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DYNAMIC GROWTH OF ANTI-PLANE SHEAR CRACKS IN IDEALLY PLASTIC CRYSTALS
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A near-tip asymptotic analysis is given for the stress and deformation field near the tip of crack propagating dynamically
under anti-plane shear in an ideally plastic single crystal. A particular class of orientations of the crack relative to the crystal 1s
considered so that the yield locus is of simple diamond shape (relative to directions along and perpendicular to the crack) in
the plane of the anti-plane shear stresses. The near-tip solution is shown to consist of sectors which carry constant stresses, at
yield levels, corresponding to adjacent vertices on the diamond-shaped yield locus, and which are joined along an
elastic—plastic shock discontinuity. All plastic flow in the near-tip region occurs in the shock. Plastic strains and particle
velocity are finite at the crack tip. The plastic strain is proportional to the elastic strain at onset of vielding and is inversely
proportional to the elastic Mach number associated with the speed of crack growth.

1. Introduction

Dynamic crack growth in ideally plastic single
crystals is analyzed here for geometries and orien-
tations such that two-dimensional states of anti-
plane shear constitute a possible deformation field.
The analysis is asymptotic; the limit r — 0 is
considered where r is distance from the moving
crack tip. Cases of stationary and quasistatically
growing anti-plane cracks for different orienta-
tions in f.c.c. and b.c.c. crystals were solved by
Rice and Nikolic (1985). Here inertia effects are
taken into account for the growing crack. The
material yields according to the attainment of a
critical value for the resolved shear stress on one
or more different slip systems in a crystal. Since
for a perfectly plastic material the shear wave
velocity for an appropriate direction of straining is
zero, the crack growth is supersonic even at small
speeds. Thus, the inertia terms in the basic equa-
tions may have a significant effect on the nature
of near tip fields. It may also be expected that the
quasistatic solution includes features that will not
be present in dynamic results. For Mode I1I crack
growth in isotropic ideally plastic solids, this was
shown by Slepyan (1976) and confirmed by
Achenbach and Dunayevsky (1981), and Freund
an Douglas (1982). These authors discovered that

the Mode III dynamic solution. unlike the quasi-
static one for a growing crack. predicts no elastic
unloading sectors and the entire field around the
crack tip is plastic. The shear strain has a logarith-
mic singularity. The solutions considered here are
different because we consider the behavior of single
crystals, not the isotropic material.

For the stationary crack cases in crystals the
platic zone at a crack tip collapses into discrete
planes of displacement and stress discontinuity
emanating from the tip. For the quasistatically
growing crack these same planes also constitute
collapsed plastic zones in which velocity and plas-
tic strain discontinuities occur but across which
the stresses and anti-plane displacement are fully
continuous. For the dynamic growth case consid-
ered in the present work the configuration of the
stress field around the crack tip is expected to be
quite different. We considered different types of
near-tip solutions to the equations governing dy-
namic growth of a crack in anti-plane shear. like
elastic and plastic sectors. both of constant and
variable stresses. We conclude that the whole
near-tip field around the crack tip is plastic (or is
at least stressed to a level meeting the yield condi-
tion). For the range of the coordinate angle 8 of O
to 180° the solution consists of two plastic sectors
of constant stresses with the boundary between
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Fig. 1. (a) Coordinate systems and notation used: x,x, Cartesian coordinate system; r, # polar coordinates centered at the crack tip;
e and h are unit vectors in the radial and angular directions; a is crack length; V is crack propagation speed, da /d¢. (b) Upper part
of the yield surface; / is arc length along the active yield surface segment; m is the unit vector normal to the active segment and s is

a unit vector along it.

them being an elastic-plastic shock wave across
which stress and particle velocity are discontinu-
ous, and along which a finite plastic strain is
generated. There is no strain singularity, so long
as crack speed and material density are regarded
as non-zero. All other types of combination of
sectors with different local solution-types could
not constitute the solution because they did not
satisfy either necessary continuity conditions be-
tween sectors, or boundary conditions at the crack
surface, or both.

