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Elastic Fracture Mechanics
Concepts for Interfacial Cracks

Elastic fracture mechanics concepts are reexamined for a crack on the interface be-
tween dissimilar solids. A derivation by function theory is given of the form of stress
and displacement fields in the vicinity of the crack tip, equivalent to complete
Williams expansions of both inner and outer (external to a nonlinear or contact
zone) type. The complex stress intensity factor K associated with an elastic interface
crack, for which contact is ignored, is discussed and, specifically, its validity as a
crack tip characterizing parameter is noted for cases of small scale nonlinear
material behavior and/or small scale contact zones at the crack tip. That is, similar
values of K for two cracked bodies then imply similar states as the crack tip, so that
conditions for crack growth can be phrased in terms of K reaching a critical failure
locus in a complex plane. The maintenance of a similar state at a crack tip under
change of crack length is shown to require alteration of both the magnitude and
phase angle of a combined tension and shear loading. Some possible definitions of
stress intensity factors K, and K,; of classical type associated with interface cracks
are discussed. Also, the scaling of interface crack tip plastic zone size with load
under small scale yielding conditions is found to deviate from classical scaling, in
proportion to the square of the applied load level, and dependences of the field on

distance from the tip and on load phase angle are found to be linked together.

Introduction

There has been a resurgence of interest in the elastic inter-
face crack problem, for which the characteristic oscillating
stress singularity was determined by Williams (1959), and
solutions to specific problems given by Cherepanov (1962) (see
Cherepanov, 1979, pp. 625-630 and p. 808), England (1965),
Erdogan (1965), and Rice and Sih (1965). Works by Park and
Earmme (1986), Shih and Asaro (1988), and Hutchinson et al.
(1987) provide examples of recent contributions.

Apparently the full form of the near tip field, in the sense of
a complete Williams expansion, has not been given for the in-
terface crack. That is, Williams (1959) gives eigenvalues A\
(with stresses varying in proportion to r*) of the form
A= n(integer) — 1/2 + ie for plane strain or plane stress. Here r
is distance from the crack tip,

e=(172m)t[(k)/py + 1/p2)/ (62/ 1y + /)1, 0]

subscripts 1 and 2 refer to the materials in y>0 and y<0,
respectively, as in Fig. 1, x=3—4» for plane strain and
(3 —)/(1 +») for plane stress, v=Poisson ratio, and p = shear
modulus. However, there are evidently other eigenvalues of
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form A =n. The complete form of the near tip field is derived
here in an analysis that is not based on the Williams (1959)
product solution technique, but rather on an extension to the
interface crack of an analysis by Rice (1968, pp. 214-215)
based on analytic functions. The procedures follow those of
Cherepanov (1962, 1979), England (1965), and Erdogan
(1965) in solving specific interface crack problems.

The work also sheds light on how to interpret the elastic
solutions discussed, in the spirit of linear elastic fracture
mechanics procedures like those developed for cracked
homogeneous solids, when there is a small zone of nonlinear
material response and/or mechanical contact (Comninou,
1977a,b; Comninou and Schmueser, 1978) at the crack tip.
The fact that the elastic interfacial crack solutions discussed
here predict interpenetration of the crack walls near the tip is
frequently taken as a reason to disregard them. However, it is

Fig. 1 Region near crack tip along bimaterial interface
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explained that while the predicted interpenetration means the
solutions must be wrong in detail on the scale of the contact
zone, they do nevertheless provide a proper characterizing
parameter for the near tip state in typical circumstances when
that zone size is much smaller than crack length. The
characterizing parameter is a complex stress intensity factor X,
the same apart from a constant factor as that introduced by
Sih and Rice (1964, Appendix) and Rice and Sih (1965), in
which tensile and shear effects near the crack tip are intrin-
sically inseparable into analogues of classical mode I and
mode II conditions. The inseparability is sometimes ignored
(Malyshev and Salganik, 1965; Cherepanov, 1979). Such is
shown to be suitable in limited circumstances but inap-
propriate, for sufficiently dissimilar materials, when loaded
solids with substantially different crack sizes are compared.

