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ABSTRACT: Recent developments in elastic crack analysis are discussed based on extensions
and applications of weight function theory in the three-dimensional regimeé. It is shown that
the weight function, which gives the stress intensity factor distribution along the crack front
for arbitrary distributions of applied force, has a complementary interpretation: It characterizes
the variation in displacement field throughout the body associated, to first order, with a
variation in crack-front position. These properties, together with the fact that weight functions
have now been determined for certain three-dimensional crack geometries, have allowed some
new types of investigation. They include study of the three-dimensional elastic interactions
between cracks and nearby or emergent dislocation loops, as are important in some approaches
to understanding brittle versus ductile response of crystals, and also the interactions between
cracks and inclusions which are of interest for transformation toughening. The new devel-
-opments further allow determination of stress-intensity factors and crack-face displacements
for cracks whose fronts are slightly perturbed from some reference geometry (for example,
from a straight or circular shape), and those solutions allow study of crack trapping in growth
through a medium of locally nonuniform fracture toughness. Finally, the configurational sta-

- bility of cracking processes can be addressed: For example, when will an initially circular crack,
under axisymmetric loading, remain circular during growth?

KEY WORDS: fracture mechanics, elasticity theory, weight functions, stress intensity factors,
dislocation emission, crack-defect interactions, configurational stability, crack trapping

Bueckner introduced the concept of “weight functions” for two-dimensional elastic crack
analysis in 1970 [7]. His weight functions satisfy the equations of linear elastic displacement
fields, but they equilibrate zero body and surface forces and have a stronger singularity at
the crack tip than would be admissible for an actual displacement field. The worklike product
of an arbitrary set of applied forces with the weight function gives the crack-tip stress
intensity factor induced by those forces. Bueckner’s contribution led to what is now a vast

literature on two-dimensional elastic crack analysis. One of the earliest works of that lit-

erature was a 1972 paper by the writer [2] which showed that weight functions could be
determined by differentiating known elastic displacement field solutions with respect to

.crack length. It was also shown {2] that knowledge of a two-dimensional elastic crack solution,

as a function of crack length, for any one loading enables one to determine directly the

effect of the crack on the elastic solution for the same body under any other loading system.

The subject here is three-dimensional weight-function theory. Foundations of the three-
dimensional theory were given independently by the writer, in the Appendix of Ref 2, based
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on displacement field variations associated to first order with an arbitrary variation in position
of the crack front, and in a review by Bueckner [3], based on three-dimensional solutions
of the elastic displacement field equations that equilibrate null forces and that have arbitrary
distributions of strength of a normally inadmissible singularity along the crack front. Bueck-
ner refers to such fields as “fundamental fields.”

Since 1985, there has been a surge of interest in the three-dimensional theory. That recent
work, to be discussed, has allowed new types of three-dimensional crack investigations,

“including crack tip interactions with dislocations and other defects, stress analysis for per-
turbed crack shapes, crack-front trapping in growth through heterogeneous solids, and the
configurational stability of crack shape during growth. However, three-dimensional weight
function theory had a rather quiet first 13 years or so. Notable developments in that period
include Besuner’s [#] 1974 observation that the formulation based on crack-front variation
[2] could be applied to determine certain weighted averages of K, (tensile mode stress
intensity factor) along the front of an arbitrarily loaded elliptical crack, by differentiating a
known solution with respect to parameters describing the ellipse (Bueckner [3] had earlier
used the same approach to construct some examples of his fundamental singular fields).
Also, Parks and Kamenetzky [5] outlined a three-dimensional finite-element procedure for
calculating numerically the variation of elastic displacement fields with crack-front position
that are necessary to determine the three-dimensional weight function by the procedure of
Ref 2. In a 1977 paper [6], Bueckner determined fundamental fields for tensile half-plane
and circular cracks for distributions of singularity strength that vary trigometrically with
distance along the crack front. He also used that approach to rederive known results for
the stress intensity factor distribution induced by a pair of wedge-opening point forces acting
on the crack surfaces.

In 1985, the writer [7] pointed out the relation between three-dimensional weight function
concepts and the determination of tensile-mode stress intensity factors along crack fronts
whose locations are perturbed slightly from some simple reference geometry, and used such
results to address the configurational stability of crack front shape during quasi-static crack
growth. He also solved directly for the Mode 1 weight function for a half-plane crack in a
full space, by determining the three-dimensional elastic field variations to first order for an
arbitrary variation of crack front location, and generalized the three-dimensional theory to
arbitrary mixed-mode conditions in the manner briefly reviewed in the next section. A
related paper [8] pointed out how to use weight function concepts to describe the three-
dimensional elastic interaction between crack tips and dislocation loops or zones of shape
transformation, and Gao and Rice [9] developed the perturbation approach of Ref 7 to
determine also the shear-mode stress intensity factors along the front of a generally loaded
half-plane crack when that front is slightly perturbed from a straight line.

In a significant recent paper, Bueckner [10] completed the determination of weight func-
tions for all three modes for the half-plane crack and further determined them for a *“penny-
shaped” circular crack. Also, Gao and Rice [17,12] applied the crack shape perturbation
method of Ref 7 to determine tensile-mode stress intensity factors along crack fronts whose
shapes are moderately perturbed from circles, dealing with the respective cases of near-
circular cracks in full spaces and near-circular connections (that is, external cracks) bonding
elastic half-spaces. They also note [/], and compare their methods to, a much earlier but
apparently little known paper by Panasyuk [/3], which directly derived a first-order per-
turbation solution for a near-circular crack (see also the 1981 review by Panasyuk et al.
[14]). Gao and Rice [17,12] used their results to determine conditions for configurational
stability in the growth of cracks with initially circular fronts under axisymmetric loading, as
will be discussed subsequently. By using shear-mode resuits of Bueckner (101, Gao [15]

. solved for shear-mode intensity factors along a slightly noncircular shear crack and used the
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results to determine, to first-order accuracy, the shape of a shear loaded crack having constant
energy release rate aiong its front. Rice [76] applied the crack front perturbation analysis
to address some elementary problems in crack front trapping by tough obstacles in growth
through heterogeneous microstructures. Also, Anderson and Rice [17] applied the methods
of Ref 8 to evaluate the three-dimensional stress field and energy of a prismatic dislocation
loop emerging from a half-plane crack tip, and studies of this type were recently extended
by Gao [18] and Gao and Rice [19] to general shear dislocation loops. Sham [20] recently
gave a new finite-element procedure for three-dimensional weight-function determination
in bounded solids, as an alternative to the virtual crack extension method of Ref 5.

Since weight functions are interpretable as intensity factors induced by arbitrarily located
point forces, they can sometimes also be extracted from the existing literature on three-
dimensional elastic crack analysis. That is too extensive to summarize here, but the reader
is referred to the review by Panasyuk et al. [14] and also to the recent work of Fabnkant
[21,22], which gives general solutions for arbitrarily loaded circular cracks. '

Theory of Three-Dimensional Weight Functions
‘Background and Notation

For background, Fig. 1a shows a local coordinate system along a three-dimensional elastic
crack front. Axes of the local system are labelled to agree with mode number designations
for stress intensity factors K,(a = 1,2,3). Thus, at small distance p’ ahead of the tip, on
the prolongation of the crack plane, the stress components o, oy;, )3 have the asymptotic

Y4 r
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FIG. 1—(a) Local coordinates along front of three-dimensional crack; numbering of axes corresponds
to stress intensity modes. (b) Loaded solid with planar crack on 'y = 0; CF denotes crack front, arc
- length s parameterizes locations along CF, vector r denotes position in body. (c) Advance of crack front
normal to itself by 8a(s); advance sometimes labelled Ag(s) where A is amplitude and g(s} a fixed
function.
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form
10 ~ K/ VZmp' " )

Similarly, at small distance p behind the tip (that is, along the —2 axis) one has the asymptotic
form of displacement discontinuities Au,, Au,, Au; between the upper and lower crack
surfaces of

Au, ~ 8A,K;Vpi2n )

Here there is summation on repeated Greek indices over 1, 2, 3, associated with the local
coordinate system at the point of interest along the crack front. (Repeated Latin indices,
as appear later, are to be summed over directions x, y, z of a fixed-coordinate system as in
Fig. 15.) The matrix A, is given by

1 1 -9 0 0 -
[Agl =5-] O I1-» 0 3
2 0 1

for an isotropic material (u. = shear modulus, v = Poisson ratio); for the general anisotropic
material, A,; remains symmetric but not necessarily diagonal, and is proportional to the
inverse of a prelogarithmic energy factor matrix arising in the expression for self energy of
a straight dislocation line with same direction as the local crack-front tangent [23,24]. Also,
the energy G released per unit area of crack advance at the crack-front location considered
is

G = ApK.K, (4)

Figure 1b shows an elastic solid with a planar crack on y = 0. The crack front is denoted
as CF, and arc length s parameterizes position along CF. The cracked body is loaded by
some distribution of force vector f = f(r) per unit volume. Here r is the position vector
relative to the fixed x, y, z system, that is, ¥ = (x,y,z), and f has cartesian components
denoted by f, where j = x, y, z. Also, in cases involving loading by a distribution of imposed
stresses, or tractions, on the surface of the body, it will bé convenient to regard those surface
tractions as a singular layer of body force. Thus, the work-like product of the entire set of
applied loadings with any vector field m = u(r) will generally be written as

f f(x) - u(r) dxdydz or J fi(rur) dxdydz

“where the integral of f - u over the “Body” is to be interpreted as an integral of f - u over
the interior of the body (with surface layer excluded) plus an integral of T - u over the
surface of the body, including crack surfaces, where T is the vector of imposed surface
tractions.