Coordinate systems used throughout the paper
as well as the yield surface, for the particular class
of crack orientations and single crystal considered,
are shown in Fig. 1. For example, the yield surface
geometry may represent a (100) crack propagating
in the [011] direction in a face-centered or
body-centered cubic metal crystal, and also some
other cases of interest (see Rice and Nikolic, 1985).
The fixed Cartesian coordinate system x,x,x; is
chosen so that the x, axis is parallel to the crack
front and x; points in the direction of crack
growth. Polar coordinates r, 8 have their origin at
the moving crack tip, lie in the x,x, plane, and
have associated unit vectors e and A in the radial

and angular directions, respectively. It is evident,
from Fig. 1, that

or/ox,=e,, 98/0x,=h,/r, (1.1)
where

e,=h,=cosf, e,= —h =sinb, 12
€3=h3=0. ( ’ )

Greek indices have values 1, 2 and follow the
summation convention. Exception is made for 4;
indices r and 8 always denote components rela-
tive to the polar coordinates. The crystal orienta-
tions and loadings considered here are such that
the only existing stress components are o,; = g5,
=71 and 0, =05, = 1,.

2. Governing equations and general assumptions
for fields around the crack tip in limit » — 0

The equation of motion for anti-plane shear in
Cartesian coordinates is

Tew T f=pO (2.1)
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where [ is the body force, p is the material
density, v is the particle velocity and o is the
acceleration. In polar coordinates

(97, /08 Yh ,+ r(07,/3r) + rf = roo. (2.2)

For the asymptotic analysis of the stress field
around the crack tip it is assumed that, because of
boundedness of stress, r(dr,/dr)— 0 as r = 0, so
the second term in (2.2) vanishes. Also, since the
dominant part of ¢ i1s — Vv, near the moving tip,

ro— — Vro,, (2.3)

as r — () where V' is the crack propagation speed.
Thus the equation of motion requires

h(xTu - erU’l (24)
as r— 0 where 7/ = lim[d7,(r, 8. t)/36]. Note
r—0

also that
lim (rf,) = llm[ (97,/30)8] = eV, (2.5)
r—0

since 6 = e,V /r.

The plastic yield condition is in general written
as f(o) =0 where o is the stress tensor, and in the
two-dimensional stress space with coordinates T,
this represents an equation of a curve. For single
crystals this curve is a polygon, with flat segments
because slip can occur only on certain planes and
in certain directions, i.e., on particular slip sys-
tems. The yield condition for crystals is thus writ-
ten as

’T(A)EII(,A)UU (/\)_n(/\) S;k)+n(l]‘)'r S'(;A)

<t j=1.2,3:a=1,2) (2.6)

where 7% is the resolved shear stress on the k-th

slip system, n$’, n'¥’ are the components of the
unit normal of the slip plane, s{*, s{*' are the
components of the unit vector in the slip direction,
and ("’ is the yield strength of the k-th slip
system. Thus, for each slip system of a crystal, in
the two-dimensional r plane we obtain a line
given by the equation m'*'7, = r/*’ where m'*’ =
(m{*), m$¥) is a vector in the outer normal direc-
tion to the given line. (Later m is regarded as a
unit vector, although it need not be so by this

definition, and 7, as the critical shear stress in the

X, X, plane, as marked in Fig. 1(b). E.g.. m, =
~sin 8, and m, = cos b, for flat AB in Fig. 1(b).)
The yield surface of a crystal is the inner envelope
of the set of these lines.

The constitutive equation. The rate of deforma-
tion is given by

}.’IYEU‘(Y:Y'(:‘_F}./(‘:' (27)
The elastic deformation is given by
Yo = CapTp (2.8)

where ¢, = ¢g, 1s the 2 X 2 matrix of elastic com-
pliances and the plastic strain rate is given by

?(?= Z?(A;( (A) (/\)+nllxl (A) ZY (A)‘
k
(2.9)

where v'*' > 0, and the summation is done over
all active slip systems, with index k: %> 0 is
possible only if equality holds in (2.6). For elasti-
cally 1sotropic crystals (2.8) can be written as

Yo=01/u)7,

where p is the shear modulus. This also holds for
some high symmetry orientations of cubic crystals.
Sometimes, several symmetrically oriented ship
systems must be active simultaneously to produce
anti-plane strain only. Thus, a single vield surface
segment can correspond to two or more active ship
systems. The flow rule is of associated type and
this corresponds to normality of ¥7 to the yield
surface in the 7, plane or. at a vertex, to v
having the direction within the fan defined by
limiting outer normals. The constitutive equation
(2.7)—(2.9) thus leads, as r — 0, to

(2.10)

rv.l,=ech"ﬁT/;+Amﬂ[+ﬁﬁzu] (2.11)
where (2.5) has been taken into account. Here
A>0and A >0 are scalars, m, and s, are the
components of the normals to the yield surface
segments, and the expression including the term in
square brackets is for the state at a vertex where
then m_ and m_ are the limiting normals of the
fan. Here A=0 11' m,1, <7, (le., inside the yield

surface); A = 0 if m 7, = 7, (on the yield surface).

a'a
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and m,7, > 0 is impossible. Similar relations also
hold for A.

