEDVAFA, 1988). The general form of the solution
governing the field is derived, and is applied to the same two cases of RicE (1987) for
stationary cracks in fcc crystals. The present solution procedure may be applied to
any other crack and crystal orientation compatible with plane strain deformation
through proper choice of parameter sets related to that orientation when assembling
the sectors.

MATHFEMATICAL FORMULATION

A Cartesian coordinate system fixed with the crack tip is used, as shown in Fig. [.
The polar coordinates r and ¢ have associated unit vectors e and h, in the radial and
angular directions, respectively. Also.

Cricx, = ¢, COCX, = hir (1)

govern the transformation to polar coordinates. Conventional index notation is used
here where repeated indices imply summation. Greek indices a, f3,... range over |
and 2, while latin indices /. /,... have the values of 1, 2 and 3. The crack and crystal
orientations considered. and the method of loading, are such that plane strain is a
possible deformation state. That is. &;: = e3> = &3, = 0 and u, = u(x,, x,), and
U, = 1i»(x,. X1). The non-vanishing stresses arc of the type o,; and 615 only. It may
be assumed that the same plane strain singularity (10 be discussed later), applies also
to general 3-D crack problems so long as ¢, is bounded at the crack front.
Coordinate rotations will be used to simplify the derivation. For a counter-clockwise
rotation by an angle ¢, as in Fig. I, vector transformation is governed by the rule

Xy Fivs = e +ixh)., 2)
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where i = ./ — 1. The transformation of stresses is then governed by
(022—0)/2+i0y =e [(02:—67)/2+i07]. (3)

with gy, 401> = 6+ 6%,

It is assumed that the crystals deform by shear on a set of allowable slip systems
according to the Schmid rule. That is, plastic flow occurs on a given system only when
the resolved shear stress on that system reaches a critical value. which evolves with
ongoing deformaiion. In addition, the critical shear strengths are assumed here to
obey Taylor hardening (all systems harden equally) with a power-law relation between
stress and strain at sufficiently large strain. That is,

7 =at’, (4)

where « is the hardening constant and # is the hardening exponent; # — x is the
perfectly plastic limit. In the above equation v is the effective shear strain. as defined
in Rick and SAEEDVAFA (1988) (i.e. the sum of absolute shears on all slip systems)
and 7 is the (common) critical resolved shear stress.

As discussed by Rice (1973), the yield surfaces for plane strain deformation of an
incompressible rigid-plastic material satisfying an associated flow rule {as for crystals
following the Schmid rule) can be represented as a curve in a plane whose axes are
{6,,—01,)/2 and a,,. For the single crystals, the yield surface in this stress space,
being the inner envelope of the planar yield surfaces for individual slip systems or
groups of systems compatible with plane flow, reduces to a polygon. It is a self-similar
polygon for Taylor hardening, and a fixed polygon in the space of the ratio of the
stresses to the critical resolved shear stress 7. The yield surface for an elastic-plastic
crystal in plane strain may, but need not, have the form of a curve in the (6, — ¢1,)/2
and o, plane. That is, there may be a dependence on o,,+ -, in activating certain
secondary slip systems which do not contribute to large plane deformation. The
effective vield surface for large plastic straining (similar to the “latent extremal sur-
face™ of HiLL. 1967) will reduce to a polygon in (6,,—0.-)/2 and o,, plane. Such a
yield surface is assumed here,

The polygonality of the yield surface results in two different types of near-crack-
tip solution associated with stress states corresponding to either a flat segment or a
vertex point of the surface. As the yield surface is traversed. the angular range near
the crack tip will be divided into sectors corresponding to these possible stress states.

The above constitutive description is compatible with the maximum plastic work
inequality and thus involves an associated flow rule. For proportional stressing, the
plastic strain vector will be normal to the yield surface along a flat segment and within
the cone of limiting normals at a vertex. In the near-tip field, it is anticipated that the
elastic strains are relatively small and ignorable. Hence the entire strain tensor can be
identified with the plastic strains. Then, the vector with components (&, —#1,)/2 and
&> based on the entire strain, will be directed normal to the vield locus, in the
(01,—012)/22and 6. plane, along flat segments, and within the fan of limiting normatls
at a vertex. It is assumed that the entire near tip field responds plastically.

