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ABSTRACT 

THE GENERAL weight function expressions given in GAO (J. Mech. Phys. Solids 37, 133, 1989). referred to 
here as part I, for combined-mode crack-dislocation interaction problems in the three-dimensional regime 
are applied to solve for the stress field and energy of a shear dislocation loop emerging from the tip of a 
half-plane crack. The results are compared to the previously proposed approximate estimates for shear 
loops by ANDERSON and RICE (J. Mech. Ph_w. Solids 35. 743. 1987), who solved exactly for prismatic 
opening dislocation loops that are co-planar with the crack and also for the analogous 2-D cases of general 
crack tip-parallel line dislocations. The energy results are presented in terms of a correction factor m, 
following Anderson and Rice, to the usual estimate of energy for an emergent crack tip loop as half the 
energy of a full loop (identified as the emergent loop and its image relative to the crack front) in an 
untracked solid. For a full circular shear loop the energy is U = [(2-v)pb’r/4(1 -v)] In (8r/e’r,), where 
r0 denotes the core cut-off parameter and p. v are the shear modulus and Poisson ratio. Thus for a 
semicircular loop emerging from the crack tip, the energy is expressed as U = [(2-v)pb’r/S(l -v)] In 
(tlmr/e’r,J. where the constant m depends on the orientation angle $ of the Burgers vector relative to a 
line normal to the crack tip and the inclination angle 4 of the dislocated plane relative to the crack plane. 
The m factors are calculated at selected angles 4 for rectangular and semicircular loops. This involves 
multiple numerical integrations based on the weight functions of part I. first to obtain the stress field and 
then to integrate it over the dislocated area to get the energy, and requires a large amount of computing 
CPU time. An approximate formula for nr is proposed for general inclined dislocation loops, based on 
known 2-D results for nr factors for arbitrary angles 4 calculated by ANDERSON and RICE (1987) and the 
3-D m(d = 0) results given here for shear dislocation loops in the crack plane. It compares well to the 
exact results. 

INTRODUCTION 

IN PART I (GAO, 1989) we have presented some explicit formulae for calculation of 
stress intensity factors induced by interaction of transformation strains and dis- 
locations with crack tips. The calculation is based on the three-dimensional weight 
function solutions by B~JECKNER (1987) while the formulation of the problem is based 
on the analysis of a crack tip interacting with sources of internal stress of RICE (1985) 

and ANDERSON and RICE ( 1987). 
It remains an interesting topic to study the ductile vs brittle response to cracks in 

various materials, and this partly includes considerations of whether a solid is intrin- 
sically cleavable. RICE and THOMSON (1974) have proposed that such intrinsic cleav- 
ability is determined by the competition between cleavage decohesion and crack 
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tip emission of blunting dislocations. In other words, if the dislocation nucleation 
conditions are reached before those for decohesion of the interface or crystal plane 
ahead of the crack, and if the dislocations are sufficiently mobile once nucleated, it is 
feasible to conclude that there will be an active plastic zone in front of the crack and 
the fracture will involve a ductile flow mechanism such as microvoid growth to 
coalescence and/or shear band localization, rather than cleavage. In the dislocation 
nucleation process, the concentration of the applied stress field at the tip favors the 
emission to relieve the elevated stresses, but the creation of the dislocation itself and 
a “ledge” at the crack tip tend to increase the energy and hence prevent the emission. 
See THOMSON (1966), LIN and THOMSON (1986), ANDERSON and RICE (1986) and RICE 
(1987) for recent discussions of this topic. Its study requires calculation of the self 
energy of crack tip dislocation loops. The energy results for 3-D shear dislocation 
loops emanating from a crack tip have not been accurately determined, although 
ANDERSON and RICE (1987) have proposed approximate estimations based on their 

exact results for prismatic loops coplanar with the crack and for general 2-D con- 
figurations of line dislocations lying parallel to the crack tip. We solve for the 3-D shear 
loop energy results in this paper using 3-D weight function methods, as facilitated by 

results in part I. 
For convenience we set up the crack-dislocation system in Cartesian coordinates 

x, y, z so that the crack lies in the plane y = 0 with tip parallel to the z axis at x = a 
and crack plane on x < a ; Fig. 1 shows the configuration when a = 0. In addressing 
the problems of dislocation loops inclined to the crack plane by an angle 4 we also 

adopt coordinates t, n. z with t lying in the dislocation plane perpendicular to the : 
axis and n normal to the dislocation plane. The t, n, z system has the same origin as 
the x, y, z coordinates (Fig. 1). When 4 = 0 the two coordinate systems coincide. 