Possible definitions of stress intensity fractors K, and K, of
classical type (and physical units) for interfacial crack prob-
lems are discussed. Some of these characterize the near tip
field just as does the complex K. Also, the nonclassical scaling
of plastic zone size and stress field at the interface crack tip
under small scale yielding is noted.

Near Tip Stress Field

The well-known Muskhelishvili representation of 2D elastic
displacement () and stress (o) fields in isotropic solids can be
put in the form

2u(u,+iu,) =kd(z) + (2—2)¢" () -Q(Z) (2
O +0,,=2[¢'(2)+ ¢ (2)] A3)

Opy = Oxx 200, =2[(2-2)¢" ') -0’ @D+ Q' (]  4)

where z=x+ iy, ¢(z) and Q(z) are analytic, ¢ '(z) = d¢/dz, and
the overbar denotes complex conjugate. We seek the form of
solution in some region R(=R, +R,, Fig. 1) surrounding a
traction-free interface crack tip. Let ¢,, Q,, and ¢,, Q, denote
solutions in the two regions.

Since (0, —i0,,), =(0,, — io,,), along all the interface,

${(0* + 2™~ =850 + ()" (5)
everywhere along the x axis in R. Observing that since ¢,(z)
and Q,(z) are analytic in R,, ¢,(2), and Q,(z) are analytic in
R,, etc., this equation shows that

${2) - 03(2) = 93(@) - 8/(2) = 28(2) (©)
where g(z) is analytic throughout R (including points along all
the interface). The result also analytically continues the defini-
tion of ¢{(z) — 2,(z) to R, and of ¢5(z) — Q{(z) to R,.

On the bonded portion of interface, y=0, x>0 in R,
(uy+iuy), = (u, +iu,),. Thus, after differentiating both with
respect to x,

[18/0)* = {0V = [o3007 =030 Vs ()
on x>0. This equation allows analytic continuation of dif-

ferent linear combinations of ¢’ (z) and Q’(z) across the inter-
face such that

(k1 /p1)91 (@) + (1/12)Q3(2)

= (k2/p2)3(2) + (1/p1)R{ (2) ®
holds everywhere in R. Finally, on the cracked portion of the
interface y=0*, x<0in R we set (o,, —ig,,), =0 (by equation
(5), this will also imply (o,, — iv,,), =0 0on y=0-, x<0). Thus
d/(0)* +02{(x)~ =0 )
on x<0in R.

Now by using equations (6) and (8), we may express the
various functions Q{(z), ¢,(z), and ©;(z) in terms of ¢;(z) and
g(z). The expressions are not written out explicitly here but
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when that for Q{(z) is substituted into equation (9) there
results

(ky/py + 1/ )10 + (ky /1y + 1/p) (X))~

=2(k, + 1)g(x)/ p, (10
on x<0in R. A homogeneous solution of this equation, ex-
hibiting the strongest singularity compatible with bounded
total strain energy, is provided by ¢{(z)=z~ "', with e de-
fined by equation (1). Also, a particular solution is
¢1(2) =2c,8(z)/(c, + c,) where

e =k +1)/py, c3=(xy+ 1)/ p,. (11)
Thus the general solution for ¢{(z) is
/(R)=e" "2~ " flz2) + 2c,8(z)/(c, + ¢3) (12)

where f(z), like g(2), is also analytic everywhere in R. Further,
by using the expressions discussed at the outset of this
paragraph the other functions are given by

Q/@R)=e"z" "+ flz) - 2¢,8(z)/(c, + ¢3) 13)
#;(2) =e™z~ "~ fz) + 2¢,8(2)/(c; +C,) (14)
Q@) =e ™z~ "+ flz) - 20, 8(2)/(c, +cy). (15)

For a pure number {, {* may be evaluated as ei®?.

