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Crack Paralleling an Interface 
Between Dissimilar Materials 
A crack paralleling a bonded plane interface between two dissimilar isotropic elastic 
solids is considered. When the distance of the crack from the interface is small com
pared to the crack length itself and to other length scales characterizing the 
geometry, a simple universal relation exists between the Mode I and Mode II stress 
intensity factors and the complex stress intensity factor associated with the cor
responding problem for the crack lying on the interface. In other words, if the in
fluence of external loading and geometry on the interface crack is known, then this 
information can immediately be used to generate the stress intensity factors for the 
sub-interface crack. Conditions for cracks to propagate near and parallel to, but not 
along, an interface are derived. 

1 Introduction 

Bonded interfaces between dissimilar elastic materials often 
separate by cracking, as would be expected if the toughness of 
the interface is low compared to that of the abutting materials. 
In some instances cracking is observed to occur approximately 
parallel to the interface but with the crack lying entirely within 
one of the two materials. The aim of this paper is to analyze 
subinterface cracks which parallel the interface and to ex
amine conditions under which they might be expected. 

The mathematical problem which is analyzed is introduced 
in Fig. 1. Each material is taken to be isotropic and linearly 
elastic. The interface lies along the xx axis with material #1 ly
ing above and #2 below. Plane strain deformations are con
sidered. Attention will be restricted to subinterface cracks 
which lie below the interface at a distance h which is small 
compared to the length of the crack L and to all other relevant 
geometric length quantities in the problem. As indicated in 
Fig. 1, we will consider the asymptotic problem for the semi-
infinite subinterface crack. The remote field in the asymptotic 
problem is prescribed to be the near-tip field of the interface 
crack problem (everywhere but in material #2 between the 
crack and the interface). That is, the solution to the subinter
face crack problem at any point a fixed distance from the tip 
approaches the solution to the corresponding interface crack 
problem as h~0+ with L fixed. Thus, at distances from the 
tip which are large compared to h and small compared to L, 
the near-tip field of the interface crack problem pertains. Pos
ing the problem in this manner permits us to develop a univer
sal relation between the Mode I and II stress intensity factors 
of the subinterface crack and the corresponding "complex" 
stress intensity factor of the interface crack. This relation is 
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Asymptotic remote field merges with near-tip 
field of interface crack problem 

Fig. 1 Relation of asymptotic subinterface crack problem to interface 
crack problem 

otherwise independent of loading, crack length, and external 
geometry. 

With the universal relation in hand, we examine conditions 
under which propagation of a parallel sub-interface crack 
should be expected. When conditions do favor such cracks, 
the analysis predicts the separation distance from the 
interface. 

2 Formulation and Solution 

The singular near-tip field of the interface crack problem 
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Table 1 Values of <*>(«, /S) 
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(England, 1965; Erdogan, 1965; Rice and Sih, 1965) gives rise 
to tractions directly ahead of the tip (6 = 0) given by 

<j21 + ion=K(2w)-mrk (2.1) 

where K=Kx+iK2 is the complex stress intensity factor, 
/ = V( -1 ) , and 

1 . f G^G^-Av^ 
t = In (2.2) 

2TT L G2 + G,(3-4y2) 

where G is the shear modulus and v is Poisson's ratio. Here 
K= (kx + ik2yfir cosh 7re where kx + ik2 is the complex intensi
ty factor as originally introduced by Rice and Sih (1965). The 
Vir is standard in converting the lower case k's of that period 
to K's; we include the factor cosh ire so that the magnitude of 
the traction vector on the interface is given by 
X( ff22 + a\2) = I K I / V 2 7r r , a n a l o g o u s l y t o 
the homogeneous material case. The associated crack face 
displacements a distance r behind the tip are given by 

<5, +/5, =2 
K i - ^ / G . + a - i ^ / G j ] 

•K(r/2ir)1 (2.3) 
(1 + 2;'e)cosh ire 

where 8a = ua ( - r, 0 + ) - ua ( — r, 0 _ ). The fact that equation 
(2.3) predicts interpenetration in a (usually) small 
neighborhood of the crack tip is not relevant in the present 
context. Dimensional considerations dictate that K must be of 
the form 

K= (applied stress) X (VZ L~k) xf (2.4) 

where L is a length quantity such as crack length and / is a 
nondimensional possibly complex function of dimensionless 
combinations of the material moduli and the geometric 
parameters. Two specific examples will be given in Section 3. 
The energy release-rate (per unit extension along the interface 
per unit length of crack front) is 