In addition, it will be assumed in general that the body considered is restrained against
displacement over some part of its surface so that It can sustain arbitrary force distributions.
This requirement can be disregarded if, in the intended applications, the actual 1mposed
loadings are self-equilibrating.
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Weight Functions and Their Properties

The weight functions hy, h;, h; are three vector functions of position r in the body and
locations s along CF: h, = h.(r;s). One such vector function is associated with each crack
tip stressing mode at location s, the mode being indicated by the value of subscript o on
h,. The vector functions h, have cartesian components z,(a¢ = 1,2,3;j = x,y,2), so that
altogether there are nine scalar functions involved.

The weight functions have two properties, now outlined, as introduced in the developments
via Refs 2 and 7. Either of the first or the second property may be taken to define the
weight function, and then the other property may be derived from that one by basic elasticity
and fracture mechanics principles.

The first property is that the stress intensity factors induced at location s along the crack
front, by arbitrary loading of the body (Fig. 1) are given by

K.(s) = L () £ dedydz O B)

Thus #,;{r;s) gives the mode « intensity factor induced at location s along CF by a unit
point force in the j direction at r.

The second property is that if, under fixed applied loadings, the crack front is advanced.
normal to itself, in the plane y = 0, by an amount 8a = 3a(s), variable along CF as in Fig.
1e, the associated change in the displacement field u(r) is

Bu(r) = 2 LF A a5 Yy(r35) Ko(5)3a(s) ds | (6)

to first order in da(s). Thus h(r,s), when weighted with 2A,,K;, gives the increase of
displacement component i at r per unit enlargement of crack area near s [note that da(s)
ds is an element of area}.
~ To state the second property, Eq 6, more precisely, as well as to aid certain derivations,
the following alternative is useful: Let g(s) be an arbitrary but, once chosen, fixed dimen-
sionless function of position along CF. Then a family of crack-front locations, with parameter
A, may be defined by advancing the original crack front, CF, normal to itself by amount
A g(s). That is, the increment labelled 8a(s) in Fig. 1c is now understood as A g(s). The
loading is regarded as fixed so that the displacement field associated with this family of
‘crack-front locations may be written as u = uw(r,A). Then the statement that Eq 6 holds to
first order in 8a(s) is equivalent to

ou(r,
0A

L= 2 fCF Ag(s)h(r;s)K(s)g(s) ds (7

Since the growth increment is written as A g(s), this equation corresponds, of course, to
~writing 3a(s) = 3A g(s) in Eq 6, which is then required to hold to first order in 8A.

Example: Mode 1 Weight Function for the Half-Plane Crack

The writer solved [7] for the Mode 1 weight function for a half-plane crack, denoted here
as hy(r;s5). As shown in Fig. 2, s now denotes the z-coordinate of the location of interest
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LY

FIG. 2—Half-plane crack with straight front in infinite solid.

along the crack front, and the front is at x = a ony = 0. The derivation was accomplished -
using the second property, Eqs 6 or 7, to define h,. The relevant elasticity equations were
- solved directly for du(r, A)/dA, at A = 0, for arbitrary growth functions g(s) and arbitrary
Mode 1 loadings [hence arbitrary K,(s)], and the solution was put in the form of Eq 7 to
identify h,. The results are

hy, = H — [1/2(1 — v)]ydH/ay

s i} = —[1/2(1 = v)}/ox,0/02} [yH —a-m | de} -

where

Im[(x — a + iy)"]

"= wV2a[(x — a)* + y? + (z =~ 5)]

9)

and{ = V ~1, Im means “imaginary part of,” and the branch cut for the ¥ power term is
along the crack.

The solution for h, could also have been developed by using Fourier analysis together
with some fundamental fields given by Bueckner [6], having a cos wz variation along the
crack front, to construct what he has called a fundamental field with a point of concentration.
Essentially, his fundamental fields would have to be superposed over all w by weighting
each with the Fourier transform at frequency o of a Dirac function, centered at z = s, and
integrating over all w to obtain h,(r;s).

As remarked, Bueckner later derived [10] the full set of three weight functions for the
half-plane crack and for the circular crack. From his work, the function defined by the
integral in Eq 8, witha = s = 0, is

1 xIm(x+iy)"§dy= { 1 [q+§]}
“mfy e = R v | (10)

‘where { = (x + iz)» and ¢ = Re[V2(x + iy)%#], and all the weight functions for the half-
plane crack may be expressed in terms of linear differential operation on the complex function
whose real part appears on the right in Eq 10.
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Derivation of Second Property from First

Assume that the h,(r;s) are defined primitively by their first property, Eq 5, that is,
h.;(r;s) is defined as the mode « intensity factor at location s on CF due to a unit point
. force in the j direction at position r. The writer’s derivation [2,7] of the second property is
outlined, and modestly recast, here. Let U be the strain energy of the cracked solid in Fig.
156 and let

V= —J’ | f(r) - u(r) dxdydz o (11j

be the potential energy of the applied forces (regarded as fixed), which induce intensity
factors K,(s) along the crack front.

Consider a family of crack shapes defined by advancing CF normal to itself by Ag(s),
where, again, g(s) is arbitrary but fixed once chosen, and the advance process corresponds
to F1g 1c¢ with the label 8a(s) replaced by A g(s). Observe that the area elements swept
out in incremental change 34 i in A can be written as

d(area) = p(A,s) 8A g(s) ds (12}

where p(A,s) is a function dependent on the curvature of CF at s but need not be written
out here since we will, in the end, only need its value at A = 0, at which p(0,5) =

Also, suppose that in addition to the given load system, an arbitrary point force F is
applied to the body at r, where the displacement is u(r) or, more fully, u(r, 4,F). (Formaily,
u is unbounded at r when F differs from zero, but we shall shortly be setting F = 0. To
keep things finite, we may distribute F uniformly over a small sphere [7] of radius € about
r, interpret u(r) as the average over that same sphere, and later let e — 0 after setting F =
0.) Thus the total stress intensity factors K, = K,(s,A,F) have the form, when A = 0,

K.(s,0,F) = K (s) + h(r,s) - F (13)

Now, by the definition of the elastic energy release rate G, and the relation between
increments of work and energy, one must have

SU(A,F) = —8V(AF) + F - du(r,AF)
- L GG, AF)[p(4.5) 84 (s) ds] (14)
for arpitrary variations of F and A, where U is the strain energy of the cracked body. Thus
3F-u—-V-yU]= u(r,A,F) - 8F

+ {L_ G(s, A F)p(A,s)g(s) dS} 84 (13)
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and, evidéntly, the right side must be a perfect differential in 3F and 3A4. Thus their coef-
ficients must satisfy the Maxwell-like reciprocal relations :

__w_aﬂ(g::"‘) - = { L G(s, AF) p(A,5)8(5) ds} -9

Since, by Eq 4, G = AaaKquB; this means that

ou(r, AF)

aK.(s,AF)
DA X

= 2 - Ap(s) °F (s, AF)p(A,s)g(s) ds an

One now sets A = 0, recalling that then p(0,s) = 1 and, from Eq 13
9K (5,0,F)/3F = h(r;s) (18)

Setting F = 0 also, in which case Ki(5,0,0) = K,(s), the left and right sides of Eq 17 coincide
with those of Eq 7, thus providing the desired proof of the second property enunciated for
the weight functions.