For mode |. the only non-trivial equations of equilibrium are

(?{7,{;/53(1 = Q. (S}
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The strains have their usual definition, given by
&ap = (OULOX =+ CuuylOx,)/2. (6)
Since elastic responses are ignored, the entire material will be incompressible and thus
£y = 0. (7)

RicE and SAEeDVAFA (1988) have shown that for proportional stressing and strain-
ing (as with the HRR singular fields to be discussed later)

Ty = 08 (8)

The plastic material described responds identically, under proportional stressing.
as a nonlinear elastic matierial. For power-law hardening plastic material. in which
proportional stress states of a type indistinguishable from those for the analogous
nonlinear elastic solid are possible, the stress and displacement gradients near the
crack tip must be such that the J-integral is path independent. Hence, when evaluated
over a circular path surrounding the tip. it is independent of r. As discussed by
HuTcHINSON (1968) and Rice and ROSENGREN (1968), this type of field (referred to
as HRR) may therefore have singular near-tip stresses. strains and displacements of
the form

Ji/ =y bin+ ])6ij(6)s

8,—, —_ r——nr(n+ “é,i,,-(G),

u = r+ li(n+ ”l‘l‘,-(g), (9)

if singular solutions of the type u ~ r* exist as r — 0.

By using J-integral type considerations and related conservation laws, RICE (1988)
derived two general integrals which apply to all crack tip singular fields in nonlinear
elastic materials (as well as in the plastic materials discussed above, since they are
responding with proportional stressing and straining). This was also mentioned in
RicE and SAEEDVAFA (1988), who noted that therefore for all HRR type fields

hyG gty = (n+ 1D Cre = (n+1)C,sin 0, (10)

where C, is a constant having the same units as the J-integral. In the work that
follows, the derivation of the form of the near-tip solution in each of the several
angular sectors is greatly simplified by (10), since C, is the same in all sectors. In the
examples here C, will be expressed in terms of J when the field is normalized via the
crack tip J-integral, which is expected to be close to the far-field value of J in cases
for which the “deformation” plasticity formulation is appropriate.

FLAT SECTORS

Consider an angular sector of points near the tip whose stress state corresponds to
a particular flat segment of the (fixed) yield surface in the (6,,—0,,)/2t and 7,,/T
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Fi1G. 2. Notation used for the flat segment of the yield surface.

plane. Since the HRR field (9) involves ratios of stresses to one another that are
independent of r, each radial ray corresponds to a particular point of this flat segment.
The normality rule requires the strain vector to be perpendicular to that segment as
shown in Fig. 2. Thus, rotating the axes by an angle 2w such that the o',/ axis is
perpendicular to the segment (corresponding to a rotation of x,, X, axes by ) yields
g1, —&5 = 0. Then, recalling incompressibility of the plastic material, &}, +85, = 0.
gives

&)y = uy/0x) = 0,
£5, = Oub]ox, = 0. (an
The above equations imply that ) = w\(x}) and u5 = uw5(x}). For HRR fields the
displacements vary as r"/"* ", Since x’, = r cos (#—w) and x% = r sin (0 —w),
wy = Bixh x5 My,

uy = Box) x| 70D, (12

where B, and B, are constants. Differentiating (12) yields

&hy = (U\/x2+ur/x))[2(n+1). (13)
As indicated in Fig. 2, for the flat segment of the yield surface,
612/t = B, (14)

where fis a constant (> 1) depending on the geometrical orientation of the slip system
or group of systems corresponding to the flat segment (see Rice, 1987). Since by (8)
YT = 64&; = 20811, applying (14) yields

7 = 2f&), (15)

and (4) defines 1.
The equilibrium equations (5) may be represented in the integral form as
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Y («, .
g = — f = (¥, xh) dX + f(x5).

