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ABSTRACT 

AN ASYMPTOTIC singular solution of the HRR type is presented for mode I tensile cracks in ductile single 
crystals. These are assumed to undergo Taylor hardening with a power-law relation between stress and 
str+ at sufficiently large strain. Results are given for a crack on the (010) plane wjth its tip along the 
[IOI] direction, and for a crack on the (101) plane with its tip along the same [IOI] direction in a fee 
crystal. The yield surfaces for both of these orientations are identical and thus, for the “small strain” 
formulation, the same macroscopic solution applies to both. The near-tip region is divided into angular 
sectors which are maps of successive flat segments and vertices of the yield surface. While the solution here 
involves 14 different sectors referring to stress states corresponding to Rat and vertex segments of the yield 
locus, RICE’S (Me& Mater. 6,714, 1987) asymptotic solution for theelasticcideally plastic crystals involved 
only 7 sectors which mapped into the vertex points of the yield surface. The perfectly plastic limit of the 
HRR fields here reduce to 7 stress states of RICE (1987). In this limit. the HRR displacement fields remain 
continuous resulting in a discontinuous yet bounded and nonzero strain held. In contrast, the elastic- 
ideally plastic solutions have discontinuous shear displacements across sector boundaries. Furthermore 
the contours of constant effective strain here have various peaks and troughs at sector boundaries and lean 
backward relative to the direction of crack growth. Conversely, in the recent finite element solutions for 
elastic-ideally plastic single crystals by Hawk (preliminary summary of results is included in RICE PI ul., 
1111. J. F~~c/ure. in press. 1989). the plastic zones lean forward and the strain field is consistent with a Dirac 
singular form similar to RICE’S (1987). Thus it is conjectured that. similar to the anti-plane shear case of 
RICX and SAEEDVAFA (.I. Meclr. Pltxs. Solids 36. 189, 1988). the single crystal HRR fields are dominant 
only over part of the plastic region immediately adjacent to the crack tip, and that their domain of validity 
vanishes as the perfectly plastic limit is approached. 

RICE (1987) presented an asymptotic solution for the stress and deformation field very 
near the tip of a mode I crack in an ideally plastic ductile crystal. Two specific 
orientations, a crack on the (010) cube face with its tip along the [lOi] face diagonal 
and a crack on the (101) plane with its tip along the same diagonal. were considered 
in fee and bee crystals for both stationary and quasi-statically growing cracks. In the 
case of stationary cracks, the stress field was found to be piecewise constant in angular 
sectors mapping into vertex points of the yield surface and changed discontinuously 
between sectors. The displacement and strain fields were not fully determined, 
although it was shown that there must be a shear displacement discontinuity across 
the sector boundaries for elastic-plastic crystals. The full solution could only be 
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FIG. I. Coordinate system used. 

obtained with the aid of a complete elastic-plastic analysis, recently obtained by 

Hawk (see RICE rt al., 1989) by finite element methods. 
In this paper. a solution of the HRR type for the near-tip field of tensile loaded 

cracks in strain hardening single crystals is presented. with the assumption that there 
is a power-law relation between stress and strain. The analogous anti-plane shear case 
was presented in Part I (RICE and SAEEDVAFA. 1988). The general form of the solution 
governing the field is derived, and is applied to the same two cases of RICE (I 987) for 
stationary cracks in fee crystals. The present solution procedure may be applied to 
any other crack and crystal orientation compatible with plane strain deformation 
through proper choice of parameter sets related to that orientation when assembling 
the sectors. 

MATHEMATICAL FORMULATION 

A Cartesian coordinate system fixed with the crack tip is used. as shown in Fig. I. 
The polar coordinates I’ and 0 have associated unit vectors e and h, in the radial and 
angular directions, respectively. Also. 

;r c.\-, = (’ I- i?) ?.\-, = /I,. I (1) 

govern the transformation to polar coordinates. Conventional index notation is used 
here where repeated indices imply summation. Greek indices sl, [I,. . . range over I 
and 2, while latin indices i. j, have the values of I, 2 and 3. The crack and crystal 
orientations considered. and the method of loading. are such that plane strain is a 
possible deformation state. That is. K~; = +l = K~, = 0 and U, = u,(s,, .I-?), and 
U? = u~(.Y,. I?). The non-vanishin g stresses arc of the type O~,~ and 033 only. It may 
be assumed that the same plane strain singularity (to be discussed later), applies also 
to general 3-D crack problems so long as i:?, is bounded at the crack front. 