Note here that for elastic deformation, or for
the yielding along a single flat segment of the
yield surface rv., is finite as r — 0 if 75 is finite.
This is evident from (2.11) for an elastic sector,
and follows from (2.4) and (2.11) for yield along a
flat, after the latter is multiplied by s, (Fig. 1(b)).
For finiteness of rv, it is necessary that material
velocity is of the form

v,=—Aln r+f(8) (2.12)

where f(6) is any differentiable function of the
coordinate angle, and A is independent of 4.
Further, if the 7, =0, then 4 =0 and f(f) is
constant.

In the next section we show that all relevant
equations are satisfied if the state near the crack
tip, over 0 <8 <180°, consists of two angular
sectors that are stressed to yield levels and that are
separated by an elastic—plastic shock wave. There
is a stress and velocity jump across the shock, and
the analysis which we give of it is equivalent to
using (2.4) and (2.11) with 7] and ry, allowed to
have Dirac singularities at the shock angle. Full
details of the solution are given in subsection 3.1.

Other types of continuous solutions to (2.4) and
(2.11), valid within particular angular sectors, are
presented in Subsections 3.2-3.4. However, as ex-
plained in Section 4, it does not seem to be
possible to assemble such sectors to provide an
acceptable near-tip solution other than that with
the shock, as developed in Subsection 3.1.

3. Types of solutions for near tip stress and strain
fields

Around the crack tip two types of zones can be
present: zones of material that currently respond
elastically (either they had previously yielded but
now respond elastically, or had always responded
only elastically), and zones of material that are
stressed to yield levels and may currently respond
plastically. The full stress and strain field around
the tip of a dynamically growing crack could be a
combination of these zones. In the following sub-

sections we consider different types of sectors that
may arise around the tip, and later show which of
these and under what conditions can be assembled
to form the full field around the tip of the dy-
namically growing crack. First we discuss the con-
ditions for the existence of a strong shock discon-
tinuity and where in the full field it may appear,
and show that all conditions of the problem are
satisfied by a near-tip field with such a shock
discontinuity.

3.1 Shock analysis

Here we examine the conditions for a surface of
strong dicontinuity, i.e., a shock, to be a boundary
between two sections in the full field around a
crack tip. The surface of strong discontinuity is a
surface across which components of stress, strain
or material velocity jump. In the analysis of quasi-
statically moving discontinuities by Drugan and
Rice (1984), variations of stress and strain across
the discontinuity surface are required to obey the
same governing equations and constitutive as-
sumptions as they satisfy outside the surface.
Drugan and Shen (1987) have adopted the same
requirement in a dynamic analysis and have proven
that, in general, for anti-plane shear the discon-
tinuity surface has to move at the elastic wave
speed for stress changes to accumulate across it.
An exeption occurs when the yield surface con-
tains a flat segement, as for the crystals considered
here, and then an elastic—plastic shock, moving at
a lower wave speed, is possible.

Let us consider a discontinuity surface S that
moves at a speed ¢, Figure 2(a). The momentum
conservation equation requires that

(1= 7 Vo =pVey(v—0"). (3.1)

where the fact that ¢= Ve, = F sin § has been
used. Note here that superscript + denotes the
value of the quantity in front of the discontinuity
surface S, and — the value behind it. Quantities
without superscripts, like the 7, and v in (3.1),
denote general values along the succession of states
traversed at the discontinuity; e.g., the discontinu-
ity follows a path in the ,, 7, plane of Fig. 1(b).
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Fig. 2 (a) The discontinuity surface S: ¢ is the speed of the discontinuity surface normal to itself. (b) The orientation of the
discontinuity line S with respect to 8, the angle of the yield surface in Fig. 1(b): ¢ is the angle that defines the orientation of the

shock.

