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Crack tip stress and deformation fields are analyzed for tensile-loaded ideally plastic crystals. The specific cases of (0 1 O) 
cracks growing in the [1 0 1] direction, and (1 0 1) cracks in the [0, 1, O] direction, are considered for both fcc and bcc crystals 
which flow according to the critical resolved shear stress criterion. Stationary and quasistatically growing crack fields are 
considered. The analysis is asymptotic in character; complete elastic-plastic solutions have not  been determined. The near-tip 
stress state is shown to be locally constant  within angular sectors that are stressed to yield levels at a stationary crack tip, and 
to change discontinuously from sector to sector. Near  tip deformations are not uniquely determined but  fields involving shear 
displacement discontinuities at sector boundaries are required by the derived stress state. For the growing crack both stress 
and displacement must  be fully continuous near the tip. An asymptotic solution is given that involves angular sectors at the tip 
that elastically unload from, and then reload to, a plastic state. The associated near-tip velocity field then has  discontinuities 
of slip type at borders of the elastic sectors. The rays, emanat ing from the crack tip, on which discontinuities occur in the two 
types of solutions are found to lie either parallel or perpendicular to the family of slip plane traces that are stressed to yield 
levels by the local stresses. In the latter case the mode of concentrated shear along a ray of discontinuity is of kink type. Some 
consequences of this are discussed in terms of the dislocation generation and motion necessary to allow the flow predicted 
macroscopically. 

Introduction 

An asymptotic analysis of the crack tip stress 
and deformation field is presented for plane-strain 
tensile cracks in elastic-ideally plastic single 
crystals. Such crystals are assumed to have a 
limited set of possible slip systems and to have a 
critical resolved shear stress for plastic flow to 
occur on each. Here attention is limited to two 
specific crack orientations in face centered and 
body centered cubic crystals, although the analysis 
techniques are applicable to other orientations 
too. 

One orientation considered is such that the 
crack plane is (0 1 0), i.e., parallel to a face of the 
reference cubic cell, and the crack tip lies along 
the face diagonal direction [1 0 1]; the crack grows 
along the perpendicular face diagonal, [1 0 1]. See 
Fig. 1 for the fcc case and Fig. 2 for bcc. The 
analysis in all but the second to last section of the 
paper is discussed relative to that orientation. It 

also happens to provide the solution for a second 
orientation considered, which still has the crack 
tip along the [1 0 1] face diagonal but which has 
the crack plane as the (1 0 1) plane so that [0 I 0] 
is the direction of crack growth. Thus the second 
orientation has the crack line rotated 90°anti- 
clockwise from what is pictured in Figs. l(b) and 
2(b). These two crack orientations are often, but 
not universally, encountered in experimental stud- 
ies of cracking, whether by rapid cleavage, fatigue 
or chemically assisted crack growth, in ductile fcc 
and bcc metals (Tetelman and Robertson, 1963; 
Tetelman and Johnston, 1965; Neumann, 1974a, 
b; Garrett and Knott, 1975; Hecker et al., 1978; 
Rieux et al., 1979; Neumann et al., 1979; Vehoff 
and Neumann, 1979, 1980; Lynch, 1983, 1985; 
Sieradzki et al., 1984; Sieradzki and Newman, 
1985; Pugh, 1985; Wang, 1987). 

Figures 1 and 2 also show the slip systems 
which are assumed to be active in relaxing the 
crack tip stress concentration. 
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Yielding of  an fcc crystal 
In  the fcc case one t y p e o f  relaxing system 

involves either the (1 1 1) or  (1 1 1) slip plane, i.e., 
the two traced by  solid lines in Fig. l(a). The  fcc 
slip directions are along face diagonals  of  the 
reference cube and,  consistently with the p lane  
strain deformat ion  mode  considered, it is assumed 
that  shear parallel  to each slip plane involves 
s imultaneous and equal amounts  of  slip along two 
face diagonal  directions in that  plane. For  exam- 
ple, this means  equal  slip along the [1 1 0] and 
[0 1 1] directions on the (1 1 1) slip plane in Fig. 
l(a),  so that  the effective, composi te ,  slip direction 
is [1 2 1]. Figure l (b)  shows the crack in the x 1, x 2 
p lane  of deformat ion;  traces of the slip planes just  
discussed are also shown as solid lines. Cartes ian 
coordinates  are a t tached here, and  also in Fig. 2, 
such that  x 1, x 2, x 3 are along the [1 0 1], [0 1 0], 
[i 0 1] directions, respectively. 

fcc Crystal 
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Fig. 1. (a) An fcc crystal with crack on (0 1 0) plane and tip 
along [1 0 i] direction. Some slip systems capable of producing 
large plane strain plastic flow are indicated. (b) Crack in plane 
of deformation. Families of straight lines are traces of slip 
plane intersection with x 3 = constant; N and S are shown for 
one family. (c) Yield locus, where ~" is the critical resolved 
shear stress on {1 1 1}(1 1 0). 