CX5

where ¢ is defined by (14). For HRR fields. stresses vary as r '"* . Therefore.
since X = r cos (0 —w) and x% = r sin (6 — w), the last terms in the above equations
must be a constant multiple of [x5] ="~ " and |x7| ' """, respectively : in particular.
S(x5) = By |xa"" " Vixhand g(x)) = B,|x||""* V/x). The integrals in the above equa-
tion have the form ¢//év, where [ is defined as

Izj [A|y|fn(n+li+Bl'\-,!fn'(n+l)]lnd.\-.

X
— A] \f! “[ P (n+ I)[A |_\,Iu (2 + l)+B!},|nr(n* 1)]('1* l)n. (16)

Carrying out the differentiation yields

ol 1 B x|x|7"rb oy
R T ELNUED] B R —nn+ Wyl no L - . 17
0y (n—H)[ Ry B ] Auvly ¥ tn
After some manipulation, it is obtained that
, 01> L - ,
o= - (n+ ‘1’)' (mus/uy — X1 /X5) + BB juf.
. aE P RPN ,
O = — (I;+l) (nu'jus — x5/ )+ By B, Jub. (18)

Note that in this sector x| and x% cannot change sign if there are to be finite stresses
at r # 0. This restricts possible boundary locations for the sector. Using the general
integral {10) in the transformed coordinate system. the following relations beween the
constants of this sector are obtained.

B .B,= —(n+1C-cosw,

B.B, = +(n+DHC>sinw. (19)

Il

Sector limits
Since the flat sector of the yield locus is bounded by two vertices. the range of
applicability of (1) to (19) is confined to

(07, —05,)
—tan2¢ < H , 7 <lan2¢
207,
where 2¢ =2w—-2¢ +xn2 and 2¢° =2¢" —2w—mn/2, as shown in Fig. 2.
Simplifying the above equation yields
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F1G. 3. Notation used for the vertex segment of the yield surface.

(65, —a) 12
20,

cot2(w—y ) < < cot2w—yY™). (20)

Equation (20) indicates that the flat sector starts (or ends) at # = 6", given by

[(0'/22'—0'/11)

26",

] = cot2(w—y?). 2h
0=0F

This is a nonlinear equation for the two values of 6 (start and end) in terms of the
constants of the sector. However, by using (19), this relationship only involves the
constants B,. B,, which will be determined when assembling the sectors. and C-.
which will be used to normalize the solution with the outer field.

VERTEX SECTORS

For the angular range near the tip which corresponds to the stress state at a vertex
of the yield surface. the ratio of stresses to the slip system shear strength 7 will remain
constant. The orientation of the strain vector changes continuously within the range
of the two limiting normals of the flat segments which define the vertex. Using a
coordinate system where the (¢, —0%,)/27 axis passes through the vertex (that is by
rotating the x,. x, axes by an angle /), as shown in Fig. 3, gives

0-112 = O. (22)

Then. the equations of equilibrium yield do,/0x| = 0and da%,/Cx% = 0, indicating
that ¢, = ¢’ (x5) and 6%, = 05,(x)). Recognizing the special functional form of
stress in HRR fields (9). results in

I

G + A4, 1x5] e,

0./:: _AZI-\'/II l(n+l). (23)

where A, and A, are constants. Note that as shown in Fig. 3,
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T = (0, —0%)/2x, 24)

and « can be defined in terms of the constant f and angle w of either of the neighboring
flat sectors as a = f/sin 2(y —w). Similar to the calculations for the flat sector, using
(7) and (8) leads to

&) = 0uy/ox| = +7y/2a,
€4y = OuSb)Ox, = —7/2a, (25)

where 7 is given by (4). Equation (25) can be integrated for «) and 15 by using (16)
after noticing that these integrals have the same form as /if n is replaced by 1/a. Thus,
after some manipulation,

uy = yx' /6’ + f(x53),
uy = y1xh/oh, +g(xh).

