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A near-tip asymptotic analysis is given for the stress and deformation field near the tip of crack propagating dynamically 
under anti-plane shear in an ideally plastic single crystal. A particular class of orientations of the crack relative to the crystal is 
considered so that the yield locus is of simple diamond shape (relative to directions along and perpendicular to the crack) in 
the plane of the anti-plane shear stresses. The near-tip solution is shown to consist of sectors which carry constant stresses, at 
yield levels, corresponding to adjacent vertices on the diamond-shaped yield locus, and which are joined ahmg an 
elastic-plastic shock discontinuity. All plastic flow in the near-tip region occurs in the shock. Plastic strains and particle 
velocity are finite at the crack tip. The plastic strain is proportional to the elastic strain at onset of yielding and is inversely 
proportional to the elastic Mach number  associated with the speed of crack growth. 

1. Introduction 

Dynamic crack growth in ideally plastic single 
crystals is analyzed here for geometries and orien- 
tations such that two-dimensional states of anti- 
plane shear constitute a possible deformation field. 
The analysis is asymptotic; the limit r---, 0 is 
considered where r is distance from the moving 
crack tip. Cases of stationary and quasistatically 
growing anti-plane cracks for different orienta- 
tions in f,c.c, and b.c.c, crystals were solved by 
Rice and Nikolic (1985). Here inertia effects are 
taken into account for the growing crack. The 
material yields according to the attainment of a 
critical value for the resolved shear stress on one 
or more different slip systems in a crystal. Since 
for a perfectly plastic material the shear wave 
velocity for an appropriate direction of straining is 
zero, the crack growth is supersonic even at small 
speeds. Thus, the inertia terms in the basic equa- 
tions may have a significant effect on the nature 
of near tip fields. It may also be expected that the 
quasistatic solution includes features that will not 
be present in dynamic results. For Mode III  crack 
growth in isotropic ideally plastic solids, this was 
shown by Slepyan (1976) and confirmed by 
Achenbach and Dunayevsky (1981), and Freund 
an Douglas (1982). These authors discovered that 

the Mode III  dynamic solution, unlike the quasi- 
static one for a growing crack, predicts no elastic 
unloading sectors and the entire field around the 
crack tip is plastic. The shear strain has a logarith- 
mic singularity. The solutions considered here are 
different because we consider the behavior of single 
crystals, not the isotropic material. 

For the stationary crack cases in crystals the 
platic zone at a crack tip collapses into discrete 
planes of displacement and stress discontinuity 
emanating from the tip. For the quasistatically 
growing crack these same planes also constitute 
collapsed plastic zones in which velocity and plas- 
tic strain discontinuities occur but across which 
the stresses and anti-plane displacement are fully 
continuous. For the dynamic growth case consid- 
ered in the present work the configuration of the 
stress field around the crack tip is expected to be 
quite different. We considered different types of 
near-tip solutions to the equations governing dy- 
namic growth of a crack in anti-plane shear, like 
elastic and plastic sectors, both of constant and 
variable stresses. We conclude that the whole 
near-tip field around the crack tip is plastic (or is 
at least stressed to a level meeting the yield condi- 
tion). For the range of the coordinate angle 0 of 0 
to 180 ° the solution consists of two plastic sectors 
of constant stresses with the boundary between 
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Fig. 1. (a) Coordinate  systems and notat ion used: XlX 2 Cartesian coordinate  system; r, 0 polar  coordinates  centered at the crack tip; 
e and h are unit vectors in the radial and angular  directions; a is crack length; V is crack propagat ion  speed, d a / d t .  (b) Uppe r  part  
of the yield surface; / is arc length along the active yield surface segment;  m is the unit vector normal  to the active segment and s is 
a unit vector along it. 

them being an elastic-plastic shock wave across 
which stress and particle velocity are discontinu- 
ous, and along which a finite plastic strain is 
generated. There is no strain singularity, so long 
as crack speed and material density are regarded 
as non-zero. All other types of combination of 
sectors with different local solution-types could 
not constitute the solution because they did not 
satisfy either necessary continuity conditions be- 
tween sectors, or boundary conditions at the crack 
surface, or both. 

Coordinate systems used throughout the paper  
as well as the yield surface, for the particular class 
of crack orientations and single crystal considered, 
are shown in Fig. 1. For example, the yield surface 
geometry may represent a (100) crack propagating 
in the [011] direction in a face-centered or 
body-centered cubic metal crystal, and also some 
other cases of interest (see Rice and Nikolic, 1985). 
The fixed Cartesian coordinate system XlX2X 3 is 
chosen so that the x 3 axis is parallel to the crack 
front and x I points in the direction of crack 
growth. Polar coordinates r, 0 have their origin at 
the moving crack tip, lie in the x l x  2 plane, and 
have associated unit vectors e and h in the radial 

and angular directions, respectively. It is evident, 
from Fig. 1, that 

Or/~x~ = e , ,  OO/Ox, = h , J r ,  (1.1) 

where 

e 1 = h 2 = cos 0, 

e 3 = h  3 = 0 .  

e 2 = - h  1 = sin 0, 
(1.2) 

Greek indices have values 1, 2 and follow the 
summation convention. Exception is made for 0: 
indices r and 0 always denote components rela- 
tive to the polar coordinates. The crystal orienta- 
tions and loadings considered here are such that 
the only existing stress components are o~3 = o31 
--  ~1 and 0"23 = 032 ~ '1" 2 . 

