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Abstract. Results on the asymptotic analysis of crack tip fields in elastic-plastic single crystals are presented and 
some preliminary results of finite element solutions for cracked solids of this type are summarized. In the cases 
studied, involving plane strain tensile and anti-plane shear cracks in ideally plastic fc c and b c c crystals, analyzed 
within conventional small displacement gradient assumptions, the asymptotic analyses reveal striking discontinuous 
fields at the crack tip. 

For the stationary crack the stress state is found to be locally uniform in each of a family of angular sectors at 
the crack tip, but to jump discontinuously at sector boundaries, which are also the surfaces of shear discontinuities 
in the displacement field. For the quasi-statically growing crack the stress state is fully continuous from one 
near-tip angular sector to the next, but now some of the sectors involve elastic unloading from, and reloading to, 
a yielded state, and shear discontinuities of the velocity field develop at sector boundaries. In an anti-plane case 
studied, inclusion of inertial terms for (dynamically) growing cracks restores a discontinuous stress field at the tip 
which moves through the material as an elastic-plastic shock wave. For high symmetry crack orientations relative 
to the crystal, the discontinuity surfaces are sometimes coincident with the active crystal slip planes, but as often 
lie perpendicular to the family of active slip planes so that the discontinuities correspond to a kinking mode of 
shear. 

The finite element studies so far attempted, simulating the ideally plastic material model in a small displacement 
gradient type program, appear to be consistent with the asymptotic analyses. Small scale yielding solutions confirm 
the expected discontinuities, within limits of mesh resolution, of displacement for a stationary crack and of velocity 
for quasi-static growth. Further, the discontinuities apparently extend well into the near-tip plastic zone. A finite 
element formulation suitable for arbitrary deformation has been used to solve for the plane strain tension of a 
Taylor-hardening crystal panel containing, a center crack with an initially rounded tip. This shows effects due to 
lattice rotation, which distinguishes the regular versus kinking shear modes of crack tip relaxation, and holds 
promise for exploring the mechanics of crack opening at the tip. 

1. Introduction 

This paper summarizes recent analytical and numerical investigations into the nature of the 
near-crack-tip stress and deformation fields in ductile single crystals. Ductile crystals deform 
plastically by the motion of dislocations on a limited set of slip systems. A continuum 
representation of this plastic deformation consistent with the Schmid rule, which states that 
flow on a system is activated when the shear stress resolved on that system reaches a critical 
value, is used in the analyses to be presented. This formulation leads to a yield surface in 
stress space consisting of planar facets joined at vertices and to an "associated" plastic 
straining relation. 

General methods of constructing asymptotic near-tip fields for such crystals, with either 
stationary or quasi-statically growing cracks, have been obtained in the ideally plastic case 
for both anti-plane strain (mode III: [1]) and tensile plane strain (mode I: [2]) cracks. The 
results, as illustrated for common crack orientations in fcc  and b cc crystals, lead to 
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striking predictions of discontinuities at the crack tip. Full scale elastic-ideally plastic 
solutions to the near-tip stress and deformation fields have been given for stationary cracks 
in the mode III study. These show that all flow is confined to planar plastic zones emanating 
from the crack tip, across which both displacement and stress are discontinuous. Asymptotic 
analysis of dynamic crack growth, i.e., including inertia, has been developed as well for that 
mode [3] and reveals that an elastic-plastic shock discontinuity moves along with the tip. In 
addition, asymptotic fields of the HRR type have been developed for stationary cracks in 
crystals showing Taylor hardening, with a power-law stress-strain relation at large strain, in 
mode III [4] and mode I [5]. 

The mode I asymptotic analysis [2], based on ideal plasticity and a "small displacement 
gradient" formulation, shows that for material at yield the stress state is constant within 
angular sectors whose boundaries are certain crystallographic directions on which discon- 
tinuities in either displacement (stationary crack) or velocity (quasi-statically growing crack) 
are possible. A direct comparison of the mode I analyses is made here with the numerical 
results of Hawk and Asaro [6]. When comparing different types of crystals, or crack 
orientations within a given crystal, the structure of the dislocations necessary to produce the 
same continuum field discontinuity is different. Furthermore, certain dislocations structures 
may induce rotation of the lattice relative to the material, thus changing the resolved shear 
stresses on slip systems and causing a geometric hardening or softening of the crystal. This 
is important particularly when large deformations are taken into account. 

Recently, full scale elastic-plastic solutions for mode I cracks in ductile crystals have been 
obtained numerically by the detailed finite element analyses of Hawk and Asaro [6]. Some 
of their results are briefly summarized here for several different loading cases. These analyses 
model the constitutive behavior of the crystal with a visco-plastic formulation in the nearly 
rate-independent limit. The numerical analysis of Asaro [6] models from small-scale to 
general yielding a center cracked panel with a blunted crack tip under uni-axial tension. The 
slip systems of the crystal are idealized by a planar double-slip model. The effect of Taylor 
type hardening of the slip systems and large displacement gradients (e.g., lattice rotation) 
are included. In the small-scale-yielding analysis of Hawk [6], both a stationary and quasi- 
statically propagating perfectly sharp tensile crack are simulated. The crystal is modeled as 
elastic-ideally plastic using a complete description of the slip systems in a fc c crystal. Small 
displacement gradients are assumed. 