For HRR fields the displacements vary as r"/* " thus the last terms of the above
equation can be expressed as f(x%) = A4|x5|""* Vand g(x5) = —A,4|x;] """, where
A+ and A4, are constants. Thus,

u) = (yixi + A34,)/0%,
Uy = (yixa+ As4,)/0%,. (26)
Differentiating this for &), yields

x5 g xy 0% xXp x5 AyA AsA
€2 = {1 [% = :2—n<~,‘ —:>]+ R ,2}/2(n+1>. 27
2| Xy 0% x3 0 Xy X X201 X102
Note that here x| and x5 must have the same sign through the whole domain of

validity or else unbounded stresses will be encountered at r # 0. Application of the
general integral (10) leads to

A|A3 = —(n+l)CQCOS|‘b,
AsAy = +(n+1)C,siny. (28)

Sector limits

The vertex sector is adjoined by two flat sectors. Therefore, the orientation of the
strain vector is restricted to

12

—tan2¢” < o, Stan2o”,

(e11—¢%)/2

where 2¢* and 2¢~ are defined in Fig. 3 as 2¢* =2w*—2y¥ —37n/2, and
2¢0° =2y —2w +3n/2. Using (25) in the above gives

208,
cot2(W—w ) < “;‘-gcotz(w—m). (29)

Equation (29) indicates that the vertex sector starts (or ends) at 6 = 8", given by
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[2“8”} = cot2() — ). (30)
Y _le=e"

Similar to (21), the above is a nonlinear equation for the two angles 8" in terms of
the constants 4,, 4, and C..

Assuming that all components of stress and displacement are continuous (only
h,0,5and h,u, need to be on g priori grounds, and neither e,0,4¢, nor e,u, are continuous
in RICE’s (1987) ideally plastic solution), it can be proven, as will be shown later, that
(21) and (30) are identical. This implies that there is no gap or overlap between the
range of the applicability of the two sector types. Thus, once the constants associated
with a sector are known the pertinent one of (21) or (30) may be used to obtain the
boundary angle between two adjoining sectors. As mentioned earlier both equations
are nonlinear. They can only be solved numerically.

ASSEMBLY OF SECTORS

The general solution of the near-tip field in the preceding sections involves two
unknown constants (4, and A, for the vertex sectors, and B, and B, for the fiat
segments) per sector, in addition to the universal (same for all sectors) constant C,
which is left undetermined for normalization with the outer field. The third set of
unknown variables are the boundary angles between the sectors.

The crack free surface boundary conditions are

c,,=0 at O=m, (3la)

g, =0 at 8=m, (31b)
and since the field is symmetric (tensile, or mode I, conditions)

g,,=0 at 6=0, (32a)

u-=0 at 0=0. (32b)

For a continuous field the stresses ¢,,, 0,, and ¢,,, and the displacements », and
u, must be continuous across sector boundaries. This accounts for five continuity
conditions that must be satisfied per sector, in addition to the above four boundary
conditions. Also. there are the two equations (21) and (30) which determine the range
of applicability of each sector. However there are only three unknown constants
per sector. In spite of this the formulation is not too restrictive. There are several
redundancies associated with use of the general integral (10) in the derivation. First,
as discussed by RiICE (1988). the general integral (10) and a related general integral,
not given here, can be regarded as the equivalent of two of the governing equations.
Furthermore. as examples of the redundancy, at § = 0 or =, (10) reduces to

U]:u|+023113 = 0.

Then, once (3la) is used, (31b) follows automatically provided that on the crack
surfaces u,. the crack opening displacement, does not vanish. Also, presuming that
the tensile stress @.. is not zero ahead of the crack, (32a) automatically satisfies



682 M. SAEEDVAFA and J. R. RiICE

(32b). Moreover, using the continuity of two of the stresses. to determine the two
unknowns of the next and (21), to find the boundary angle between these two sectors,
the continuity of the third stress is automatically satisfied. Across sector boundaries.
(10) reduces to the continuity of /1,6,4u,. which in the context of continuity of stresses
ensures the continuity of displacements. For this power-law hardening material.
the continuity of displacements together with the continuity of stresses ensures the
continuity of strains. As a result (30) is automatically satisfied. Also using the con-
tinuity of the two displacements. to determine the two unknowns of the next flat
sector, and (30). to find the boundary angle between these two sectors. together with
(10) results in the continuity of strains and stresses. As a result (21) will be auto-
matically satisfied. This means that any two convenient continuity conditions could
be used to find the two constants of the next sector. The pertinent one of (21) and
(30) may be used to determine the boundary angle. All other continuity conditions
will be then automatically satisfied. This leaves only (31a) and (32a) which are used
to determine the constants of the first sector.