A New Derivation of the Second Property

Consider an arbitrary location s along CF. Relative to the local coordinate system there,
Fig. 1a, let us move along the negative 2 axis (that is, perpendicular to CF, into the crack
zone) a small distance p and, at that site apply a force pair Q to the upper crack surface
and — Q to the lower. Let us now apply the elastic reciprocal theorem to the load system
just described and to another system consisting of a point force F at r. The latter causes
intensity factors h,(r;s) - F at location s and hence, by Eq 2, the relative crack surface
displacements Au’ induced by the force F at distance p, very near to location s along CF,
is

Auf = 8Vpi2mA 4(s)hy(r,$)F; (19)

By the elastic reciprocal theorem, the work product Q,Auf equals the product Fiuf? (r), where
u?(r) denotes the j direction displacement induced at r by the pair of point forces Q and
—Q at (small) distance p from location s along CF.

Thus another characterization of the weight functions which emerges is that

uP(r) = 8Vp/2mQ.Ap(s)hg(r,s) (20)

is the j direction displacement induced at r by the force pair near CF. The only sense in
which p is assumed small in this derivation is that terms of order higher than Vp, in the
expression for Au induced at distance p from CF by force F at r, must be negligible by
comparison to Vp. Note that the components Q. in Eq 20 are referred to the tocal 1, 2, 3
coordinate system at s, just as are those of Augin Eq 19.

Now consider the process of crack advance by 8a(s), as in Fig. 1c. The variation du(r) in
displacement at r can be calculated as the effect of removing the stresses of type

0w = K.(s)/V2mp’ (21)
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which acted before enlargment. This manner of addressing the effects of crack enlargement
is similar to Panasyuk’s [13] approach to the perturbed circular crack. Stress removal is
equivalent to placing pairs of infinitesimal forces

Q. = [Ku(s)/V2mp'] dp'ds (22)

on the crack faces at distance p = 8a(s) — p’ from the new crack tip. Each such force
causes the displacement u; at r identified above as uf(r), and thus the net displacement
variation u,(r) due to the considered crack advance is

o) = [ [ [ LD s oh | e e

The integral on p’ is ¢lementary, and one readily confirms that this equation agrees with
Eq 6, providing the alternate derivation. As stated, this derivation assumes that 3a(s) is
everywhere positive. It is not hard to modify it when 8a(s) is negative (in those zones one
applies infinitesimal forces Q, to create, rather than remove, the appropriate near-tip stresses
0,.), and thus to make the derivation fully general.

The reciprocal interpretation of the three-dimensional weight functions in Eq 20 has also
been noticed by Bueckner (private communication). It generalizes an 1nterpretat10n given
by Paris et al. [25] in the two-dimensional case.

Variation of Green’s Function with Change of Crack Front Position

The Green’s function G,(r,r") for an elastic body is defined by the property
ulr) = J’ Gu(r.x')f (v') dx'dy'dz’ , (24)
Body

and, naturally, the Green’s function depends on the position of the crack and varies with
change of that position. Letting 8G,(r,r") be that variation, it is seen by the second property
of the weight functions, when the Ku(s) in Eq 6 is expressed by use of the first property,
Eq 5, that

BO(I) = 2 [ Au(s)har.s)hus(r’.5)Ba(s) ds 25)

- to first order in 8a(s) when the crack front is advanced, as in Fig. 1c.

This emphasizes the remarkable information content of the weight functions. While prim-
itively they have the relatively humble role of describing only the distribution of stress
intensity factors induced along the crack front by arbitrary point forces, they turn out to
relate to the Green’s function and thus to the entire displacement field induced throughout
the body by such point forces. In fact, if the weight functions are known for a sequence of
crack-front positions, corresponding to introduction of the crack and enlargement to its
present size, then G, (r,r’) can be calculated directly from the weight functions, by integrating
3Gy (r,r') of Eq 25, provided that the initial G, (r,r') is known for the uncracked solid.

- For example, consider a half-plane crack with tip position at a, as in Fig. 2, or a circular
crack of radius a (Fig. 3b). Then G, = Gu{r,r';a) and, by letting 3z(s) be uniform in s,
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FIG. 3—Cracks in the plane y = 0 and notation to describe crack face weight functions for (a) half-
plane crack, (b) circular crack, and (c) circular connection (externally cracked).

and dividing both sides of Eq 25 by that uniform value, the left side becomes G, (r.x"sa)/
da. Thus, by knowing the classical Kelvin G, for an uncracked full-space and adding to it
the integral of 3G /da, from — o to a for the half-plane crack or from 0 to & for the circular
crack, one obtains Gy for the cracked solid.

Sometimes it is not necessary to know all three weight functions to calculate what will
serve as a Green’s function for the class of loadings actually experienced by a cracked solid.
For example, suppose our concern is exclusively with loading systems that produce pure

- Mode 1 along the crack front. In that case, when 8G,(r,r’), or its integral over some crack
introduction sequence, is actually multiplied by f,(r') and integrated over all volume ele-
ments dx'dy’dz’ of the body, the product 4, f, integrates to zero, by Eq S, for all load
systems of the class considered when B = 2 or 3. It then suffices, for the pure Mode 1 load
systems which are considered, to write (for example, for an isotropic solid)

3G, w(r';s)da(s) ds (26)

The concepts outlined here have been used to derive the Green’s function or, related to
it, the expression for relative crack surface displacement Aw under general loadings, for
half-plane [7] and circular [11,15] cracks and circular connections [12].

Relation to Bueckner’s Concept of Fundamental Fields

Bueckner’s approach to the three-dimensional theory may be summarized as follows: Let
v(r) be a fundamental field, that is, a solution to the Navier displacement equations of three-
dimensional elasticity, equilibrating null applied loading. In general, no such field other
than v = 0 {or v = rigid motion) would exist, for such is clearly a solution of the elasticity
equations for null loading and, by the uniqueness theorem, no other type of solution could
exist. However, the fundamental fields lie outside the scope of fields covered by the unique-
ness theorem, since the fundamental fields, to be useful, must have unbounded strain energy.
In fact, such fields have displacements which become infinite as 1/V/p near the crack front,
and hence stresses and strains which become infinite as 1/pVp. Their strength at location
s along the crack front is characterized in terms of the discontinuity Av between upper and
lower crack surfaces by the Bueckner strength function

B,(s) = lim [Vmp/2 Av,(s,p)] ' (27)
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where now the Av are referred to the local coordinates (Fig. 1a) at s and Av,(s,p) means
Av, at distance p along the —2 axis through the location along CF at arc length s.

In terms of these fundamental fields and their strength distributions around CF, Bueckner’s
basic result is that ' '

f BJ(s)Ku(s)ds = | v(¥) - £(r) dxdydz - (@28)
CF : Body : '
The proof is as follows: v(r) can be regarded as an unobjectional elastic displacement field
for a cracked solid from which we exclude a small cylindrical tube, say, of radius p, along
CF. The stresses associated with v equilibrate zero body and surface force everywhere except
along the tube surface, where tractions T of order 1/pVp must be applied to maintain
displacements v.

We now apply the elastic reciprocal theorem to the pair of fields consisting of thé fun-
damental field v(r) just described and the actual displacement field u(r) induced by the
applied forces f(r). Thus, the work of the forces of the v field (that is, of the tractions T,
of order 1/pVp along the tube) on the w displacements equals the work of the forces f, and
of tractions on the tube resulting from the u field, on the v displacements. We can let p —
0 in the two work expressions. The work of f is plainly given by the right side of Eq 28,
and it should appear plausible that the limit of the works of the tube tractions is given by
the left side, since the u field near CF is proportional to the K’s times Vp. Thus T - u is
of order 1/p along the tube, as is the work on v, and the 1/p gets cancelled out when we
integrate over the surface of the tube, so there is a well-defined limit as p— 0. Of course,
the strengths B.(s) have been so defined in Eq 27 that the tube-surface work terms combine
to what is written on the left of Eq 28. :

Consider a limiting fundamental field which may be said to have a point of concentration
at location s, that is, for which the strength distribution is

B(s) = 853%(s — 5') (29)

where 83; is the Kronecker-8 and 8°(...) the Dirac-8. Then by comparing the result of Egs
28 to 5, giving the first property of the weight functions, it is evident that the limiting
fundamental field described is just

v(r) = hy(r;s’) (30)

Since the field u(r) created by general applied loadings satisfies the Navier displacement
equations of elasticity, so also must du(r) of Eq 6 {and au(r, A)/0A of Eq 7]. Further, since
both u(r) and u(r) + du(r) equilibrate the same system of loadings, u(r) and du(r,A)/dA
satisfy the displacement equations of elasticity corresponding to null loading. One therefore
suspects that not only h,(r;s), but also every field of type du(r, A )/3 A meets the requirements
to be a Bueckner fundamental v(r) field. It is easy to confirm that ou(r,A)/dA has a