Another  combina t ion  of  slip systems consistent 
with plane strain deformat ion  involves simulta- 
neous and equal shear on the pair  of  planes (1 1 1) 
and (1 1 1) (the latter of  which is traced by dashed 
lines in Fig. l(a)),  with bo th  slipping in the [1 0 1] 
direction along which they intersect. Traces of  
these slip planes,  where they intersect x 3 = 
constant ,  are shown by  dashed lines in Fig. l(b).  

The  par t icular  combinat ions  of  slip systems 
identified are the only ones that  can accommoda te  
large plastic straining, as expected at a crack tip, 
under  plane strain conditions, e.g., they are the 
only combinat ions  that  could be  active in a rigid- 
plastic crystal under  those conditions. Plastic 
straining on other  slip systems or other combina-  
t ions of  systems produces  a propor t ional  plastic 
strain componen t  cP3 . The  total strain ~33 = (~3 + 

cP 3 (elastic plus plastic) is bounded  at a three-di- 
mensional  crack tip, and is assumed to be zero in 
the p lane  strain model.  Also, the elastic strain c~3 
stays bounded  since the stresses are bounded  near  
the crack tip (ideal plasticity). Thus it is clear that  

bcc Crystal 
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Fig. 2. Same as Fig. 1, but here for a bcc crystal. Yield locus 
shown for same critical stress ~" on {121}(111) and 
{1 0 1}(1 1 1). 
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the other ignored slip systems or combinations 
could not contribute to a crack tip strain singular- 
ity. One cannot rule out the possibility that some 
secondary plastic strain does nevertheless occur on 
those systems, but they are ignored entirely here, 
as seems appropriate for a first analysis. 

YieM surface as polygonal locus in 012 and 1(011 - 
022 ) plane 

Letting n be the unit normal to a slip plane and 
s a unit vector in the slip direction, the critical 
shear strength r of that system is attained when 
nioijs j = _ 'r. Here oij is the stress and summation 
convention applies with Latin indices ranging over 
1, 2, 3, but Greek indices over 1, 2 only. The yield 
surface in stress space, based on the particular slip 
system combinations compatible with large plane 
flow, is shown in Fig. 1(c). Rice (1973) explains 
why, for rigid-plastic incompressible solids with 
an associated flow rule (the case for crystals), the 
yield surface for plane strain is represented as a 
curve in a plane with a x e s  ½(011 - 022 ) and 012. 

Each flat segment on the yield surface of Fig. 
1(c) corresponds to plane strain shear relative to 
one of the three families of lines in Fig. l(b), 
representing intersections of slip planes with x 3 = 
constant. It is convenient to describe yielding in 
terms of the geometry of those lines. Thus let N 
[=  (N 1, N 2, 0)] be the unit vector normal to, and 
S [=  (S 1, S 2, 0)] be a unit vector along, one of 
those line families. The vectors are shown for one 
of the inclined families in Fig. l(b). Then the yield 
condition associated with that family can be writ- 
ten as N~%xS x = +f ir  (where fl = 2/1/r3 for the 
inclined solid line families, and fl = v~- for the 
crack-parallel dashed line family). Since N~S~ = 0 
and $1 = N 2, S 2 = - N  1, this may be written also 
a s  

2N, N2 (011-°22)  + ( N 2 - N 2 ) 0 1 2  = +fl'r, (1) 
2 

as a description of the corresponding line segment 
on the yield surface in stress space. 

Strain hardening is neglected so that the yield 
locus is invariant to plastic deformation. Also, 
since the present study is formulated within the 
conventional small displacement gradient ap- 
proximations of stress analysis, the apparent or 

'geometric' hardening (or softening) which results 
when crystal slip systems rotate relative to material 
axes is neglected too. Both are important for in- 
clusion in future work. 

The bcc case 
See Fig. 2. The slip direction in bcc is of 

(1 1 1) type, i.e., along the cube diagonal, and any 
low index plane containing this direction may 
serve as the slip plane; the (1 0 1} and {1 2 1} 
type planes are most common and are the only 
ones considered here. The three which can accom- 
modate large plane-strain deformation (and re- 
quire the lowest stress, when the critical T is the 
same for all systems) are indicated in Fig. 2(a). 
Traces of the slip planes are shown in Fig. 2(b). 
They consists of the (1 2 1) plane with [1 1 1] slip, 
(1 2 1) plane with [1 1 1] slip, and (1 0 1) plane 
with (for consistency with pl_ane strain) simulta- 
neous and equal_J1 1 1] and [1 1 1] slip, combining 
effectively to [0 1 0]. The yield locus is shown in 
Fig. 2(c) on the basis of the critical resolved shear 
stress condition, recognized as being less accurate 
for bcc than for fcc (e.g., Vitek, 1974, 1985). The 
factor fl = 1 for yield of either of the (1 2 1} type 
planes, whereas fl = ~ for yield on the vertical 
(1 0 1) planes. 

When the critical ~-'s for (1 0 1) and {1 2 1} 
planes are not the same, the yield surface is capped 
at ¢~- ~'101 along the o02 axis, whereas the intersec- 
tion along the ½(Ol l -  022 ) axis in Fig. 2(c) is at 
(3/2~/2-)'Q21, at least so long as "/'121 < ( 2 / / 1 / ~ - ) ' r 1 0 1 .  