Williams Expansion; Complex Stress Intensity Factor
A Williams type expansion of the near tip field is generated
from equations (2)-(4) and (12)-(15) by writing fand g as local
Taylor series expansions
b,z".

n=0

@)=Y a,2", @)= (16)
n=0

Then a, represents the strength of the crack tip singularity and

may be written as

a, = K/2V2x cosh(me) a7
where K is a complex stress intensity factor which uniquely
characterizes the singular field. It has been introduced, follow-

ing Hutchinson et al. (1987), such that along the interface
ahead of the crack tip

(0, +i04,)g-0=Kr/N2xr (18)
and along the crack faces
(uy + iux)0=1r - (uy + iux)0= -
= (¢, + ¢)KrVr[2N/2x(1 + 2ie)cosh(e), 19)

whereas the energy release per unit of new crack area is (e.g.,
Malyshev and Salganik, 1965)

G=(c, +c)KK/16cosh?(me). (20)

This K is related to the complex intensity factor k, + ik, in-
troduced by Sih and Rice (1964) and Rice and Sih (1965) by
K= (k, +ik,)Vmcosh(we), and reduces to K,+iK, for a
homogeneous solid (¢, =c,, e=0). For the interface crack of
length L subject to remotely uniform stresses o}, and o3, (Fig.
2)

K= (o5, +iog)(1+2ie)L~NJwL/2
at the right-hand crack tip.

The coefficient b, in equations (16) represents a stress field
of type a,, that is uniform but different in each of the two
phases, in the manner discussed by Rice and Sih (1965). Fur-
ther, equations (16) confirm that the full set of Williams eigen-
values have form A=n—1/2+ie and A=n.

@1
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Nonlinear Material Response and Crack Surface

Contact

Inevitably there will be a zone near the crack tip for which
the present solution representation fails, whether due to
material nonlinearity (e.g., a plastic zone) or to the well-
known surface interpenetration predicted by equation (19),
leading to Comninou contact zones. Let r; be the maximum
radius of any such zone and let r, be the minimum radius from
the crack tip of Fig. 1 to the specimen surface, or other crack
tip, or place of load application. Assume that the excluded
zone near the crack tip is small enough that r; <r,; note also
that r, will be the radius of convergence for the Taylor series
in equations (16). Then the analysis presented above may be
reviewed with R reinterpreted as the annular ring between r,
and r,. Every step is valid, so that the representations in equa-
tions (2)-(4) and (12)-(15) continue to hold with the
understanding that f(z) and g(z) are analytic in the reinter-
preted R, and thus have the Laurent representation

f@A= Y, a2, g@= ), b 22)

n=-o n=-o

onr, < |zl <r,. The terms with negative n coincide to what, in
the homogeneous case, has been called an outer Williams ex-
pansion (Rice, 1974) and, just as shown for that case, the term
b_, =0 since there is no net force acting on the inner zone at
the crack tip.

Small Scale Nonlinear or Contact Zones

For homogeneous materials, linear elastic fracture
mechanics procedures (i.e., characterizing crack growth in
terms of K;+iK) are valid when the inevitable nonlinear
zone at the crack tip is sufficiently small that, when r is re-
scaled on that zone size, the radius r, is effectively infinite. In
that case the ‘‘small scale yielding’’ approach is valid: The ac-
tual crack problem is replaced by that of a semi-infinite crack
in an infinite solid with asymptotic boundary condition that,
at large r, the field approaches that of the standard Irwin-
Williams elastic singularity of a strength characterized by
K, +iK; for the problem. Thus, even though nonlinearities
cause the actual field to differ locally from the Irwin-Williams
stress and deformation distributions, that actual field is
uniquely characterized by K+ iK};, which provides the boun-
dary conditions and hence determines the onset of crack
growth.