„ r ( i~» 1 ) /G 1 +(i ->< 2 ) /G 2 - ' 
\KK (2.5) 

L 4 cosh27re 

where ( ) denotes the complex conjugate. 
The tractions on the line directly ahead of the subinterface 

crack tip satisfy 

a22 + ian^(Kl+iKn){2itr)^/2 (2.6) 

where Kx and Ku are the standard Mode I and Mode II stress 
intensity factors. The energy release-rate is 

1~"2 

2G, 
-](*?+*?,) (2.7) 

As discussed earlier, the remote stresses in the semi-infinite 
subsurface crack problem are required to approach (for all 6 
but 6 = if) the characteristic Williams singular field of the in
terface crack, which can be written as 

<Tnfl = Re[*(2,rr)-l'2/*ffO0(0)] (2.8) 

with universal (complex) angular dependence cfaj3(0) for a 
given material pair. The remote crack face displacements ap
proach equation (2.3). The only length quantity in the semi-
infinite sub-interface crack problem is h. From dimensional 
considerations and by linearity it follows that 

Ki+^^cKh't+dKh-" (2.9) 

where c and d are dimensionless complex constants depending 
only on dimensionless combinations of the moduli of the 
materials. The depth of the crack below the interface must ap
pear as the factor hk to combine with L~k in equation (2.4) as 
the dimensionless term (h/L)K. 

By considering a unit advance of the semi-infinite crack, 
one concludes by an energy argument, or equivalently by ap
plication of the /integral, that the energy release-rate given by 
equation (2.7) must be equal to that given in equation (2.5). 
That is 

K2+K2
l=q2KK (2.10) 

where 

l 2 C0Sh27T€ L 

l ) 

G , ( l - i » 2 ) + ']} (2.11) 

Using an argument similar to that of Thouless et al. (1987), 
one can show that d = Q, and then substitution of equation 
(2.9) into (2.10) gives cc = q2 and thus 

c = qe'* (2.12) 

so that the relation (2.9) is fully determined apart from the 
single dimensionless function <j> of the elastic moduli. A fur
ther simplification is achieved when use is made of Dundurs' 
(1969) observation that for problems of this class the moduli 
dependence can be expressed in terms of just two (rather than 
three) special nondimensional combinations. In plane strain, 
Dundurs' parameters are 

G I ( 1 - K 2 ) - G 2 ( 1 - J ' , ) 

and 

0 = 
1 

G . d - ^ + G^l-K,) 

G,(l-2^)-G2(l-2v1) 

(2.13) 

2 0 , ( 1 - ^ + 0 , ( 1 - ^ ) 

where the roles of 1 and 2 are switched from Dundurs' defini
tions. These parameters vanish for identical materials across 
the interface and they change sign when the materials are 
switched. The quantities e and q can be reexpressed as 

1 r 1-/3 1 

^ ^ H - T T F J
 (2-15) 

and 

L 1 + aJ (2.16) 
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Table 2 Some special systems: 

SYSTEM © / © 

A l ^ / C u 

Cu/Al203 

MgO/Au 

Au/MgO 

Si/Cu 

Cu/Si 

MgO/Ni 

Ni/MgO 

Al203/Ti 

Ti/AljOj 

A!203/Nb 

Nb/AljOj 

a 

.51 • 

-.51 

.51 

-.51 

.094 

-.094 

.14 

-.14 

.56 

-.56 

.57 

-.57 

P 

.089 

-.089 

.011 

-.011 

-.033 

.033 

-.015 

.015 

.12 

-.12 

.060 

-.060 

e 

-.028 

.028 

-.0036 

.0036 

.0105 

-.0105 

.0049 

-.0049 

-.039 

.039 

-.019 

.019 

<t> 

.078 

-.104 

.069 

-.108 

.012 

-.014 

.020 

-.023 

.089 

-.114 

.081 

-.122 

G v G v 

Au: 0.293xlOnN/M2 0.417 Cu: 0.478 0.345 

Ti: 0.434 0.322 A]20): 1.792 0.207 

Ni: 0.808 0.314 Nb: 0.377 0.392 

MgO: 1.283 0.175 Si: 0.688 0.220 

An integral equation formulation of the semi-infinite 
subinterface crack problem is given in the Appendix. 
Numerical solution of the integral equation for various com
binations of a and (3 has been carried out, the numerical values 
for $(a, /3) are presented in Table 1. As discussed in the Ap
pendix, the accuracy of these numerical results is believed to 
be within a small fraction of a percent. For sufficiently small a. 
and p the linear approximation (obtained by a numerical fit in 
the range of small a and /3) 

</> = 0.1584 a + 0.0630 (3 (2.17) 

provides an adequate estimate of <t>. For example, with 
a = 0.05 and /? = 0.005 the error of this formula is only 1.3 per
cent while with a = 0.14 and j3= -0.015 it is 6.7 percent. 