We view the discontinuity as the limit of a con-
tinuously variable transition with §. From the
continuity of anti-plane displacement u at the
moving shock, we can write

dlu] /de = [0u/0:] + [Qu/dx J{dx,/dt) =0.
(3.2)
Note here that double square brackets denote the

jump in a quantity at S. The substitutions du/9¢
=p, 0u/0x,=v,, and dx_/dt=c, = —ch_, give
v=o"=Versho (Yo = Ya )- (3.3)
Also. from continuity of u, and hence du/dr,

e (v, —vS)=0. (3.4)

From (3.3), with use of (3.4), we can solve for the
jump in strain as

Ves(Ya— vl )=h (v—=10") (3.5)
and then using this in (3.1) we can get
(1, =1 Vhahg=pV2e3(va— ¥4 ). (3.6)

Equation (3.6) shows that in order for strain to
accumulate at the shock the stress must change
also (unless # =0 or = so that e, =0). Thus no
finite contribution to the jump can come from a
vertex state since the stress cannot change there. It
must all come from a flat segment of the yield
surface; Fig. 1(b). We assume that the + state

corresponds to the vertex state 4 with 7, =7
and /"=0; [ is the arc length along the active
yield surface segment and thus has units of stress.
From Fig. 1(b),

— 7t =
T(x Ta —Sn‘

(3.7)

where s, is the unit vector along the flat. From
the constitutive equation, we can then write

Yo = Yo = CapSpl +Am,, (3.8)
where A >0 is a scalar giving the plastic strain
accumulated, and which is necessarily non-de-
creasing along the path of traversal of the discon-
tinuity (for non-negative plastic work): A* =0 at
A. Now from (3.6) and (3.7) we have

hoSulhy=pV7es (v — v ) (3.9)
and this used in (3.8) gives
hasﬂlh/;:szelz(cBysyle}\mﬁ). (3.10)

Multiplying (3.10) with s, (for /+ 0) one obtains

(hﬂsa)2=pV2e22s“cﬂBsB (3.11)

which is the condition that determines the shock
orientation. Here we have two solutions, 1.e.,

hs,= + Vezv/psacaﬁsﬂ . (3.12)
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Multiplying (3.10) with e, and taking into account
that egmp = hgsg, we can solve for A as
A= l[(hxm)\/hpsu)sacaﬁs,,—macaBsB]. (3.13)
Since we require that d//d/ > 0 it follows that the
negative solution for #,s, in (3.12) has to be
rejected, and that the shock can form only at the
positive value of h,s, given in (3.12), Fig. 2(b).
From the geometry of the problem

hos,=siny; e,=sin(f,+¢) (3.14)
where 8, (the same angle as for the yield locus in
Fig. 1(b)) is the orientation of the discontinuity in
the quasistatically growing crack case (Rice and
Nikolic, 1985) and ¢ is the difference from that
orientation to the orientation of the shock. Thus,
with the use of (3.14) the orientation of the shock

wave can be obtained from (3.12) as

sin Y/sin(8, + ) = V\/pSCopSs -

and the total plastic strain accumulated in the
shock is thus A”m, where

A~ =1"[(cos y/sin ¢)c, = ¢,

where ¢, = s,c,555 and c,, = mc,g55. (Here the
notations ¢, and c,, are used since these are
components of the compliance matrix associated
with the “m” and “s” directions.)

If we introduce a “Mach number” type of
notation, M = V\/p—E; , we can solve for tan
from (3.15) as

(3.15)

(3.16)

tan ¢ = M sin 6,/(1 — M cos 6,), (3.17)

which used in (3.16) gives

A =1 {[(1 - Mcos 8,)/M sin 6] c,, — c,, }
(3.18)

For the elastically isotropic material M =
V/yr/p is a Mach number, and (3.18) in that
case is

A= /p)[(1 = Mcos 6,)/M sin 8,].  (3.19)

Note that if the jump is from vertex A to vertex
B in Fig. 1(b), then the state reached after the

shock has 7,=0 and thus meets the boundary
condition on the crack face. In that case

"= (A_B) = [(TQ/Sin 00)2 + (’T(]/COS 00 )3] 1,2

= 1,/8in 6, cos 6, (3.20)

which used in (3.19), for the elastically isotropic
case, gives the total plastic strain accumulated in
the shock as

(v&) = (0"
= ma(TU/p)[(l — M cos 6,)/M sin®8, cos 00]
(3.21)

and a velocity jump, from (3.3) and (3.8) also, of

v —v" = /u/p (7/p sin §, cos 6,).