Since both (21) and (30) involve the constant €, and « in a nonlinear form. the
field variables are normalized as

o= [(n+1)Cajar]""* V6,
6, = al (n+ D [(l1+])C:"jr]” tn+ 1)5”~

u; = (ar)' "V (n+ 1T, Vi, (33)
Then defining
B, =B """ Pln+DC.] Y x=1.2 (34)
for the flat sectors. and
A, = AJn+DCxia]l """ =12 (33)

for the vertex sectors. eliminates C- and « in (21) and (30), which now depend only
on B, and A,. respectively.

So far all the equations arc given for a general case. Specific examples involve
numerical solution as follows:

(1) Equation (32a) or (32b) is used to obtain the ratio of the constants of the first
sector and the value of the second constant 1s assumed.

(2) Equation (21) or (30) is used ((21) for the flat sectors since (30) was already
incorporated into its derivation. and (30) for the vertex sectors since (21) is built into
its derivation) to determine the boundary angle.

(3) Any two convenient scts of continuity conditions (e.g. the continuity of the
displacements for vertex to flat boundary. and the continuity of the two stresses o
and .- for flat to vertex boundary) are used to determine the constants of the next
sector.

(4) ltems 2 and 3 are repeated until the last sector is reached.

(5) Items | through 4 arc iterated. by choosing a different valuc for the second
constant of the first sector. until (31a) is satisfied.
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TABLE 1
n 3 5 8 20

0, 22.2200

0, 34.015°

0, 34.329 33.289 32.858 32.298
0, 57.591° 56.310 55.609 54,902
0, 60.403" 57.620 56.200 54,942
0, 98.238° 94.891 92.969 91.095
0 108.964 101.475 96.885 92.367
0, 131.385° 129.141 127.712 126.221
C,/J 0.014290 0.013136 0.010994 0.007036
o(Jjar)i ey 0.972978 0.831498 0.740982 0.641273

J-INTEGRAL NORMALIZATION

As mentioned earlier the constant C, was left free for normalization with the outer
field. Such normalization is possible through the J-integral, associated with the near-
tip singular field and. to the extent that J is approximately path independent in the
actual elastic—plastic material. this is the same as the far field J. Here J is defined as

+7
J= f [We| —e,6.50u;/0x,Jrdf, o, fi=1,2, (36)
where the path for evaluation is taken as a circle of radius r, and W is the strain
energy density of the equivalent nonlinear elastic material, defined as

W= ja de,; = [n/(n+D)]oye, = nf(n+1)]yr. (37)

The integral in (36) is the sum of its corresponding values in each sector and can be
numerically integrated for each example after assembling the sectors. This lcads to
J o« C,. where the constant of proportionality depends only on the geometry of the
array of flats and vertices making up the yield locus and on the hardening exponent.
Such values are tabulated in Table 1 for the specific examples considered here.

EXAMPLES

As a first example, a crack on the (010) cube-face plane in a fcc crystal, with its tip
along the face-diagonal direction [101], is analysed. The crack and crystal orientation
are shown in Fig. 4(a). For fcc metal crytals, there are twelve different possible slip
systems, consisting of the four {111} slip planes with three {110 slip directions on
each system. The resulting yield surface, which is the inner envelope of all the lines of
critical shear stress. for all possible systems, in the two-dimensional plane strain stress
space is shown in Fig. 5(a). Active members of the [111} (110> type systems are
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2

(6)

F16. 4. (a) Fec crystal with crack on (010) plane and its tip along the (101} dircction. (b) Crack in the
plane of problem. The solid lines are the intersections of slip planes (111) and (111) with the x5 = 0 plane.
the dashed lines are the traces of simultaneous slip on the two planes (111) and (111).