2. Constitutive law 

The crystals considered can undergo both elastic and plastic deformation. The plastic 
deformation is consistent with a continuum description of single crystals [7-10]. The total 
strain-rate is taken as the sum of the elastic strain-rate and plastic strain-rate 

= + (1) 

Under plane strain conditions, which are possible for the high-symmetry crack orientations 
considered here, 813,823,833,0-13 and 023 are zero. The plastic deformation of the crystal occurs 
by the motion of dislocations along certain preferential crystallographic planes. The move- 
ment of these dislocations causes a permanent dilationless straining of the crystal. A slip 
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system denoted by a is defined by two unit vectors giving the slip direction s ~=t and the normal 
to the slip plane n ~). The parameter  7 ~I describes the amount  of  shear strain on each slip 
system. These preferential slip systems defined by s ~ and n ~=) vary according to the crystal 
structure (e.g., face centered cubic, fc  c, or body centered cubic, b c c). It is possible to express 
the plastic strain rate as a sum over all the N slip systems of  the crystal as 

N 

= ( 2 )  

Here - ~  is termed the Schmid factor and is determined from the slip direction s (~ and the 
r -  U 

normal to the slip plane n ~ as 

{1 ~ - -  2\~i "'* + >/ --i ) (3) 

The resolved shear stress, z~, on a system is expressible in terms of  these Schmid factors as 

"t "Is) • c r  u!c9 - , ,  r'u (4)  

The plastic deformation of  a crystal is said to obey the Schmid rule if the instantaneous 
shear response 9 ¢~) of  any given system a depends on the current stress state only through the 
combinat ion in (4). In a t ime-independent plasticity formulation, a necessary but  not 
sufficient condition for slip to occur is that the resolved shear stress z ~'/reaches a critical value 
g~. This criteria results in a yield surface in stress space which consists of  planar facets that 
join at vertices at which two or more systems are simultaneously active. Equat ion (2) then 
assures that the flow rule is of  an "associated" type. Rice [11] showed that for rigid-plastic 
incompressible solids of  this class in plane flow, the yield surface can be represented as a 
curve in the reduced stress space of  (o~t - 0 - 2 2 ) / 2  and a~2. Such a yield surface is schematic- 
ally shown in Fig. 1 and for crystals as described here, it is polygonal. In an elastic-plastic 

/ 

(~12 

( ~ 1 1 - -  (~22 

Fig. 1. Schematic of  yield surface for a ductile crystal undergoing plane straining. 
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material the same result applies for stress states in large sustained plastic strain. However, 
in such a case limited deformation may occur on slip systems corresponding to segments of 
the yield surface sensitive to the value of (a .  + a22) but which cannot produce sustained 
plane flow. We will term the sides of the polygon as "flats" and the point of junction of two 
sides as a "vertex". The flow law of (2) being associative, the direction of plastic straining, 
with components (~Pl - ~Pl )/2 and kiP2, is normal to the yield surface on a "flat" and within 
the forward fan of normals at a "vertex". 

It will also be convenient to represent the slip systems of the crystal as traces in the x~, x 2 
plane. For example, in Fig. 2a, a unit cube representing the lattice of an fc c crystal is shown. 
The slip planes of a fc c crystal are the { 1 1 1 } planes indicated by the various shaded planes 
in the cube. The slip directions are (1 0 1) directions which are the diagonals of the cube 
faces. If the crack lies in the plane (0 1 0) and the crack tip lies along the diagonal of the cube 
face as indicated, then the traces of the slip systems (i.e. intersection of the slip planes with 
the Xl, x2 plane) are as indicated in Fig. 2b. It is then possible to represent the slip direction 
s and slip plane normal n as the directions S and N respectively in the x~, x2 plane as shown 
in the figure. Only those traces shown correspond to systems which can produce sustained 

nr~nk  n l ~ n o  (Nl1'1~ 

X 2 

(a) 

101] 

[010 X 2 

(b) 

traces of slip planes 

Fig. 2. (a) Face centered cubic slip systems, and orientation of the crack plane and crack tip for case illustrated 
below. (b) Crack on (0 1 0) plane growing in [1 0 1] direction. Traces are shown of those slip plane families which 
can accommodate sustained plane straining. 
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plane flow. The solid line traces correspond to individual { 1 1 1 } planes, and the dashed lines 
to two such planes which intersect along a ~ 1 1 0) slip direction common for each and which, 
by equal coincident slip, produce plane flow. 