2. Governing equations a n d  general assumptions 
for fields around the crack tip in limit r --* 0 

The equation of  motion for anti-plane shear in 
Cartesian coordinates is 

%,~ + f = p ~  (2.1) 
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where f is the body force, 0 is the material 
density, t, is the particle velocity and t) is the 
acceleration. In polar  coordinates 

( aro/aO )h~ + r( Or, Ja r  ) + r f =  rpi,. (2.2) 

x~, x 2 plane, as marked in Fig. l(b). E.g., m~ = 
- s i n  0 0 and m 2 = COS 0 0 for flat A B  in Fig. l(b).) 
The yield surface of  a crystal is the inner envelope 
of  the set of  these lines. 

For  the asymptot ic  analysis of the stress field 
around the crack tip it is assumed that, because of 
boundedness  of stress, r ( a r , / a r )  -~ 0 as r --* 0, so 
the second term in (2.2) vanishes. Also, since the 
dominan t  part  of t', is - Vv~ near the moving tip, 

rt; ~ - Vrv,1 (2.3) 

as r - +  0 where V is the crack propagat ion speed. 
Thus the equation of  mot ion requires 

h,~r£ = - p V r v ,  1 (2.4) 

as r - ,  0 where r£ = l im[~%(r ,  O, t ) / O 0 ] .  Note  
r ~ 0  

also that 

l im ( r e )  = lim [r(a%/OO)tJ] = e2Vr £ (2.5) 
r ~ 0  r ~ O  

since tJ = e 2 V / r .  

The plas t i c  y i e l d  condi t ion  is in general written 
as f ( o )  = 0 where o is the stress tensor, and in the 
two-dimensional stress space with coordinates ¢,~ 
this represents an equation of a curve. For  single 
crystals this curve is a polygon,  with flat segments 
because slip can occur only on certain planes and 
in certain directions, i.e., on particular slip sys- 
tems. The yield condit ion for crystals is thus writ- 
ten as 

T ( / , ) - -  r ( k )  (k) (k )_  ~ . ( k ) . n ( k )  T ~(1,-) I t Oi ls  / = n 3 y~a a T {~ aa3 

<~ r~a}( i ,  j = 1, 2, 3, a = 1, 2) (2.6) 

where r Ik~ is the resolved shear stress on the k-th 
slip system, n~ k~, n~  ~ are the components  of  the 
unit normal of  the slip plane, s~ k), s~ k~ are the 
components  of the unit vector in the slip direction, 
and r~ k~ is the yield strength of the k-th slip 
system. Thus, for each slip system of a crystal, in 
the two-dimensional r plane we obtain a line 
given by the equation m~,~)% = r~l k), where m ~ =  
(mC~ a }, rn~ ~ )  is a vector in the outer normal  direc- 
tion to the given line. (Later m is regarded as a 
unit vector, a l though it need not  be so by this 
definition, and r 0 as the critical shear stress in the 

The constitutive equation. The rate of deforma- 
tion is given by 

Y,~ =- ~,,~ = 9,~ + "~,,P. (2.7) 

The elastic deformat ion is given by 

v~ = " , ~ e >  (2.8) 

where c~/~ = cf3,, is the 2 × 2 matrix of elastic com- 
pliances and the plastic strain rate is given by 

= + = '. 
k k 

(2.9) 

where 9{a~> 0, and the summat ion is done over 
all active slip systems, with index k: .~a}> 0 is 
possible only if equality holds in (2.6}. For elasti- 
cally isotropic crystals (2.8) can be written as 

7,~ = ( 1 / I * )  % ( 2 . 1 0 )  

where I* is the shear modulus.  This also holds for 
some high symmetry  orientat ions of cubic crystals. 
Sometimes, several symmetrically oriented slip 
systems must  be active simultaneously to produce 
anti-plane strain only. Thus, a single yield surface 
segment can correspond to two or more active slip 
systems. The flow rule is of associated type and 
this corresponds to normali ty of 9,~P to the yield 
surface in the % plane or, at a vertex, to 9,~; 

having the direction within the fan defined by 
limiting outer normals.  The constitutive equation 
(2.7)-(2.9) thus leads, as r - - ,  0, to 

r~', ,, = e 2 Vc,~/,r£ + A m ,, [ +  ~ rT,,, ] (2.11) 

where (2.5) has been taken into account. Here 
A > 0  and ~ t > 0  are scalars, rn,~ and r h  are the 
components of the normals to the yield surface 
segments, and the expression including the term in 
square brackets is for the state at a vertex where 
then m~ and r h  are the l imit ing normals of the 
fan. Here A = 0 if m , z  ~ < % (i.e., inside the yield 
surface);A >~ 0 if m,,r,, = r~} (on the yield surface). 
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and m~-, > 0 is impossible. Similar relations also 
hold for/~.  

Note here that for elastic deformation, or for 
the yielding along a single flat segment of the 
yield surface ru, ~ is finite as r ~ 0 if ~'i is finite. 
This is evident from (2.11) for an elastic sector, 
and follows from (2.4) and (2.11) for yield along a 
flat, after the latter is multiplied by s ,  (Fig. l(b)). 
For finiteness of rv,~ it is necessary that material 
velocity is of the form 

sections we consider different types of sectors that 
may arise around the tip, and later show which of 
these and under what conditions can be assembled 
to form the full field around the tip of the dy- 
namically growing crack. First we discuss the con- 
ditions for the existence of a strong shock discon- 
tinuity and where in the full field it may appear, 
and show that all conditions of the problem are 
satisfied by a near-tip field with such a shock 
discontinuity. 