Combining equations (2.12) and (2.9) gives the basic result 
for the stress intensity factors of the subinterface crack in 
terms of the complex stress intensity factor of the correspon
ding interface crack for conditions when (h/L) <SC 1: 

Kl+iKn=qe't>Khk (2.18) 

Note that AT, =Kl and Kn =K2 when a and (3 both vanish. 

3 Applications and Implications 

Moduli and values of a, /3, e, and </> are presented for six 
representative material combinations in Table 2. The shear 
modulus and Poisson's ratio listed for each material are 
polycrystalline values derived from Simmons and Wang 
(1971). The values for the cubic materials are the average of 

Fig. 2 Two basic interface crack problems 

the Hashin-Shtrikman bounds and the values for the noncubic 
materials are the average of the Voigt and Reuss bounds. The 
largest values of e are attained by the Cu/Al 20 3 systems. 

Solutions to a number of different interface crack problems 
exist in the literature. See Atkinson (1979) and Park and 
Earmme (1986) for recent discussions. The complex intensity 
factors for the two basic problems (Erdogan, 1965; Rice and 
Sih, 1965) shown in Fig. 2 will serve for discussion purposes 
here. For the semi-infinite crack along the interface be
tween two elastic half-spaces and loaded by concentrated 
loads (per unit thickness) a distance L behind the tip, 

K= (P + iQ) (irL/2)-,/2L-iecosh -we (3.1) 

In the case of a finite crack of length L on the interface be
tween two half-spaces which are subject to remote stresses 022 
and a?2> the complex intensity factor at the right tip is 

K=(o% + wf2)(l + 2ie)(wL/2)y2L-k (3.2) 

(See the discussion in Rice and Sih for the behavior of the 
remote component <JU. Those authors also gave solutions for 
a periodic row of collinear cracks along the interface of a solid 
under remote stressing, and for concentrated loads on the 
faces of a finite length crack.) 

In all cases K can be written as 

K= \K\e'iL^k (3.3) 

since \L~k I = |e-'e /nL I = 1 . Then, by equation (2.18), the in
tensity factors of the semi-infinite subinterface crack are 

Ki =q\KIcos[y + <j) + e ln(h/L)] (3.4) 

and 

Kn=q\K\sm[y + (j) + e ln(h/L)] (3.5) 

Before asking what value of h/L is consistent with crack 
growth parallel to the interface, we first examine an interesting 
feature of the solution for arbitrary small values of h/L. If the 
collection of terms <j> + e ln(h/L) is small, as might easily be the 
ease judging from the systems listed in Table 2, then the stress 
intensity factors are well approximated by 

Kj + iKn = qLkK =q\K\ eh (3.6) 

For example, in the case of the concentrated wedge force (3.1) 

Kl+iKll=q(P+iQ)(t!L/2Y'n (3.7) 

assuming e itself is small. Apart from the factor q, this is just 
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the classical result when no material discontinuity occurs. 
Similarly, the result for the finite crack (3.2) becomes 

K, + iKu=q(o% + /(rr2)(7rZ,/2)1/2 (3.8) 

which is again the classical result multiplied by q. In other 
words, in these examples when e and <j> + e ln(h/L) are both 
small, the ratio of the Mode II to Mode I stress intensity fac
tors is the same as in the corresponding classical problem but 
the energy release-rate is that of the interface crack as reflected 
by the factor q. 

Now consider situations in fatigue, stress corrosion or under 
monotonic loading when the crack will tend to advance in its 
own plane approximately parallel to the interface. Assuming 
the fracture properties of material #2 are homogeneous along 
with its moduli, the crack will only advance in its plane if 
Kn=0. If Kn > 0 it will tend to deflect downward away from 
the interface, while if Kn < 0 it will tend to grow upward. By 
equation (3.5), the condition for the crack to advance parallel 
to the interface in pure Mode I is 

sin[7 + 0 + e/n(/)/L)] = 0 (3.9) 

or 

y + <j> + eln(h/L)=2irn; « = 0 , ± 1 , . . . (3.10) 

with the associated Mode I intensity 

Kl=q\K\ (3.11) 

Values of h/L from equations (3.10) are 

h/L = exp[(2irn-y-<t>)/e]; « = 0 , ± 1 , . . . (3.12) 

but only those values (if any) will be physically meaningful 
which are small compared to unity but not so small that the 
parts of the crack faces make contact, as will be discussed 
below. The crack length L increases as the crack advances and 
thus h cannot remain strictly constant. However, if h at the tip 
satisfies equations (3.12) approximately as L increases the 
slope dh/dL of the crack, the path will be small (and equal to 
the value given by equations (3.12)), with the crack thus nearly 
paralleling the interface when h/L is small. 