The same remarks apply for the interface crack problem in
terms of the complex intensity factor K. It uniquely
characterizes the actual field in the small scale nonlinear or
contact zone case, even though expressions such as (18) and
(19) are not accurate within that zone. Conditions for onset of
crack growth for the interface crack are thus properly phrased
in terms of K for the small scale regime. Within that small
scale nonlinear or contact zone description, the field for
Izl >r, has the representation as in equations (2)-(4) and
(12)-(15) with

0 -2
@)= E a,z", 8(2)= E b,z"

n=—oo

(23)

n=-o

where a, is specified in terms of K for the crack problem, as in
(17). The remaining coefficients of the small scale solution are
determined only as part of a full nonlinear analysis, e.g., as by
Sham (1984) for the homogeneous elastic ideally plastic solid.
They are all unique, if unknown, functions of K.

An improvement which, in the homogeneous material case,
is known to significantly enlarge the range of load levels over
which the small scale yielding analysis procedure gives ac-
curate results is to include in the latter of equations (23), as a
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Fig. 2 Remote tension and shear loading of interface crack

specified term, the term b, representing the crack-parallel near
tip o,, stress of the elastic crack solution (Larsson and
Carlsson, 1973; Rice, 1974).

Near Tip Contact Zone

An elementary estimate of the contact zone size, assuming
that it is small compared to crack size, is given by finding the
largest r for which the opening gap, u,(r,m)—u,(r,— ),
predicted by equations (19) vanishes, that is, for which

Re[Kri</(1 + 2ie)] =0. (24)
For the remotely loaded crack of Fig. 2, let
op, + oy, = TeV 25)

where T'is the magnitude of the traction vector on remote sur-
face y=constant >> L, and where the phase angle ¢ gives its
direction. Thus, ¢ =0 corresponds to tension; ¥ = £m/2 to
shear in the +x directions. In this case equation (24), with
equations (21) and (25), becomes

Re[e(r/L)*1=cos[y—e m(L/N]=0 (26)

Assume now that >0 (if not, we can just exchange the
labels ‘1’ and ““2,”’ which changes € to —¢, and then change
¥ to — ¢ to describe the same physical problem but with e >0).
Let ¢ lie in the range — 7/2<y < + /2, so that some tensile
component always acts. Then the contact zone size r, is
estimated by y —e(L/r)= —n/2, or

r.=Lexp[— (Y + 7/2)/¢]. 27

Since e is typically small, r./L is a rapidly varying function
of ¥ and is very much smaller than unity over most of the
range cited above, including, say, — n/4<y <w/2. It will not
remain small for any ¢>0 when ¢ approaches — /2.

In general e increases with increase of the stiffness ratio
py/p. For example, if we take material ‘‘1”’ as cork (with
v, =0) and bond it to a stiff substrate like alumina (Al,0;) for
“2,”’ so that pu,/u, =0, then € has its largest feasible value (at
least for solids with »=0), namely, ¢=0.175. Among the
harder, nonpolymeric solids, a relatively extreme stiffness
contrast is provided by fused silica (SiO,) or soda lime glass
for “1”” and Al,O; for ‘2, in which case ¢=0.075.
Representative values of e are considerably lower for various
““1’/¢“2”’ combinations of interest for practical metal and
nonmetal interfaces. For example, Hutchinson et al. (1987)
give €=0.039 for Ti/Al,0;, 0.028 for Cu/Al,0,, 0.019 for
Nb/Al, 04, 0.011 for Si/Cu, 0.005 for MgO/Ni, and 0.004 for
Au/MgO based on elastic parameters that they tabulate.

If one adopts r./L <0.01 as a suitable restriction on r,. so
that the small scale contact zone concept may be applied, that
is, so that the field may be regarded as being characterized by
the complex K, then one requires that ¢y > — 7/2+4.605 e.
Thus it is required for validity of the linear elastic fracture
mechanics approach outlined above that Yy > —50 deg when
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e€=0.15, Yy> —77 deg when ¢=0.05, and y > — 87 deg when
€=0.01. These restrictions will generally be met in practical
cases for which there is some nonnegligible tensile component
of the loading relative to the crack.