“singularity of the appropriate order, 1/Vp, near the crack front so that it is indeed a candidate

v(r). The Bueckner strength distribution B,(s) associated with ou(r,A)/dA is readily de-
termined, either by examining the field near p = 0 or by substituting Ju(r,A)/9A as
expressed by Eq 7 into Eq 28 for v(r} and then using Eq 5. Either way, one finds that

B(s) = 24()K()g(s) (31)
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We have just seen that every field du(r, 4)/9 A, corresponding to variation of crack front
location under fixed load, provides a Bueckner fundamental field v(r). The converse applies
too: Every Bueckner fundamental field v(r) can be identified with a field ou(r,A)/9A for
a suitably loaded cracked solid with suitable choice of growth function g(s). This is true
because A, is invertible, and hence every distribution of B.(s) corresponds, by Eq 31, to
an equivalent distribution of products Ky(s)g(s) in the description of crack growth under
fixed load. Since by suitable choice of body-force distribution it is possible to make the
K(s) vary in any desired manner around the crack front, this confirms that every v(r) has
a du(r, A)/3A representation. Thus Bueckner’s class of fundamental fields and the writer’s
class of fields generated by incremental crack growth are identical. '

Crack-Face Weight Functions, Some Examples, and Symmetry Properties

For applications to perturbations of crack shape, and for some other purposes, there is
~ no need to know the full-field weight functions h,(r;s) for positions r throughout the entire
body. Rather, it suffices to know their jumps across the crack plane, that is, to know the
crack-face weight functions defined by

k.(x,z;5") = h(x,0*,z;5") — h(x,07,z;5") (32)

for all positions (x,z) within the crack zone and locations s along CF. The properties of
the k. are analogous to those enunciated for the h, earlier. First, if the loading consists of
tractions T = T(x,z) per unit area on the upper crack face, and —T on the lower, then
the intensity factors at location s’ along the crack front are

K.(s") = k.(x,z:5') - T(x,z) dxdz (33)

crack

Of course, general loadings can always be reduced to this case by the well-known super-
position procedure. Second, if the crack front location is altered by da(s), as in Fig. lc,
under fixed loading conditions then the variation of the crack-surface displacement discon-
tinuity is

d[Au(x,z)] = 2] Ae(5Kko(x,2;5" ) Ko(5")8a(s’) ds’ (34)

to first order in 8a{s). These are the specific forms of Eqs 5 and 6 for crack-face loading
and crack-face displacement discontinuities.

Some examples of crack-face weight functions are cited now for cracks in unbounded
isotropic solids. First one may observe that symmetry requires

klx = k]z = ka = k3y = 0 (35)

in all such cases. Thus, for tensile (Mode 1) loadings, one needs only k,,(x,2;s’). The half-
plane crack, circular crack of radius a, and circular connection of radius a (external annular
crack of infinite outer radius) are shown in Figs. 3a, b, and ¢, respectively. Choose a point
(x,z) within the crack space, let p = p(x,2) be the shortest distance to the crack front, and
D = D(x,z;s") be the distance from (x,z) to location s’ along the crack front. Then for
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the half-plane crack (for examples, see Refs 6 and 7)
ki (x,2;5") = V2p/aVa D? e (36)

and for the circular crack [6,11,13]

ki (x,z;8") = VpQ2e — p)/mVma D2 (37)

When the two half-spaces joined by the circular connection are restrained against displace-
ment at infinity [12]

ki(x,2;8") = VpQa + p)/aVma D? o (38)

When the restraints at infinity are removed so as to allow free translation in the y direction,
free rotation, or both (that is, completely unrestrained) various terms must be added to
the expression for k,, just given. For example, in the completely unrestrained case, the
terms [12]

(ma)~**eos ' [1/(1 + p/a)][l + 3(1 + p/a)cos 8] + [Vp(2a + p)/(a + p)]cos 6}

must be added, where the angle 6 = 6(x,z;s') is identified in Fig. 3c.

Shear mode crack face weight functions, k,, k,,, ks, and ks, are-given in Refs 7 and 9
for the half-plane crack and in Ref 15 for the circular crack.

Let us limit attention to pure Mode 1 conditions in homogeneous isotropic solids for the
rest of this section. Consider a general crack shape as in Fig. 4, choose two locations s and
s" along the crack front, locate a point (x,z) by moving into the crack zone a small per-
pendicular distance p from s, and a point (x’,z’) by moving a small distance p’ from s’.

Guided by the above examples, we observe that k,,(x,z;s")/Vp(x,z) has a well-defined
limit as p — 0, that is, as (x,z) approaches the location s along the crack front. Let us
therefore introduce the general representation

ko ( 3 V2p(x,z)W(x,z;s’) (40)
x,2;8") =
Y aVT D¥(x,z;5")
where W(x,z;s') has a well-defined limit, denoted by
W(s,ss') = lim [W(x,z;5s")] (41)
plx.z)}—0 .

FIG. 4—General crack shape, for discussion of crack face weight function and symmetry properties.
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as (x,z) approaches location s. We use D(s,s’) to denoté the corresponding limit of
D{(x,z;s"); it is the distance from location s to location s’ (Fig. 4). For example

W(s,s') = 1 (42)

for the cases of the half-plane crack and the circular crack, and also for the circular connection
when points at infinity are restrained against displacement, whereas

W(s,s') = 1 + D*s,s")[1 + 6 cos 6(s,s"}]/a? (43)

for the circular connection with unrestrained displacements at infinity.

Consider now the opening displacement Au,%(x’,z") induced by force @, in the y (or 1)
direction on the upper crack face, and ~Q, on the lower crack face, at (x,z). By Eqs 20
and 32

Auf(x',z') = 8\/p(x,zj/217[(1 — v)/2pn)k,, (x',2'55)Q, (44)

and by the reciprocal theorem this must be the same as the opening displacement induced
at (x,z) when the same force pair is applied at (x’,z’). Thus

Vp(x,2) k,(x",2";5) = Vp'(x',2') ky,(x,2;5") (45)

and dividing this equation by Vpp’ and then letting p — 0 and p’ — 0 (recall that Eq 20 is
exact in this limit), we obtain the symmetry property

W(s',s) = W(s,s") (46)

Some Applications of Three-Dimensional Weight-Function Theory

Guided by the two-dimensional theory, it might be thought that the main application of
three-dimensional weight-function theory is to determine stress intensity factors for a given
crack geometry under a varjety of different loading conditions. There is evidently much to
be done on such applications, but here the focus will be on some new types of investigation
allowed by the theory.

Crack Tip Interaction with Transformation Strains and Dislocations

This class of applications is of interest for the micromechanics of fracture. The three-
dimensional weight-function concepts enable one to develop useful relations for study of
the effects of particles of different elastic moduli, or of particles that undergo a stress-
induced shape transformation (as in transformation toughening), or of smaller-scale micro-
cracks, on the stress intensity factors and stress fields near a crack tip. Similarly, they allow
one to address various three-dimensional dislocation interactions with crack tips, including
development of models for three-dimensional loop emission from stressed crack tips.

The starting point is with the Eshelby [26] concept of a distribution of stress-free trans-
formation strain e, (r). If we consider a solid of elastic moduli Cy,,(r), then the stress field
in the presence of thls strain distribution is assumed to be given by

ij(r) = Cjkpq(r)[up.q(r) - 5;:;(")] (47)
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Here Cy,p = G = Cypy = Cuyp, and if L = L(x), then L,j for j = (x,y,z) denotes
aL/d(x,y,z). Equilibrium in the absence of any actual body force requires that ay,; = 0
and this equation, using Eq 42, is the same as the equilibrium equation in terms of u(r) for
a solid having zero transformation strain but being sub]ect to a distribution of “effective”
body force

Fem) = = [Cpa(r)ezy(n)].f (48)

(and also effective surface tractions when €7, is nonzero along the crack faces or external
surfaces).

Thus the writer [8] showed that the mten51ty factors induced at location s along CF by a’
distribution of €] (r) in some region V are

Ko(5) = | Buns(535)Crpe el @) drxdyaz (49)

General Somigliana dislocations, that is, surfaces S on which a displacement jump Au(r)
is prescribed for r on S, can also be considered as a limiting case. Thus [§]

ka(S) = L Rt {(035) Ciepg ()N, (1) A (x) S () (30)

where N is the local normal to S, chosen so that An is the difference between u on the side
of § towards which N points and w on the other side. .