L,,~= - A  In r + f ( O )  (2.12) 

where f (O)  is any differentiable function of the 
coordinate angle, and A is independent of 0. 
Further, if the ~-p'=0, then A = 0 and f (O)  is 
constant. 

In the next section we show that all relevant 
equations are satisfied if the state near the crack 
tip, over 0 < 0 <  180 °, consists of two angular 
sectors that are stressed to yield levels and that are 
separated by an elastic-plastic shock wave. There 
is a stress and velocity jump across the shock, and 
the analysis which we give of it is equivalent to 
using (2.4) and (2.11) with ~" and ru~ allowed to 
have Dirac singularities at the shock angle. Full 
details of the solution are given in subsection 3.1. 

Other types of continuous solutions to (2.4) and 
(2.11), valid within particular angular sectors, are 
presented in Subsections 3.2-3.4. However, as ex- 
plained in Section 4, it does not seem to be 
possible to assemble such sectors to provide an 
acceptable near-tip solution other than that with 
the shock, as developed in Subsection 3.1. 

3. Types of solutions for near tip stress and strain 
fields 

Around the crack tip two types of zones can be 
present: zones of material that currently respond 
elastically (either they had previously yielded but 
now respond elastically, or had always responded 
only elastically), and zones of material that are 
stressed to yield levels and may currently respond 
plastically. The full stress and strain field around 
the tip of a dynamically growing crack could be a 
combination of these zones. In the following sub- 

3.1 Shock analysis 

Here we examine the conditions for a surface of 
strong dicontinuity, i.e., a shock, to be a boundary 
between two sections in the full field around a 
crack tip. The surface of strong discontinuity is a 
surface across which components of stress, strain 
or material velocity jump.  In the analysis of quasi- 
statically moving discontinuities by Drugan and 
Rice (1984), variations of stress and strain across 
the discontinuity surface are required to obey the 
same governing equations and constitutive as- 
sumptions as they satisfy outside the surface. 
Drugan and Shen (1987) have adopted the same 
requirement in a dynamic analysis and have proven 
that, in general, for anti-plane shear the discon- 
tinuity surface has to move at the elastic wave 
speed for stress changes to accumulate across it. 
An exeption occurs when the yield surface con- 
tains a flat segement, as for the crystals considered 
here, and then an elastic-plastic shock, moving at 
a lower wave speed, is possible. 

Let us consider a discontinuity surface S that 
moves at a speed c, Figure 2(a). The momentum 
conservation equation requires that 

- ¢ , j ) h o  = pve2( ' - , ' +  ) .  (3.1) 

where the fact that c =  Ve 2= V s i n O  has been 
used. Note here that superscript + denotes the 
value of the quantity in front of the discontinuity 
surface S, and - the value behind it. Quantities 
without superscripts, like the % and • in (3.1), 
denote general values along the succession of states 
traversed at the discontinuity; e.g., the discontinu- 
ity follows a path in the ~'1, •2 plane of Fig. l(b). 
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Fig. 2 (a) The discontinuity surface S" c is the speed of the discontinuity surface normal to itself. (b) The orientation of the 
discontinuity line S with respect to 0 0` the angle of the yield surface in Fig. l(b)- ~b is the angle that defines the orientation of the 
shock. 

We view the d i scon t inu i ty  as the l imit  of a con-  
t inuously  var iable  t rans i t ion  with 0. F r o m  the 
cont inu i ty  of an t i -p lane  d i sp lacement  u at the 
moving  shock, we can wri te  

d[ u ] / d t  = [ 3u /Ot]  + [ 3 u / a x ~ ] (  d x  ~ / d t  ) = O. 

(3.2) 

No te  here that  double  square bracke ts  denote  the 
j u m p  in a quan t i ty  at S. The subs t i tu t ions  3u /Ot  
= v, 3 u / a x ~  = y~, and d x , , / d t  = c~ = -ch ,~  give 

, ' -  , '~ = Ve2h,~( y,~ - y + ) .  ( 3 . 3 )  

from cont inu i ty  of u, and hence 3u /Or ,  

- y +  ) = O. ( 3 . 4 )  

(3.3), with use of (3.4), we can solve for the 
in s train as 

Also,  

eo ( y ,  

F r o m  
j u m p  

Ve2(Y~ - y + )  = h a ( v  - v +) 

and  then using this in (3.1) we can get 

( % - "G~ )h, ,ht~= pV2e2 (  y ~ -  yff ). 