Z X 

FIG. I. Geometry of an emergent crack-tip shear dislocation loop on surface inclined to the crack plane 
by an anplc 4. Two coordinate systems X. I’. z and /. II, 3 are adopted. The Burgers vector i; makes angle 

$ with the I axis. 
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The general dislocation is represented by a displacement discontinuity Aii = si’ -I? 
on the cut surface A having normal N, pointing from its (-) side to (+) side. 
Following RICE (1985), the variation in the strain energy of the above system, in the 
absence of body forces, is 

s co 

su= - Amp K, K,Sa dz - iVioijS(Auj) dA (1) 
--cc 

where K, (a = 1, 2, 3) are the stress intensity factors and A,, is a symmetric matrix 
that appears in the expression for Irwin energy release rate as 9 = KmAZpKB and is 
diagonal for isotropic material with A,, = AZ2 = (1 -v)/2~, Aj3 = 1/2~. Here i, j, k, 

I= x, y, z while Greek indices a, j? = 1, 2, 3. The term Nf(Tij is the energetic force 
conjugate to the dislocation. If AUj is held fixed, one can integrate (1) over the crack 
position variable a and write U = U’+s”_, (aU/aa) da where U” denotes the strain 
energy which the dislocation caused in an untracked body. The first term in (1) is just 
(iYU/c3a)~3a, and hence 

(I CC 
u= UQ- 

s s 
&K,(~;a’)K~(z;a’)dzda’. (2) 

--oc --oc 

We have emphasized in (2) the dependence of the intensity factors K,(z ; a) on the 
crack front location a and position z along the front. We have written the following 
in part I for the intensity factors induced by a dislocation loop : 

Km@’ ; a) = 2~ 
s 

U$(x-a,y,z--z’ )N&,(x, Y, z) dA(x, _I’, z), (3) 
A 

where the quantities U:, = Ui, (x - a, y, z-z’) are related to derivatives of the weight 
functions. Special attention is needed in calculating K, for loops emerging from the 
crack tip, for which case a = 0 and the integral in (3) is not convergent since quantities 
Ulf-, are of order (x’+y2)- 3’4 in the vicinity of the crack tip. It was discussed in 
ANDERSON and RICE (1987) and in part I that this problem can be remedied by 
removing a null stress state due to a uniformly dislocated half plane A, coplanar with 
the dislocation and extending from the crack tip to infinity so that 

K%(z’;O) = 2~ 
s 

u;, (x, y, z-z’ )Nk [Au,(x, J, Z) - Au,(O, 0, z’)] dA(x, y, I). (4) 
A” 

Since -gk,(x, y, z) is the differential coefficient of 6U with respect to N&Au,), it 
follows from (2) and (3) that 

ck,(X,.Y.Z,) = &(x,yJ)+4P ” 
s s 

JI AolsU;,(x-a,y,z-z’)Kg(z’;a)dz’da, (5) 
-cX -a 

where a:,(~, y, z) is the stress field that would be induced by the dislocation Aii over 
surface A in an untracked full space. Using the expressions for Uf$ presented in part 
I, we are, in principle, able to calculate the stress field. 
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In this paper we are only interested in planar Volterra-type dislocation loops. i.e. 
dislocations with uniform Burgers vector (Au, = b, = const), emerging from a crack 
tip. Let us introduce the “full loop” associated with an emergent dislocation at the 
tip as the dislocation itself plus its mirror image with respect to the crack front, this 
imagined “full loop” lying in an untracked body. The energy of the full loop is denoted 

by U f”“‘OOp. The formulae for the calculation of Uf”“‘OOp for arbitrary dislocation loops 
with arbitrary Burgers vector 6 can be found, for example. in HIRTH and LOTHE 
(1968), and can be written in the general form 

Uf”“‘OOp = CIcrb’ In (Qr/ro), (6) 

where R denotes the perimeter of the full loop, b is the magnitude of the Burgers 
vector, c1 is the energy constant (proportional to p through a factor dependent on 17. 
loop shape and dislocation type), Q is some geometry dependent numerical constant 
(e.g. Q = 8/e* for a circular loop), r is a measure of loop size (e.g. a radius). and r. 
is the core cut-off size. Here we do not go into detail in discussing solutions for full 
loops. 

Now consider an emergent dislocation loop inclined to the crack plane by angle q5 
and adopt the t, n, z system. We follow ANDERSON and RICE (1987) in writing the 
energy of such a loop with Burgers vector pointing in thejth (j = t, n, Z) coordinate 

direction as 

U, = (!ZICt,b* lnm,+ U~‘00p)/2 (7) 

(no summation here on j), where the subscript j emphasizes that the Burgers vector 
of the loop is in the j direction. Note that the energy constants X, depend on the 
material properties and also possibly on the geometry of the loop such that the 
coefficient i2crjb2 is also the prelogarithmic coefficient for the energy of the full loop 
with Burgers vector in thej direction. For a semicircular loop in an isotropic solid 

the constants a, are 

P (2 - V)P 
&I =4n(l-q 

01r=~:=87c(*_-\‘). 

The constant m,, which corrects the energy expression to account for the presence 
of the crack, then represents a prismatic loop forj = n and represents shear loops 
with Burgers vector in t and z directions respectively when j = t, z. These shear loops 
are dislocated in edge character relative to the tip when j = I and in screw character 
when j = Z. 

If the Burgers vector of a dislocation loop is not parallel to a coordinate direction, 
then (6) applies for the full loop and we define m by writing the energy of the emergent 
loop as 

U = (Rnh’ In m + Ufu”‘00p)/2. (9) 

For a crack tip dislocation loop that is symmetric about the axis t, the full loop has 
two axes of symmetry and thus 
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a = a, cos* t/~ +a, sin’ I/I, (10) 

where $ is the angle between the Burgers vector and the t direction normal to the 
crack tip. Equation (10) follows because for a doubly symmetric full loop the stresses 
induced by b, (= b cos +) do not net work on slip b= (= b sin II/) and vice versa. We 
will show that the general m of (9) can be expressed in terms of Cr,/U and m, for such 
symmetric crack tip dislocation loops. 