Analogous expressions are easily written for the
general elastically anisotropic case, based on (3.18)
rather than (3.19).

Thus we observe that a valid near tip solution is
found with the following characteristics: Over 0 <
0 <8,+ ¢, the stress is constant at the state of
vertex A4, Fig. 1(b),

(3.22)

=0, 7,=r1/c0s b,, (3.23)

withv=0v"=0and y? = (y?)" =0, i.e., the sector
is non-deforming. Over 8, + ¢ < 8 < 7 the stress is
again constant but at the state of vertex B,

T ="T/s8inf,, =0 (3.24)

with v = constant = v~ and yP = constant = (y?) ",
so that this sector is again non-deforming. Here
(yP)  and v~ are given by (3.21) and (3.22) above,
or their elastically anisotropic generalizations, with
(Y2)"=v" =0. All the plastic deformation thus
occurs in the elastic-plastic shock at 8 =6, +y,
and we observe that both the plastic strain and
particle velocity are finite at the tip. While finite,
the strain of this solution varies as 1/M, i.e., as
Vvi/p /V, and thus becomes unbounded as p -0
or ¥V — 0. Presumably, at low values of pV?, the
quasistatic growing crack solution of Rice and
Nikolic (1985) is approached at moderate r. That
solution gives a logarithmic (in r) infinity of yP,
as r—0, for 8> 6, where 8, is the angle of a
velocity discontinuity in that case. It may be con-
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sidered valid in either limit p = 0 or ¥ — 0*. The
finite strain of the dynamic solution, derived here,
will presumably truncate the infinity of the quasi-
static solution, but the details of the transition
have not been worked out in this case. An analo-
gous transition, but then only from weak to
stronger singularity of strain, has been determined
for the isotropic material (Freund and Douglas,
1982).

We now continue to examine other types of
locally continuous solutions, within different an-
gular sectors, for the governing equations. How-
ever, it does not appear that those local solutions
can be combined to provide any acceptable overall
solution for the near-tip field, as an alternative to
that just presented.

3.2 Elustic sectors

These are the sectors of material that are cur-
rently responding elastically. If we substitute the
form of velocity given with (2.12) into the equa-
tion of motion (2.4) and the constitutive equation
(2.11) we obtain the basic equations in the follow-
ing forms

hoo=pV(Ae, —f'hy), (3.25)
and
#Aea*_f/ha:ezVC(,/ﬂ'/g’ (3.26)

where f"=f"(8)=df(8)/d8. Solving for hr/
from (3.26) and substituting into (3.25) we can
sove for f'(8) as

f'(8)= A[(szele2 + hac;[,leﬁ)
/(hacaghy = pV2e3)]. (3.27)

and integrating (3.27) with respect to § we can get
the velocity field in the elastically responding sec-
tor as

=8~ (4/2) In[r (ke hy—pV%e})]  (3.28)

where B is a constant of integration. Note here
that the denominator in (3.27) never vanishes if
e,V is less than the elastic wave speed for the local

# direction. Using (3.27) in (3.26) we can also
solve for the stress derivative as

T.(8)= (A/e:V){[('“/;hﬁ( pViee. + /1/\(',“)()”)
/( h/\(./\uhp - pV’:()ZE )]

— oty | (3.29)
If we recall the definitions of unit vectors e and A
in terms of 6, and consider the limit of stress
derivatives, we note that 7, behaves as A(sin ) !
near # =0 and 7. i.e.. 7, becomes unbounded at
#=0 and 7. Thus we conclude that an elastic
sector can border § =0 or § =7 only if 4 =0 in
(3.29). in which case we have constant velocity
and stress field in this sector. Thus an elastic
sector with variable stress and velocity fields can-
not lie ahead of the crack and cannot border the
crack surface.