(3.5) 

(3.6) 

Equat ion  (3.6) shows that  in o rde r  for s train to 
accumula te  at the shock the stress must  change 
also (unless 0 = 0 or  ~" so that  e 2 = 0 ) .  Thus  no 
finite con t r ibu t ion  to the j u m p  can  come f rom a 
vertex state since the stress canno t  change  there. It 
must  all come f rom a flat  segment  of the yield 
surface: Fig. l (b) .  We assume that  the + s tate  

co r r e sponds  to the ver tex state A with ~-j = ~-,~ 
and / + =  0; l is the arc length a long the active 
yield surface segment  and thus has units of stress. 
F r o m  Fig. l (b) ,  

"G- 'r ,  + = ls,,, (3.7) 

where  s,~ is the unit  vector  a long the flat. F rom 
the cons t i tu t ive  equat ion ,  we can then write 

y~ - y+~ = c ~ s ~ l  + X m  ,,, (3.8) 

where  X >/0 is a scalar  giving the plas t ic  strain 
accumula ted ,  and  which is necessari ly non-de-  
creasing a long the pa th  of  t raversal  of the d iscon-  
t inui ty  (for non-nega t ive  plas t ic  work):  X + = 0 at 
A. N o w  from (3.6) and  (3.7) we have 

h,~s,lh/~ = pV2e~(  y/~ - 7/; ) (3.9) 

and  this used in (3.8) gives 

2 2 h,s , lh/~ = p V  e2(cBysvl + Xmfl). (3.10) 

Mul t ip ly ing  (3.10) with s/~ (for l 4: 0) one ob ta ins  

( h J , ~ )  2 = o V 2 e 2  s,c,,BsB (3.11) 

which is the cond i t ion  that  de te rmines  the shock 
or ien ta t ion .  Here  we have two solut ions,  i.e., 

h , G  = +_ Vezv, p s , c , ~ s  ~ . (3.12) 
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Multiplying (3.10) with e~, and taking into account  
that e¢rn B = h¢s~, we can solve for X as 

2t=l[(hxmx/h,su)s~%Bs/,-m,%¢s~]. (3.13) 

Since we require that  dl/dl  >1 0 it follows that  the 
negative solution for h~s, in (3.12) has to be 
rejected, and that  the shock can form only at the 
positive value of h~s~ given in (3.12), Fig. 2(b). 
F r o m  the geomet ry  of the p rob lem 

h , s ~ = s i n  ~;  e 2 = s i n ( 0 0 + ~ )  (3.14) 

where 00 (the same angle as for the yield locus in 
Fig. l (b))  is the or ienta t ion of the discont inui ty  in 
the quasistatically growing crack case (Rice and 
Nikolic,  1985) and ~ is the difference f rom that  
or ientat ion to the or ientat ion of the shock. Thus,  
with the use of  (3.14) the or ienta t ion of the shock 
wave can be obta ined  f rom (3.12) as 

sin ~ / s i n ( 0  o + ~ )  = V ~ ,  (3.15) 

and the total  plastic strain accumula ted  in the 
shock is thus X-m~,  where 

X = / - [ ( c o s  ~k/sin q~)c,,-c,,s l, (3.16) 

where c,, = s,c~¢s~ and cm. ,. = m~c~/3s/3. (Here  the 
notat ions  c,, and c,,~ are used since these are 
componen t s  of  the compl iance  matr ix  associated 
with the " m "  and " s "  directions.) 

If  we introduce a " M a c h  n u m b e r "  type of 
notat ion,  M =  V 0 ~ , , ,  we can solve for tan 
f rom (3.15) as 

tan ~ = M sin 00/(1 - M cos 00), (3.17) 

which used in (3.16) gives 

X = 1 {[(1 - M cos Oo)/M sin 0 0 ] c ~ , -  %,}.  
(3.18) 

For  the elastically isot ropic  mater ia l  M = 
V/grfi/O is a Mach  number ,  and (3.18) in that  
case is 

X = ( /  /~)[(1-McosOo)/MsinOo].  (3.19) 

Note  that  if the j u m p  is f rom vertex A to vertex 
B in Fig. l (b) ,  then the state reached after  the 

shock has r 2 = 0  and thus meets  the boundary  
condi t ion on the crack face. In that  case 

t = = [(To/sin 00)2 + (To/cos 0,, )q 'j: 

= T0/sin 00 cos 0 o, (3.20) 

which used in (3.19), for the elastically isotropic 
case, gives the total  plast ic strain accumula ted  in 
the shock as 

( v 2 ) - - ( v 2 )  + 

= m , ( % / / ~ ) [ ( 1  - M cos Oo)/M sin20o cos 00] 

(3.21) 

and a velocity jump ,  f rom (3.3) and (3.8) also, of  

v--v + = g / ~  (To//~ sin 0 o cos 0o). (3.22) 

Analogous  expressions are easily writ ten for the 
general  elastically anisot ropic  case, based  on (3.18) 
rather  than (3.19). 

Thus  we observe that  a valid near  tip solution is 
found with the following characteristics:  Over  0 < 
0 < 0 o + +, the stress is cons tant  at the state of 
vertex A, Fig. l(b),  

r 1 = 0 ,  T 2 = % / c o s 0  o, (3.23) 

with v = v + = 0 and ~,P = (y2)+  = 0, i.e., the sector 
is non-deforming.  Over  00 + + < 0 ~< ~r the stress is 
again cons tant  but  at the state of  vertex B, 

r, = T0/sin 0o, % = 0 (3.24) 