Coordinate rotations will be used to simplify the derivation. For a counter-clockwise 
rotation by an angle 4. as in Fig. I, vector transformation is governed by the rule 

.I-, +i.\-T = e’“‘(.v’, + i.\-i). (2) 
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where i = 42. The transformation of stresses is then governed by 

(02~--cr,,)/2+io,~ = e ““[(~i~-o’,,)!‘2+io;!]. (3) 

withcr,,+a?:!=o’,,+ai?. 
It is assumed that the crystals deform by shear on a set of allowable slip systems 

according to the Schmid rule. That is, plastic flow occurs on a given system only when 
the resolved shear stress on that system reaches a critical value. which evolves with 
ongoing deformation. In addition, the critical shear strengths are assumed here to 
obey Taylor hardening (all systems harden equally) with a power-law relation between 
stress and strain at su~cientiy large strain. That is, 

^i’ = &I, (4) 

where a is the hardening constant and n is the hardening exponent; t? -+ x is the 

perfectly plastic limit. In the above equation 7 is the effective shear strain. as defined 

in RICE and SAEEDVAFA (1988) (i.e. the sum of absolute shears on all slip systems) 

and r is the (common) critical resolved shear stress. 
As discussed by RICE (1973), the yield surfaces for plane strain deformation of an 

incompressible rigid-plastic material satisfying an associated flow rule (as for crystals 
following the Schmid rule) can be represented as a curve in a plane whose axes are 

((r,, --az2)/2 and cr,?. For the single crystals, the yield surface in this stress space. 
being the inner envefope of the planar yield surfaces for individual slip systems or 
groups of systems compatible with plane fIow, reduces to a polygon. It is a self-similar 
polygon for Taylor hardening, and a fixed polygon in the space of the ratio of the 
stresses to the critical resolved shear stress z. The yield surface for an elastic-plastic 
crystal in plane strain may. but need not, have the form of a curve in the (u, , - 0~~)/3 
and (T,? plane. That is, there may be a dependence on CJ, , +o,, in activating certain 
secondary slip systems which do not contribute to large plane deformation. The 
effective yield surface for large plastic straining (similar to the “latent extremal sur- 
face” of HILL. 1967) will reduce to a polygon in (a,, -az2)/2 and CT,? plane. Such a 
yield surface is assumed here. 

The polygonaiity of the yield surface results in two different types of near-crack- 
tip solution associated with stress states corresponding to either a fat segment or a 
vertex point of the surface. As the yield surface is traversed. the angular range near 
the crack tip will be divided into sectors corresponding to these possible stress states. 

The above constitutive description is compatible with the maximum plastic work 
inequality and thus involves an associated flow rule. For proportional stressing. the 
plastic strain vector will be normal to the yield surface along a i-hit segment and within 
the cone of limiting normals at a vertex. In the near-tip field, it is anticipated that the 

elastic strains are relatively small and ignorabie. Hence the entire strain tensor can be 

identified with the plastic strains. Then, the vector with components (I:, , --i:2z)i3 and 

cl2 based on the entire strain, will be directed normal to the yicid locus. in the 
((~1, -(r,,).‘3 and cl3 plane. along fiat segments. and within the fan of limiting normals 
at a vertex. it is assumed that the entire near tip field responds plastically. 

For mode I, the only non-trivial equations of equilibrium are 
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The strains have their usual definition, given by 

(6) 

Since elastic responses are ignored, the entire material will be incompressible and thus 

& II = 0. (7) 

RICE and SAEEDVAFA (1988) have shown that for proportional stressing and strain- 
ing (as with the HRR singular fields to be discussed later) 

T-f = O,,E,,. (8) 

The plastic material described responds identica!ly. under proportional stressing. 
as a nonlinear elastic material. For power-law hardening plastic material, in which 
proportional stress states of a type indistinguishable from those for the analogous 
nonlinear elastic solid are possible, the stress and displacement gradients near the 
crack tip must be such that the J-integral is path independent. Hence, when evaluated 
over a circular path surrounding the tip. it is independent of r. As discussed by 
HUTCHINSON (1968) and RICE and ROSENGREN (1968), this type of field (referred to 
as HRR) may therefore have singular near-tip stresses. strains and displacements of 

the form 

u 

I 
= ri- 1 1,1+ ‘I;,(@, (9) 

if singular solutions of the type u-r’: exist as r --f 0. 