If that inequality is violated the yield surface 
becomes identical to that of Fig. 1(c) with r un- 
derstood as rl0 v 

Interchange of N and S 
The families of slip plane traces in the fcc and 

bcc case are identically oriented relative to one 
another, except that the slip plane traces for the 
bcc families are rotated by 90 o relative to the 
traces for the fcc families (compare Figs. l(b) and 
2(b)). Put another way, if N = X and S = Y de- 
scribe a particular fcc family, then N = Y and 
S = X describe a corresponding bcc family. The 
yield surface is invariant to interchange of N and 
S since they enter symmetrically into the yield 
condition N~%xS x = fl~-. Thus the flat segments on 

travelg4
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tions as those on the yield surface for bcc, as seen 
by comparing Figs. 1(c) and 2(c). The two cases 
differ only insofar as the/3 's are different and the 
relative location of the cut-offs along the o~2 axis 
differ. 

In fact, in the present 'small  strain' (to use a 
common misnomer) formulation, which neglects 
effects of rotation of the lattice relative to the 
material, all the equations of the formulation are 
invariant under interchange of N and S on all the 
families of slip plane traces. The interchange cor- 
responds to rotating all traces by 90 o. Thus the 
solutions developed here for the fcc and bcc cases 
will be essentially identical, apart from the minor 
effects of the different/3 's (which merely scale the 
near tip stresses when expressed as %x//3"r) and 
the different relative positions of the cut-offs along 
the o 1: axis. Only the spin of the lattice relative to 
the material, neglected in the present formulation 
but which reverses sign under interchange of N 
and S, causes a change when we compare solu- 
tions for two such families of slip plane traces 
which differ from one another by a 90 ° rotation. 
Related discussion is given by Rice and Nikolic 
(1985) for the anti-plane case, and in the closing 
discussion here. 

Equilibrium stress distributions 

Let r, 0 be polar coordinates centered at the 
crack tip such that 

x l = a + r c o s o ,  x 2 = r  s in0 ,  (2) 

where a is crack length as measured from the 
(fixed) x 1, x z coordinate origin ( a = 0  in Figs. 
l(b), 2(b)). The tip will, in different circumstances, 
be regarded as being stationary while the cracked 
crystal is being loaded, or as moving (d > 0) qua- 
sistatically through the loaded crystal. 

Following methods of asymptotic crack tip 
analysis of ideally plastic materials as summarized 
by Rice (1982), in the presence of a bounded crack 
tip stress state the equilibrium equations 

~x, ~ Or e ~ + ~  O0 r -  = 0  (3) 

require that 

e 'o '~  = 0. (4) 

Here % = Or/Ox~= %(0) ,  with (e 1, e2) = 
(cos 0, sin 0), is the radial unit vector in the x 1, x 2 
plane, e " -  d % / d 0  is a unit vector in the direc- 
tion of increasing 0 (hence e ' %  = 0 and e" = 

t t r O0/Ox~), and oij = oig(O ) denotes 

oi'j= h~m [Ooij(r, 0 ) / 0 0 } .  (5) 

Since o'~ is symmetric we must likewise have 
t ! o~'~e~ = 0, and since eve r = 0, such implies that o ~  

has the form h%ea. After a little calculation one 
then confirms that all bounded near tip stress 
states consistent with equilibrium must satisfy 

, ( ,  , ) 
o,~ B = e,,eB oll + 022 ) . (6 

NOW suppose that a particular angular sector at 
the crack tip is at yield, i.e., its stress state lies on 
the yield locus. If that state involves the critical 
condition N~o~xS x = fir, then N~o'xS x = 0 within 
the sector. By (6), this requires that 

(N,%)(Sxex)(o(1 + a;2 ) = 0. (7) 

Thus, for all 0 except the four special values for 
which e has the same line of action as either N or 

! t 
S, this condition requires that oll + a22 = 0. By 
(6), this implies that all o" x = 0, and thus stress 
states (as r ~ 0) in angular sectors which are at 
yield must be of the 'constant stress' type, a,x = 
constant (i.e., independent of 0) for all a, ?~ 
except possibly at the four special values of 0. 

Clearly, for a tensile-loaded crack with 022 ~ 0 
on 0 = 0, a stress distribution involving constant 
o,x at all 0 cannot meet crack surface boundary 
conditions. Thus it is necessary that either (i) the 
stresses in some angular sector at the tip not be at 
yield, or (ii) that the stresses change discontinu- 
ously at certain angles 0 (possibly one of those 
noted above, for which the line of action of e 
aligns with N or S). 

Option (ii) is not possible for the quasistatically 
growing crack, since Drugan and Rice (1984) have 
shown that an arc across which o,x is discontinu- 
ous cannot move normal to itself in the type of 
elastic-plastic solid considered here. Thus, for the 
quasistatically growing crack it will be necessary 
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that option (i) be followed, and the solution to be 
presented for that case does indeed involve angu- 
lar sectors in which elastic unloading (and reload- 
ing) occurs. Option (ii), i.e., discontinuity of stress, 
cannot be ruled out for the stationary crack, and 
we analyze that case next. 