indicated along each line. Figure 4(b) shows the crack in the x;-x, plane. The solid
lines in this figure are the intersection of the slip planes (111) and (111) with the
x, = 0 plane. Simultaneous slip on the two planes (1T1) and (TT1) will cause an
effective slip in the {101} direction which is parallel to the x, axis. This results in the
horizontal segments of the yield surface in Fig. 5(a) and an effective slip plane trace
which is marked with the dashed horizontal lines in Fig. 4(b).

The solution for the orientation of Fig. 4 also provides the solution, within the
“small strain” formulation (e.g. neglect of lattice rotation), for a second orientation,
which is a crack on the (101) plane with its tip along the same [101] direction. This
crack and crystal orientation are shown in Fig. 6(a). Figure 6(b) shows the crack in
the deformation plane (x, and x, plane). Again the solid lines are the intersection
of slip planes (111) and (1T1) with the x; = 0 plane and the dashed lines are traces of
the effective slip plane formed by simultaneous slip on the two planes (111) and (111,
which now causc an cffective slip parallel to the x. axis. The corresponding yield
surface is the same as that of the first orientation except that the sign of the slip
directions marked in Fig. 5(a) should be reversed. As mentioned by Rick (1987) these
two crack orientations are encountered in experimental studies.
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(4 - V3
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Fi1G. 5. Yield surface for fee crystal with crack

on (010) plane and its tip along the [101} dircction.

(a) Active ship planes for this orientation. For the case of the crack on the (101) plane the sign of the
ship directions should be changed. (b) Sector arrangement.
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Traces of Slip Planes

F16. 6. (a) Fee crystal with crack on (101) plane and its tip along the [107] direction. (b} Crack in the
planc of problem. The solid fines arc the intersections of slip planes (111) and (111) with the v, = 0 plane.
the dashed lines are the traces of simultancous slip on the two planes (111) and (T11).

On the crack surfaces the stress ¢, = 0. For a positive mode [ loading. it is
anticipated that (¢,,—0-,)2 is positive on the surfaces of the crack. Thus, a point on
the surfaces of the crack should correspond to the vertex point marked (8) on the
{(11—0--)27 axis in Fig. 5(b). Due to symmetry of the vield surface about the
(6, —0-.:);27 axis the field is also symmetric about # = 0 along whichray - = 0. It
is anticipated that {(¢,,—0..)/2 is negative ahead of the crack (i.e. it is expected that
G2y 22 04, on = 0). So a point on the ray f = 0 should correspond to the vertex
point marked (2) in Fig. 5(b). Thus. traversing counter-clockwise around the crack
from # = 0 to 7 i1s expected to correspond to going counter-clockwise on the yield
surface from point (2) to point (8) of Fig. 5(b) along the yield surface. However as
will be explained in the following, the solution does not exactly exhibit this behavior.

Vertex point (2) is not expected to correspond to an angular sector of finite range
which contains the ray (/. = 0. The only non-zero stress then would be 6.4, since 2y = 7«
and x|, = rcos (0—) = 0 at & = 0, and for finite stresses at r # 0, 4> = 0in (23). or
gy =0, = 0. This seems to contradict the expected stress triaxiality ahead of the
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FIG. 7. Sector arrangement in the x,-x, plane. The numbers in parentheses refer to the sectors marked in

Fig. 6(b). The active slip plane or planes are marked within each sector for the fcc crystal with a crack on

the (010) plane and its tip along the [101] direction. These slip lines should be rotated by 90 for the case
of the crack on the (101) plane.