By using J-integral type considerations and related conservation laws, RICE (1988) 
derived two general integrals which apply to all crack tip singular fields in nonlinear 
elastic materials (as well as in the plastic materials discussed above, since they are 
responding with proportional stressing and straining). This was also mentioned in 
RICE and SAEEDVAFA (1988), who noted that therefore for all HRR type fields 

h,a,,p8 = (n+ l)C2e = (n+ l)CzsinO, (10) 

where C2 is a constant having the same units as the J-integral. In the work that 
follows, the derivation of the form of the near-tip solution in each of the several 
angular sectors is greatly simplified by (lo), since CZ is the same in all sectors. In the 
examples here Cz will be expressed in terms of .I when the field is normalized via the 
crack tip J-integral, which is expected to be close to the far-field value of J in cases 
for which the “deformation” plasticity formulation is appropriate. 

FLAT SECTORS 

Consider an angular sector of points near the tip whose stress state corresponds to 
a particular flat segment of the (fixed) yield surface in the (a,, -g, ?)/2r and G, >jt 
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Yield Surface 

FIG. 2. Notation used for the Aat segment of the yield surface. 

plane. Since the HRR field (9) involves ratios of stresses to one another that are 
independent of r. each radial ray corresponds to a particular point of this flat segment. 
The normality rule requires the strain vector to be perpendicular to that segment as 
shown in Fig. 2. Thus, rotating the axes by an angle 2w such that the ~‘,?/r axis is 
perpendicular to the segment (corresponding to a rotation of x2, _Y? axes by w) yields 
E’, , -&>2 = 0. Then, recalling incompressibility of the plastic material, E’, , -t- E>~ = 0, 
gives 

E’, , = au;/ax; = 0, 

& = auyax; = 0. (11) 

The above equations imply that u’, = u/,(x;) and u; = r&(x’,). For HRR fields the 
displacements vary as r”“‘+ I). Since x’, = r cos (0-u) and xi = r sin (fI- w), 

U’, = B&l&l --NM+ ‘), 

u; = B*X’, IX’, 1 -nKn+ l), (121 

where B, and B2 are constants. Differentiating (12) yields 

6; 2 = (U;/X;fu;/x’,)/2(n+ 1). 

As indicated in Fig. 2, for the flat segment of the yield surface, 

(13) 

a’, 2/r = p, (14) 

where ,!I is a constant (2 1) depending on the geometrical orientation of the slip system 
or group of systems corresponding to the flat segment (see RICE, 1987). Since by (8) 
y7 = c~~~t~, = 2~‘~ &, ?, applying (14) yields 

and (4) defines 7. 

The equilibrium equations (5) may be represented in the integral form as 
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o; ?(.\:‘, . s;) d-Y, + j‘(x:). 

where o’, 2 is defined by (14). For HRR fields. stresses vary as r ’ ‘+ I’. Therefore. 
since s’, = r cos (0-o) and s> = I’ sin (Gw), the last terms in the above equations 
must be a constant multiple of ls>l ’ “‘* ‘) and Is’, I ’ “‘+ ‘I. respectively ; in particular. 
,f’(si) = B3 Is21 ’ ” (“+ “is> and .q(s’,) = B,ls’, 1 ” W+ “/s’,. The integrals in the above equa- 

tion have the form ZZ/C:>.. where I is defined as 

I= 

s 
.‘[A,_,,, -“‘““~l+~l~~l -tIOI+i)]!!id~ 

s 
= ,&j /!.I 

I,u+ I)[,qy,“Wi I)+B~~,~“,“CI)]l”~I)“, 

Carrying out the differentiation yields 

After some manipulation, it is obtained that 

(16) 

(17) 

(18) 

Note that in this sector s’, and .v> cannot change sign if there are to be finite stresses 
at I’ # 0. This restricts possible boundary, locations for the sector. Using the general 
integral (IO) in the transformed coordinate system. the following relations beween the 
constants of this sector are obtained. 

B,Ba = -(/I+ I)C~cos~o. 

B2B, = +(/I+ l)C2 sin tr). (19) 

Since the flat sector of the yield locus is bounded by two vertices. the range of 
applicability of (1 I) to (19) is confined to 

where 24 = Iu- 21) + n 2 and 2c/). = ?*‘ -h-n/2. LIS shown in Fig. 2. 
Simplifying the above equation yields 



Crack tip smgular fields.11 

Ydd Suface 

FIG. 3. Notation used for the vertex segment of the yield surface. 

cot2(w-$-) < 3 ,^ (ui2-a? < cot2(w_$+). (20) 
-(J12 

Equation (20) indicates that the flat sector starts (or ends) at 0 = 0”. given by 

(21) 

This is a nonlinear equation for the two values of 0’ (start and end) in terms of the 
constants of the sector. However, by using (19), this relationship only involves the 
constants B,, Bz, which will be determined when assembling the sectors, and CT. 
which will be used to normalize the solution with the outer field. 