The above reduces the problem of finding the energy of an emergent crack tip loop 
to that of finding the correction factor m (or set of factors m,) on the original 
approximation of RICE and THOMSON (1974) who wrote the energy of a loop emerging 
from the crack tip as half that of its related full loop, i.e. they effectively set m = 1. 
The assumption of Rice and Thomson is motivated by their exact 2-D result for the 
force on a near tip dislocation, showing that the force on a crack tip-parallel dis- 
location line is equal to the force that would be exerted on it by its mirror image 
dislocation (relative to the crack front) existing in an untracked full space. In fact, 
this observation actually leaves an undetermined constant m even for the 2-D energy 
expression, as remarked by ANDERSON and RICE (1987). They also showed that m = 2 
for 2-D straight dislocations of any Burgers vector direction on the prolongation of 
the crack plane (4 = 0) and ranges between 1.1 and 2 in general, and they calculated 
the value of m for 3-D rectangular and semicircular shaped emerging prismatic loops 
ahead of the crack on the crack plane. Then based on their exact 2-D results for the 
dependence of m for dislocations with arbitrary Burgers vector on the orientation 
angle 4 of the dislocated surface relative to the tip, using well-known elastic solutions 
as summarized by LIN and THOMSON (1986), Anderson and Rice gave an approximate 
estimate for the energy of the shear dislocation loops inclined to the crack plane. They 
could not consider the dependence of the m factor on the orientation of the Burgers 
vector for a 3-D shear dislocation loop coplanar with the crack and, guided by their 
2-D results, ignored any such dependence. We find here that the orientation angle $ 
has a significant effect on the value of m. In fact the difference between the m, and m,, 
which coincide in the 2-D case when 4 = 0, is for a semicircular loop biggest when 
4 = 0, monotonously decreases as 4 increases toward 45”, and reverses sign around 
45’ as 4 continues to increase. 

In this paper we present exact calculations for a crack tip shear dislocation loop. 
We discuss the stress field for an emergent dislocation loop, especially one lying in 
the crack plane. We carry out the calculation of the m factors for loops inclined to 
the crack plane. The values are obtained only at a few selected angles due to the CPU 
computing time requirements. However an approximate formula, with relative error 
within the bound of 5%, is proposed based on results for the m factors for shear 
dislocation loops in the crack plane and on the known 2-D results. 

FEATURES OF THE STRESS FIELD OF THE CRACK-DISLOCATION SYSTEM 

We study the stress field of a crack tip dislocation loop on a surface inclined to the 
crack plane by an angle 4. Let us adopt t, n, z coordinates as in Fig. 1 and observe 
that on the dislocation plane n = 0 the following relations are valid 
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.Y = tcos4, y = tsin$. (11) 

indices p, q, s range over f. z only in the following. We define the quantities L’,l,(r. 
z-z’; a; 4) on the plane n = 0 by 

*” = UT,!. - KY 
II, 

2 
sin 24 + UC,. cos 24, Ui, = UF, cos C$ - Uj, sin 4. (12) 

The quantity Uz, depends on a through x-a = t cos q5 -a in L’;, (s - a, j’, z-r’ ). 

In order to calculate the self energy of a dislocation loop, it suffices to compute the 
shear stresses cns(t, z) on the plane n = 0, i.e. on the dislocation plane. Here we 
understand ~,,(t, z) as cr,,(t, n, z) I,,= 0. We may use Eqs (3, 5, 12) to write that 

with 

Gns(lrZ) = d,o(t,z)+a~,(t,z) (13) 

0 a 

&,,(t,z) = 8/~* ss s A,pU&t,;-z’;a;$) 
A --r -* 

x u~q(+-zz’; a; +)Au,(tZ) dz’dadtdl. (14) 

If we let t. J be also denoted by t,, tz in subscripted notation, the stress field a:,l, ([. :) 
of the emergent dislocation loop in the absence of the crack is related to an integral 
representation given by BUI (1977) as 

4(&Z) = 
P s (1 -v) D,S,, +vD,6,, 2 

4x( 1 -v) A D3 
zAu,(t: 3 djh:. (15) 

P 

where D* = (t-t”>‘+ (z- .f)’ and Dp = tp- 6 ; aAu,/at, is understood to be Dirac 
singular around the bounding contour of a uniformly dislocated area A. A similar set 
of equations, in slightly different form, was also presented by WEAVER (1977). GAO 
(1988) showed the consistency of Weaver’s equations with those of BUI ( 1977) shown 
in (15) and presented an alternative way of getting this set of equations by a Papkovitch- 
Neuber potential function method. We note that the associated full loop is defined as 
a loop lying in an untracked full space, constructed as the loop itself plus its image 
relative to the crack front. Equation (15) also gives the stress field for a full loop when 
the integration area A is extended to the full loop area. The loop is enclosed by 
contours c (the boundary of the crack tip loop excluding the part r on the crack front) 
and ? (mirror image of c) (Fig. 1). 