Discontinuities of stress and stationary crack tip 
fields 

We attempt to find a solution, appropriate for 
a stationary tensile crack, that is consistent with 
active plastic flow occurring at all angles about 
the crack tip. As just noted, this will be possible 
only if the near tip stress state is discontinuous. 

Suppose, then, that on a ray of direction e, 
[%x] is nonzero. Here I f 9  = f (O  +) - f ( O - ) .  Con- 
tinuity of the traction vector requires that 

e ' [o .x ]  = 0 (8) 

on that ray, and since %x = ox~, this requires, by 
reasoning similar to that in going from (4) to (6), 
that any such discontinuity must satisfy 

[%x] = e , ex [on  + 0229- (9) 

Now, if the yield condition is to be met at all 
angles about the tip, the discontinuity must carry 
the stress state from one point to another of a 
yield locus like in Fig. l(c) or 2(c). By (9), the 
locus of stress states encountered on traversing 
that discontinuity must lie along a straight line in 
the stress space joining those two points (thinking 
of the discontinuity as the limit of thin zone of 
rapid transition). 

However, if we seek a solution corresponding 
to yield at all angles about the tip, and extend this 
requirement to all states traversed in crossing the 
discontinuity, then we must require that the line 
joining those two points on the yield locus also 
lies along the yield locus. Hence the two points 
considered must lie on the same straight line seg- 
ment of the yield locus. (Otherwise, the stress 
states traversed at the discontinuity would corre- 
spond to elastic unloading). 

If N, S correspond to that straight line seg- 
ment, then N~Sx% x is the same on both sides of 

the discontinuity, so that 

0 = N, Sx[%x9 = (N~e~)(Sxex)[an + 0229. (10) 

Thus, as already anticipated, a discontinuity is 
possible when e has the same line of action as 
either N or S. 

Thus, with reference to the families of slip 
plane traces in Figs. l(b) and 2(b), a stress field 
corresponding to plastic activity on a particular 
family may have a discontinuity along either the 
member of that family passing through the crack 
tip, or along the line through the tip that is 
perpendicular to that member. As experience in 
constructing discontinuous stress states consistent 
with these requirements shows, the stress state 
must change from vertex to vertex of the yield 
locus at a discontinuity. If the end state does not 
reach a vertex, the possibility for a further discon- 
tinuous jump will not occur until 90 o change in 0 
and, in the cases examined, such situations do not 
allow construction of a solution. 

Stress field at stationary crack tip 
Figure 3 illustrates the solutions constructed in 

this manner. The situation for both fcc and bcc 
are shown on the same diagram since the positions 
of the resulting rays of discontinuity turn out to 
be the same for both. 

Figure 3 (and the labelling of yield surfaces for 
the two cases in Figs. l(c) and 2(c)) provides the 
distribution of o12 and ½(o n -022 ). To obtain 
Oll + 022, observe that at each discontinuity surface 

[012 ~ = ele2~Oll + 022], 

[ 0,, - 022] = (e 2 - e 2)[ 011 + 022], (11) 

where e is the direction of the ray along which the 
discontinuity occurs. Since 

( e 2 _  e2)2 + 4e~e 2 = 1, 

this gives (with due regard to sign for the applica- 
tion here) 

1½(011 + o22 )] = - [ L ]  (12) 

at each discontinuity. Here L is the arc length 
around the yield surface, having units of stress 
and increasing in the direction A ~ B ---, C ~ D, 
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Fig. 3. (a)  Stress state at a stationary crack tip is constant 
within angular sectors at a c r a c k  tip and jumps discontinuously 
at sec to r  b o u n d a r i e s .  S a m e  discontinuity locations for  fcc  and 
bcc  case. Inset: u n i t  v e c t o r  e in radial direction, e' in cir-  

c u m f e r e n t i a l .  (b) Points on yield locus corresponding to  c o n -  

s t a n t  stress sectors above. See Table 1. 

Table 1 

Stress field at stationary crack tip 

S e c t o r  022/r °11/r %2/r  

fccstresses [,r = ~ ' (1~1}00i)]  

A 3 ¢ 6  2! /6  0 
0 o _ 54.74 ° (7 .35)  (4 .90)  

8 2 ~  3 ~ / 2  - ~3 
54.74  o _ 90 o (4.90)  (3.67) ( - 1.73) 

C f 6  3 ~ ' 6 / 2  - ¢ 3  
90 o _ 125.26 o (2.45)  (3.67) ( - 1.73) 

D 0 ¢6- 0 
125.26 ° - 180 ° (2.45) 

bcc stresses [ r  = r f121}(Ha > = tO01} O 1i ) ]  

A V~ + 3g '2  V/6 + 3 ! / ~ / 2  0 
0 o _ 54.74 o (6.69)  (4.57) 

B 3 ¢ 2  ¢ c 6 / 2  + 3Vc2-/2 - 1 / 3  

54 .74  ° - 90 ° (4 .24)  (3.35) ( - 1.73) 

C Vr6 ¢ 6 / 2 + 3 ¢ 2 / 2  - V ~  

90 ° - 125.26 ° (2 .45)  (3.35) ( - 1.73) 

D 0 3 1 / 2 / 2  0 
125 .26  ° - 180 o (2.12) 

such that for each jump from one vertex to the 
next 

~ L ] ]  2 = ~'012]] 2 q- [ [ ½ ( 0 1 1  - 022)] ]  2.  (13) 

Equation (12) can also be regarded as a conse- 
quence of equations which arise in the generaliza- 
tion of plane strain slip line theory to the aniso- 
tropic case (Booker and Davis, 1972; Rice, 1973), 
in which case ½(oll + 022 ) + L is constant along a 
line of one family of characteristics and ½(Oll + 
o22) - L along a line of the other family. 