Although a finite, if extremely small, contact zone is
predicted by the procedure here for tensile loading, ¥ =0,
nonlinear elastic analysis of a particular class of joined
materials in plane stress conditions for that loading (Knowles
and Sternberg, 1983) does not predict contact at the tip.

Coupled Size and Load Phase Effects

Suppose linear elastic fracture mechanics conditions are met
so that crack growth conditions are controlled by the complex
K. A remarkable result is that if we wish to duplicate the con-
ditions near the tip of a crack of length L loaded, for example,
in tension (¥ =0), by testing another body with crack length
L’ #L, then that other body must be loaded by a combination
of tension and shear. This differs from the ordinary fracture
mechanics of homogeneous solids and it means that separate
tensile and shear modes cannot be unambiguously defined.

Consider the geometry of Fig. 2 and rewrite K from equa-
tion (21) as

K=TeY(1+2ie)L~"NxL/2. (28)
Thus if one is to duplicate, in a solid with crack length L’, the

same conditions near the tip as in a solid with crack length L
loaded by traction T at angle ¥, then

T'e¥' (L")~ *VL'=Te¥L~*JL. (29)
Thus the traction 7’ must be altered according to the usual in-
verse square root dependence

T'=TVL/L’, (30)
but the phase angle of the loading must be altered also, to
V' =¢y+em(L’/L). 31)

Usually the phase angle change, ¢’ — ¥, is small. For exam-
ple, if one compares specimens for which the crack lengths dif-
fer by a factor of 10, the change in  is 2.3 ¢, that is, 10 deg for
€=0.075 (the value for fused SiO,/Al,0,) but only 1.4 deg for
e=0.011 (Si/Cu). More extreme changes in L such as com-
parison of a 50 um defect in service with a S mm crack in a test
specimen (L’/L =100) changes y by 4.6 ¢, and this may be
nonnegligible for materials of significant difference in stiff-
ness (e.g., 20 deg for ¢=0.075, and 46 deg for the largest
possible ¢, 0.175).

Another perspective is in terms of a failure locus. Imagine
that from mixed tension and shear loading tests on a solid as in
Fig. 2 with crack length L a locus of stress states o3, oy, at
onset of crack growth have been determined. Such results
define a curve in the o}, oF, plane or, equivalently, define a
polar plot of traction magnitude 7 versus load angle y. Equa-
tions (30) and (31) then show that when the crack length is in-
creased to L', the failure locus both contracts self-similarly
and rotates. Evidently the rotation will usually be small unless
there are extreme changes in L and a large e value.

Awkward as it may seem, the proper physical units of com-
plex K, when one measures stress in MPa and length in m, are
such that a particular value should be reported as

K=C MPaVm m~ 32)

where C is a pure complex number. Also, if one changes the
units for measuring length from m to mm, then not only is the
magnitude of Cincreased by vV1000=32, but so also is its
phase angle changed by —e Mm(1000)= —6.9 € (i.e., by —20
deg when €=0.050). Thus a value of K for which C is real in
some system of units cannot properly be regarded as a ‘‘mode
I’ K, because C would not remain real with some other choice
of units. One must conclude that tension and shear effects are
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inherently coupled near interface crack tips. Particular exter-
nal loadings cannot be said without ambiguity to produce
separate ‘‘mode I tension” or ‘‘mode II shear’’ conditions
near the crack tip.

Once a particular system of units is chosen, the onset of
crack growth may be characterized by C reaching a failure
locus in a complex plane whose axes are the real and imaginary
parts of C. Change of units will both self-similarly scale (as in
conventional fracture mechanics) and also rotate the failure
locus, so that the real and imaginary parts of C cannot be in-
terpreted as ‘‘mode I’ and ‘‘mode II’’ components.