As observed by ANDERSON and RICE (1987) concerning tensile stress for a prismatic 
dislocation loop in the crack plane, it is also true for shear loops that both a;,$ and 
a,9 (S = r, z) contain a I/t singularity with the same magnitude but opposite sense. 
so that the total stress field is of only square root singularity l/\/r near the tip. 
Following Anderson and Rice we adopt the same method of eliminating the l/t 
singularity of ai, by subtracting the null stress state of a uniformly dislocated half- 
plane emanating from the tip with Burgers vector equal to Au,(O, z) ; this null stress 
state also eliminates the singularity in 02~ at the tip. Thus we write 
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x U,Bg(i&z’; a; 4) [Au@) -Au,(O,z>] d,-‘dadtdi (16) 

and 

P x s s Oc 
aL(Lz) = 

(1 - v)D,6,, + vD,8Pq 

47t(l-v) __r 0- 0’ 

x g (AU& 5) - H(;)Au,(O, 2)) drd:, (17) 
P 

where H(t”) denotes the Heaviside unit step function, i.e. H(?) equals one for non- 
negative t” and equals zero otherwise. In writing Eqs (16, 17) we have understood 
Au,(< 3 to be zero outside the dislocation loop area A. We further observe that in 
(17) a line integral along the loop contour c + r (Fig. 1) is implied since a[A~,(t ?)I/@, 
is Dirac singular along cfr. Moreover, aZY(t’)/$is Dirac singular along the z axis, 
which reduces the corresponding part of the area integral in (17) also to a line integral. 

Now we consider an emergent Volterra type dislocation loop at a crack tip, on a 
plane inclined to the crack plane by an angle 4. We will calculate the self energy of 
the loop by integrating the shear stresses times their work conjugate, i.e. the Burgers 
vector 6 over surface A, cutting off at r0 the singular terms which diverge inversely 
with distance from the dislocation line. For constant Burgers vector loops, the energy 
is obtained by directly integrating the shear stresses over A. Since we are only interested 
in calculating the difference between the energy of the crack tip loop and half that of 
the full loop, we need only to study the difference in stress, o,(t, Z) - a~“‘OOP(f, 2). The 
difference in energy can be calculated by integrating this stress difference times the 
work conjugate 6, (the component of Burgers vector in s direction) over the area of 
the loop A. Note that in calculating the energy for the full loop, the presence of a 
singularity of the inverse distance from the perimeter of the loop requires an elastic 
core cut-off for the dislocation so as to keep the energy bounded. Here the choice of 
a core cut-off is avoided by calculating the bounded integral of the difference in stress 
b,,(f, Z) - a:“‘OOP (t, z), between the exact elastic result and that for the full loop in an 
infinite body. This procedure is not strictly consistent with other core cut-off pro- 
cedures such as that by GAVAZZA and BARNETT (1976) of excluding the energy of a 
tube along the dislocation front. 

For convenience we assume that the crack tip loop is symmetric about the t axis ; 
such is a feature of semicircular and rectangular loops. Consider a symmetric loop of 
edge character, i.e. 6, = ha,, (Kronecker delta), the associated full loop being doubly 
symmetric. By symmetry we observe that the shear stress component on._(tr z) of the 
crack tip loop must be an odd function of z and also that a~“‘OOP(f, z) is an odd 
function of z. Therefore the z component of the stress difference o&t, z) - ~fiU;“‘~~p(t, 
Z) integrates to zero over A and hence does no net work on the slip b,. By a similar 
symmetry argument the t component of the stress difference a,,(t, z)-&“‘““P(t, z) 
does no net work on the slip b,. 

Therefore the coupling terms containing b,b, in the final expression for the self 
energy of a symmetric loop vanish. Hence the self energy of an emergent shear loop 
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with Burgers vector 6 simply equals the energy of a loop with Burgers vector h, = 
h cos $ in the t direction plus that of a loop with Burgers vector h, = h sin $ in z 
direction. Thus the general energy problem is decoupled into two independent prob- 
lems, one with li/ = 0 and the other with $ = rr;2. Therefore it suffices to study 
the symmetric loops with Burgers vector pointing in a coordinate direction. Again. 
semicircular and rectangular loops fall into this category. 

ENERGY CORRECTION FACTOR 

The energy correction factor m is in general a function of the inclination angle C$ 
and the orientation angle $ of the Burgers vector relative to the t axis. Using Eqs (13. 
16, 17) and the Vi, presented in part I, the stress field of an emergent crack tip loop 
can be numerically evaluated and integrated to calculate the value of m(4, tj). 