with v = cons tan t  = v and yP = constant  = (~P) - ,  
so that  this sector is again non-de fo rming .  Here  
( y P ) -  and v -  are given by  (3.21) and  (3.22) above,  
or their elastically anisotropic  generalizations,  with 
(~,P)+ = v + =  0. All the plastic de format ion  thus 
occurs in the e las t ic -p las t ic  shock at 0 = 00 + q~, 
and we observe  that  bo th  the plastic strain and 
particle velocity are finite at the tip. While finite, 
the strain of  this solut ion varies as l /M,  i.e., as 
7~-p /V ,  and thus becomes  unbounded  as P + 0 
or V--+ 0 +. Presumably,  at low values of pV z, the 
quasistat ic growing crack solution of Rice and 
Nikolic  (1985) is a p p r o a c h e d  at  modera t e  r. Tha t  
solution gives a logar i thmic  (in r )  infinity of  "&P, 
as r - - ,  0, for 0 >  0 o where  00 is the angle of  a 
velocity discont inui ty  in that  case. I t  may  be con- 
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s idered valid in ei ther  l imit  p ~ 0 or V ~ 0 +. The  
finite s train of the dynamic  solution,  der ived  here, 
will p resumably  t runcate  the inf ini ty  of the quasi-  
stat ic solution, bu t  the detai ls  of the t rans i t ion  
have not been worked  out  in this case. An  ana lo-  
gous t ransi t ion,  but  then only from weak to 
s t ronger  s ingular i ty  of strain,  has been  de t e rmined  
for the isotropic  mater ia l  (F r eund  and  Douglas ,  
1982). 

We now cont inue  to examine  other  types of  
local ly con t inuous  solutions,  within different  an- 
gular  sectors, for the governing equat ions,  How-  
ever, it does not  appea r  that  those local so lu t ions  
can be combined  to provide  any accep tab le  overal l  
so lut ion for the near- t ip  field, as an a l ternat ive  to 
that  jus t  presented .  

3.2 Elastic sectors 

These are the sectors of  mater ia l  that  are cur-  
rent ly responding  elastically.  If we subst i tu te  the 
form of velocity given with (2.12) in to  the equa-  
t ion of mot ion  (2.4) and  the const i tu t ive  equa t ion  
(2.11) we ob ta in  the basic  equat ions  in the fol low- 
ing forms 

h,:-,( = oV( Ae l - f ' h, ), (3.25) 

and 

- Ae,, + f ' h ~  = e:Vc,~l:rl; (3.26) 

where f ' = f ' ( O ) = d f ( O ) / d O .  Solving for h,:c~ 
from (3.26) and  subst i tu t ing  into  (3.25) we can 
sove for f ' ( O )  as 

:'Io =A[(¢'e,e.+h°Co;e.) 

/ ( h : 2 A h / 3 - o V Z e ~ )  ] , (3.27) 

0 d i rec t ion .  Using  (3.27) in (3.26) we can also 
solve for the stress der ivat ive  as 

~ ( 0 ) = ( A / e  y ){ [ c , ~ h , (  oV 'e ,e ,  + h , , , , , e ,  ) 

}. t 3.29) 

If we recall the def in i t ions  of unit  vectors  e and  h 
in te rms of  0, and  cons ider  the limit of  stress 
derivat ives,  we note that  r :  behaves  as A(sin 0) 
near  0 = 0 and ~r, i.e., ~-: becomes  u n b o u n d e d  at 
0 =  0 and ~'. Thus  we conc lude  that  an elastic 
sector  can bo rde r  0 = 0 or 0 = ~r only if A = 0 in 
(3.29). in which case we have cons tan t  velocity 
and stress field in this sector. Thus an elastic 
sector  with var iable  stress and  velocity fields can-  
not  lie ahead  of the crack and cannot  border  the 
crack surface. 

3.3 Sectors at yield with plastic flow corresponding 
to a fiat segment of the yield su([acc 

The sectors of  mater ia l  that  are stressed to yield 
can co r r e spond  ei ther  to the flat segment  of the 
yield surface or to a vertex state. Fo r  the former 
case, cons idered  here, the stresses satisfy 

m,0-, = "r0 ( 3.30) 

where r 0 is the yield stress and  m ,  is the normal  
to that  flat. No te  also that  E ( = s , J ' ,  from Fig. 
l (b) ,  and  l '  = dl /dO.  If we take the scalar  p roduc t  
of the cons t i tu t ive  equa t ion  (2.11) with s,~ (without  
the term in square  b racke t s  that  co r responds  to a 
vertex state),  and  also use (2.12) in the equat ion  of 
mot ion  (2.4), we ob ta in  two equat ions  for I' and 
f ' ,  in terms of the cons tan t  A, as 

and in tegrat ing (3.27) with respect  to 0 we can get 
the velocity field in the elast ical ly r e spond ing  sec- 
tor as 

l '= B - ( A / Z )  l n [ r 2 ( h ~ % ~ h ~ - o V 2 e ~ ) ]  (3.28) 

where B is a cons tan t  of  in tegrat ion.  No te  here 
that  the d e n o m i n a t o r  in (3.27) never vanishes if 
ezV is less than the elastic wave speed for the local 

- V s , : . , s ,  e2 h.s. ' f '  J . . . .  I ,',e. j 

(3.31) 

The  de t e rminan t  of the matr ix  on the le f t -hand 
side of (3.31) is 

det [  . . .  ] = ( h,:,~) 2 - pV2e~.%c,,/3s/~ . (3.32) 
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Fig. 3. Two lines a long  which de t e rminan t  of eqn. (3.29) 
vanishes.  The latter,  S 2, is the same as the shock  l ine in Fig. 