- This formula requires a modification, outlined in Refs 17 to 19 for the case of the half-
plane crack, to by-pass formally divergent integrals for locations s along any segment of CF
which happens to lie in the dislocated surface S or along a part of its border. The latter is
particularly an issue for a microcrack [representable as some distribution, albeit unknown,
of Au(r)] or dislocation loop emanating from the crack tip. In the simplest case, when the
crack can be regarded as a half-plane crack with straight front, as in Fig. 2, and when the
surface S is a planar zone emanating from the crack tip, the fix-up is simple. We replace -
Au(x,y,z) in Eq 50 by Au(x,y,z) — Au(0,0,5), where the location of interest along the crack
front is at z = s and the crack tip is assumed to be at a = 0 (Fig. 2), and we extend the
integral over the entire half-plane emanating from the tip that contains § [I7]. This is
equivalent to subtracting the effect of a constant displacement, Au(0,0,s), over that entire
haif-plane, which has no effect on the stress field.

Stress Field—In the types of micromechanical applications mentioned, one generally wants
to know the stress field induced in V by the transformation strain, or on S by the dislocation.
For example, if we use €7, (r) as an artifact, to represent the effect of an inclusion of different
. moduli than its surroundmgs (the Eshelby [26] procedure), then the €[, distribution over
‘the inclusion region V should, in principle, be chosen so that the local values of gy, due to

€;, and to the external loading, relate to the local values of u;, within V in a manner
compatible with the actual constitutive relation (not necessarily linear) for the inclusion
~material. This clearly poses a formidable problem, but one which would be tractible in a
more approximate form, for example, if €/, were taken as locally uniform in V, or in some
subregions of V, and the constitutive relation were required to be satisfied only at the
_centroid of V, or at centroids of its subregions. Similarly, when S represents a microcrack
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one would, in principle, choose Au(r) on S so that the traction stresses N;o;, due to that
Au distribution and to the external loading, vanish on S. Equally, for calculating the overall
energy and alteration of Peach-Koehler (configurational) forces along a near-tip (Volerra,
constant Au) dislocation loop, the stresses are required.

The stress field due to transformation strain or dislocation can be represented as follows
for the half-plane crack with tip along the z axis {that is, with a = 0 in Fig. 2). Let K,(s,a)
denote the intensity factor distribution calculated from Ref 49 or 50 when the tipis at x =
a. Also, let h,(x — a,y,z — 5) denote the weight functions h,(r;s); this is the form they
take for the half-plane crack in a homogeneous material (for example, see Eqs 8 and 9).
Then [8]

- h’o:k.f(x - a,y,Z — S)KB(S,Q) dea (51)

0
Gpal8) = OB(D) + 2AusCiyy |
Here o?, (r) is the stress field which that same distribution of transformation strain or dis-
location would induce in an infinite, uncracked solid. When the crack tip contains segments
which lie in or on the border of a dislocated surface §, certain subtraction procedures,
analogous to subtracting Au(0,0,s) as explained earlier, have to be used to avoid formally
divergent terms. For example, as discussed in Refs 17 to 19, when § is a dislocated surface
emanating from the crack tip, both ¢!, and the integral in Eq 51 contribute singular stress
terms, of order 1/p’ near the tip (Fig. 1a4), which cancel one another to leave the proper
1/Vp' singularity.

Although the methods outlined in this section have great potential for the three-dimen-
sional micromechanics of phenomena at crack tips, it should be cautioned that the integra-
tions involved are formidable. Equation 51 for a dislocation loop effectively involves
integration over four variables, two to get the K, from Eq 50 and two more displayed
explicitly in Eq 51. Also, the subject is young, the Mode 1 weight function being published
only in 1985 [7] and the Mode 2 and 3 functions only in 1987 [10], and only rather simple
applications have been made thus far. Some of these are now summarized, all involving
isotropic solids.

Dilatant Shape Transformation—Suppose that a transformation strain distribution cor-
responding to pure dilatation, €7,(r) = 3,,8(r)/3, occurs in V. Then from Eq 49 and Eqs 8
and 9, K, along the crack front is given by {8]

21 + v) cos(d/2) 8 . (o '
Ki(s) = a1 = 3 )y piD? [1 D2 Sin (2)] 8(r) dxdydz (52)

where (notation of Fig. 2) tan ¢ = y/(x — @), p* = (x — ay® + y*, and D? = p* +
- (z — s5)*. This reproduces known results from two-dimensional models [27,28] developed
~ in the literature on transformation toughening of ceramics, when 8(x,y,z) reduces to 6(x,y).

Microcrack Ahead of Half-Plane Crack—Let the microcrack surface S lie on y = 0 and
assume that S lies entirely in the region x > 0. Here the (main) crack tip is at x = 0 (that
_is, a = 0 in Fig. 2) so the microcrack is separated from the main crack. The problem is
assumed to have Mode 1 symmetry so that the y (and only) component of displacement
discontinuity on § is Au,(x,z).

Then the intensity K,(s) induced along the half-plane crack tip by the opening distribution
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can be evaluated from Eq 50 and has the representation [8]

) " Au,(x,z) dxdz
K\(s) = 2ny(1 — v) J; Va[x? + (z - )Y

(53)

When Au, = 0, K,(s) is everywhere positive, so microcrack opening directly ahead of the
main crack increases K, everywhere along the crack front. Of course, to this K, must be
added the K, due to the externally applied loading (in the absence of the microcrack), and
the actual presently unknown Au, distribution on § will be directly proportional to the
intensity of that loading, so that Eq 53, like the equation for o,, below, is only a result that
is useful as part of the process of constructing a fuller solution.

The stress integral of Eq 51 gives in this case [§], for x > 0

O’"._‘.(X,O,Z) = Uiv(xsoaz)

N i’ Q(x,x',z ~ z)Au,(x',z") dx'dz’
41 — VVx ls  VIX'[(x = x' ) + (z - 2')]

(54)

where

Q=1-Ptan"¥(1/P) and P = 2Vxx'/V(x = x') + (z — z') (55)
_ | [so that the integrand is nonsingular when (x’,z’) coincides with (x,z)] and [29]

o B[O DAsGE) + (2 - DAu )
Tx00) = i | [ - 7 + (z ~ 20"

dx'dz’  (56)

gives the stress induced by the same (unknown) opening on S in an uncracked full space.
Anderson and Rice [77] show how to modify these expressions when a border of S coincides
with a segment of the crack tip. Again, the stresses induced by applied loadings, in the
absence of the microcrack, must be added to those given here.
The present formulation leads to a singular integral equation for Au,(x,z) on S, analogous
to those developed as a starting point in numerical treatments of three-dimensional crack
problems in simpler full or half-plane geometries [29—37] and similar methods of discreti-
zation can be employed for numerical solution.

Dislocation Loop Emanating from Tip—When Au,(x,z) = b (a constant; Volterra dis-
location) over a region S (on y = 0) with border along the crack tip, we have the problem
of a prismatic dislocation loop emanating from the crack tip. The two-dimensional elastic
interaction between a crack tip and a parallel dislocation line has been worked out in great
generality [32,33]. Such interactions are of interest in studies of intrinsic cleavability of
solids, where an attempt is made to estimate the critical combination of intensity factors at
- which a dislocation nucleates from the crack tip [32,34]. Thus far, the three-dimensional
aspects of such dislocation emission have been treated only approximately by assuming that
. the elastic self-energy of an emergent loop is just half of that for the corresponding “full
loop™ (emergent loop plus its mirror image relative to the crack tip). The problem is of
interest for shear dislocations [18,/9] emerging from the tip on slip planes that are generally
inclined to the crack plane; the prismatic version [17], emerging in that plane, provides a
more readily addressed first case. We review here only the half-circular emergent loop, over
x4+ 2= RLx=z0. o
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The self-energy of a full circular loop (in an uncracked body) is {35]

Unlioor = 2 RA, In{8R/e’R,) (57)
where
Ay = pb*/4w(1 — v) for a prismatic dislocation,
R, = core cut-off, and
e = natural logarithm base.

The self—enérgy U of the emergent loop therefore may be calculated as

U - —;- Unieon = —(b/2) j [0,(x,0,2) — &, %(x,0,2)] dxdz (58)
5

which Anderson and Rice [17] show to have the form wRA, times a constant, which they
calculate by using the previous formulae for o,,, and write as fn(m). Thus

U = wRA, (8mR/e*R,) (59)

for the emergent loop. It is found [17)] that m = 2.21 for the half-circular loop. Calculations
for a rectangular emergent loop show that the analogously defined (with 7R replaced by
loop outer perimeter) value of m is 1.92 when the loop and its image form a square full
loop, that m increases towards a maximum of 2.27 when the rectangle is elongated from
that shape by a factor of about 4 in the direction parallel to the crack tip, and that with
greater elongation m diminishes towards its limit m = 2 for the infinitely elongated rectan-
gular loop (that is, for the two-dimensional, or line, dislocation [17]).