Equation (12) is used in the following way. For 
sector D, the boundary condition requires o~  = 0. 
Thus 

(14) 

where the latter can be read off from the yield loci 
in Figs. l(c) and 2(c). (It is ( v ~ - / ¢ ~ ) ~  for the fcc 
case, and ( 3 / 2 ¢ 2 ) z  for the bcc case.) One there- 

fore has 

(o c + o c ) / 2  = (oD -- OO)/2 + Lco,  

(o~  + o2~)/2 = (o c + o c ) / 2  + LBc, (15) 

( o A + o2~ ) / 2  = (o~ + o2~ ) / 2  + LAB,  

for successive calculation of Oll + 022 in the differ- 
ent sectors. The full stress state is given in Table 1. 
For example, the maximum tension occurs in sec- 
tor A and is o A = 7.35r for the fcc and 6.69"r for 
the bcc case. 

Plastic limit state fields 
The fields constructed at the crack tip in Fig. 3 

are identical, apart from the sign of stresses, to 
what Rice (1973) derived as the field at the corner 
of a flat-ended, frictionless, rigid punch which 
indents an anisotropic rigid-plastic half space un- 
der plane strain conditions. See also Pan (1986). 
These fields are the analogs, for single crystal 
plasticity, of the Prandtl slip line field, introduced 
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in connection with punch indentation (e.g., Hill, 
1950) for isotropic materials, and which also arises 
in representing the plane strain state at a crack tip 
in such isotropic materials (Rice, 1967). 

Other crack tip stress fields can also be devised, 
just as in the isotropic case. Those involve either 
angular sectors at the crack tip that are stressed 
below yield levels, or discontinuities for which 
stress states traversed at the discontinuity surface 
are below yield levels, or both. These fields pro- 
duce less stress a,, ahead of the crack than do 
those presented in Fig. 3 (as may be shown by 
considering the bounding theorems of limit analy- 
sis). However, such fields with lower stress may 
actually arise for fully plastic loading of some 
geometries, e.g., for the plane strain tension of a 
bar with an internal crack, in which case the 
triaxial stress elevation of the Prandtl-like fields 
cannot be maintained. 

By analogy to the punch problem, the stress 
field at each crack tip for fully plastic (limit load) 
extension of a solid with deep double edge cracks, 
Fig. 4(a), is the same as given in Fig. 3 and Table 
1. See Rice (1973) for the kinematics of the fully 
plastic flow field. However, the bounding theo- 

3 
2.452, fee 
2.12r, bee 

(b) 

Fig. 4. Fully plastic crystals, deformed in tension at plastic 

limit load. (a) Very deep double edge cracks; crack tip stress 

state same as Fig. 3 and Table 1. (b) Internally cracked tensile 

geometry. Stress state with oii = 0 ahead of crack; flow field 

consistent with concentrated shear deformation along any ray 

within the range indicated. 

rems of limit analysis may be applied to the 
internally cracked bar, Fig. 4(b), to show that at 
fully plastic conditions the stress state directly 
ahead of the crack is u12 = urr = 0, 

0 22 - - i 

67 = 2.457 for the fee case, 

(3/a) 7 = 2.127 for the bee case. (16) 

The limit state flow field for the internally 
cracked bar is nonunique but it can involve con- 
centrated shear (i.e., a slip velocity discontinuity) 
along any ray or set of rays, including a continu- 
ous distribution of rays, from the crack tip within 
the limits set by the two rays indicated in Fig. 
4(b). The limits themselves correspond to con- 
centrated shear involving only one or the other of 
the two families of slip plane traces that are active 
at the vertex to which the stress state corresponds. 
The upper limiting ray shown is along the active 
slip plane traces (like in Fig. 5(a)) in the fee case 
but perpendicular to the active traces (as in Fig. 
5(b)) for the bee case. The lower limiting ray is 
perpendicular to the active traces in the fee case 
but along them in the bee case. Experiments on 
fully plastic deformation of single edge notched 
crystal bars of Cu and Fe-3SSi by Neumann 
(1974a), Neumann et al. (1979) and Vehoff and 

(a) lb) 

(d) 

Fig. 5. (a) Regular and (b) kinking mode of concentrated 
shear; S is along slip plane trace and N is normal to it. (c) 

Shear like in (a) can be accomplished by sweeping dislocations 

generated at crack tip out along slip planes. (d) Kinking shear 

requires abundant internal dislocation sources, from which 

loops expand in a dipole mode to produce macroscopically 

concentrated shear (and lattice rotation). 
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Neumarm (1979, 1980) evidently activate a mode 
of flow like that in Fig. 4(b). 