3.3 Sectors at vield with plastic flow corresponding
to a flut segment of the yield surfuce

The sectors of material that are stressed to yield
can correspond either to the flat segment of the
yield surface or to a vertex state. For the former
case, considered here, the stresses satisfy

m, =1,

o’

(3.30)

where 7, is the yield stress and m is the normal
to that flat. Note also that 7/ =5/’ from Fig
1(b), and {" = d//d#. If we take the scalar product
of the constitutive equation (2.11) with s, (without
the term in square brackets that corresponds to a
vertex state), and also use (2.12) in the equation of
motion (2.4). we obtain two equations for /” and

/', in terms of the constant 4. as

h.s —pVe, || I \

ata

[0V _ Ve
\‘f”, | seea |
(3.31)

- I/Sacu fsﬁel h «Sa

The determinant of the matrix on the left-hand
side of (3.31) is

det[ Tt ] = (h(xsu)z - pV:(":z.Yﬂ('"ﬁs/;. (

o
%)
o
=



170 R.R. Nikolic, J.R. Rice / Anti-plane shear crack

X1
Fig. 3. Two lines along which determinant of eqn. (3.29)

vanishes. The latter, S, is the same as the shock line in Fig.
2(b).

It is interesting to observe here that the condi-
tion for vanishing of this determinant, or at least
its root with ks > 0, is identical with the condi-
tion for a shock wave to exist at that value of @,
given by (3.11). There are two lines along which
determinant can vanish, Fig. 3. Since the determi-
nant in (3.32) in the vicinity of either of these two
lines behaves like (6 — 4, ), where 6, denotes the
position of either line, both f(§) — co and /(8) —
oo on these lines if the constant A is not equal to
zero. Thus, a plastic sector of the type considered
cannot contain either of these lines, even as a
border, unless 4 = 0. However, if A = 0, then this
sector has a constant velocity and stress field
everywhere except along one of these two lines, on
which f’(#) and /’(8) can take arbitrary values.
If we allow them to be Dirac singular there, then
these lines are sites of velocity and stress discon-
tinuities and we recover the equations for shock
discontinuities given earlier. From (3.31) we can
solve for /’(8) and f’(8) as

! = pVA{(hasae] +€,5.65)

/[(hus#)2 - szegsAcMs#]} (3.33)
[ = A{(h#s“e)\s,\ + szelezs,\cMs“)
/[(ha(sa)2 - szezzsacaBsB”. (3.34)

If we use e,= —h, and e;=h,=e¢;, and in-

tegrate (3.34), we can solve for the velocity field of
equation (2.12) for this sector as

v = constant — (1,/2) 4 ]n[rzf(h s )2

— PV %35, 0pSp ]] .
(3.35)

To solve for A we multiply the constitutive
equation (2.11), with m,, assuming that m is
normalized so that m m, =1, so that

rA =m_rv, , — mc,ze,V75. 3.36
a ataBC2V B

Using (2.12) and the fact that 74 =s,4/’, (3.36)
becomes

rA = —m,Ae,+m,f'h,—mycpge;Vspl'. (3.37)
The relations
mh,= —e,s

L2 s

and mge, = h,s, (3.38)

together with (3.33) and (3.34), used in (3.37), give
rA= —h_s, A

—e,5.A4 { [husys,\e)\ + szmacssezz]/det}

—pV A 5 { [ MaSaComs + €aSacss ] /det) . (3.39)

where det is the determinant of equation (3.32)
and notations c,,, and c¢,, have been explained
earlier. Expression (3.39) in the elastically iso-
tropic case reduces to

rA = (—4/det){ —h,s,[1— (pV?/p)es]
—(pV?/n)erese,s, . (3.40)

where

det=(h,s,)’ = (pV?/u)e3.

The requirement that rA >0 implies restrictions
on the sign of A4 in different regions.

(3.41)

3.4 Sectors at yield corresponding to plastic flow at a
vertex of the yield surface

The stresses in this sector are constant, i.c.,
7, =0, and this used in the basic equations re-
duces them to

0= —pVrv,, (3.42)
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for the equation of motion, and

(3.43)

re,  =rAm, +rim,

for the constitutive equation.
The consequence of (3.42), that rv,; =0, used
in (3.43) gives the relation

rAm, + rAsm, =0, (3.44)

Since both A and A are non-negative, (3.44)
requires that m, and /m, have to be of the oppo-
site signs 1f both systems are to be plastically
active. If m, and m, are of the same sign, then
(3.44) can be satisfied only if A =A=0, so no
plastically active sector is possible. This implies
that sectors corresponding to vertices B and B’
on the 7, axis of the vyield surface cannot be
plastically active vertex sectors, while sectors cor-
responding to the vertices like 4 on the 7, axis
can; Fig. 1(b). Note that in the discontinuous
solution proposed in Subsection 3.1, the angular
sector corresponding to vertex B was assumed to
be non-deforming; the observation just made
proves that it must be.