The finite element analyses use a visco-plastic formulation where slip can occur on any 
system so long as resolved shear stress on that system is non-zero. A simple power-law 
relation [12-14] can be used to describe the rate of slip on each system as 

~;'~) = ')~0 ~) sgn (~c~,) \]g'~)lJ (5) 

As the exponent m ~ 0 the visco-plastic model approaches the rate-independent formu- 
lation. Use of a visco-plastic law in a finite element formulation, pioneered in the work of 
Pierce et al. [14], eliminates certain problems of uniqueness and considerations of when a 
point is at yield. The g~') reflects the current level of strain hardening in the crystal. In [6], 
results are presented for both ideal plasticity i.e., g~') is a constant, %, and cases where g~ 
is a function of the sum of the magnitudes of the slips (F = Y~ I ~)L), which coincides with 
Taylor hardening. 

3. Asymptotic analysis 

The asymptotic analyses (e.g., lim,_~0 a,~(r, 0, t)) of Rice [2] are summarized here for the case 
of ideal plasticity in a "small displacement gradient" formulation of the mode I problem. 
Based on the equations of equilibrium with a bounded crack tip stress state and with the 
further condition that the stress state is at yield relative to a slip plane trace in the direction 
S:, the following requirement is found: 

(N~e~)(&e~.)(a~l + a~2) = 0 (6) 

Greek indices range from 1 to 2. As indicated, Fig. 2b, the e~ are the components of the radial 
unit vector in the xl, x2 plane; (e~, e2) = (cos 0, sin 0). The terms S~ and N~ are the 
components of the traces of the slip direction and slip plane normal as previously defined. 
The a'~t 3 denote 

a't~ = lim 0a~(r,  0) 
,~0 00 (7) 

Equation (6) implies a~l + 0"22 = 0 for all 0 except for four special values when e is aligned 
with either N or S. Based on the form of the stresses consistent with equilibrium for material 
at yield, this statement further implies that within sectors bounded by these four special 
values of 0, all ~ are zero; i.e. the stress state is independent of 0. For a tensile crack it is 
shown that, in order to meet boundary conditions, either (i) the stresses in certain angular 
sectors around the crack tip are not at yield or (ii) that the stresses change discontinuously 
at the special values of 0 as mentioned above. 
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3.1. Stationary crack 

For the stationary crack, as r ~ 0, the yield condition can be met in all angular sectors 
around the crack tip, thus requiring discontinuous jumps in the stress state. The stress 
discontinuity must be from one point on the yield surface to another, and considering the 
nature of restrictions on such discontinuities, this path must be a straight line in the stress 
space and the line must lie everywhere along the yield locus (and hence correspond to a flat 
segment in Fig. 1) since otherwise elastic unloading would occur. The solution which satisfies 
the jump conditions for the stress discontinuity is one where the stress state changes from 
vertex to vertex on the yield surface. The deformation fields, consistent with the above stress 
state, must have a shear type of discontinuity in the displacement field along the same 
direction, e, for which the stress is discontinuous. These correspond to concentrated shear 
parallel to the slip plane traces when e is aligned with S, and to kink-like shear perpendicular 
to the traces when e is aligned with N. The specifics of constructing such solutions may be 
found in [2]. Specific examples of these solutions will be given in the discussion of the finite 
element solutions of [6]. 

3.2. Growing crack 

For the quasi-statically growing crack, Drugan and Rice [15] demonstrated for this type of 
material that discontinuities in stresses and displacements cannot exist. However, it is 
possible to have velocity discontinuities. It is therefore necessary to have bordering on the 
plastic sectors angular sectors in which elastic unloading (and perhaps reloading) occur. 
Construction of the solution for a particular crystal orientation, again for which the details 
are given in [2], shows a complicated pattern of plastic sectors and elastic unloading and 
reloading sectors is necessary to model the crack tip fields for quasi-static growth. A specific 
example will be presented for comparison with the finite element solutions of Hawk [6] in 
the next section which shows that one of the physically active system for the stationary crack 
becomes inactive in the growing case. 

3.3. Note on role of S and N 

In the asymptotic analyses presented, based on the "small displacement gradient" formula- 
tion, the role of the slip direction S and slip plane normal N are interchangeable since they 
come in through the symmetric form of (3). In certain cases [2] fc c crystals and b c c crystals 
differ only by an interchange of S and N. Therefore solutions obtained for such fc c crystals 
are also valid for b c c crystals as well (aside from a slight scaling). However, the structure 
of the actual dislocations necessary to produce the shear deformation is quite different when 
S and N are reversed. For example, shown in Fig. 3a and 3b is shear parallel to the slip planes 
and shear perpendicular to the slip planes respectively. The motion indicated in Fig. 3a can 
be generated by the emission of dislocations from the crack tip along the slip direction as 
shown in Fig. 3c. Notice however that in Figure 3b the slip planes must form a kink in order 
to accommodate the deformation. Experiments in Fe-3% Si crystals [16] show results 
consistent with kink-like shear. This kink requires dislocation dipoles as in Fig. 3d. These 
dipole loops, illustrated as pairs of dislocations, cannot be swept out from the crack tip and 
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(a 