Those experiments involve cyclic loading, and, 
at least in that situation, the observed deformation 
seems to occur primarily along a zone of con- 
centrated shear that is essentially coincident with 
a slip plane trace emanating from the tip. For the 
fcc orientation of Fig. 1, that would correspond to 
the upper limiting ray in Fig. 4(b). Nevertheless, 
the experiments on Cu in that orientation also 
show evidence (Neumann et al., 1979, Figs. 6 and 
7) of more limited activation of the second set of 
slip plane traces, stressed to yield by the vertex 
stress state ahead of the crack. Further, the ob- 
served boundaries of the plastically deforming zone 
ahead of the tip coincides with the two limiting 
angles of Fig. 4(b). That is, the lower boundary 
lies perpendicular to the (second) set of slip plane 
traces which, alone, are active in that part of the 
deforming region. Neumann et al. (1974) refer to 
that boundary as a ' t ilt  boundary'. 

It is important to realize that, by comparison to 
the fully plastic geometry of Fig. 4(b), a more 
complex stress state with substantial triaxial stress 
elevation and activation of additional slip systems, 
as in Fig. 3, results for more constrained geome- 
tries like the fully plastic configuration of Fig. 4(a) 
and, presumably, for small scale yielding. 

Strain distribution and  displacement discontinuities 
At the level of analysis attempted here, it is not 

possible to characterize in detail the near tip strain 
field associated with the stress state of Fig. 3. The 
stress state is everywhere at one or another vertex 
on the yield surface. Thus the stress state is always 
such that at each point two of the three families of 
slip line traces in Figs. l(b) or 2(b) are simulta- 
neously stressed to yield. If N and/V denote their 
normals, and S and S the slip directions (so that 
shear strain of type )'Ns is positive when the 
system is active), the plastic strain rate tensor has 
the form 

• p = A ( N , , S x + N x S . )  

+ A (A~,Sx + NxS,, ) (17) 

where A >/0 and :l >/0. 
At the rays along which stress discontinuities 

occur, Fig. 3, the pair of slip plane traces which 
are stressed at__yield changes from the pair with 
normals, say, N, N, to the pair with normals, say, 
N, /V. As noted earlier, the ray on which such 
occurs is either in the direction of S or /V (i.e., 
either along the slip line trace or perpendicular to 
it). For example, the inclined discontinuity rays in 
F!g. 3 lie along the plastically active (1 1 1 } plane 
traces in the fcc example, but they are perpendicu- 
lar to traces of the plastically active (1 2 1} slip 
planes in the bcc case. That is, they are in the 
direction of S for fcc and N for bcc. The situation 
reverses for the vertical discontinuity rays. They 
are perpendicular to the active (1 1 1 } slip plane 
traces for fcc, but along a trace of the active 
(1 0 1 } plane for bcc. 

The family of deformation fields consistent with 
the crack tip stress state derived includes fields for 
which the displacement vector has discontinuities, 
of shear type, along the same rays across which 
the stress is discontinuous. These correspond to 
concentrated shear parallel to slip plane traces 
when the ray direction corresponds to S, and to 
kink-like shear perpendicular to those traces when 
the ray direction is N. See Fig. 5(a) for the former, 
5(b) for the latter. 

In fact, one may show as follows that shear 
displacement discontinuities must occur along the 
rays where the stress discontinuities occur. Ob- 
serve that the stress discontinuities are such that 
~Orr ] ~( 0 at each sector boundary, where Orr = 
e~%#e#; other polar coordinate stress components 
are continuous. Thus, dividing strain %# into elas- 
tic and plastic parts, ~B+cPp,  [c~r] < 0. Also, 
examination of the actively stressed pairs of slip 
plane traces near each discontinuity shows in ev- 
ery case that ~P, >~ 0 on the - side and C~r ~< 0 on 
the + side. Thus [c~,] ~< 0, so that [~r,] < 0, at 
the sector boundary. Since cr~ - - -  OUr/Or, where u r 
is the radial displacement, one has a nonzero 
gradient of [ u~] along the sector boundary. Thus, 
presuming that the stress discontinuity defining 
that boundary extends finitely from the crack tip, 

u r] ~ O, i.e., there must be a shear displacement 
discontinuity at the sector boundary. 

An analogous discussion could be given for 
antiplane shear of ductile crystals based on a 
similar asymptotic analysis (Rice and Nikolic, 
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1985). However, in the antiplane case the full 
elastic-plastic solution can be derived for the sta- 
tionary crack in a crystal based on a method by 
Rice (1967, 1984). It turns out in the full solution 
that all plastic flow is confined to a set of rays 
across which the stress changes discontinuously, 
and these planar plastic zones, emanating from 
the tip, are surfaces of shear displacement discon- 
tinuity. 