VERTEX SECTORS 

For the angular range near the tip which corresponds to the stress state at a vertex 
of the yield surface. the ratio of stresses to the slip system shear strength T will remain 
ccnstant. The orientation of the strain vector changes continuously within the range 
of the two limiting normals of the flat segments which define the vertex. Using a 
coordinate system where the (0’ , , -o>,)/2r axis passes through the vertex (that is by 
rotating the s,. .Y? axes by an angle $), as shown in Fig. 3, gives 

0,: = 0. (22) 

Then. the equations of equilibrium yield Go’, ,/a.~‘, = 0 and AJ’,~/?.\-> = 0, indicating 
that a’, , = c’, , (.t->) and o>? = (T>~(.Y’,). Recognizing the special functional form of 
stress in HRR fields (9). results in 

a’, , = +A ,/_dTl “‘w+ I’, 

022 = -‘42IS’,/ “‘I+‘), (13) 

where A, and A? are constants. Note that as shown in Fig. 3, 
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5 = (D’, , -a’,,)/2a, (24) 

and c( can be defined in terms of the constant p and angle w of either of the neighboring 
flat sectors as a = /?/sin 2($-w). Similar to the calculations for the flat sector, using 
(7) and (8) leads to 

E ‘, , = au; /(‘ix’, = +1’/2s(, 

I E.71 = au;/as; = -y/2x (23 

where Y is given by (4). Equation (25) can be integrated for u’, and 11: by using (16) 
after noticing that these integrals have the same form as I if n is replaced by l/n. Thus, 
after some manipulation. 

u; = ysx;/a; , +.I‘(x;), 

u; = Yrx;/& +g(x’,). 

For HRR fields the displacements vary as r “@+ ‘I, thus the last terms of the above 
equation can be expressed as f(x>) = A .7 Ix> 1 “w+ ‘) and g(x’J = -A, Ix’, 1 I’(‘+ ‘I, where 
A3 and A4 are constants. Thus, 

u; = (yrx’,+A,A,)/a’,,, 

u; = (yzx; + A,Az)/a;?. (26) 

Differentiating this for E’, z yields 

I 
y 

&I2 = 2M x; cri2 x; o’,, i-1 x; a’,, x; 012 x’, x: 4 -41 , AJ, 
xi x; -l- x;a;, 

+ L& 
x’, 0’2 2 

2(n+l). (27) 

Note that here x’, and x> must have the same sign through the whole domain of 
validity or else unbounded stresses will be encountered at r # 0. Application of the 
genera1 integral (10) leads to 

A,A? = -(n+l)C2cos$, 

A2A4 = +(n+l)CZsin$. (28) 

Sector limits 

The vertex sector is adjoined by two flat sectors. Therefore, the orientation of the 
strain vector is restricted to 

- tan 24-~ d 
i:‘, 1 

(G , -&d/2 
< tan2$+, 

where 24,+ and 2@ are defined in Fig. 3 as 2$+ = 2w+ -2$ -3~12, and 
24 = 2$--20 +3rc/2. Using (25) in the above gives 

cot2($-w ) < 
2crc; 2 

d cot2($-w+). (29) 
Y 

Equation (29) indicates that the vertex sector starts (or ends) at 8 = 8”, given by 
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2cG; 2 L-1 1 
= cot2($-Wo’). 

fI=0’ 

Similar to (21), the above is a nonlinear equation for the two angles 8” in terms of 

the constants A ,, AZ and Cz. 
Assuming that all components of stress and displacement are continuous (only 

hogap and h,u, need to be on apriorigrounds, and neither e,a,,,cb nor e,u, are continuous 
in RICE’S (1987) ideally plastic solution), it can be proven, as will be shown later, that 
(21) and (30) are identical. This implies that there is no gap or overlap between the 
range of the applicability of the two sector types. Thus, once the constants associated 
with a sector are known the pertinent one of (21) or (30) may be used to obtain the 
boundary angle between two adjoining sectors. As mentioned earlier both equations 
are nonlinear. They can only be solved numerically. 

ASSEMBLY OF SECTORS 

The general solution of the near-tip field in the preceding sections involves two 
unknown constants (A, and AZ for the vertex sectors, and B, and B? for the flat 
segments) per sector, in addition to the universal (same for all sectors) constant C’? 
which is left undetermined for normalization with the outer field. The third set of 
unknown variables are the boundary angles between the sectors. 

The crack free surface boundary conditions are 

a,,=0 at f3=7r, (31a) 

cz2 = 0 at e = 7t, (31b) 

and since the field is symmetric (tensile, or mode I, conditions) 

0,?=0 at e=o, 

u, = 0 at B = 0. 