crack and is improbable. But more importantly, a solution constructed this way does
not meet the correct boundary condition on the crack surfaces, and thus no such
solution exists. Also. vertex (8) is not expected to correspond to an angular sector of
finite range including the crack surface since this would result in a zero stress sector
there, which is unlikely. The reason that all the stresses would be zero within such a
vertex sector is that v = 0 and x5 = r sin (6 —y) = 0 at 6 = =, and for finite stresses
atr # 0,4, = 0in (23), or 6}, = ¢,, = 0. Also the boundary equation (31b) requires
0+, = 6~» = 0 at 6 = n. which means 4, = 0, and for a vertex sector ¢» =0, = 0.
Thus the solution must start at the intersection of one of the flat segments adjoining
vertex (2) of Fig. 5(b) with the axis ¢,» = 0 at 8 = 0, and then move along this flat
segment as 6 changes from zero, and end at the intersection of one of the flat segments
adjoining vertex (8) withg,, =0 at 0 = n.

After many tnals. it was found to be impossible to construct a solution which
monotonically travels the yield surface counter clockwise as @ increases from 0 to .
Just as was the case for HRR field in isotropic material (e.g. Fig. 9 of RICE and
ROSENGREN, 1968), with increasing 8 the yield surface is first traversed in the direction
of positive a,,. For the single crystals considered here this corresponds to traveling
up along flat (1) in Fig. 5(b). The sign of éa,./@0 then reverses and the yield surface
is traversed counter clockwise toward vertex (8), stopping just at the end of flat (7).
The initial rise along line (1), before do./00 changes sign, is a function of the
hardening exponent »: the smaller i1 the larger the rise in o ,. For example, forn = 3
the rise extends all the way to vertex (1”). The resulting arrangement of angular sectors
is shown in Fig. 7. where the corresponding regions are numbered in reference to Fig.
5(b). In this figure. the active slip plane or planes are shown within each sector for
the case of the crack on (010) plane of Fig. 4. For the orientation with the crack on
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F1G. 8. Angular variation of r for n = 3. 5, 8. 20, «.

the (101) plane of Fig. 6, these slip planes should be rotated by 90, since the v ~x,
plane is rotated by 90- with respect to the previous orientation. The boundary angles
8, 0, ... are given in Table 1. for various n. In the case of n = 3, sector (1) should
be divided into three sectors; (1°), (1”) and (1). in order of increasing 6. Table 1 also
shows the value of C,/J and the crack opening displacement 6 = 2u-(r, 7).

Figure 8 shows the variation of t with 6. As can be seen in this normalized plot.
t approaches the constant value of (J/ar)'""*" as n — co. With the interpretation of
ain (4) as a = y,1," (where the constants y, and 1, are the initial yield strain and
stress in shear, respectively, or the yield strain and stress as n — o) (Jiar)' V* " — 1.
or T — 1y, the ideally plastic yield shear stress.

Figure 9 shows the variation of (a,;+ 6,,)/2t with 0. Figure 10 shows the variation
of a,, with 6. As n becomes larger. the already small angular ranges of sectors (3)
and (5), indicated in Table I, become even smaller. As expected these ranges vanish
as n — oc. While the ranges of sectors (1) and (7) remain finite as 7 becomes large,
the entire stress fields of these two sectors correspond to the intersection of the
corresponding flat sector with the (0,,—a,.)/27 axis (i.e. vertices (2) and (8) of Fig.

] (011 + 022)/27’

L | - 1

4] 54.74 80 125.26 180

1. 9. Angular variation of (o +01.)/ 2t forn = 3, 5. 8. 20, =.
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F1G. 10. Angular variation of ¢, for n = 3. 5. 8. 20, x.

5b respectively), as marked by n = oc curves in Figs 9 and 10. The solution in the
limit of large n exhibits the discontinuous stress field of Rice (1987) for the ideally
plastic material. In his solution the entire stress field corresponded to jumps from
vertex to vertex points of the yield surface [(2). (4), (6) and (8) in that order]. The
boundary angles differ from those of the ideally plastic solution (for which two of the
angles corresponded to the {111} slip plane traces for the first configuration. Fig. 4,
and were perpendicular to those traces for the second configuration, Fig. 6) by order
of 1/n for large n.