Quasistatically growing crack; elastic unloading and 
reloading sectors 

As remarked earlier, equilibrium stress states 
which are at plastic yield for the crystals consid- 
ered cannot vary with 0, except at special angles 
where discontinuities cannot be precluded. How- 
ever, a fuller consideration of the relevant set of 
equations (Drugan and Rice, 1984), including the 
incremental stress-strain relations, shows that such 
discontinuities of stress are not allowed for the 
quasistatically growing crack. Thus option (i) of 
the earlier discussion must apply. Any plastic an- 
gular sectors, necessarily of constant stress type, 
must border sectors in which elastic unloading 
(and perhaps loading) occurs. [A fuller analysis in 
which one does not, as here, disregard the possible 
activation of slip systems that are incapable of 
sustaining large plane deformation may lead to 
sectors which are analogous to the 'nonsingular' 
plastic sectors of Rice (1982, Section 4.4) and 
Drugan et al. (1982). Those are sectors which are 
at yield but in which changes in plastic strain 
occur that remain bounded as r ~ 0.] 

Under plane strain conditions with elastic re- 
sponse, although of material that may have previ- 
ously yielded, the constitutive relation is 

~v~ Ov a 
Oxa + ~ = 2c~pv80"v8 (18) 

where c,ovn is the two-dimensional compliance 
tensor. It is related to the corresponding three-di- 
mensional compliance M, jkt by 

Mc~833 M33v8 
casT8 = MaBv8 M3333 (19 )  

assuming that the symmetry of the crystal makes 

0"13 = 0"23 ~" 0 as in the cases considered here. Since 
O, the rate of change of 0 at a fixed material point, 
is given by e2~/r  (e 2 = sin O) the dominant, sin- 
gular term in the near tip stress rate is 

• ! • 

%8 = %88 = ( e2 ~J/r ) %'8. (20) 

When the requirements of equilibrium (6) are en- 
forced this becomes 

6~a = (e2d/r)e~ea(o; ,  + 02'2). (21) 

Evidently, the velocity gradients must be singu- 
lar as 1 / r  in such elastic sectors. An easy analysis 
reveals that the most general form of velocity field 
consistent with such a 1 / r  velocity gradient singu- 
larity is 

o, = 6 B~ ln( R / r )  + d g~(O) (22) 

where the B's  are constants and R is some con- 
stant length. When the velocity gradients are com- 
puted from (22) and the stress rate taken from 
(21), (18) requires that 

- B~e e - B#e~ + g'e~ + g~e" 

2 , t = e2c~13vseves(°,l + 0.22)- (23) 

The notations 

Cl1 = Cll ( 0 )  = e~e#c~pvseves, 

C21 = C21 ( 0 ) = e'e~c~pvseve,, ( 2 4 )  

2 ' c41 = q l ( 0 )  = e~epc~#vseves, 

are introduced. Here the indices 1, 2 and 4 have 
nothing to do with the Cartesian directions but 
rather correspond to the standard subscript desig- 
nations for crystal elastic compliances, denoted 
s,~,, e.g., by Hirth and Lothe (1968, chp. 13), here 
relative to axes in the r, 0 and x 3 directions. For 
an elastically isotropic solid, c n = (1 - v ) /2# ,  c21 
= - u / 2 #  and c41 = 0; here # =  shear modulus 
and v = Poisson ratio. 

When (23) is multiplied by the pairs e~e#, e 'er ,  
and e~'e# there results the fully equivalent set of 
equations 

- B,~e~, = e2cl1 (0.;1 --I- 0.22 ), (25) 

g~e'~ = e2c21 ( 0"11 + 02'2 ), (26) 

-B~e'~ + g'e~ = e2¢41(0.;1 + 0.2'2)- (27) 
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' and for g ' .  These may be solved for o1' 1 + 022 
Thus the form of the limiting stress field as 

r ~ 0 in angular sectors at the crack tip which 
respond elastically is, using the solution for o(1 + 
02% in (25) and then integrating (6) on 9, 

faa[e~(O)ea(O)ex(O) dO. 
%B = °°~- Bx o e2(~)c11(9 % 

(28) 
i _  

Here the sector is presumed to begin at angle 0 ° 
where the stress is o°~. Also, the near-tip velocity 
field is obtained by using the solution for g'(O) 
above and integrating, to obtain 

I n ( R / r )  + d B#fo°(e,~(O)e~(O ) V a =  ~l B,~ 

- [e~ ' (0 )ea(  O)czl (0) + e~(0)ep(0)c41 ( 0)] 

//Cll(0)} dO+~i G °. (29) 

Here the constants G ° = g,,(O °) and, together with 
the constant R, correspond to purely translational 
motion. Thus the entire field of stress and velocity 
is represented in terms of the two constants B 1 
and B 2 and conditions at a sector boundary. This 
analysis applies to an elastic sector of finite stress 
at a quasistatically moving crack tip in any 
material, and is equivalent to that given by Rice 
(1982, Section 4.3); B~ here is -A~  in his equa- 
tions. 