/ 

l 
(c) J,t7 

Fig. 3. (a) Shear in band lying parallel to the active slip systems. (b) Shear by a kinking mode in a band lying 
perpendicular to the active system. (c) Dislocations can be generated at the crack tip and swept out along slip 
planes, or can be generated from internal sources, to produce the slip-plane-parallel shear band of (a). (d) 
Dislocations dipole loops must be nucleated from internal sources and expand as illustrated to produce the kinking 
shear band of (b). 

must therefore depend on the availability of internal sources to produce them. Requiring the 
availability of internal sources, as opposed to allowing dislocations to be swept out from the 
crack tip along slip planes, may influence whether the fracture of a particular crystal is brittle 
or ductile. It is seen also that the lattice between the pair of dislocations in Fig. 3d is 
apparently rotated. This can cause either a geometric hardening or softening of the material 
because the resolved shear stress v~') on each slip system varies as the Schmid factor, #I~ 1 , 
changes due to rotation of S and N directions. The effect of such lattice rotation will be seen 
later in the large deformation results of Asaro [6]. 

3.4. Some further analyses of mode III cracks 

The analyses discussed so far have been for tensile cracks, which is the physically more 
interesting case. However they are approximate in that their validity is only in the limit as 
r ~ 0. The simpler nature of the equations for mode III (anti-plane strain) type loading 
allows for more complete solutions [1, 3] which we briefly summarize here. Three such 
solutions are shown in Fig. 4 exclusively for the fc c crystal with the orientation of the crack 
the same as in Fig. 2a with the crack along the (0 1 0) plane with crack tip along the 
[1 01] direction. Under mode III loading conditions the only non-zero displacement is 
U3(Xl, X2) which gives rise to only two non-zero stress components a3~ and 0-32. In this case 
only the solid-line slip plane traces in Fig. 2b can provide anti-plane straining. The yield 
surface can thus be represented in 0-3~, a32 stress space and for this orientation is diamond 
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Fig. 4. Summary of analyses for anti-plane shear of a cracked ideally plastic crystal: (a) Stationary crack; (b) 
Quasi-static crack growth; (c) Dynamic crack growth asymptotic field (inertial effects included). 

shaped. The assembled stress sectors for these solutions will be labeled with A, B, etc. with 
corresponding points or trajectories labeled on the yield surface. As is often the case, similar 
features are seen to carry over from the mode III solution to the mode I solution. 

The stationary case is shown in Fig. 4a with the corresponding yield surface and stress 
trajectories as indicated. Only two sectors A, B in the upper half plane (a corresponding 
sector to B labeled B' is shown in the lower half plane) of the constant stress type, as 
previously discussed for plane strain in the asymptotic limit as r ~ 0, are necessary to 
construct the full solution. Both of the corresponding stress points are on the yield surface 
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as indicated. These sectors are separated by a line of discontinuity in both displacement and 
stress. The stress discontinuity can be thought of as a rapid transition (in a vanishing small 
sector) from point A to point B as indicated by the arrow on the yield surface. The complete 
solution of Rice and Nikolic [1] shows that these sectors are actually elastic with all plasticity 
collapsed into a shear zone along the line of the displacement discontinuity. The size of this 
plastic zone is found exactly in their analysis. 

The quasi-static crack growth case is shown in Fig. 4b. Three sectors A, B' and C' in the 
upper half plane (with corresponding sectors B and C in the lower half plane) are necessary 
to assemble the solution. Sector A is of the constant stress type with the state of stress at the 
yield surface as indicated on the yield surface plot. As necessary from the asymptotic solution 
this sector is bounded by an elastic sector C'. Sector A is separated from C' by a velocity 
discontinuity (expected to extend over a finite size region based on the approximate analysis 
of Rice and Nikolic [1]) along which all the plastic flow takes place in the region forward of 
the crack tip. As shown by the lightly shaded region in Fig. 4b, as the crack grows this 
velocity discontinuity also leaves behind a wake of plastic deformation. Sector C', as 
indicated by the corresponding path within the yield surface, unloads elastically and reloads 
to yield by the time it reaches the other plastic sector B' creating a thin wedge of plastic 
deformation along the crack face, shown in darker shading. The exact details of the 
construction of the angles for these sectors is presented in [1]. 

Finally, the case of dynamic crack growth where the effects of inertia are taken into 
account is shown in Fig. 4c [3]. In this case the entire field consists of constant stress sectors 
separated by an elastic-plastic shock (possible only in single-crystal-like materials with flat 
segments along their yield locus). Both velocity and stress are discontinuous across the 
shock. Remarkably, the strain accumulated in crossing the shock is finite at the crack tip. 
It is of the order of the strain at first yield divided by the elastic Mach number associated 
with the crack speed. The angle ~b, in Fig. 4c, is proportional to the Mach number at low 
speed and approaches (~ - 00)/2 at the sonic speed. There must be a complicated transition 
between the near tip field with the inertia included, Fig, 4c, and that without Fig. 4b. This 
is an example of nonuniform asymptotic limits as one considers r ~ 0 and x / ~ G  ~ 0 
where ~ is the density, G is the shear modulus and v is the crack speed. E.g., the quasi-static 
growth case may be considered as letting ~ -~ 0, or v --* 0 +, before letting r ~ 0. 