(32a) 

For a continuous field the stresses 0, ,, g12 and (T,~, and the displacements U, and 
uz must be continuous across sector boundaries. This accounts for five continuity 
conditions that must be satisfied per sector, in addition to the above four boundary 
conditions. Also. there are the two equations (21) and (30) which determine the range 
of applicability of each sector. However there are only three unknown constants 
per sector. In spite of this the formulation is not too restrictive. There are several 
redundancies associated with use of the general integral (10) in the derivation. First, 
as discussed by RICE (1988). the general integral (10) and a related general integral, 

not given here. can be regarded as the equivalent of two of the governing equations. 
Furthermore. as examples of the redundancy, at 0 = 0 or rr, (10) reduces to 

a,$4+a,3ci, = 0. 

Then, once (3 la) is used. (31 b) follows automatically provided that on the crack 
surfaces u2. the crack opening displacement, does not vanish. Also, presuming that 
the tensile stress (r’ is not zero ahead of the crack, (32a) automatically satisfies 
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(32b). Moreover. using the continuity of two of the stresses. to determine the two 
unknowns of the next and (2 I), to find the boundary an_gle between these two sectors. 
the continuity of the third stress is automatically satisfied. Across sector boundaries. 
(10) reduces to the continuity of /~,cr.,,~u,~, which in the context of continuity of stresses 
ensures the continuity of displacements. For this power-law hardening material. 
the continuity of displacements together with the continuity of stresses ensures the 
continuity of strains. As a result (30) is automatically satisfied. Also using the con- 
tinuity of the two displacements. to determine the two unknowns of the next flat 
sector, and (30). to find the boundary angle between these two sectors. together with 
(10) results in the continuity of strains and stresses. As a result (21) will be auto- 
matically satisfied. This means that any two convenient continuity conditions could 
be used to find the two constants of the next sector. The pertinent one of (2 I ) and 
(30) may be used to determine the boundary angle. All other continuity conditions 
will be then automatically satisfied. This leaves only (3la) and (33a) which are used 
to determine the constants of the first sector. 

Since both (21) and (30) involve the constant Cz and u in a nonlinear form. the 

field variables are normalized as 

or, = [(n-t l)C+l.]’ “Ii ‘)c,,. 

c,, = u’ ‘If+ “[(I?+ 1)C2:l.]‘i’n+ ‘IF,,, 

u, = (UI.) ’ “I’ “[(/z-t 1)C2]“‘n+ “ii,. (33) 

Then defining 

B, = B,tr ’ “‘i “[(/IS_ 1)C2] “(“A ‘1. y = 1.2 (34) 

for the flat sectors. and 

,I, = A,[(/?+ I)Cr,N] ’ lH- ‘1. !I = 1.2 (33 

for the vertex sectors. eliminates C2 and (I in (21) and (30). which now depend onlb 
on B, and A,. respectively. 

So far all the equations arc given for a general case. Specific examples involve 
numerical solution as follows : 

(I) Equation (32a) or (32b) is used to obtain the ratio of the constants of the first 

sector and the value of the second constant is assumed. 
(2) Equation (21) or (30) is used ((91) for the flat sectors since (30) was already 

incorporated into its derivation. and (30) for the vertex sectors since (21) is built into 
its derivation) to determine the boundary angle. 

(3) Any two convenient sets of continuity conditions (e.g. the continuity of the 
displacements for vertex to tlat boundary. and the continuity of the two stresses ci,, 
and cT1 for flat to vertex boundary) are used to determine the constants of the next 
sector. 

(4) Items 2 and 3 are repeated until the last sector is reached. 
(5) Items I through 4 arc itcrated. by choosing a difrerent value for the second 

constant of the First sector. until (31~) is satisfied. 
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TABLE 1 

I1 3 5 8 20 

22.220‘ 
34.015' 
34.329 
57.591‘ 
60.403 
98.238 
108.964 
131.385- 

33.289 32.858 32.298 
56.310. 55.609 54.902 
57.620 56.200 54.942 
94.891 92.969 91.095 
101.475 96.885 92.367 
129.141 127.712 126.221 

CzlJ 0.014290 0.013136 0.010994 0.007036 
SC J/ad 1 ,!,+I, I J 0.972978 0.831498 0.740982 0.641273 

J-INTEGRAL NORMALIZATION 

As mentioned earlier the constant C2 was left free for normalization with the outer 
field. Such normalization is possible through the J-integral, associated with the near- 
tip singular field and. to the extent that J is approximately path independent in the 
actual elastic-plastic material. this is the same as the far field J. Here J is defined as 

where the path for evaluation is taken as a circle of radius r, and IV’ is the strain 
energy density of the equivalent nonlinear elastic material, defined as 

J 
/ml, 

w= a,jdE;; = [n/(n+ ~)]G,.,E,, = [n/(n+ I)]~T. 
0 

(37) 

The integral in (36) is the sum of its corresponding values in each sector and can be 
numerically integrated for each example after assembling the sectors. This leads to 
J cc C2. where the constant of proportionality depends only on the geometry of the 
array of flats and vertices making up the yield locus and on the hardening exponent. 
Such values are tabulated in Table I for the specific examples considered here. 