Figure 11(a) shows the contour of constant y for # = 5. The contours of constant
v (and thus also 7) exhibit sharp peaks and troughs. They lean backward relative to
the direction of cracking. which indicates more straining in that direction. It should
be noted that the contour of constant equivalent strain in the isotropic case of RICE
and ROSENGREN (1968) also leaned backward. and the equivalent strain was very
small at # = 0 and = (their Figs 3 and 4). As shown in Fig. 11(b), 7 is not zero at
8 = 0 and =, but becomes of the order of 1/n as n becomes large. Furthermore, while
» is not discontinuous. the range of some of the sectors in which it varies significantly
is small. At large n the ranges of sectors (3) and (5) become of order 1/n and thus
becomes discontinuous in the ideally plastic limit, n — oc, but does not approach the
Dirac d-function form of RicE (1987) for the elastic—ideally plastic material, which
corresponds to a slip discontinuity of displacements. Note that Rice’s proof that the
displacements associated with his stress field must (versus may) be discontinuous at
sector boundaries assumed finite elastic moduli; it does not apply to rigid plastic
materials or to cases like here where the elastic strains are neglected. Figure 12 shows
the variation of u, with 0. The shear displacement remains continuous as n — o.

The limiting behavior of HHR fields in mode | is analogous to the anti-plane shear
case of RICE and SAEEDVAFA (1988) where the #n — oo limit had the correct stress
discontinuities at the sector boundaries but showed a continuous displacement field
and hence. a non-Dirac strain field. In contrast, the Rice and NikoLIC (1985) complete
elastic—ideally plastic solution for mode Il stationary cracks showed plastic flow
occurring along discrete planes emanating from the tip at sector boundaries across
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FiG;. 11. (a) Contour of constant ; for n = 5. (b} Enlargement of details at ¢ = 0. n.

which both the stress and displacements were discontinuous. There. just as is the case
with RICE (1987). the asymptotic solution only determined the stress field and allowed
a family of solutions for the strain and displacement fields. 1t was not until the full
elastic—plastic analysis was done that the strain field was uniquely determined.

DiscussioN

It is conjectured that the domain of dominance of the HRR field for single crystals
under mode | loading. as well as mode 111 loading, is limited only to a part of the

u,/(ar) Vi) g/

0.4

FiG. 12. Angular variation of u, for n = 3.5, 8, 20.
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plastic zone immediately adjacent to the crack tip. As the perfectly plastic limit is
approached. this domain must shrink to zero since the HRR solution does not yield
the perfectly plastic displacement and strain fields of Rice (1987). The HRR singular
field presented here shows a continuous displacement field, while the elastic-perfectly
nlastic solution of RICE (1987) shows a shear displacement discontinuity across sector
beundaries with an associated Dirac singular form for the plastic strain. Furthermore
the HRR field contours of constant shear strength and the equivalent shear strain for
single crystals lean backward relative to the direction of crack growth and show more
straining at the end of sector (6), as shown in Fig. 11. In contrast. in the recent results
obtained by the finite element method for elastic—perfectly plastic single crystals with
mode I loaded cracks by Hawk (a preliminary summary is given in the review by RICE
et al.. 1989) the plastic zones are observed to lean forward showing more straining in
that direction. His numerical displacement field is consistent with shear displacement
discontinuities at the orientations predicted by RicEe (1987), and his strain field with
a Dirac singular representation.

Another feature of the single crystal case is that the boundary planes between
regions of activation of single (the flat sectors) and double (the vertex sectors) slip
planetraces differ from the ideally plastic boundary planes of RICE (1987) by an angle
of order 1/n for large n. Even for small n the ranges of some of the sectors are very
small [flat sectors (3) (5)]. Although the ranges of the other two flat sectors [(1) and
(7)] do not vanish at large ». their stress states correspond to that of their adjacent
vertices [(2) and (8), respectively].

Many other examples of HRR fields in cracked crystals could be studied with
the general method presented here. simply by using different sets of parameters
characterizing different yield surfaces. Also. the isotropic case could be solved as the
limit of a many-sided polygon confined inside the unit circle defining its yield surface,
analogous to the isotropic mode III case discussed by RICE and SAEEDVAFA (1988).
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