It may be noted that a circular failure locus, whether in the
o5,, o5, plane or the complex C plane, will be unaffected by
rotation. Such a circular failure locus would correspond to a
fixed energy release rate G at onset of crack growth (see equa-
tion (20)), irrespective of the phase angle of the applied
loading.

Small € and Possible Definitions of Stress Intensity Fac-
tors of Classical Type

Despite the intrinsically mixed tension and shear fields at
the crack tip, and the related rotational effects discussed, for
very many material combinations of interest ¢ will be very
small, say, of order 0.01 to 0.03. In such cases the rotation
angle, ¥’ — ¢, associated with a factor of 10 change in L lies
only between 1.3 deg and 4.0 deg. One is therefore inclined in
such cases to neglect the rotation and seek a description
without the complexities associated with complex K. Such has
evidently been the motivation for proposals advanced by
Malyshev and Salganik (1965) and Cherepanov (1979).

Observe that for any interfacial crack problem the complex
K will have the form

K=ATVLL- (33)

where T is an applied traction loading, L is a relevant length
describing the geometry (say, the shorter of crack length, un-
cracked ligament width, and distance from crack tip to a point
of load application) and A is a complex number which depends
on the phase angle of the applied loading, on ratios of the
various other lengths to L and, in general, on v, », and u,/p,.
In describing any component of the singular near tip stress and
displacement field, K always appears as the factor Kr', i.e., as

Kri¢ = ATVL(r/L) = ATVLe~ /D (34)

Equation (18) for the stresses o,, and o,, ahead of the crack
has the same form as for a homogeneous solid if we replace
Kr by K, +iK,;. So also does equation (19) for the crack sur-
face displacements, under the same replacement, at least to the
disregard of terms of order e.

Thus to the extent that K7 is sensibly independent of r over
some range of interest for the application of fracture
mechanics methodology, we might choose a value (any value)
of rin that range, say 7, and characterize the crack tip fields by
intensity factors of classical type defined by

K, +iK; = Kfc = ATVL(#/L)*. (35)

How should 7 be chosen? It hardly matters within very broad
limits, for small e. For example, considering two choices of 7
that differ by a factor of 10, the two resulting values for
K, +iK,; as defined above will have a ratio to one another of

(10)' = %3 = (0.9997 + 0.0230/) to (0.9976+0.06897)  (36)

for e=0.01 to 0.03. These are sufficiently close to unity that
factor of 10 precision in choosing 7 is more than adequate.
Also, if one intends applications over a range of geometrical
sizes so that L varies by a factor of order 10 or less, then the
term (F/L)* in equation (35) will likewise vary by no more
than a term of order (10)*, which has just been seen to differ
negligibly from unity for the small e values considered.
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It is tempting to choose 7 as a fixed fraction of L, say, as
F=L/50 which gives

K;+iKy=Ae 3N TVL 37

and, in fact, differs little numerically for small ¢ from what
one gets by formally setting 7=L (despite the asymptotic
character of the expressions containing K) so that

K, +iK;=ATVL. (38)

The latter choice is consistent with the discussion by
Cherepanov (1979).

Of course, both of these choices for 7 are objectional in
principle. They go against the spirit of elastic fracture
mechanics where the intention (as in the earlier interpretation
of complex K) is to define parameters which fully characterize
the effects of load and geometry on the crack tip field. Ex-
tremely large changes in L, with T altered accordingly, so that
TVL is invariant, definitely affect the character of the near tip
field (the rotation effect discussed earlier). This effect is lost in
equations (37) and (38) since 7 has been scaled to L in those ex-
pressions and hence does itself change. If, however, one limits
attention to more modest changes in L, on the order of a fac-
tor of 10 or less, and to material combinations giving small e
values (as seems typical), then either of equations (37) or (38)
is suitable for operational use in fracture mechanics analysis
within that context. For clarity, it is proposed that one should
refer to these as classical stress intensity factors based on
distance 7=L/50 or L, respectively.