For continuity of velocity at the boundary be-
tween an active vertex sector and an elastic or
active flat sector, the velocity at the boundary,
8 =8, has to be of the form

v=AlInr+f(6,) (3.45)

where 4 and f(8) pertain to the bordering sector.
If we assume that v is of the form

v=—G(8)In r+ F(6), (3.46)

within the active vertex sector, where F(6) and
G (@) are the unknown functions of angle, then we
can calculate the derivative as
ro,.,=[F'(8)—G'(8)Inr|h,—G(8)e,.

(3.47)

The vanishing of rv,, that follows from (3.42),
requires on the other hand that G’(8) = 0, leading
to

G(8) = constant = A, (3.48)
and

F'(0)=A(e,/hy)=A[cos 8/(—sin 8)]. (3.49)

Le.,

F(8)=constant — A In|sin 8. (3.50)

Thus, under the above assumption (3.46). about
the mathematical structure of the velocity func-
tion, it is necessary that

v = constant — A In(r |sin §|)

= constant — 4 In | x, |. (3.51)

Therefore, a plastically active sector can extend to
x,=0, (le., to §=0, #) only if 4=20, but for
that case it is not really active since both rA — 0
and rA — 0. Here we note that in the discontinu-
ous solution proposed earlier the sector corre-
sponding to vertex A4 was assumed to be non-de-
forming and, within the assumption of (3.46). the
last result shows that it must be so.

A strengthened argument, replacing the as-
sumption (3.46), may be made as follows when the
crack advances under steady state conditions so
that &= —Vv,,. Then, since 7,= constant in a
region corresponding to a vertex, (2.1) with zero
body force implies v., =0 and v =h(x,) in that
region. If we interpret (3.45) as being valid up to
terms of o(r”) near r = 0, then for continuity of v
at the sector border § = 8, we have (setting x, =
r sin @, at the border)

v=rh(x,)

=A1In|x,|+f(8,) — A lIn|sin§,|+o(x’)
(3.52)

as x,— 0. This reproduces (3.51) and has the
same consequences.

4. Assembly of sectors and lack of alternate solu-
tions to that with elastic—plastic shock

In deriving the solutions of the governing equa-
tions for the stress and strain fields around the tip
of a dynamically growing crack we have encoun-
tered some restrictions that apply to different
types of sectors. These enable us to rule out differ-
ent possiblities of solutions other than the discon-
tinuous solution already given in subsection 3.1
and Fig. 2(b).
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(a)

(b)

Fig. 4. Tentative sectors around the crack tip: sector 1 bordering on 8 = 0 and sector 2 bordering on 8 = 7. (b) The tentative jump
from vertex A to a general state K along the flat (it is shown in the text that K must coincide with vertex B).

The sector ahead of the crack, bordering on
8 = 0, (sector 1, Fig. 4(a)) cannot be a plastically
active vertex sector, nor can it be a deforming
elastic sector. Either hypothesis as to a sector type
will lead to the requirement that A = 0, in which
case the sector is inactive, constant stress type
(eqns. (3.48) and 3.29)). Thus we conclude that
this sector may be either of the type constant stress
but inactive, or of type plastically active corre-
sponding to a single flat segment of the yield surface.

The sector bordering the crack wall, at § = 7,
may not be a plastically active vertex sector, nor
may it be a deforming elastic sector (sector 2, Fig
4(a)). This too must be either constant stress but
inactive, or plastically active corresponding to a
single flat segment of the yield surface.

Now we consider the possiblity that the sector
ahead of the crack, 1, is plastically active corre-
sponding to a single flat. Then the velocity field is
given by

v = constant
~(1/2) A 10| 2| (hos,) = pV ke, 1] (4.1)

The symmetry requires that v =0 on # =0, and
this condition can be met only if 4 = 0, which, in
turn, means that the sector is nor plastically ac-
tive, since rA — 0 if 4 =0. Thus one concludes
that the sector in front of the crack must be of
constant stress, plastically inactive type (in the sense
that rA — 0). The stress state is at a vertex (4 of

Fig. 1(b), assuming 7, >0 ahead of the crack)
since a constant stress state that is not on the yield
locus has no possibility of varying and cannot
meet crack surface conditions.