EXAMPLES 

As a first example, a crack on the (010) cube-face plane in a fee crystal. with its tip 
along the face-diagonal direction [IOil, is analysed. The crack and crystal orientation 
are shown in Fig. 4(a). For fee metal crytals, there are twelve different possible slip 

systems. consisting of the four ( 11 I) slip planes with three (110) slip directions on 
each system. The resulting yield surface. which is the inner envelope of all the lines of 
critical shear stress. for all possible systems, in the two-dimensional plane strain stress 
space is shown in Fig. S(a). Active members of the [ 1 I I} (1 IO) type systems are 
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Traces of Slip Planes 

FK. 4. (a) FCC crystal with crack on (010) plane and its tip along the [IOT] d@ction. (b) Crach in the 
plane of problem. The solid lines are the intersections of slip planes (I t 1) and (1 Ii) with th=, = 0 pktnc. 

the dashed lines are the traces of simultaneous slip on the two planes (1 I I) and (I I I). 

indicated along each line. Figure 4(b) shows the crack in the s,-s~ plane. The solid 
lines in this figure are the intersection of the slip planes (111) and (111) with the 
.Y? = 0 plane. Simultaneous slip on the two planes (In) and (fil) will cause an 
effective slip in the [lot ] direction which is parallel to the sI axis. This results in the 
horizontal segments of the yield surface in Fig. 5(a) and an effective slip plane trace 
which is marked with the dashed horizontal lines in Fig. 4(b). 

The solution for the orientation of Fig. 4 also provides the solution, within the 
“small strain” formulation (e.g. neglect of lattice rotation), for a second orientation. 
which is a crack on the (101) plane with its tip along the same [IOT] direction. This 
crack and crystal orientation are shown in Fig. 6(a). Figure 6(b) shows the crack in 
the deformation plane (.Y, and .x-? plane). Again the solid lines are the intersection 
ofslipplanes(IlI)and(l~l)withthe.r,= 0 plane and the dashed lines are traces of 
the effective slip plane formed by simultaneous slip on the two planes (In) and ( 1 I I), 
which now cause an cffectivc slip parallel to the _Y: axis. The corresponding yield 
surface is the same as that of the lirst orientation except that the sign of the slip 
directions marked in Fig. S(a) should be reversed. As mentioned by RICE (19X7) these 
two crack orientations are encountered in experimental studies. 
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(b) 

FIG. 5. Yxld $urfwc for fc‘c crystal with crack on (010) plane and ils tip along the [IO~J dircctwn. 
(a) Acme slip planeh for thi, orlcntation. For the case of the crack on the (101) plm~c the sip of the 

shp dlrcctions should be changed. (b) Sector arrangement. 
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(111) 

(IT 
(If11 

Traces of Slip Planes I”” 

Tl) 

P101 

8 f 

FIG. 6. (a) FCC crystal wth crack on (101) plane and its tip along the IlOT] direction. (b) Crack in IIIC 
plant of probicm. The solid lines arc the mterscctions of slip planes (I It) md (ITI) with the .L 1 = 0 pl~cnc. 

the dashed lines ax the tram of simultaneous slip on the two planes (Ii-i) and (nl ). 

On the crack surfaces the stress (T IT = 0. For a positive mode I loading. it is 
anticipated that ((T, , -CT??) 2 is positive on the surfaces of the crack. Thus, a point on 
the surfaces of the crack should correspond to the vertex point marked (8) on the 

(a,, -~r~,):C!r axis in Fig. 5(b). Due to symmetry of the yield surface about the 
(uI , -oZ2):3r axis the field is also symmetric about 0 = 0 along which ray cii2 = 0. It 
is anticipated that (oI 1 -racy)!:! IS negative ahead of the crack (i.e. it is expected that 
nz2 2 (T,, on 0 = 0). So :L point on the ray fl = 0 should correspond to the vertex 
point marked (3) in Fig 5(b). Thus. traversing counter-clockwise around the crack 
from 0 = 0 to n is expcctcd to correspond to going counter-clockwise on the yield 
surface from point (2) to point (8) of Fig. 5(b) along the yield surface. Howcvcr as 
will be explained in the following. the solution does not exactly exhibit this behavior. 