4. Comparison of asymptotic and numerical analyses for mode 1 

4.1. Small-scale-yielding results 

Under small-scale-yielding conditions, a stationary and quasi-statically propagating plane 
strain mode I crack in a fc c crystal has been investigated by the finite element analysis of 
Hawk [6]. The material is elastic-ideally plastic, modeled by a visco-plastic formulation as 
in (5), with g~ :- 30 and m = 0.005. Small-scale-yielding conditions exist when the size of the 
plastic zone is much smaller than the region over which the elastic singular stress field 
dominates. The dominance of the elastic singularity allows the crack tip region to be modeled 
as an infinite solid with a semi-infinite crack where the stresses approach those of the elastic 
singularity as r ~ ~ .  The finite element mesh of both analyses is shown in Fig. 5. Since the 
mode I problem is symmetric, only the upper half plane is modeled. The finite element mesh 
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Fig. 5. Finite element mesh for "small displacement gradient" analysis of small-scale yielding in an ideally plastic 
crystal. 

is shown in three sections A, B and C for clarity. Section A fits into the rectangular space 
of section B and section B in turn fits into the space in section C. The ratio of the size of the 
smallest rectangular element of region A to the outermost radius of region C is approximately 
10 -4. Each quadrilateral element is actually a so called cross triangle element [17] made up 
of four constant-strain triangles (formed from the diagonals of the element) which as a group 
behave well under incompressible conditions. The crack opens to the left with nodes ahead 
of the crack tip constrained from vertical movement by the symmetry boundary condition. 
Tractions corresponding to the elastic K field singularity are applied to the outer boundary 
of section C. The results are primarily from section A and the region immediately surround- 
ing it. The details of  the finite element method are presented in [6]. 

The analysis of the stationary crack in an fc c crystal was performed with the orientation 
of the crack the same as shown in Fig. 2a. The crack lies in the (0 1 0) plane with the 
crack tip along the [1 0 I] direction. Elasticity was modeled as isotropic. The yield surface 
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Fig. 6. Stationary crack in ideally plastic crystal of Fig. 2: (a) Yield surface; (b) Asymptotic structure of crack tip 
field; (c) Finite element results: grey zone with F /> 0.01 (ro/G) essentially denotes plastic zone; black zone with 
F /> 10 (~o/G) shows zone of more concentrated plastic strain. 

(appropriate to sustained flow) for this orientation is shown in Fig. 6a. The asymptotic 
solution obtained by Rice [2] for the stationary crack case is shown in Fig. 6b. In the 
stationary case, the entire crack tip region may deform plastically. For the upper half plane, 
the solution consists of four constant stress sectors labeled A, B, C, and D separated by stress 
and displacement discontinuities as indicated in Fig. 6b. The stress state of each sector is 
similarly labeled as points on the yield surface A, B, C and D in Fig. 6a. The discontinuity 
between A and B at 54.7 ° and the one between C and D at 125.3 ° correspond to the slip 
directions for the solid traces in Fig. 2b. The discontinuity between sectors B and C 
corresponds to the normal of the slip plane indicated by the dashed traces in Fig. 2b. Each 
discontinuity in stress represents a rapid transition from point to point on the yield surface 
as shown by the arrows. 

Let the sum over the slip systems of  the magnitude of slip, E~ ] 7 (~) ] be denoted as F. This 
quantity is an overall measure of the amount of plastic straining and is shown in Fig. 6c 



0.030 _ 

normalized by the elastic strain at yield, Zo/G. The grey zone, formed by shading individual 
triangular elements whose value of F/(zo/G) is between 0.01 and 10, is representative of the 
overall plastic zone shape. The black bands are those elements whose value of F is greater 
than 10. Therefore, the most intense straining is along the predicted discontinuities of the 
asymptotic solution. It is interesting to note that all the sectors are predicted to be stressed 
to yield as r -~ 0, but only the interfaces between them are proven to be deforming plastically 
in the asymptotics. The finite element solution indicates that sector D bounding the crack 
face is relatively free of plastic deformation while the others deform. Some plastic strain 
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Fig. 7. (a) Deformed mesh for stationary crack (factor of 50 amplification of displacements); note shear zones 
coincident with directions shown in Fig. 6(b). (b) Line lengths proportional to displacements accumulated in a 
load increment; suggests that displacement discontinuities predicted by asymptotic analysis extend well into plastic 
z o n e .  
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ahead of the crack occurs on slip systems other than those of Fig. 2b, i.e., on systems which 
cannot undergo sustained plane flow. The deformation of the finite element mesh around the 
crack tip is shown in Fig. 7a with the displacements magnified by a factor of 50. The most 
intense deformation is in those elements which lie along the discontinuity between sectors A 
and B. The increment of displacement, scaled up for visibility, over a load increment is shown 
in Fig. 7b. Four distinct sectors exist with the motion in each sector fairly uniform. This 
indicates the majority of deformation is caused by the movement of nodes near the predicted 
discontinuities. 