2(b). 

tegrate (3.34), we can solve for the velocity field of 
equation (2.12) for this sector as 

~' = constant - ( 1 / 2 ) A  ln [ r  2 [( h~s,~) 2 

~ :  ' I]. - pV e2s,c~/~s B 

(3.35) 

To solve for A we multiply the constitutive 
equation (2.11), with m~, assuming that m is 
normalized so that m~m~ = 1, so that 

rA = m~ru, ~ - m~%ae2V~ ~. (3.36) 

Using (2.12) and the fact that ~'B'=sB/', (3.36) 
becomes 

It is interesting to observe here that the condi- 
tion for vanishing of this determinant, or at least 
its root with h~s~ > 0, is identical with the condi- 
tion for a shock wave to exist at that value of 0, 
given by (3.11). There are two lines along which 
determinant can vanish, Fig. 3. Since the determi- 
nant in (3.32) in the vicinity of either of these two 
lines behaves like ( 0 -  0~), where 0~, denotes the 
position of either line, both f (O)  ~ oo and l(O) --* 
~c on these lines if the constant A is not equal to 
zero. Thus, a plastic sector of the type considered 
cannot contain either of these lines, even as a 
border, unless A = 0. However, if A = 0, then this 
sector has a constant velocity and stress field 
everywhere except along one of these two lines, on 
which f ' ( O )  and l '(O) can take arbitrary values. 
If we allow them to be Dirac singular there, then 
these lines are sites of velocity and stress discon- 
tinuities and we recover the equations for shock 
discontinuities given earlier. From (3.31) we can 
solve for l '(O) and f ' ( O )  as 

I" = oVA{(  h~s,e 1 + e~s~e2) 

/ [ ( h ~ s u ) 2 - p V 2 e ~ s x c x ~ s . ] )  

f '  

(3.33) 

=A{(h~s~e~sx + pV2ele2sxcx~s,) 

/ [ (h~s~)2-pV2eZs~%BsB]} .  (3.34) 

t 
- h ~  and e l = h 2 = e 2 ,  and in- 

rA = - m ~ A e .  + m . f ' h ,~  - m.c./~e2Vs/fl'. (3.37) 

The relations 

m~h~ = -e~s~  and m~e.  = h . s .  (3.38) 

together with (3.33) and (3.34), used in (3.37), give 

rA = - h ~ s ~ A  

-e~s~A([h~s~sxex  +pV2m.c~se2] /de t }  

-pV2Aele2{[h~s~cms + e,s~cs~,]/det } , (3.39) 

where det is the determinant of equation (3.32) 
and notations c,,~ and c, s have been explained 
earlier. Expression (3.39) in the elastically iso- 
tropic case reduces to 

rA = ( - A / d e t ) { - h , s , [ 1  - ( p V 2 / t ~ ) e 2 ]  

- ( p V 2 / l ~ ) e , e z e , s , } ,  (3.40) 

where 

2 
det = ( h ,s~)  - ( pV2/iz  )e~. (3.41) 

The requirement that rA > 0 implies restrictions 
on the sign of A in different regions. 

3.4 Sectors at yield corresponding to plastic flow at a 
certex of the yield surface 

The stresses in this sector are constant, i.e., 
~-" = 0, and this used in the basic equations re- 
duces them to 

If we use e x =  0 = - p V r v , 1  (3.42) 
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for the equation of  motion,  and 

rv, ,~ = rAm~ + rArh ~ (3.43) 

for the constitutive equation. 
The consequence of (3.42), that  rv,~ = 0, used 

in (3.43) gives the relation 

rArn 1 + r~{rh 1 = 0. (3.44) 

Since both A and l~. are non-negative,  (3,44) 
requires that m~ and rh~ have to be of the oppo-  
site signs if both systems are to be plastically 
active. If m~ and rh~ are of the same sign, then 
(3.44) can be satisfied only if A : - A  = 0, so no 
plastically active sector is possible. This implies 
that sectors corresponding to vertices B and B '  
on the ~ axis of the yield surface cannot  be 
plastically active vertex sectors, while sectors cor- 
responding to the vertices like A on the ~'2 axis 
can: Fig. l(b). Note  that in the discont inuous 
solution proposed in Subsection 3.1, the angular  
sector corresponding to vertex B was assumed to 
be non-deforming;  the observation just  made 
proves that it must be. 

For  continuity of  velocity at the boundary  be- 
tween an active vertex sector and an elastic or 
active flat sector, the velocity at the boundary ,  
0 = 0 b, has to be of  the form 

v = A In r + f ( O b )  (3.45) 

where A and f ( 0 )  pertain to the border ing sector. 
If we assume that  v is of the form 

v = - G ( O )  In r + g ( o ) ,  (3.46) 

within the active vertex sector, where F(O) and 
G(O) are the unknown functions of  angle, then we 
can calculate the derivative as 

rv,,~ = [ F ' ( 0 )  - G'(O)  In r] h ~ -  G(O)e~. 

(3.47) 

i.e., 

F(O) = constant  - A In Isin 01. (3.50) 

Thus, under  the above assumption (3.46), about  
the mathematical  structure of the velocity func- 
tion, it is necessary that 

v = c o n s t a n t -  A ln( r  I sin 0 [) 

= c o n s t a n t -  A In Ix2 [. (3.51) 

Therefore,  a plastically active sector can extend to 
x , = 0 ,  (i.e., to 0 = 0 ,  v )  only if A = 0 ,  but for 
that  case it is not  really active since both rA ~ 0 
and r~'] --* 0. Here we note that in the discontinu- 
ous solution proposed earlier the sector corre- 
sponding to vertex A was assumed to be non-de- 
forming and, within the assumption of (3.46), the 
last result shows that it must  be so. 