More recent work [18,19] has used Bueckner’s [10] shear-mode weight functions to eval-
‘uate an analogously defined m, based on 4, = (2 ~ v)ub?/8w(1l — v), for a half-circular
shear dislocation loop emerging from the tip. When it is on the same plane as the crack,
this gives m = 2.35 when Au is in the x direction, and m = 1.82 when Au is in the 2
direction. For the highly elongated loop (two-dimensional limit), m = 2 independently of
the direction of Au when the slip plane is the crack plane. However, m decreases, in different
ways for different directions of Au in the slip plane, when the slip plane is rotated (about
the crack tip) relative to the crack plane {17.19].

The energy of an emergent loop is an important quantity in the theory of dislocation
emission and its competition with cleavage decohesion at a crack tip [32,34]. The fact that
m > 1 for typical cases means that the approximation of estimating self-energy as half that
for a full loop has tended to underestimate (by 1/ Vm) the K needed for dislocation nu-
‘cleation.

Variation of Crack Shape

A general crack-front shape is shown in Fig. 5, and advance normal to itself by a distri-
bution da(s) is indicated, as well as the distance function D(s,,s). The focus here is on
setting up the formalism for calculating variations in the K, along a crack front, both to
first-order accuracy in the function 3a(s) and, in principle, exactly by integrating results for
a sequence of infinitesimal advances 8a(s). For simplicity, attention is limited to Mode 1
conditions in isotropic solids. ' '
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FIG. 5—Variation of crack front location, for discussion of corresponding variations in K,(s;) and
" W(s;,s:)- . '

Note that da(s) = 0 whens = s, or 5, in Fig. 5. These are important locations because
it is possible to work out the first-order variations 8 K,(s,), 8K,(s,) and 8W(s,,5,), where
W is the function of Eqs 40 to 43 and Eq 46. At least this is so when d{da(s)}/ds exists at
s, and s,. Naturally, one is also interested in the 3K, and 8 W associated with locations where
da(s) # 0, and a procedure will be explained shortly for calculating those.

Consider a point (x,,z,) at small distance p, from CF along its perpendicular at s,. By
Egs 2 and 3 o '

B (xi,20) ~ [0 = w)/B]K () Vor2m (60)
Hence the variation in Au, is
8fAu,(xy,z))] ~ [4(1 — v)/p]8Ki(s,))Vp /27 (61)

to first order in da(s), where 8 K,(s,) is the corresponding first-order variation at location
s, along CF. The perpendicular to the new crack front (dashed line, Fig. 5) at location s,
no longer passes through (x,,z;), but misses it by a distance p,368, measured parallel to CF,
where 80, = d[da(s)}/ds ats = s,. This effect may be included in the analysis, recognizing
that 8[Au,] in Eq 61 should, strictly, be replaced by its value at (x,,z,) plus p,80, times
the gradient of Au, in the direction paralle]l to CF. However, that modification gives a term
of order p,Vp, 86,, the same order in p: as those already deleted on the right in Eqgs 60
and 61, and all these will disappear shortly when we divide Eq 61 by Vp, and let g, — 0.

From Egs 3, 34, and 40, one now observes by the second property of the weight functions
that

1 - v V2, W(x,,z,;5)
no wVa Jor D¥(x,,258)

B[Auy(x-,,z,)] = K.(s)8a(s) ds (62)

Now Eq 61 is used and both sides of Eq 62 are divided by \/5:, after which one lets p, —
0 [that is,.(x,z,) approaches location s, along CF]. Since W(x,,z,;s) smoothly approaches
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W(s,,s), Eq 41, in this limit, and since 3a(s) vanishes at s,, the limit of the integral exists
as a principal value (PV) integral. Thus

8K, (s)) = % v %% K, (s)0a(s) ds (63)

to first order in 8a(s) when da(s,) = 0. This generalizes to arbitrary crack front shapes
results given in Refs 7, 17, and 12 for specific shapes.

Note that W(s,,s) is known for simple crack shapes, Fig. 3 and Eqgs 42 and 43. Thus, Eq
63 is ready for use, provided that da(s;) = 0.

How does one calculate 8K,(s,) at a location like s, in Fig. 5, where 3a(s,) # 07 In
general, the following procedure solves the problem: We represent the given da(s) as the
sum of two functions ‘

da(s) = d,a(s) + [da(s) — d.a(s)] (64)

where 8.a(s) = da(s) at s = s, so that the second function, in brackets, vanishes as
required for validity of Eq 63, and where 3,a(s) is a simple motion of CF for which it is
straightforward to calculate independently 3. K,(s.), the variation of K, corresponding to
8.a(s). Thus

W(s.,s)

1
3K (sy) = 8*K1(S*) + E;T-PVJCF DZ(S*’S)

K (s)[da(s) — d4a(s)] ds (65)

As examples, we may take for 8, a(s) a rigid translation of CF of amount n(s,)3a(s.),
so that

3.a(s) = n(s) - n(s,)da(s,) | (66)

where n(s) is the unit outer normal (in the x,z plane) to CF at location s. For a finite-size
crack in an unbounded solid under remotely uniform tension, such translation gives
3.K,(s,) = 0. Alternately, as in Refs 11 and 12 for circular CF, one may sometimes take
a self-similar scaling of the crack shape by expansion relative to any convenient location of
the x, z cordinate origin, which does not lie along the tangent line to CF at 5. In that case,
3.a(s) has the form r(s) - n(s)8\, where here r is the position vector along CF, and we
choose 8A to make 8,a(s,) = da(s,). Thus

5.a(s) = r(s) - n(s)da(s.)r(s.) - n(s,) (67}

Yét a third alternative for choosing 3,a(s) is provided by a rigid rotation of CF about any
point which does not lie on the perpendicular to CF at s .

This discussion has focused on growth from the solid line CF in Fig. 5 to the dashed line.
However, often the given reality in a problem is the actual (dashed line) crack front. Then
* the solid line CF is just an artifact that we introduce and are free to locate arbitrarily, subject
to the restrictions that we must know how to determine K, along CF and that we want it
to be close enough to the actual shape to justify use of the first order perturbation formulae.
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Thus, if we want to know K at the location marked s, along the dashed crack front in Fig.
5, we simply position the (arbitrarily chosen}) solid-line CF to pass through that location, as
has been done for the figure. Examples follow shortly.

Variation of W—Equation 63, or its relative, Eq 65, provides a solution for 8K,(s,)
provided that one knows W(s,,s). W is known for simple crack shapes, Eqs 42 and 43.
However, one cannot consider yet Eq 65 as providing an infinitesimal 3K, distribution,
associated with infinitesimal da(s), which can be integrated over a sequence of successive
crack shapes, starting at a simple shape, to give K, for a general crack shape, because a
procedure for calculating the evolution of W(s,,s) has not been given. '

Such a procedure can be obtained by applying Eq 63 to loading by a pair of unit y- -direction
point forces on the crack faces at (x,z). Thus the K (s) appearing in Eq 63 becomes
ki, (x,z;s) of Eq 32, given for simple crack shapes by Eqgs 36 to 38 and, in general form,
by Eq 40. We choose a 8a(s) which, as in Fig. 5, vanishes at two points s, and s,, for which
we wish to know W(s,,s,). [If the given 8a(s) does not already so vanish, it can be modified
to do so by a procedure like the one in Eq 64, combining any appropriate pair of translations,
rotation, and scaling.] We choose (x,z) as the point (x,,z,) at distance p, along the per-
pendicular to CF at location s, in Fig. 5. Then

1 W(s,,5)

8ky(xy,2438)) = — PV DG s) ki, (x2,2238)3a(s) ds | (68)

to first order in 8a(s) where, from Eq 40,

V2p,W(x,,2,;55)

fi(x2,2235) = D?(x3,22;5) (9)
Thus by dividing by Vp, and then letting p, — 0, we obtain the new result
SW(SZ,Sl) — D-(SZsSE) PV W(SIsS)W(SZaS) BG(S) dS - (70)

211' CFD (S],S)Dz( 2., )

to first order in 3a(s), when da(s,) = 8a(s,) = 0.