Let us now assume that the constant state
corresponding to a vertex prevails until a jump is
allowed. As established in Section 3.1 (equation
(3.12) and discussion following after it), the first
permissible jump is at

h.s,= Veylpc,, . (4.2)

We have to check how far the jump can go (Fig.
4(b)). It cannot go only part-way to the other
vertex, because then the adjoining sector, if plas-
tic, would be plastically active corresponding to
single flar type (K, Fig. 4(b)). As established in
Section 3.3, such a sector can border a line meet-
ing the shock condition only when 4 = 0, in which
case it is of constant stress, plastically inactive
type. Thus if we assume no elastic unloading
sector, the sector after the shock must be of con-
stant stress, plastically inactive type with stress at
K. Since no further jump is possible for 8 > 6, + y,
K must be chosen so that it meets the crack
boundary conditions. Hence K must correspond
to vertex B, Fig. 4(b), and this reproduces the
discontinuous solution discussed earlier.

The conclusion that can be drawn thus far is
that if all sectors around the crack are at yield
(i.e., if there is no elastically deforming unloaded
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sector) the only solution is the one with two
constant stress, plastically inactive sectors that are
joined by the shock. Fig. 2(b). This type of solu-
tion is consistent with the conclusions of Drugan
and Shen (1987) and satisfies the crack surface
boundary condition.

We now consider why elastic sectors cannot, in
fact, intervene in the constant stress, plastically
inactive sectors just discussed. Consider the sector
beginning at # = 0, corresponding to vertex A4 of
Fig. 1(b). We have observed already that the pre-
logarithmic velocity constant 4 of (2.12) is zero in
this sector. Hence, for velocity continuity (which
must be met, according to our shock analysis, for
all 4 except for 8 =6, +¢), 4 =0 must be met
also in any elastic (or plastically active along a
single flat) sector which begins to emerge prior to
# = §,+ ¢. But the condition 4 =0 converts those
to constant stress sectors and, since stress too
must be continuous, except possibly at 8 =6, + ¢,
the constant stress sector beginning at § = 0 must
extend as a constant stress sector to 8 = 6, + .

If there is no discontinuity at § = 6, + ¢, the
constant stress sector beginning at § =0 would
have to extend, by similar reasoning, to 8= 7.
This would violate the crack surface boundary
condition, and thus a discontinuity is required. By
the analysis of the discontinuity in Section 3.1,
e.g., eqn. (3.22), the jump v —¢* has no r varia-
tion, and thus since A4 of (2.12) vanishes for § = §,
+ ¢, so also must A vanish for 8 = 6, + ™ which
we may (tentatively) assume to correspond to some
general state K as in Fig. 4(b). The reasoning now
is the same as in the previous paragraph. Any
elastic sector which was assumed to emerge would
(by the requirement of velocity continuity if
emerging at 8 > 6, + ¢, or by the shock analysis if
at §=46,+y") have 4 =0, and thus would be no
more than a constant stress sector carrying the
same stress as at K. Hence the shock must be
followed by a constant stress sector at K, for all
6 >6,+¢", and the boundary condition on the
crack face again requires that K coincides with
point B.

Thus we conclude that the discontinuous near-
tip solution, with an elastic—plastic shock between

non-deforming constant stress sectors, is the only
possible near-tip field giving 7, > 0 ahead of the
crack when pl? # 0.

It will be of interest to learn if similar features
to those discussed here apply to dynamic growth
of elastic—plastic tensile cracks in ductile crystals.
The case of quasistatic growth (i.e., limits p — 0 or
V' — 07) has been analyzed recently for the plane
strain tensile crack in ideally plastic crystals (Rice,
1987), and leads to logarithmic-in-r strain singu-
larities at the tip, just as in the corresponding
anti-plane solution (Rice and Nikolic. 1985). If the
strain singularities for the tensile case are trun-
cated by inertial effects to finite crack tip strains,
as demonstrated here for anti-plane strain, such
could be important to understanding the resis-
tance of ductile materials to rapid dynamic crack
growth.
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