A strengthened argument,  replacing the as- 
sumption (3.46), may  be made as follows when the 
crack advances under  steady state condit ions so 
that ( ' = -  Vv,~. Then, since % = constant  in a 
region corresponding to a vertex, (2.1) with zero 
body  force implies v,~ : 0  and v = h ( x 2 )  in that 
region. If  we interpret (3.45) as being valid up to 
terms of  o(r °) near r = 0. then for continuity of v 
at the sector border  0 = 0 b we have (setting x 2 = 
r sin 0 b at the border)  

e--h(x2) 

= A l n l x  2 1 + f ( 0 b ) - A l n l s i n 0  b l + o ( x ~ ' )  

(3.52) 

as xz--*0.  This reproduces (3.51) and has the 
same consequences.  

4. Assembly of sectors and lack of alternate solu- 
tions to that with elastic-plastic shock 

The vanishing of rv, 1 that follows from (3,42), 
requires on the other hand  that G'(O) = 0, leading 
to  

G(O) = constant  = A, (3.48) 

and 

F ' ( O ) =  A ( e l / h , )  = A[cos O / ( - s i n  O)], (3.49) 

In deriving the solutions of the governing equa- 
tions for the stress and strain fields a round the tip 
of a dynamical ly  growing crack we have encoun-  
tered some restrictions that apply to different 
types of  sectors. These enable us to rule out differ- 
ent possiblities of  solutions other than the discon- 
t inuous solution already given in subsection 3.1 
and Fig. 2(b). 
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Fig. 4. Tentative sectors around the crack tip: sector 1 bordering on 
from vertex A to a general state K along the flat (it is shown in the 

Cb) 

0 = 0 and sector 2 bordering on 0 = ~r. (b) The tentative jump 
text that K must coincide with vertex B). 

The sector ahead of  the crack, border ing on 
O = 0, (sector 1, Fig. 4(a)) cannot  be a plastically 
active vertex sector, nor  can it be a deforming 
elastic sector. Either hypothesis  as to a sector type 
will lead to the requirement that A = 0, in which 
case the sector is inactive, constant  stress type 
(eqns. (3.48) and 3.29)). Thus we conclude that 
this sector may be either of the type constant stress 
but inactive, or of  type plastically active corre- 
sponding to a single flat segment of the yield surface. 

The sector border ing the crack wall, at O = ~r, 
may  not be a plastically active vertex sector, nor  
may  it be a deforming elastic sector (sector 2, Fig 
4(a)). This too must  be either constant stress but 
inactive, or plastically active corresponding to a 
single flat segment of the yield surface. 

N o w  we consider the possiblity that the sector 
ahead of  the crack, 1, is plastically active corre- 
sponding to a single flat. Then the velocity field is 
given by 

v = constant  

- ( 1 / 2 ) A l n [ r 2 l ( h ~ s ~ ) 2 - p V 2 e ~ c , , ] ] .  (4 . t )  

The symmetry  requires that v = 0 on 0 = 0, and 
this condit ion can be met only if A = 0, which, in 
turn, means that the sector is not plastically ac- 
tive, since rA ~ 0 if A = 0. Thus one concludes 
that the sector in front  of  the crack must  be of  
constant stress, plastically inactive type (in the sense 
that rA --, 0). The stress state is at a vertex (A of  

Fig. l(b), assuming ~'2 > 0 ahead of  the crack) 
since a constant  stress state that is not  on the yield 
locus has no possibility of  varying and cannot  
meet crack surface conditions.  

Let us now assume that the constant  state 
corresponding to a vertex prevails until a j u m p  is 
allowed. As established in Section 3.1 (equation 
(3.12) and discussion following after it), the first 
permissible j u m p  is at 

h~s~ = Ve2~ ~ . (4.2) 

We have to check how far the j u m p  can go (Fig. 
4(b)). It cannot  go only par t -way to the other 
vertex, because then the adjoining sector, if plas- 
tic, would be plastically active corresponding to 
single flat type (K, Fig. 4(b)). As established in 
Section 3.3, such a sector can border  a line meet- 
ing the shock condi t ion  only when A = 0, in which 
case it is of  constant  stress, plastically inactive 
type. Thus if we assume no elastic unloading 
sector, the sector after the shock must  be of  con- 
stant stress, plastically inactive type with stress at 
K. Since no further j u m p  is possible for 0 > 0 0 + q~, 
K must  be chosen so that it meets the crack 
boundary  condit ions.  Hence K must  correspond 
to vertex B, Fig. 4(b), and this reproduces the 
discont inuous solution discussed earlier. 

The conclusion that  can be drawn thus far is 
that if all sectors a round  the crack are at yield 
(i.e., if there is no  elastically deforming unloaded 
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sector)  the only  solut ion is the one with two 
cons tan t  stress, p las t i ca l l y  inact ive  sectors that  are  
jo ined  by the shock, Fig. 2(b). This  type  of solu- 
t ion is consis tent  with the conclus ions  of  D r u g a n  
and Shen (1987) and satisfies the crack surface 
bounda ry  condi t ion .  