A quasi-statically propagating crack in a f c  c crystal is simulated using a node release 
technique the details of which are given in [6]. The crack propagates to the right through 9 
elements under constant load from an initial stationary position to the center of section A 
in Fig. 5. The same orientation of the crack with respect to the crystal is used in the 
propagating crack case as in the stationary crack case above. The yield surface for this 
orientation is repeated in Fig. 8a for reference. As discussed in the previous section on 
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Fig. 8. Quasi-statically growing crack in ideally plastic crystal of Fig. 2: (a) Yield surface and stress trajectory. (b) 
Asymptotic structure of near tip field. (c) Finite element results showing plastic activity, as measured by increment 
of F, during one finite element step of crack growth. Grey zone corresponds essentially with plastically active zone 
during growth; black zone has more concentrated plastic straining. 
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asymptotic solutions, neither stress nor displacement discontinuities may exist and if a sector 
is plastic it must border an elastic sector. The assembly of sectors for this orientation [2] is 
shown in Fig. 8b. For the upper half plane, the solution again consists of four sectors labeled 
A, B, C, and D. Sector A is a constant stress plastic sector and it is separated from an elastic 
sector B by a discontinuity in velocity at 54.7 °. As indicated by the stress trajectory in Fig. 8a, 
sector B involves an elastic unloading and reloading back to yield by the time a second 
velocity discontinuity is reached at 125.3 °. Sector C is another elastic unloading and reload- 
ing sector. Finally, sector D is plastic. 

The crack leaves behind a wake of plastic deformation which makes the quantity 
F not as illustrative as it had been in the stationary crack case. The increment in F/(ro/G) 
(= AF/(~o/G) ) from just before the last node release to just after it, is shown in Fig. 8c, which 
eliminates much of the accumulated plastic wake and shows only the regions which are 
plastically active during growth. Elements which sustained AF/(vo/G) between 0.001 to 1 are 
shaded gray and those with increments greater than 1 are in shaded black. There are very 
striking similarities between the predicted asymptotic solution, Fig. 8b, and the finite 
element solution, Fig. 8c. Sector A is plastic and is bounded by an intense band of plastic 
deformation along the predicted velocity discontinuity. Sector B is relatively free of plastic 
deformation as predicted. At the second velocity discontinuity at 125.3 ° where the pre- 
dicted stress trajectory is tangent to the yield surface an intense band of plastic defor- 
mation is encountered. Subsequently, an elastic sector roughly similar in angular extent 
to sector C is seen in the finite element solution. Finally, elements along the crack 
faces are loading plastically. The deformed mesh after the crack growth has taken 
place is shown in Fig. 9a. It is interesting to note that while the crack was stationary (as load 
was increased) the solution was the same as in Fig. 7a, as shown by the distinct kink in the 
crack profile at the crack's initial position. However, once crack growth began and a 
displacement discontinuity was no longer allowed the crack profile was smooth. The incre- 
ment in nodal displacements, again scaled up for visibility, from just before the final crack 
growth increment to just after is shown in Fig. 9b. Two rather distinct bands of discontinuity 
are seen close to the crack tip corresponding to the lines of the velocity discontinuities. The 
smooth change of direction of the increments directly above the crack clearly indicates that 
the discontinuity seen at 90 ° in the stationary case is no longer present in the growing crack 
case. 

4.2. Center crack panel results 

A square, center cracked panel under plane strain conditions has been modeled from 
small-scale-yielding to general yielding in the finite element analyses of Asaro [6]. Three 
sections of the finite element mesh are shown in Fig. 10. Section A is imbedded in the dense 
part of  section B which is in turn imbedded in the densest part of section C. Section C is then 
extended outwards in a similar pattern to slightly more than 20 times the size shown, with 
the outer boundaries of successive "rings" of elements forming two adjacent sides of a 
succession of squares. Symmetry reduces the analysis to just that of one quarter of the speci- 
men, represented by section C as extended to a large square with sides of dimension b. The 
total length of the crack is 2a with the ratio of a/b equal to 0.01. The ratio of the size of 
elements in section A to the size of the elements in the outermost mesh is approximately 
2 x 10 6. The crack tip is initially rounded as we can see from the mesh in section A. Stresses 
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Fig. 9. (a) Deformed mesh (factor of 100 amplification) after several steps of crack growth at constant far-field 
stress intensity K[. (b) Line lengths proportional to displacement increments during crack growth over one finite 
element step of crack growth• Suggests that velocity discontinuities predicted by asymptotic analysis extend well 
into the plastic zone. 

corresponding to uniform tension a "v perpendicular to the crack are applied to the outer 
boundary. 