We have shown in the last section that we need only study the energy for special 

cases of dislocations with Burgers vector pointing in a coordinate direction. The 
correction constant m = m(c$, $) for these special cases will be denoted by nz,. i.e. 
m,(4) = m(4, 0) and m,(d) = m(@, 90’). By the definition of m, as in (7). we have 
the following general formulae 

if2a, lnm, = (Uj-$U~“““‘p)/b2 = -i 
s 

r,,(t.z)dA (18) 
.4 

(no summation on j), with 

rn.; = (an, - c7y ‘O-y/b 

for a loop with Burgers vector b in the j direction. The quantity I,,,, and hence m,. 
depends on the directionj in which the Burgers vector points while it is independent 
of the magnitude of the Burgers vector. If we consider a point t, z within A in (16), 
Au,(L Z) - Au,(O, -_) equals zero when [ 5 lies inside A and equals -h, when ? E lies 

outside A in the complementary area A, (Fig. 1). For convenience we present here 
the quantities I,, and I,, : 

r,,,(t. 3 = 

+ (;-t)df-(1-r)(f-z)dt 

s 
_____ 

i 0’ 3 

0 cc 

-8~’ ss s A,,U:,(t,:---_‘;a;4) 
A, --Ix --5 

x Ui’(T ;-z’.a.4)dz’dadidZ ,I,‘L 3) 3 (19) 
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0 ic 
- 8~’ 

ss s 
A,oU~~(t,~-_=‘;a;4) 

A, -Lx -CC 

x U,s,(i&z’; a ; 4) d;’ da did:. (20) 

The above results and (18) enable us to calculate the value of m, and m, when the 
shape of the dislocation loop is known. With these results we can readily calculate 
the self energy of a dislocation loop by (7). If the Burgers vector of a loop is orientated 
in an angle $ relative to the t axis normal to the crack tip, i.e. 6, = b cos $. b, = b sin $ 
and the loop is symmetric about the t axis, we have 

U = (SZab2 In m + UfU”‘oop)/2 

= [Qb2(a, cos2 rl/ In m,+a, sin2 I,+ In mz) + Ufu”‘00p]/2, (21) 

where we see that the general m is defined as 

lnm(& $1 = 
a, cos’ $ 
-lnm,(4>+ 

a. sin’+ 

C? 
i In m,(b) 

r (22) 

where (Eq. 10) a = a, cos’ $+a, sin’ II/. Hence the energy correction factor m for 
shear dislocation loops with arbitrarily orientated Burgers vector is solely determined by 
m, and m,. 

The numerical calculation of m involves six-fold integration. We transform the 
integrals over an infinite interval to a finite interval by the following relation 

s cc 

’ _JWx = s [f(x) +.f( 1 /x)/x’] ds (23) 
-I 

and the inverse square root singularities are removed by making standard square 
transformations. Finally we break the six-fold integration into three double integrals 
and for each double integral we carefully choose a number of Gaussian points. A 
numerical routine using standard Fortran 77 code was developed for the numerical 
integrations. We specialize the results to a semicircular loop of radius r and a rec- 
tangular loop of dimension r perpendicular to. and dimension 2~‘ parallel to, the 
crack tip (Fig. 2). The parameters are (HIRTH and LOTHE, 1968) 

R = 2rtr, (2-V)P a = a, = a, = 
8741 --\I) 

for a semicircular loop and 
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crack front 

,q=E=J ,z 

crack front 
01 

FIG. 2. (a) Geometry of a crack-tip circular loop and (b) a rectangular loop on n = 0 plane. 

0: exact. vr = 0. 

0: exact, w = 90” 

- : approximate. 

FIG. 3. Values of energy correction factor H, and WI, as function of inchnation angle 4 of semicircular 
dislocation loopy. The numerical results calculated from the exact formulation arc presented as circles for 

~1, and as squares for w. The solid lines represent the proposed approximate formula for ~1,. 

l+(T/M’)(l-v) +I’+(1 -v) 

“‘=8n(l-v)(l+r/w)” “=%$-v) (]+,./,,‘)p‘ 
(25) 

R = 4(M’+r), c( = cc,cos’Il/+a, sin’+ 

for a rectangular loop. 
The results for m, and nzr for semicircular loops are calculated at selected angles 

4 = 35.264’. 45” 54.736”, 90”, and are presented in Fig. 3 as circles (m,) and squares 
(m;). We take the Poisson ratio v = 0.3. Similar calculations are also carried out for 
rectangular loops and are plotted in Fig. 4. Calculations accurate to a reasonable 
number (e.g. two or three) of significant digits involve a large number of integration 
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mY4) 
I.3 r 

i 
r/w = 10 

mt 
1. * 

0 

1. 1 

1. 0 h 3 

FIG. 4. Values of energy correction factor )I?, and nr: as function of inclination angle 4 of rectangular 
dislocation loops of aspect ratio (a) r/w = 1 and (b) r/w = 10. The numerical results calculated from the 
exact formulation are presented as circles for tn, and as squares for M:. The solid lines represent the 

proposed approximate formula for PI,. 

points (increases with p6 for p Gaussian points in one dimension) and require sub- 
stantial computing CPU time, e.g. 2 h on the Vax 8650 to compute the m value for a 
chosen angle 4 and an aspect ratio r/M’, the latter being relevant for rectangular loops. 

Fortunately there exists an alternative way of getting the m values to a good 
approximation. It is worth noting that the weight functions become much simplified 
for dislocation loops coplanar with the crack plane (4 = 0) (see Appendix A). This 
simplification leads to simplified expressions for the stresses and more effective numeri- 
cal calculations (e.g. for rectangular loops the CPU computing time for one value of 
m (4 = 0) drops to several mins). Starting with the accurate values of m for dislocation 
loops in the crack plane and the exact $ dependence of m. we show a good approxi- 
mation for m factors for inclined shear loops based on the 2-D line dislocation results. 
This motivates further investigation of the coplanar dislocation loops in the following 
section. 