Preferred Definitions of Stress Intensity Factors of
Classical Type

It is preferable in principle to choose 7 in equation (35) as
some material length, invariant to differences of crack size or
other overall geometric dimensions in different applications.
Such an 7 might be chosen as some large multiple of atomic
dimensions or as a multiple of some less well defined ‘fracture
process zone size’’ in certain specified test conditions. Upon
reflection it may be realized that so long as we wish to use K
and K, as characterizing parameters, it really doesn’t matter
how we choose 7 so long as it is fixed for a given material com-
bination, i.e., unaffected by changes in crack size or other
geometric dimensions. Thus a suitable procedure is that one
adopt a fixed 7 for all material combinations and that this be
taken as 7= 1um so that

K, +iK;; = K(um)c = ATVL(um/L)*. (39)

The K; and K; so defined should be referred to as classical
stress intensity factors based on distance F= 1um.

Plainly to the extent that the complex K uniquely
characterizes the crack tip field, so also do K, and K; based
on 7= lum (or on any other fixed 7), and this is so no matter
how much L varies or however large or small is the value of e.
Essentially, the proposed definition of K; + iK; lets one avoid
dealing with the awkwardly complex physical dimensions
(MPa Vm m~¢) of complex K, in favor of those (MPa V) of
classical stress intensity factors, but retains all the features of
complex K as a crack tip characterizing parameter. Its
drawback is that it seems to carry the implication that ‘‘mode
I’’ and ‘““‘mode II’’ have unambiguous meaning.

Finally, one may also observe that if the crack did not quite
lie on the interface but, rather, if its tip was in one of the two
joined solids, then classical K, and K; could be defined at its
tip. In this connection Hutchinson et al. (1987) have recently
shown that if a crack lies parallel to the interface, in material
“2” at y= —h, and if h<< L, then the classical K; and K, at
its tip are given by

K;+iKy = qe Kh' = ghe TVL(h/L)'. (40)
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Here K is the complex intensity for the associated interface
crack problem,

g=1[(1+c,/c,)[2cosh?me] % 1)

and ¢ is a function of »,, », and p,/u, which, for typical
material combinations like those enumerated in a previous sec-
tion, satisfies (like €) I¢| << 1. For those cases of small € and
small ¢ one may write

K;+iK; =qATVL(h/L)* 42)

and, unless L/h is large in a logarithmic sense (i.e., so long as
efn(L/h) is small compared to unity), this can be rewritten, as
Hutchinson et al. note, as

K;+iK;=qATVL. (43)

The coincidence, apart from the factor g (or ge’®) of expres-
sion (43) with (38), and of (40) and (42) with (35) and (39) is
evident. In particular, the K; + ik}, proposed in equation (39)
to be associated with an interface crack coincides, apart from
the factor ge®®(h/pum)* (which will often differ little from g),
with the actual K;+iK,, of equation (40) for an interface-
parallel crack.

Small Scale Yielding at Bimaterial Crack Tips

In the small scale yielding problem, when one or both of the
joined solids deforms plastically, the characteristic dimension
of the plastic zone must depend only on the complex K and
material properties. The properties include the yield strength
g, of the weaker of the two solids, the ratios of yield strengths,
and dimensionless properties describing strain hardening and
ratios of elastic constants. Let r, be that characteristic dimen-
sion. It could represent the maximum radius of the plastic
region or (if different) the radius along 6=0.