Finite rotations of both material and the crystal lattice are taken into account in this 
work. The computational procedures used in the finite element calculations follow the initial 
work of [14] and [18]. The elements used are the same cross triangle type [17] discussed in 
conjunction with the small scale-yielding analysis. The plasticity is modeled by a visco-plastic 
formulation with the slip rate on each system as given by (5) with m = 0.005. A Taylor type 



316 J.R. Rice, D.E. Hawk and R.J. Asaro 

G 

B 

A 

Fig. 10. Finite element mesh for analysis of tensile load of a panel containing a center crack with initially rounded 
tip. Used for crystal models with double slip, as in insets of Figs. 1 l(a) and (b). Strain hardening and arbitrary 
displacement gradients are included in the analysis. 

o f  ha rden ing  o f  slip systems is inc luded with g(') a func t ion  o f  F = Z,  [7 ('1 [, 

g(=) = go [1 + 0.8 t anh  ( l l . I F ) ]  (8) 

where  go/G = 0.0026. 
The  crystal  is idealized by a p lanar  doub le  slip mode l  for  two or ien ta t ions  o f  the crack  as 

shown by the insets o f  Fig. 1 l a  and  1 lb.  The  first o r i en ta t ion  co r responds  to  tha t  in Fig. 2b 
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~b=54.7 • 

Fig. 11. C o n t o u r s  o f  equivalent  shear  s t rain F near  the tip; ou te rmos t  is F = 0.005, next  is F = 0.01 and  
inne rmos t  is F = 0.02: (a) For  35.3 ° angle between slip planes  and  tensile direction; (b) For  54.7 ° angle. 

for a f c c  crystal, i.e., a (0 1 0) crack growing in the [1 0 1] direction, when we neglect the slip 
plane traces shown as the dashed lines. It also corresponds to a b c c crystal with the crack 
on the (1 0 1) plane growing in the [0 1 0] direction when we similarly neglect certain slip plane 
traces parallel to the crack. The angle between the x2 axis and the traces of  the slip direction 
S, denoted by ~b, is equal to 35.3 ° in this case. The second orientation has ~b = 54.7 °. It 
corresponds, with neglect of  certain systems as above, to a crack lying on the (1 0 1) plane 
growing in the direction [0 1 0] in a fc  c crystal, or to a crack on the (0 1 0) plane growing in 
the [1 0 1] direction in a b c c  crystal. See [2] for fuller discussion of  yield surfaces in these 
cases. These orientations with only the slip systems indicated correspond to a diamond 
shaped yield surface, e.g., as in Figs. 6a and 8a but  without the horizontal cut-offs. An 
identical diamond-shaped surface applies for the two cases shown in Fig. 1 la  and b. The fc  c 
crack orientation coinciding with Fig. 1 la  is sometimes observed in fatigue studies on ductile 
Cu and A1 crystals, whereas the b cc  crack orientation noted to coincide with Fig. 1 lb is a 
common cleavage crack orientation, e.g., in Fe-3% Si crystals [16]. The term go in (8) is the 
critical resolved shear stress in the xl, x2 plane of  deformation for the double slip model. It 
corresponds to go = (2/x/-3)z0 for the fc c interretations and to go = t0 for b c c [2]. 
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Contours of constant plastic strain (as measured by the accumulated sum of the slips, 
F = Z~ 17 ~')]) are shown in Figs. 1 la and 1 lb for the orientations ~b = 35.3 ° and q~ = 54.7 ° 
respectively. The outermost contour is for F = 0.005, the next is for F = 0.01 and the 
innermost for F = 0.02. Away from the immediate near-tip region, the plastic deformation 
is confined to two discrete bands of deformation emanating from the crack tip. For a 
diamond shaped yield surface, the vertical (0 = 90 °) discontinuity present in the small-scale 
yielding case (associated with the slip system represented by the dashed line in Fig. 2b) does 
not exist. The deformation in Fig. 1 la corresponds to shear bands with the line of dis- 
continuity parallel to the slip direction S. However, the deformation in Fig. 1 l b has the 
discontinuities aligned with the slip plane normal N which was discussed earlier as giving rise 
to kink bands and lattice rotation; see Fig. 3b and 3d. Not until we are within two to three 
initial root radii of the initial blunted crack tip does the straining pattern deviate significantly 
from that predicted from the small-scale yielding perfectly sharp crack tip results, based on 
the "small displacement gradient" formulation. The solutions for the two cases in Fig. 11 are 
identical within that formulation, and the slight broadening of the strain contours in 
Fig. 1 l b, compared to those in Fig. 1 l a, reflects geometrical hardening due to the lattice 
rotation in the Fig. 1 l b case. 