ENERGY CORRECTION FACTOR OF A SHEAR LOOP COPLANAR WITH THE CRACK 

In Appendix A we present the derivation of the shear stresses for an emergent 
dislocation loop coplanar with the crack plane, based on the then simplified weight 



166 H. GAO and J. R. RICE 

function expressions. Here we calculate the m factor for loops of this type by inte- 
grating the shear stresses over A. In this case (I 8) reduces to 

ifir, In m, (0) = - + 
s 

TJj(s, z) dA, (26) 
.4 

where I!, = (a,., - cY, r”“‘oop)/b. We use the stress formulae derived in Appendix A in the 
special case of uniform Burgers vectors to write the quantities I’,,, and I-,._ as 

(T-x)dE-(l-v)(?-z)dl 

D3 

r,.,(X.~) = 

1 I dZd! , (27) 

where functions F and G are defined in Appendix A. A scheme to simplify further the 
integrations over the complementary area A, is discussed in Appendix B, which is 
especially useful for rectangular loops, where the m values for many chosen aspect 
ratios r, 11‘ need to be calculated. 

(a) Coplunar semicircular loops 

The numerical calculations show that m, rr 2.35 and ml E 1.82 for v = 0.3 
[ANDERSON and RICE (1987) quoted an earlier set of values from the present work, 
as 2.67 and 1.99 respectively, but these reflected an error in the original version of our 
program]. The r~z, is higher than m, = 2.21 for a prismatic dislocation loop as presented 
by ANDERSON and RICE (1987), while the m, is lower (by 20%) than the prismatic 
value. The m factor for a dislocation loop with Burgers vector orientated at angle II, 
with the s-axis is 

lnm”“($ = 0) = cos2$In2.35+sin’$In 1.82. (29) 

The results for mclrc(4 = 0) are plotted in Fig. 5. The value of mr is lower than that 
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,.o’....‘-...‘.. ‘. ‘....‘....‘.. .‘,.‘. ..’ @J 
0 Id 20. 22. .o’ sd so’ rd ed no- 

FIG. 5. Values of energy correction factor m vs the angle ((I of Burgers vector relative to the t axis for 
semicircular loops coplanar with the crack. 

of a line dislocation of 2-D geometry, given as m*“(4 = 0) = 2 by ANDERSON and 
RICE (1987), while m, is higher than the 2-D value. 

(b) Coplanar rectangular loops 

In the case of coplanar rectangular loops, the results for HZ, and mz are plotted in 
Fig. 6 vs the aspect ratio r/w and w/r. At limiting cases when w/r--f io. m, + 2 and 
hence m + 2. When r/w + cc, mj -+ 1, hence m + 1. The former limit corresponds to 
the 2-D geometry of a straight dislocation line parallel to the crack front, and the 
value of m matches the exact 2-D results given by ANDERSON and RICE (1987). It is 
found that only in the latter limit when r/w -+ co, corresponding to a pair of straight 
dislocations stretched out from the crack tip, m = 1 so that then the elastic energy is 
given exactly by half that of the full loop. When r/w = 1, it is found that m, = 2.03 
and nzr = 1.59, compared to the prismatic loop value m, = 1.92. In the crack plane 

mrec(+ = 0) mrec(+ = 0) 

FIG. 6. Values of energy correction factor no, and nl, vs the aspect ratio (a) ~11 and (b) or for rectangular 
loops coplanar with the crack. 
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C/I = 0, we find that m, > m,, > mr when the aspect ratio r/\v < 2. When MS/r > 20 we 
can treat the rectangular loops as the limiting 2-D case with m = 2. 

APPROXIMATE FORMULA FORCALCLILATINGHZ FACTORSOF 

3-D SHEAR DISLOCATION Loops 

An approximate formula for m,(4) and m,(4) when 4 # 0 is proposed based on 
the numerically calculated data for m. We find that 

lnnz,(4) = 
lnm,($ = 0) 

lnm2D(4 = o) lnmY($> ($” (4 = 0) = 2) 
I 

is valid within 5% error and serves as a very good approximation for the m factor. 
Here m,?(4) are the energy correction factors for 2-D straight dislocations with 
Burgers vector in the j direction and are calculated by ANDERSON and RICE (1987). 
Both 1172" and III:” were plotted against the angle 4 for 0 < d, < 90 by ANIERSON 

and RICE (1987). In fact, m,?( 4) can be written in the following closed form: 

mfD = 2 cos (412) exp ( 1.4.34 
- 3sm7sln--, . 

* _ _ 1 

m,2D = 2 cos ($J/2), 

m;D = 2cos(4/2)exp (- isin$(?sinz - sinjzf)) 

For a semicircular loop the above equation suggests 

In m,(4) 2 1.23 In /72fD(4), In m,(4) c 0.86 In [2 cos (4/2)]. (31) 

The mi calculated by (31) are plotted in Fig. 3 as solid lines and may be compared to 
the previous numerical points for m,. The m,(c$ = 0) are easily calculated with the 
help of the simplified analytical results for the stress field in (26-28). As described 
before. the direct calculation of the numerical values of m when 4 # 0 involves many 
hours of computing CPU time so that the above approximation is valuable. 