In principle, this equation lets us begin with any simple crack shape for which W is known
(for example, as W = 1 along a circular crack) and to sum by integration a sequence of 3W
associated with infinitesimal 8a(s) to calculate W for an arbitrary crack shape. To make the
procedure work, one must find simple functions of type 8,a(s) in Eq 64 above, for which
the associated 3, W is readily computed, and which have two disposable degrees of freedom
to make da(s) = &.a(s) at locations corresponding to all possible pairs of arguments of
W(s..5«"). One then rewrites Eq 70 analogously to how Eq 63 is rewritten as Eq 65.

- Fortunately, the simple 8,a(s) functions can be provided for cracks in unbounded solids by

combining translations, rotation, or scaling, all of which then cause zero change 8, W in
the function W associated with a fixed pair of phase features along CF.

While the idea is simple, the algebra necessary to write out fully the 3,a(s) is complex
and is not pursued here, except in the simple variants of Eqs 72 and 76 to follow. The
important point is that W{s,s') can be determined, in principle, for complex crack shapes
by integration, and once W(s,s) is known through a sequence of crack shapes, K,(s) due
‘to arbitrary loadings is likewise determined, in principle, by integration. That is, Eqs 63 or
65 and 70 can be regarded as a pair of equations which allow us to solve for K along a
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complex crack geometry by integrating over a sequence of crack shapes, beginning with a
simple one. While that is of great theoretical interest, it remains to be seen if the formulation
outlined, when implemented numerically, offers any advantage over more customary meth-
ods of three-dimensional crack analysis.

First-Order Expressions for K, Along Perturbed Crack Fronis.

Half- Plane Crack—Consider 2 half-plane crack with front lying along the curve x = b(z),
Fig. 6a, where b(z) differs slightly from constancy. To calculate K,(z,), that is, the K, at
the point along the crack front whose coordinates (x,z) are {b(z,), z«], we choose for CF
the straight crack front, as in Fig. 2, with a identified as b(z,). Let K§{z;a] denote the X,
distribution that the applied loads would induce along a straight crack with tip at x = a, as
in Fig. 2. We regard K3{z,a] as a known function of its two arguments. Thus, with the
choice of CF made above, we identify 8K(z) as K,(z) — [z b(z ,)], and thus have [7]

Ki(z2) = Kilzuib(z)] + 5=V [ K—[?-;’?-(-j—;j[b( 2 - b ds (T

to first order in b(z) — b(z,). An analogous expression, accurate to first order, based on
Eq 34 was also given [7] for the crack-face opening Au,(x,z).
The shear modes are addressed in a similar manner, but involve somewhat more com-

(VR

. T

z-b(z)

(b)

'FIG. 6—(a) Half-plane crack with perturbed front. (b) Perturbed circular crack or circular connection.
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plicated expressions because they couple together. The expressions analogous to Eq 71 for
K; and K, are given in Ref 9.

We may also record a first-order expression, derived from Eq 70 with W = 1, for the
half-plane crack with tip at x = b(z). Translation and rotation have been used to make
vanish the terms corresponding to 8a(z) at z; and z,. Thus

) - (z), = z,) e 1
A I B
* [b(.z) - %%1—) @z - 2, - z,) — 22 2 2(2) u b(-z‘)] dz (72)

to first order in the deviation of b(z) from constancy. A little analysis shows that knowing
W to first order enables one to determine K{ z) to second order, although this is not pursued
further here. R '

- As an example, suppose that

b(z) = ay + B cos(2mwz/\) (73)

where A > 0 and, for validity of first-order expressions, we assume 2 wB/\ < 1. Then, when
the external loadings cause K,°[z;a] to be independent of z, and then denoted by K°{a],
we obtain

K.(z) = Ky[ay + B cos(Zmz/\)|[1 — (wBIN) cos(2mwz/A)] (74)
Expanded consistently to first order in B, this is

K,(z} = K°[a,] + {%"J— - {-Kﬁ[aﬂ]} B cos(2wz/\) (75)

The fonction W(z,,z,} associated to first order with this choice of b(z) is

(76)

. 2wB |sinm; — sin cos 1, + COs
W(zz)) = 1+ [ m: My _ COS M m]

A M: — T 2

where = 2wz/\ and, as remarked, this would actually allow expansion of K,(z) to order
B,

Slightly Noncircular Crack—Figure 6b shows a slightly noncircular crack, corresponding
to radius R = R(8) as measured from the adopted coordinate system. Thus, let K,°[0;4]
be the intensity factor which the given applied loadings would induce around a circular crack
of radius, a (as in Fig. 3b). To calculate K (0,), we take CF to be the circle of radius ¢ =
R(6,). Thus, Eq 63 with 8K,(8,) identified as K,(8.,) — K°[0., R(8,)] leads to

K,(G*) = Klo[e* ;R(B*)]

1o e Ke[0:RO)R(OVR(D.) = 1]
* & PV ,[] sin?[(6 — 0,)/2] a8 : 7

to first order in R(6) — R(8.), as in Ref 11,
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If we consider axisymmetric loading so that K,°[8;a] is independent of 6, hence denoted
K°{a], and consider the perturbation

R(9) = a + B cos n - - (78)

(where » is a positive integer and nB/a, < 1), then, when consistently expanded to first
order in B, Eq 77 gives a result identical to Eq 75 when we replace z with 4,6 and identify
A as 2mway/n.

Gao and Rice [17] tested the range of validity of Eq 77 by using it to calculate K, along
an elliptical crack and found good agreement with the exact solution up to 2:1 aspect ratios.
Comparable accuracy was found for displacements Au, estimated by the first order formula
based on Eq 34. The estimate of K, was found to remain good up to aspect ratios approaching
5:1 when the reference circular CF was given a radius equal to that of the minor semi-axis

of the ellipse (maximum inscribed circle), with the center of the reference circle then being
shifted, in general, from that of the ellipse to make 8a = 0 at a location of interest.

Corresponding results for shear loading of cracks perturbed from a circle are given by
Gao [15]. An alternate, approximate approach to planar tensile cracks of arbitrary noncir-
cular and nonelliptical shape has been given by Fabrikant [36].

Slightly Noncircular Connection—Now let a connection, joining two half-spaces, occupy
the region shown in Fig. 65, with boundary R = R(8). Let K,°[0;a] be the intensity factor
which the given loadings induce when the connection is circular, of radius a, as in Fig. 3c.
- As already suggested by Eqs 42 and 43, in this case the results depend on the conditions of
restraint (or its lack) that one assumes for the remote displacements in going from the
circular reference shape to the actual shape. Thus [12]

Ki(9,) = K°[6,:R(6.)]

= W(0.,8)K[6;R(6,)][1 ~ R(B)/R(6,)]
PV j sin’{(6 — 9,)/2] @ O

to first order in R(8) — R(6,), where
W(6,,8) = 1 + 4sin®[(8 — 0,)/2][1 + 6 cos(d — 8,)] (80)

from Eq 43 when remote points are unrestrained, where the 6 cos(8 — 6,) in the final
bracket is dropped when remote points cannot rotate but can move in the y direction, where
the 1 in the final bracket is dropped when remote points on a y axis through the center of
the reference circle cannot displace in the y direction but can rotate, and from Eq 42 the
entire final bracket is dropped when remote points are constrained against any motion.

For axisymmetric loading, in the sense that K,°[8;a] is independent of 6, and denoted
K°[a], the perturbation

R(6) = a, — B cos né (81)
(minus sign, compared to Eq 78, so that positive B corresponds to crack growth) leads to

K.,_(B) = Kyla] - {@% + fat— KI"[an]} B cos n@ (82)
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Here, in dealing with remote displacement restraint cases in the order given after Eq 80,

one has the following: unrestrained, n, = —3 when n = 1 and n; = n + 2 otherwise;
restrained against rotation only, n, = n + 2; restrained against y direction displacement
along axisonly, n, = —5whenn = landn, = n otherwise; totally restrained, n, = n.

Finite-Element Analog—Following deKoning and Lof [37], in three-dimensional finite-
element studies of cracked solids, the crack-front position is specified by corner-node po-
sitions for the string of elements along CF, and a stress intensity factor K", K@, . ..
K{™ may be associated with each such node, the latter regarded as being defined [37] as in
Eq 60 from the calculated near-tip opening, Au,, along a perpendicular to CF at the as-
sociated corner node. Parameters, a,, a,, . . . , a,, characterize crack front position; they
vanish along CF and correspond to outward shifts of the corner-node positions along per-
pendiculars to CF. The linearized form

Kf' = [K{]O + [0K("/9a,]%, ‘ (83)

is now considered, where the superscript (0) means that the quantity is evaluated with ail
@; = 0, that is, for the crack front along CF.