The maximum extent of  the plastic zone rp varies nearly linearly with a ( a ~ / g o )  2 oc K 2 for 
values of rp/a <~ 0.018, such that rp ~ 0.14 a(a~/go)2. (The corresponding numerical factor 
is ~ 0.15 in the ideally plastic fc c solution of Hawk ([6] Fig. 6c), and both results are close 
to the factor 0.16 based on the approximate ([19] Eqn. (37b)) model for yield on a pair of 
inclined shear planes at a crack tip, when the angle of those planes is taken as 55 ° with the 
cracking direction.) For larger plastic zone sizes in the Asaro solution, departures from such 
linearity occur indicating a departure from self-similar growth of the plastic zone, i.e., a 
violation of small-scale yielding, presumably explainable over some range of tr ~ prior to full 
plasticity in terms of the nonsingular, crack-parallel stress ( = - tr ~) of the elastic crack tip 
field (e.g., [20]). 

Lattice rotations from the initial orientations, caused by plastic deformation at the crack 
tip, are shown in Figs. 12a and 12b. These show the deformed orientations of the traces of 
one of the slip plane families in the double-slip model. For the case with 4~ = 35.3°, Fig. 12a 
indicates that although quite large rotations occur at the crack tip itself, very little reorien- 
tation of the lattice occurred in the shear band regions. This is compatible with flow parallel 
to slip plane traces as in Fig. 3a. In contrast to this, Fig. 12b indicates, for the case where 
~b = 54.7 °, rather discrete bands of lattice reorientation occur that more-or-less coincide 
with the bands of concentrated straining of Fig. 11 b. By sighting along the slip plane traces 
in this latter case, one may observe a zone of kinking shear, as in Fig. 3b, extending out from 
the crack tip. This is further illustrated in Fig. 12c, also for the q5 = 54.7 ° case, in which 
contours of constant lattice rotation are shown. The outermost contour corresponds to a 2 ° 
rotation, and it protrudes out from the crack tip in the directions of the bands of con- 
centrated straining in Fig. 1 lb; no such outward protrusion of regions of significant lattice 
rotation occurs in the q~ = 35.3 ° case. By comparing Figs. 12a and b, it is seen that although 
the overall plastic zone sizes differ little in the two cases, the patterns of large deformation 
in crack tip opening are quite different and seem to be dominated by the geometrical 
hardening and softening from lattice rotations. The results also show the development of 
features resembling "high-angle boundaries", or at least narrow transition zones between 
regions of significantly different lattice rotation, in the near tip region. 
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Fig. 12. Rotated orientations of  slip plane traces (from one of  the two slip systems in the double-slip model) near 
the crack tip: (a) For 35.3 ° angle between planes and tensile direction; shows little evidence of  lattice rotation 
except near blunting tip. (b) For 54.7 ° angle; shows significant lattice rotation as in the kinking shear zone of  
Fig. 3(b). (c) Also for 54.7 ° angle; shows contours of  constant lattice rotation near the tip, of  which the outermost 
corresponds to 2 ° clockwise. 
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5. Conclusion 

The analytical and numerical investigations into the near-crack-tip fields of ductile crystals 
have been shown to be consistent. The results show that for ideally plastic crystals obeying 
the Schmid rule, the near-crack-tip deformation fields are characterized by discontinuities in 
either displacement (stationary crack) or velocity (quasi-statically growing crack). These 
discontinuities are either parallel or normal to crystallographic planes on which slip can take 
place (i.e. by the motion of dislocations) for the fc c and b c c orientations considered. The 
state of stress is constant within angular sectors bounded by these discontinuities for material 
at yield. 

The asymptotic methods developed [1, 2] provide a general way of constructing such fields 
around the crack once the yield surface has been determined for the particular crystal and 
orientation of the crack. In the case of a mode III crack [1, 3] a more complete analysis is 
possible of stationary cracks (exact full analysis) and quasi-static crack growth (asymptotic 
plus approximate analysis) and even dynamic crack growth (asymptotic). The general 
features seen in the mode III cases carry over to the physically more interesting mode I plane 
strain asymptotic analyses [2]. 

The numerical investigation of Hawk [6] by detailed finite element analyses provided 
confirmation that the features seen in the mode I asymptotic analyses (stationary and 
quasi-static growth) are valid over a finite size region. The finite element analysis of Asaro 
[6] of a center crack with initially rounded tip in a tension panel from small-scale yielding 
to general yielding, including hardening and full account of arbitrary displacement 
gradients, shows the effects of lattice rotation and the limits of small-scale yielding. However, 
the overall feature of concentrated deformation along the predicted discontinuities is 
retained throughout. 

Finally, the analyses summarized here may provide some insight into why certain 
crystals undergo ductile fracture while others are brittle. One possible factor is the struc- 
ture of the dislocations necessary to produce the predicted slip patterns which in one 
case involves a shear band parallel to the active slip system and in another involves 
a band perpendicular to the active system that deforms by kinking shear. In the parallel 
shear case it is possible for these dislocations to be generated at the crack tip and swept 
out along the slip planes while in the kinking case it is necessary to have present, and to 
activate, internal sources to generate the necessary dislocation dipoles. The finite strain 
pattern associated with large ductile opening at the crack tip is also significantly different in 
the two cases. 
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