Dimensional analysis shows that r, must enter through the
complex dimensionless combination

K/agr} == \AI(T/agWNL/r, €*(r,/L)* (44)

where, in the latter version, A in the generic form of complex
K in equation (33) has been written as |Ale™. This is actually a
pair of combinations (real and imaginary part or, more conve-
niently, amplitude and phase). Thus r, must satisfy an equa-
tion of the form

K , - T?
r,= K—fﬂphase(](r;;)] = AA"UTLﬂ“’ —efn(L/rp)] (45)
ag 0

where fI. . .]is a dimensionless function. This is, of course, an
implicit equation for r,. Furthermore, since the argument,
w—efm(L/r,), enters the dimensional analysis as the phase
angle of a complex quantity, f]. . .] must have a periodic (with
period 27) dependence on that argument.
For the geometry of Fig. 2, A = (1 + 2ie)e¥~/x/2, and thus

w=y +arctan(2¢) where y is the phase angle of the remotely
applied traction, o3, +io%, = Te¥. Thus in that case

r,= —;—(1 + 462)22ij +arctan(2e) — efn(L/r,)].  (46)
9%

It is plausible that r,, should vary with the phase angle y of the
applied traction, and hence that f]. . .] is not independent of
its argument (i.e., not a constant). In such cases it is then re-
quired that for fixed y, r, cannot have the classical small scale
yielding proportionality, r,o T2L/03, because f itself changes
as r, increases.

As an example, Shih and Asaro (1988) have recently done
plane strain elastic-plastic numerical calculations for a
bimaterial crack as in Fig. 2 with ‘‘2’’ being rigid, p,/p, = oo,
(09)2/09 =00, and »; =0.3, in which case e=0.0935. Table 1
summarizes their results for the cases they report which are
definitively in the small scale yielding range (either because
r,<<1 or because they used the small scale yielding formula-
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Table 1

T/o, ¥ rp/L A .1 w—en(L/r,)
2x10°4 0 2.8x10°8 0.431 —1.44
2.236x 107! —1.107(-63.4°) 2.5%1073 0.308 -1.27
6x1073 0 1.6x1073 0.273 -0.85

tion for a semi-infinite crack, with the complex K for the
geometry of Fig. 2 used in asymptotic boundary conditions).
These cases are for a ‘‘deformation theory’’ treatment of
plasticity in Ramberg-Osgood form with hardening exponent
n=3, and r, corresponds to the zone size along §=0. The
loading is described in the first two columns, their finite ele-
ment results for r,/L in the third, and the implied value of
f1. . .]in the fourth. The argument of f]. . .] is reported in the
fifth column. Note that f]. . .] inferred from results with a
strong negative shear component (Y = — 63.4 deg) fits between
those for ¢ =0 but with much smaller plastic zones, the results
being ordered according to values of w—ef(L/r,).

A similar dimensional analysis reveals the form of the stress
field in the small scale yielding formulation. This must have
the form

0;; = 008;[03r/KK ,0,phase(Kr)]

=00g;l03r/AAT?L 0,0 — efn(L /1)) 47)

where there is periodic dependence on the third group and, as
earlier, the g;; depend also on dimensionless material proper-
ties or property ratios.

Notes

Since preparation of this manuscript Symington (1987) has
confirmed the expected result that the original Williams (1959)
analysis leads to crack tip solutions with integer eigenvalues \,
represented here by the series for g(z) in equation (16). Those A
did not appear as a conclusion of the Williams paper since he
had evidently cancelled out a certain trigonometric factor,
vanishing when \ = integer, in evaluating the zeros of the 8 by
8 determinant in his analysis.

Also, in a recent pre-publication revision of their
manuscript, Shih and Asaro (1988) have incorporated a
dimensional analysis of the small scale yielding elastic-plastic
problem similar to that in the last section of this paper. They
simplify the presentation by noting that within the ar-
bitrariness of arrangement of the results of a dimensional
analysis, the r, which appears within the argument of function
f in equations (45) and (46) could equally be replaced by
KK/o%=AAT?L/d}, it then being understood that the func-
tion fis different from that here. This nicely removes the im-
plicit nature of equations (45) and (46) for r,, but likewise
shows that classical scaling with 72L/03 cannot apply.
Similarly, the r within the third argument of g; in equation
(47) could be replaced also by KK/o3=AAT?L/c} with the
understanding that different functions g; apply.
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