We now cons ider  why elast ic  sectors cannot ,  in 
fact, intervene in the cons tan t  stress, p las t ica l ly  
inactive sectors jus t  discussed.  Cons ide r  the sector  
beginning  at 0 = 0, co r re spond ing  to vertex A of 
Fig. l (b) .  We  have observed a l ready  that  the pre-  
logar i thmic  veloci ty cons tan t  A of  (2.12) is zero in 
this sector. Hence,  for veloci ty  con t inu i ty  (which 
must  be met,  according  to our  shock analysis ,  for 
all 0 except  for 0 = 0 0 + ~ ) ,  A = 0  mus t  be  met  
also in any elast ic  (or plas t i ca l l y  ac t ive  a long  a 

s ingle  f l a t )  sector  which begins  to emerge pr io r  to 
0 = 0~) + ~. But the condi t ion  A = 0 conver ts  those 
to cons tan t  stress sectors and,  since stress too 
must  be cont inuous ,  except  poss ib ly  at 0 = 0~ + ~b, 
the cons tan t  stress sector  beginning  at 0 = 0 must  
ex tend as a cons tan t  stress sector  to 0 = 00 + ~b. 

If there is no d i scont inu i ty  at 0 = 00 + ~b, the 
cons tan t  stress sector  beg inn ing  at 0 = 0 would  
have to extend,  by  s imilar  reasoning,  to 0 = Tr. 
This  would violate  the crack surface b o u n d a r y  
condi t ion ,  and  thus a d i scon t inu i ty  is required.  By 
the analysis  of the d i scon t inu i ty  in Sect ion 3.1, 
e.g., eqn. (3.22), the j u m p  v - - v  + has no  r var ia-  
t ion, and  thus since A of (2.12) vanishes for 0 = 00 
+ + , so also must  A vanish for 0 = 00 + 4, + which 
we may  ( tenta t ively)  assume to co r r e spond  to some 
general  s tate K as in Fig. 4(b). The  reasoning  now 
is the same as in the previous  pa ragraph .  A n y  
elast ic  sector  which was assumed to emerge would  
(by the requ i rement  of  veloci ty  con t inu i ty  if 
emerging at 0 > 00 + +, or  by  the shock analysis  if 
at  0 = 00 + g,+) have A = 0, and  thus would  be no 
more  than a cons tan t  stress sector  car ry ing  the 
same stress as at K. Hence  the shock must  be 
fol lowed by  a cons tan t  stress sector  at K, for all 
0 > 0~ + ++, and the b o u n d a r y  cond i t ion  on the 
crack face again requires that  K coincides  with 
po in t  B. 

Thus we conc lude  that  the d i scon t inuous  near-  
tip solution,  with an e l a s t i c -p l a s t i c  shock be tween  

n o n - d e f o r m i n g  cons tan t  stress sectors,  is the only 
poss ib le  near - t ip  field giving ~'~ > 0 ahead of  the 
crack when p V  2 4: O. 

It  will be of  interest  to learn if s imilar  features 
to those d iscussed here app ly  to dynamic  growth 
of  e l a s t i c -p l a s t i c  tensile cracks  in duct i le  crystals .  
The  case of  quas is ta t ic  growth (i.e., l imits  0 ~ 0 or 
V---, 0 +) has been ana lyzed  recent ly  for the p lane  
s t ra in  tensi le  crack in ideal ly  p las t ic  crystals  (Rice, 
1987), and  leads to logar i thmic- in - r  strain singu- 
lari t ies at the tip, j u s t  as in the co r re spond ing  
an t i -p lane  solut ion (Rice  and  Nikol ic ,  1985). If the 
s train s ingular i t ies  for the tensile case are trun- 
ca ted  by iner t ia l  effects to finite crack tip strains,  
as d e m o n s t r a t e d  here for an t i -p lane  strain,  such 
could  be i m p o r t a n t  to unde r s t and ing  the resis- 
tance of duct i le  mater ia l s  to rap id  dyna mic  crack 
growth.  

Acknowledgement 

This research was suppo r t ed  by the Office of 
N a v a l  Research  under  con t rac t  N00014-85-K-0045 
with H a r v a r d  Univers i ty .  

References 

Achenbach, J.D. and V. Dunayevsky (1981), Fields near a 
rapidly propagating crack-tip in an elastic-perfectly plastic 
material, J. Mech. Phys. Solids 29 (4), 283. 

Drugan, W.J. and J.R. Rice (1984), Restrictions on quasi-stati- 
cally moving surfaces of strong dicontinuity in elastic-plas- 
tic solids, in: G.J. Dvorak and R.T. Shield, eds., Mechanics 
of Material Behavior (the D.C. Drucker anniversary 
volume), eds., Elsevier, Amsterdam, p. 59. 

Drugan, W.J. and Y. Shen (1987), Restrictions on dynamically 
propagating surfaces of strong discontinuity in elastic-plas- 
tic solids, J. Mech. Phys. Solids 35 (6), 771. 

Freund L.B. and A.S. Douglas (1982), The influence of inertia 
on elastic-plastic anti-plane shear crack growth, J. Mech. 
Phys. Solids 30 (1/2), 54. 

Rice, J.R. and R. Nikolic (1985), Anti-plane shear cracks in 
ideally plastic crystals, J. Mech. Phys. Solid~ 33 (6), 595. 

Rice, J.R. (1987), Tensile crack tip fields in elastic-ideally 
plastic crystals, Mech. Mater. 6 (4), 317. 

Slepyan, L.I. (1976), Crack dynamics in elastic plastic body, 
lzvesto:a Akademii Nauk SSSR, Mekhanika Tverdogo Tela 
11 (2). 144. 