Then the complete result for three-dimensional m factor for general semicircular 
shear dislocation loops is, from (22) with use of (31). 

lnm(4, II/) = 1.23cos2tjlnn$‘(~)+0.86sin~ IJ In [2cos (#/2)]. (32) 

In contrast to (32), ANDERSON and RICE (1987) proposed the following m formula 

for semicircular shear loops (v = 0.3) 

lnn7-4-R(4,$) N 1.14 
( 

cos2 * lnmfD(4) +0.7 sin’ $ In [2cos (4/2)] 

cos’ II/ +0.7 sin’ 4 1. 
(33) 

We plot the values of m and tnAeR from Eqs (32, 33) in Fig. 7 for $ = 0, 30“, 60’, 

90.. It is observed that there is a relatively strong dependence of m on the angle $ at 
6, = 0. and that dependence becomes weaker as 4 increases toward 45’ (Fig. 7). When 
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Dashed lines: mAbR(4, $) 

Solid lines: m(+, $) 

FIG. 7. Proposed approximate values of energy correction factor m as function of the inclination angle 4 
for $ = 0, 30’, 60”, 90”. The solid curves repiesent the approximate m values calculated from Eq. (32) in 

the text. The dashed curves are the approximation rnAmR by ANDERSON and RICE (1987). 

4 passes 45”, the difference m,--mz reverses sign. These features are not shown in the 
m results by ANDERSON and RICE (1987) because, based on their exact 2-D results, 
they omitted any $ dependence of m for coplanar shear loops. 

Approximate relations rooted in (30) and (26) can also be written for rectangular 
loops. In fact, when the approximate results are compared to the directly calculated 
m, and M, for aspect ratio r/w = 1, 10, they show a surprisingly good match with the 
numerically calculated results, as shown in Fig. 4. In the two limiting cases that r/w + 
0. c/_. obviously Eq. (30) becomes exact. We conclude that Eq. (30) provides an 
alternative way of calculating the m factor within 5% error for general symmetric 
dislocation loops emerging from a crack tip. 
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APPENDIX A 

STRESSES OF A GENERAL DISLOCATION COPLANAR WITH A CRACK 

From the analysis of part I, we observe that the weight function simplifies for the special 
case of dislocations lying within the crack plane y = 0. Here we start with Eqs (13, 16. 17) and 
simplify the formulae for the shear stresses for an arbitrary emergent crack-tip loop coplanar 
with the crack. In this case 4 = 0 and X, y coincide with t, n. Equation (13) becomes 

0 ? 
“ix = OK, +~r\ (Al) 

(s = s, z), where u.:~ are the components of the original stress field that would be induced by 
the loop in an untracked body, as presented in (17) in the text. The stress component & 
represents the additional stress in the presence of the crack, which will depend on both Au, 
and Au, so that 

u:..$ = (&)” + (a:.,J. (A3 

where (a: $) ’ is the stress generated on the plane y = 0 by the x component of the displacement 
discontinuity while the second term, similarly, is due to the z component of the displace- 
ment discontinuity. 

The weight function expressions Uh, were presented in part I. On the crack plane _r = 0, 
they can be expressed as 

(43) 

where RZ = (.v-a)2+(-_--z’)2, q = x-a and we have denoted differential operators by 
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u 1 = , I 2v 

0 ( 

1 (X-a)2-(Z-z’)Z 

> ( 
z = 

R2 2-v R= 
I+&(;-z’) $, 

> 

v L _ 2v 2(x-a)(z-z’) = 

0 

2v ^ -~ 
R= 2-v R4 ,_,,g ,z 

I 2v (X-a)=-((Z-z’)= 1 

2-v RZ 
644) 

The following integrals will be encountered when substituting (A3) into (16) of the text to 
calculate the stresses : 

(A5) 

where S’ = (z - zT2 + (q + ii)’ and R”‘, 9 correspond to replacing x, z by 1, I in R’, 9. Denoting 
[AuS] = Au& -;> - Au,(O, z and substituting (A3) into (16) leads to ) 

x {+)$)+(I-v)V($) $&)]dPdfdz’do. (A6) 

The following manipulation is helpful 

(A7) 

Using (A4, A5, A7) one may show that 

where M, and M? are operators : 

M, = 1+ +$&l-z), M*=4vZ a= 

2-v aid,-’ 

The above integration on z’ appears in (A6). Further noticing that neither M, nor M2 has 
dependence on the crack tip position variable a, we can carry out the integral in (A6) on a. 
Following RICE (1985) in handling similar integrals, we use the transformation t = 2(rfj)“’ 
and derive 

(AlO) 

where for conciseness we have introduced 
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D 1 D 
- arctan 2(-) ,.‘z > , G(s, 1, z - 5) = D arctan 2(x~) ,, z , 

where D* = (.x-Z)‘+ (z-zT2. Finally we have 

Equation (A12) is much simplified compared to the original stress expression in (16) of the 
text. Following steps similar to those leading to (A12) we can also derive the part of a;, 
generated by [AK]. Al so repeating the process for a&, finally we derive 

I’[( (A13) 

4(1-v)(.&)F-Zv~j+vL][AY,~d,~dfj. 