As an illustration, consider the symmetric wedge loading 
(Q = 0) of the geometry in Fig. 2(a). By equations (3.1) and 
(3.3), 7 = 0. For the material systems listed in Table 2, the 
largest magnitude of e is 0.04, and it is readily seen that the on
ly physically meaningful solution from equations (3.12), if 
any, is that associated with n = 0, i.e., 

h/L = exp[-<j>/e] (3.13) 

Of the systems in Table 2, only Cu/Si, Si/Cu, Ni/MgO, and 
MgO/Ni have positive values of $/e and might therefore prop
agate a subinterface crack of the kind envisioned here for this 
particular geometry and loading. For Cu/Si, h/L = 0.26; while 
for Si/Cu, h/L = 0.32. The accuracy of these estimates may be 
somewhat questionable since they probably lie outside the 
range of h/L where the asymptotic analysis is accurate. For 
Ni/MgO, h/L = 0.009 and for MgO/Ni, h/L = 0.011, and 
these estimates should be accurate. Evidently the crack could 
satisfy a Kn = 0 criterion by propagating near the interface in 
either phase. We do not investigate here the configurational 
stability of those paths but expect, following Cotterell and 
Rice (1980), that only a path with a negative crack-parallel 
nonsingular stress term at the tip is stable. The conclusions for 
a finite crack paralleling the interface in Fig. 2(b) under 
remote tensile loading ( ^ = 0) are similar. Now, 7 = 2e and 
h/L = exp[-2-<l)/e]. Only the systems noted above will per
mit propagation of the subinterface crack parallel to the inter
face under the pure tensile loading. In general, however, it is 
important to note that the possibility of propagating a 
subinterface crack depends on both the material properties 
and the loading combination, so that subinterface cracks in 

the other systems may occur for other geometries and 
loadings. 

The discussion and the analysis given above assume that 
contact between the crack faces of the subinterface crack does 
not occur. In applications where the near tip conditions of the 
subinterface crack is in pure Mode I and where h/L is not 
ludicrously small, it is unlikely that contact of the crack faces 
will be an issue. If the corresponding interface crack problem 
does indicate contact well away from the tip, at distances as 
large as h or greater, then the possibility of contact in the 
subinterface crack problem should certainly be checked. Solu
tions to (3.12) for h/L are only physically meaningful when 
h/L is not so small that contact will certainly occur or, what is 
more likely, that h is not so small that the crack lies so close to 
the interface that the material at the tip has properties which 
are affected by the existence of the interface. 
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A P P E N D I X 

Integral Equation Formulation and Solution 

A dislocation formulation of the integral equation for the 
semi-infinite crack problem of Fig. 1 is used. The general pro
cedure for formulating such problems is outlined by Bilby and 
Eshelby (1968) and Rice (1968) and the formulation and solu
tion of a similar problem was given by Thouless et al. (1987). 

The depth h of the crack below the interface will be taken to 
be unity here since the dependence of the solution on h is ex
plicitly given in the body of the paper. With reference to Fig. 
1, let x=xt and y=x2 + 1 be coordinates centered at the crack 
tip with ^ = 0 parallel to the interface. Let bx(£) and by(£) be 
the x and y components of an edge dislocation located on the x 
axis at x= £. This problem was first solved by Head (1953). At 
a point (x, 0) the traction on a plane parallel to the x axis in
duced by the dislocation at (£, 0) can be compactly derived us-
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ing Muskhelishvili methods for plane strain elasticity and is 
given by 

oyy(x)+ioxy(x)=2B(Z)(x-£)-i 

+ B(i)Hl(x-i)+B(i)H2(x-i) (,4.1) 

where / = V(— 1), ( ) denotes the complex conjugate, and 
where 

iy,(r)=-i65r/(4+r2)2 

#2(r)=-[^+s)r-2/(s-A)]/(4+r2)+85/(r-2o3 

5(S) = G 2 [ M £ ) + <M£)]/[4«'(i - x2)] 