The 3K{)/3a, are calculated from 3(Au,)/da; at fixed distances from the moving crack tip
nodes, and these displacement derivatives at ¢, = 0 are calculated directly from the inverse
of the stiffness matrix for the unperturbed crack geometry and from certain quantities that
are calculated in the stiffness derivative procedure [37]. In fact, displacement derivatives
calculated in this way form the discretized weight functions in the Parks and Kamenetzky
[3] finite element formulation, so that the deKoning and Lof procedure seems to be a
discretized version of the steps presented here for calculating X, to first order along perturbed
crack fronts. ‘

Application to Crack Trapping—Crack trapping arises in brittle crack advance through
solids of locally heterogeneous fracture toughness. The front advances nonuniformly and
has segments which are trapped, at least temporarily, by contact with tough obstacles whose
K. exceeds the local X,.

In an idealized model! of the process the crack may be considered planar, as here, but
with a wavy front as in Figs. 6a and 65. Important problems are to predict, in a statistical
sense, the configuration of the crack front and the far-field K, or load level which just
enables growth through the heterogeneous fracture resistance. An elementary approach {16]
can be based on the first order perturbation results of Eqgs 71, 77, 79, and 83. This will not
suffice for all problems. For example, with sufficiently tough local obstacles, crack-front
segments will tend to bow out between obstacles and ultimately join with neighboring bows,
to advance forward as a single crack whose surfaces remain bridged by uncracked obstacles
left behind. Description of such processes lie outside the range of the first-order perturbation
and will require the integration of perturbation effects along a sequence of crack shapes as
discussed following Eq 70.

For cases with sufficiently tame crack fronts, amenable to the first-order perturbation
approach, Egs 71, 77, and 79 become singular integral equations for crack-front locations
b(z) or R(8). Each point along the crack front is either active (K, = local K,.) or trapped
(K; < local K,,). In general, if we start with an initial half-plane crack front and increase

‘the load, K,(z) is known as a function of 5(z) (on which the local X i depends) in active
segments which are taking part in growth; b(z) is unknown there. Also, b(z) is known
where the crack front remains trapped, while K 1(z) is unknown there. Thus, Eq 71 can be
regarded as an integral equation whose solution gives crack-front shape b(z). Complications
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are that the active and trapped zone locations are not known a priori, that a previously
active zone may later become trapped, and that the problem will not always have a solution
(for example, when conditions are met for part of the crack front to jump forward dynam-
ically, either to a new array of trapping obstacles or as the start of final fracture).

The simplest case is for the half-plane crack with K,°]z,4] independent of z and, for the
size of excursion b(z) considered, of a, too. Hence it is written simply as K.°, effectively
dependent on applied load only, and then Eq 71 becomes, after integration by parts [9]

= db{z)ldz iz

1 +
Ki(z,)/K? = 1+ 5= PV f pa— (84)

This is of the same form as for plane stress of a thin elastic sheet occupying the x,z plane,
where loading of the sheet is by remotely uniform stress ¢2, and its entire z axis can open
up by an x-direction displacement gap of distribution A( z), hence creating nonuniform stress
0..(z) at points along the z axis. In that case, 0.,(z)/c} corresponds to K(z)/Ky’ in Eq
84, and (1 + v)pA(2)/0% to b(z). Thus, prescribing K,(z) along active portions of the
crack front is equivalent to prescribing o,,(z) in the plane stress problem over the same
segment of z axis, which is then regarded as a cracked segment. Prescribing b(z) along the
trapped portion of crack front corresponds to prescribing the opening gap A(z) over that
segment of the z axis.

As a simple example [16], suppose the segment —H < z < + H is active, with K, = K|,
but that segment H < z < 2L - H is completely trapped with b(z) = 0. Let these active
and trapped zones alternate periodically, with period 2L, and symmetry relative to z = 0
(middle of an active zone) and z = L (middle of a trap). The problem is analogous to that
of a periodic infinite array of collinear cracks in plane stress [38]. Thus, the solution, for
example, for the average b, of crack penetration b(z) over an active zone like —H <
z< +H,is

bpn = (4LYmH)1 ~ K,./K,)tn[l/cos(wH/2L)] ' (83)

When K,. = 1.5K,,, this equation predicts b,.,/2H = 0.49 when (L — H)/L, the line
fraction of traps, is 0.1 and b,,/2H = 0.29 when the line fraction is 0.5. The maximum
penetration b(0) for these two cases is only about 25% above b..

Configurational Stability in Quasi-Static Crack Growth

Suppose that a tensile crack grows quasistatistically (say, by R = 0 fatigue or sustained
load stress corrosion) under elastic fracture-mechanics conditions, such that the rate of crack
growth is an increasing function of K,. Further, suppose that the nature of the loading is
such that K, is uniform along the crack front initially, and that a solution exists to the
combined equations of elasticity and quasistatic crack growth such that crack can grow while
maintaining a uniform K, along its front.

Such would be the case for homogeneous materials containing half-plane cracks with
initially straight fronts, loaded under plane-strain conditions (K, independent of z), and
also for homogeneous materials with circular cracks or connections under axisymmetric
loading (K, independent of §). In these respective cases, a solution exists such that the
crack continues to grow with a straight or circular front.

Here we review conditions for such crack fronts to be configurationally stable. That is,
if the crack front starts off slightly deviated from that ideal shape, will those deviations grow
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or diminish as the crack enlarges? Considering trigometric deviations as in Egs 73, 78, and
81, stability requires that K, be smallest where the crack has advanced most and largest
where the crack has advanced least, for then the corresponding variations in the growth
rate will tend to diminish the amplitude of the crack front fluctuations. Conversely, if X, is
greatest where the crack has advanced most, and smallest where least, then the variation
in growth rates causes the fluctuations in crack front position to grow in amplitude.

Thus, since B times the cosine term measures advance of the crack front in Eqgs 73, 78,
and 81, for configurational stability we require that the coefficient of B times the cosine
term in the resulting expressions for K, be negative. Thus, assuming X,°[a,] > 0 and letting

Q(a,) = {dK\°[a,)/dao}/ K °[a,] . (86)
one has from Eqs 75 and 82 that for configurational stability
0(a,) < w/A (87)
for a half-plane crack subject to perturbations of wavelength A(>0) [7],
2a,0(a;) < n | (88)

for a circular crack with perturbation having n(>0) wavelengths on its circumference (A =
2%ay/n) [11], and

—-2a,Q(ay) < n, (89)

for a circular connection with perturbations having » wavelengths on the circumference [12],
where n; is the function of #, dependent on conditions of remote displacement restraint,
given after Eq 82. When the inequalities are reversed, Egs 87, 88, and 89 become conditions
for configurational instability.

These expressions show that growth with negative Q for the half-plane and circular crack
is always configurationally stable. Also, there is inevitably stability against perturbations of
short wavelength A or high n. Thus, if there is to be configurational instability, it will tend
to develop at long wavelengths or low n.

For an edge crack of depth 4, in a remotely stressed half space, Q@ = 1/2a,, and thus Eq
87 predicts configurational stability unless A is so great as to exceed 2ma,. This could be
important for initially short cracks, but the value of \ is so great compared to crack length
that no reliance can then be put on predictions based on the half-plane model.

For circular cracks under remote tension, 24,0 = 1 so that by Eq 88 there is neutral
stability when n = 1 (corresponding to translational shift of the crack front) and stability
for all higher n. For a crack loaded by pressure {111, p = p(R) > 0 dependent on distance
R from the center, there is stability to all n if dp/dR < 0. If dp/dR > (, the translational
shift mode (n = 1) is unstable, and if p increases rapidly enough with R (as happens for
p = constant X R), higher n become unstable too, such as n = 2 corresponding to an
elliptical-like growth mode Note that these unstable growth modes represent effects, pre-
sumed to be small at least initially, superposed on the basic axisymmetric growth mode.

Similarly, for the circular connection under remote axially symmetric tensile loading [12],
there is stability when n > 1. However, the n = 1 translational shift mode is neutrally stable
[12] when the remote points are constrained agamst rotation {this means that the crack
grows as-a circle but does not necessarily remain of fixed center). For loading only by a
remotely imposed force, centered on the circular connection, with no restraint against remote
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rotation, the translational shift mode is unstable. The crack initially tends to grow in a circle
but of shifting center, and this induces an unfavorable moment relative to the shifting center
- which aggravates the effect and ultimately leads to strongly noncircular growth [12].
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