Vertex point (2) is not expcctcd to correspond to an angular sector of linitc range 
which contains {he ray 0 = 0. The only non-zero stress then would be 6::. since Zli/ = n 
and x’, = I’ cos ((I-- t/j) = 0 at 0 = 0. and for iinite stresses at I’ # 0. Al = 0 in (3). or 
CL? = G, , = 0. This seems to contradict the expected stress triaxinlity ahead of the 
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FIG. 7. Sector arrangement in the X-.X-~ plane. The numbers in parentheses refer to the sectors marked in 
Fig. 6(b). The active slip plane or planes_are marked wlthin each sector for the fee crystal with a crack on 
the (010) plane and its tip along the [IO11 direction. These slip lines should be rotated by 90 for the cast 

of the crack on the (101) plane. 

crack and is improbable. But more importantly, a solution constructed this way does 
not meet the correct boundary condition on the crack surfaces, and thus no such 
solution exists. Also. vertex (8) is not expected to correspond to an angular sector of 
finite range including the crack surface since this would result in a zero stress sector 
there. which is unlikely. The reason that all the stresses would be zero within such a 
vertex sector is that Ic, = 0 and s> = I’ sin (G$) = 0 at 6 = rc, and for finite stresses 

at I’ # 0, A, = 0 in (33). or o’, , = B, , = 0. Also the boundary equation (3 I b) requires 

g22 = o:, = 0 at 8 = rr. which means A2 = 0, and for a vertex sector a’,? = (T,? = 0. 
Thus the-solution must start at the intersection of one of the flat segments adjoining 
vertex (2) of Fig. 5(b) with the axis G,? = 0 at 0 = 0, and then move along this flat 
segment as II changes from zero. and end at the intersection of one of the flat segments 
adjoining vertex (8) with CT, 2 = 0 at I) = rc. 

After many trials, it was found to be impossible to construct a solution which 
monotonically travels the yield surface counter clockwise as 0 increases from 0 to n. 
Just as was the case for HRR field in isotropic material (e.g. Fig. 9 of RICE and 
ROSENGREN. 1968). with increasing t) the yield surface is first traversed in the direction 
of positive (T, ?. For the single crystals considered here this corresponds to traveling 
up along flat (I) in Fig. 5(b). The sign of &J,~/?YI then reverses and the yield surface 
is traversed counter clockwise toward vertex (8). stopping just at the end of flat (7). 
The initial rise along line (I), before i;a,,/N changes sign, is a function of the 
hardening exponent II : the smaller II the larger the rise in g, ?. For example, for 11 = 3 
the rise extends all the way to vertex (I”). The resulting arrangement ofangular sectors 
is shown in Fig. 7. where the corresponding regions are numbered in reference to Fig. 
5(b). In this figure. the active slip plane or planes are shown within each sector for 
the case of the crack on (010) plane of Fig. 4. For the orientation with the crack on 
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FIG. 8. Angular variation ofr for II = 3. 5. X. 20. Y. 

the (101) plane of Fig. 6, these slip planes should be rotated by 90 . since the .I-,--.Y’ 
plane is rotated by 90. with respect to the previous orientation. The boundary angles 

t),, 02,. . . are given in Table 1. for various n. In the case of II = 3. sector (1) should 
be divided into three sectors ; (l’), (1”) and (I), in order of increasing 0. Table I also 
shows the value of Cz/J and the crack opening displacement S = ~P:(v. n). 

Figure 8 shows the variation of r with 8. As can be seen in this normalized plot. 
r approaches the constant value of (J/m) ‘m+ ” as n -+ co. With the interpretation of 
a in (4) as a = y,)ro” (where the constants 7, and T” are the initial yield strain and 
stress in shear, respectively. or the yield strain and stress as tt --+ x.) (J/m) ’ “‘+ ” + T,,. 

or T + to. the ideally plastic yield shear stress. 
Figure 9 shows the variation of (a,, +az2)/2~ with 0. Figure 10 shows the variation 

of CJ,? with H. As II becomes larger. the already small angular ranges of sectors (3) 
and (5). indicated in Table 1. become even smaller. As expected these ranges vanish 
as n -+ CC. While the ranges of sectors (1) and (7) remain finite as II becomes large. 
the entire stress fields of these two sectors correspond to the intersection of the 
corresponding flat sector with the (CJ , , -o~,)!~T axis (i.e. vertices (3) and (8) of Fig. 