Here, 

6 = ( |8-a)/C8+l) 

and 

X = (a + j3)/(j8-l) 

where a and /3 are defined by equations (2.13) and (2.14). 
The distribution of dislocations is chosen to give zero trac

tions on y = 0 for x<0, i.e., B(%) with bx + iby now reinter
preted to correspond to a dislocation density must satisfy 

{ £ ( £ ) / / , ( * - £ ) + J B ( £ ) [ 2 ( x - 0 - 1 

+ H2(pc-H)\)dH = Q {A.2) 

where the contribution with the (x—£)"' integrand is the 
Cauchy principal value integral. 

The integral equation (A.2) is supplemented by the condi
tion that the crack opening displacements far from the tip are 
the same as those for the interface crack. That is for large 
negative £, from equation (2.3), 

= [ ( l - i ' 1 ) / G 1 + ( l - i . 2 ) / G 2 ] i £ ( - { ) - f e 

V2^FT) 
(A.3) 

cosh we 

and, therefore, as £ oo 

£(£) = (27rr 3 / 2 ( l - /3 2 ) 1 / 2 ( l+ « ) - ' £ ( - £ ) - 1 / 2 _ / e 04-4) 
To put the integral equation into a form suitable for 

numerical solution, make the change of variables 

x= ( M - 1 ) / ( K + 1 ) , - 1 < M < 1 

£ = (t-\)/[t+\), -\<t<\ 

and let 

f B X - $ = 2 ( « - 0 / [ ( « + l ) ( f + l ) ] 

Then, with/I ( 0 = 5 ( | ) , equation 04.2) can be reduced to 

j 1
] y i ( 0 ( K - 0 - 1 * + j _, M ( 0 # i ( f l 

+ ̂ 4(O[l + ^ + //2(f)]l(l + 0 - 2 * = 0 04.5) 

The approximation for A ( 0 was taken as 

7?(1-/32)1/2 (l + 01/2+,E 

A(t)={2wY 
2 f c( l+a) 

(1 + 0 

/ ! - / 

' 1 - f 
HckTk-At) (4-6) 

where the c's are complex coefficients which must be obtained 
by the solution process and 7} (t) is the Chebyshev polynomial 
of the first kind of degree j . The lead term in equation 04.6) 
gives the correct asymptotic behavior (AA) as £—— oo or, 
equivalently, as t— - 1. The stress intensity factors are given 
by 

Kl+iKn 

or 

A:I + /A' I I=A'(I 

= (27r)3/2lim [(-
£ - 0 -

zy/2B(m 

/ 3 2 ) 1 / 2 ( l - a ) - ' 
N 

+ (2TT)3/2V2X; (A J) 

The solution procedure is essentially the same as that 
employed by Thouless et al. (1987). When the representation 
(A.6) is substituted into 04.5) the integral equation becomes 
an equation of the form 

N 

£ [c tI,(«, k)+ckI2(u, k)] = Kl3(u)+KI4(u) 04.8) 
k=\ 

where the integral expressions for the F& are readily identified. 
For example, 

/ ,(«, Ar )= j ' i i / 1 ( f )T ,_ 1 (O( l + 0 " 1 ( l - 0 " 1 / 2 ^ 04-9) 

These integrals are evaluated numerically for specific values of 
u and fc. Some further reduction of the integrals is necessary to 
render them in a form suitable for efficient numerical evalua
tion. Moreover, great care must be taken to ensure that the in
tegration scheme provides a sufficiently accurate estimate of 
each integral. Accurate evaluation of these integrals is the ma
jor obstacle to accurate evaluation of the stress intensity 
factors. 

With the real and imaginary parts of ck for k = 1, TV 
denoting the set of 2TVunknowns, the real and imaginary parts 
of equation 04.8) are satisfied at TV points u,- on the interval 
- 1 < u < 1. The numerical results reported in Table 1 were 
computed using Gauss-Legendre points for the «,-. The solu
tion procedure produces both Kx and Ku, yet from energy-
release considerations the sum of the squares of the intensity 
factors is known (2.10). This provides an independent check 
on the accuracy of the numerical solution. The results 
reported in Table 1 were computed with TV= 20. The indepen
dent check (2.10) was satisfied to better than 0.1 percent for 
essentially all the (a, /3) pairs reported in the Table. It is be
lieved that the accuracy of <j> is comparable. 
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