(AJ4) 

(Q = $s: J;= {(l-~~(z-17)c+(2_r;.;l_,,)~}[Au;id-~di. (415) 

where the new function L is defined as 

’ L= 
I- 1 

[D(x+.f)/2&+(:-?)I [D-(=-T)] 
(‘416) 

The original stress field azS can be directly written from (17) for the present case 4 = 0. We 
give the following final expression for the total stress field cY., of (Al) at (s. 0. z) due to the 
respective J and ; components of the shear dislocation : 

(a,,)‘ = - -EY- s = Au,(x,,=-Au,(O+~=)~_ I 1’ 

4lr(l--v) -_x [_x2+(z_5)2]3’2 27C?(1-1’) 

and 

j 
Au,(l,5)dZddl (5417) 

(A18) 
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The total stress field o,., can be written out analogously, and we leave this to the interested 
reader. By definition 

Equation (4) of the text for stress intensity factors is verified by observing that the I,‘,,!‘.; 
singular terms in CQX, z) and eY=(x, z) are those containing D/~(x.?)“~ and carrying out the 
limit. Equations (A17) and (A18) are valid for calculations of the stress field for general 
Somigliana type dislocations, i.e. arbitrary displacement discontinuities coplanar with the 
crack. 

APPENDIX B 

SOME INTEGRAL CALCULATIONS 

In Eqs (27,28) of the text, the double integrals over the complementary area of the dislocation 
loop on the crack plane give rise to difficulties in formulating an efficient numerical integration 
scheme. A large number of Gaussian integration points is needed, which results in long 
computing time. It is then desired to find an efficient way to calculate these complementary 
area integrals. Without loss of generality assume the maximum height of the loop perpendicular 
to the crack front is unity. Let us write 

5 

+m +m 
(. . .) dzdi = 

s 5 
(...)tidi+ (...)dTdi, 

5 
(Bl) 

AC --Q I 4 

where A, denotes the complementary area (Fig. 1) and A, denotes an infinite strip area with 
unitwidth(O<x<l, - co < z < co) excluding the crack tip loop area A. We have split the 
complementary integral into two parts. The first part denotes an integral I, over a half-plane 
emanating from the line x = 1. The second part Z2 is an integral over the rest of the area A,. 
The second integral is usually easier for numerical calculation than the first one in that it has 
a finite dimension in the x direction. However, the first part I, can actually be worked out 
analytically. Both complementary integrals shown in (27, 28) can be split in this way. Let us 
note 

(B2) 

Hence the I, integrals arising in (27, 28) reduce to calculating 

+m +cC 
I, = 

s I 
Fdi di = 

--JD 1 
(B3) 

With the above result the integration over the complementary area is simplified to one over 
a complementary strip area A, with finite width. We find that this both speeds up the numerical 
calculation and increases the precision. 

Calculation of the m jbctors for a coplanar rectangular loop 

As a demonstration we consider a rectangular crack-tip loop within the crack plane with 
dimension 2)~ by r (= 1) as shown in Fig. 2. Defining I,, = IY, x [47r( 1 -v)/p] for conciseness, 
(27) now specializes to 

1+2”?(z_zy 
2-v dz 

F+x ‘*’ ~ d.fd?, 
2-v azaz 1 (B4) 
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where i;tX represents the remaining part excluding the complementary area integral. and it 
leads to 

' 
= 2w 

is[ i 

2--t/(xiw):+4+~~~~~i*)?+4 du 

0 x x+1 1 
I} dz UW 

A similarly defined quantity J, associated with i”.& is 

.T= = 
s 

f~$(.x,O,z) dndz 
A 

It is readily shown that for a rectangular loop 

s f, dx dz = 4wn in 2 iw 
A 

so that we can calculate the m factors according to 

4(1-v-w)lnm, = 8wln2-l,+g AI-sdxdz, 
i 

4[1+w(l-v)lInm,=*(l-v),uln2-J;+2 ~ A Fz dxd;, 
s 

where I$, I:2 are the corresponding I? integrals over the complementary strip area A,. In the 
limiting case, w + ao, the rectangular loop approaches a 2-D straight dislocation ; in that case 

J, = 4w In 2, Jr = 4( 1 - v)w In 2, r-; = I;? = 0. (B9) 

Therefore by Eqs (B8, B9) we see that m,‘” (4 = 0) = mz” (C#J = 0) = 2 as derived by ANDERSON 

and RICE (1987). 
Similar simplifications can be carried out for the case of a semicircular shear loop, although 

it is not as important as for rectangular loops, for which many calculations for m values at 
chosen aspect ratios r/w needed to be done. Hence we do not discuss it here. The prismatic 
opening dislocation loop involves the same kind of complementary integrals (see ANDERSON 

and RICE, 1987). In fact the prismatic m value corresponds to the shear values when v = 0. 
Hence by setting v = 0 in our calculations we can obtain the m values for prismatic loops too. 