15 
,n=3 
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5b respectively), as marked by n = x curves in Figs 9 and 10. The solution in the 
limit of large n exhibits the discontinuous stress field of RICE (1987) for the ideally 
plastic material. In his solution the entire stress field corresponded to jumps from 
vertex to vertex points of the yield surface [(2), (4), (6) and (8) in that order]. The 
boundary angles differ from those of the ideally plastic solution (for which two of the 
angles corresponded to the { I 11) slip plane traces for the first configuration. Fig. 4, 
and were perpendicular to those traces for the second configuration, Fig. 6) by order 

of l/n for large n. 
Figure 11 (a) shows the contour of constant ;’ for n = 5. The contours of constant 

‘J (and thus also 5) exhibit sharp peaks and troughs. They lean backward relative to 
the direction of cracking, which indicates more straining in that direction. It should 
be noted that the contour of constant equivalent strain in the isotropic case of RICE 
and R~SENGREN (1968) also leaned backward. and the equivalent strain was very 
small at H = 0 and 71 (their Figs 3 and 4). As shown in Fig. 1 l(b), 1’ is not zero at 
0 = 0 and 71. but becomes of the order of l/n as II becomes large. Furthermore. while 
*/ is not discontinuous. the range of some of the sectors in which it varies significantly 
is small. At large II the ranges of sectors (3) and (5) become of order l/n and thus ;’ 
becomes discontinuous in the ideally plastic limit, II --+ z, but does not approach the 
Dirac d-function form of RICE (1987) for the elastic-ideally plastic material, which 
corresponds to a slip discontinuity of displacements. Note that Rice’s proof that the 
displacements associated with his stress field must (versus may) be discontinuous at 
sector boundaries assumed finite elastic moduli: it does not apply to rigid plastic 
materials or to cases iikc here where the elastic strains are neglected. Figure 12 shows 
the variation of II, with 0. The shear displacement remains continuous as II -+ X. 

The limiting behavior of HHR fields in mode I is analogous to the anti-plane sheal 
case of RICE and SAEEDVAFA (1988) where the II -+ E limit had the correct stress 
discontinuities at the sector boundaries but showed a continuous displacement field 
and hence. a non-Dirac strain field. in contrast. the RICE and NIKOIK (1985) complete 

elastic-ideally plastic solution for mode III stationary cracks showed plastic flow 
occurring along discrete planes emanating from the tip at sector boundaries across 
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which both the stress and displacements were discontinuous. There. just as is the case 
with RICE (1987). the asymptotic solution only determined the stress field and allowed 
a family of solutions for the strain and displacement fields. It was not until the full 
elastic-plastic analysis was done that the strain field was uniquely determined. 

DISCUSSION 

It is conjectured that the domain of dominance of the HRR field for single crystals 
under mode I loading. as well as mode III loading. is limited only to a part of the 
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plastic zone immediately adjacent to the crack tip. As the perfectly plastic limit is 
approached. this domain must shrink to zero since the HRR solution does not yield 
the perfectly plastic displacement and strain fields of RICE (1987). The HRR singular 

field presented here shows a continuous displacement field. while the elastic-perfectly 
plastic solution of RICE (1987) shows a shear displacement discontinuity across sector 
C’L;IT,daries with an associated Dirac singular form for the plastic strain. Furthermore 
the HRR field contours of constant shear strength and the equivalent shear strain for 
single crystals lean backward relative to the direction of crack growth and show more 
straining at the end of sector (6). as shown in Fig. I I. In contrast. in the recent results 
obtained by the finite element method for elasticeperfectly plastic single crystals with 
mode I loaded cracks by Hawk (a preliminary summary is given in the review by RICE 
et N/.. 1989) the plastic zones are observed to lean forward showing more straining in 
that direction. His numerical displacement field is consistent with shear displacement 
discontinuities at the orientations predicted by RICE (1987). and his strain field with 
a Dirac singular representation. 

Another feature of the single crystal case is that the boundary planes between 
regions of activation of single (the flat sectors) and double (the vertex sectors) slip 
plane’traces differ from the ideally plastic boundary planes of RICE (I 987) by an angle 
of order l/n for large 11. Even for small II the ranges of some of the sectors are very 
small [flat sectors (3) (5)]. Although the ranges of the other two flat sectors [(I) and 
(7)] do not vanish at large II. their stress states correspond to that of their adjacent 
vertices [(2) and (81, respectively]. 

Many other examples of HRR fields in cracked crystals could be studied with 
the general method presented here. simply by using different sets of parameters 
characterizing different yield surfaces. Also. the isotropic case could be solved as the 

limit of a many-sided polygon confined inside the unit circle defining its yield surface, 
analogous to the isotropic mode III case discussed by RICE and SAEEDVAFA (1988). 
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