Conditions at plastic boundaries of elastic unloading 
and reloading sectors 

Suppose that the elastic unloading sector lies in 
the range 0 ° < 0 < 0 1  , where 0 ° > 0 ,  0 l<~r,  and 
that the stress state is plastic at both limits of this 
range. If the stress is consistent with yield on a 
line family of slip plane traces with normal N O 
and (positive) slip direction S O at 0 = 9  °, and 
with N 1 and S 1 at 0 = 01, then the unloading and 
reloading conditions 

o o. 00+; N~,S~o,,#<~O at 9 =  

1 1, 91- (30) N2S2o,#>~O at 0 =  

must be met. Using (21) for 6,q~ and (25), these 
become 

NO ~0 B e O 0+ (31) e,~het~ x x >/0 at 

and 

Na~e~S~epBxex <~ 0 at 01- (32) 

Further, if the state at either 00 or 01 or both is of 
vertex character, simultaneously yielding two 
families of planes, then the corresponding in- 
equality must apply for the pair of vectors N, S 
and N, S for both such families. 

Joined elastic sectors 
Consider now that the elastic sector is bordered 

by another elastic sector and that only the ray 
between them is stressed to yield. Call this ray 
0 = 91. Then one must have N~SJ#~ > 0 for some 
9 values in any range with 9 < 0 r, and N2SJ#,a < 0 
for some 0 values in any range with 0 > 91. Thus 
we conclude that (N2e~)(SJea)(Bxex) must change 
sign, from negative to positive, as 0 increases 
through the value # 1. Here the B's  must be con- 
sidered to be different in the two regions, and that 
means that a velocity discontinuity (implied by 
(22), at least near r = 0, for discontinuous B's) 
will occur between them. 

Drugan and Rice (1984) showed that a velocity 
discontinuity may move quasistatically through an 
ideal, plastically incompressible solid, satisfying 
an associated flow rule, provided that the (neces- 
sarily continuous) stress state at the discontinuity 
is consistent with zero extensional plastic strain 
rate in the plane of the discontinuity surface. 
Regarding the rays between sectors of the type 
considered here as candidate surfaces of velocity 
discontinuity, one sees that when a single family 
of slip plane traces, corresponding to N 1 and S 1, 
is plastically active at a sector boundary, the 
boundary ray must have the direction of either N 1 
or S 1. Since these are orthogonal it is equivalent 
to require that either 

N~e~=O or SX~e~=O (33) 

for a velocity discontinuity to be allowed. Thus 
the ray direction e 1 , corresponding to 01 , must 
have the same line of action as either N 1 or S 1. 
The velocity jump [ v~] must have the direction of 
N 2 or S 2 (whichever direction coincides with the 
discontinuity ray). Further, since [v~] is propor- 
tional to [Ba|  near r = 0 at a sector boundary, 
[ B~] is similarly restricted as to direction. 
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We thus see that the quantity (Nle, , ) (S~ea)  
(Bxex), noted above to necessarily change sign as 
0 passes through 01, does so by  virtue of having 
one (only) of the first two factors vanish at 0 a. 
Evidently, then, Bxe x must be nonzero and of the 
same sign on both sides of the discontinuity. 

While 1 a. N~S~o,,p = 0 at 0 = 01, 6~p is not zero in 
general at or near 01 (by (21) and (25), since Bxe x 
is nonzero near 0]). Thus if we plot the stress 
combinations ½(0"11 - 0"22) and 0"12 as a function of 
0, the resulting trajectory must touch the corre- 
sponding yield locus flat segment tangentially at 
0 = 0L This will happen as the flat is approached 
from both sides (look ahead to point B / C  in Fig. 
6(d)) since Bxelx -4= 0 on both sides. 

Restrictions on elastic sectors at 0 = 0 or ¢r 
It may be noted also that fields within elastic 

sectors must be severely restricted if these are to 
border either 0 = 0 or 0 = ~r. Since e 2 ~ Sin 0 = 0 
at those angles, 0"ix would become logarithmically 
infinite as they are approached unless B] = 0. 
Further, the symmetry compatible with tensile 
loading requires that B E = 0 also for an elastic 
sector that includes 0 = 0. 

Assembly of sectors for growing crack 

Figures 6(b), (c) and (d) show the assembly of 
sectors for a growing crack. This assembly may be 
regarded as the analog for the crystals considered 
of what Slepyan (1974), Gao (1980), Gao and 
Hwang (1981) and Rice et al. (1980) have pre- 
sented as the solution for the growing crack in an 
isotropic ideally plastic material, in solutions which 
are unobjectional for solids that are elastically as 
well as plastically incompressible, and of what 
Drugan et al. (1982) have presented for an elasti- 
cally compressible ideally plastic Mises solid (1, 
4= ½). When presented, those near tip stress fields 
were thought to be unique. Drugan and Chen 
(1987) have recently shown that they are not and 
that, instead, a family of qualitatively similar fields 
may exist in satisfaction of all equations of the 
asymptotic analysis. After constructing a particu- 
lar solution here it will later be indicated how a 
family of similar solutions might be constructed, 

Growing Crock 
/ o  0 BC 

~__-0 S 54.7 ° 8 C D ~  
N ' ~ N 3 s 3 . ~  . 

' ~ N  (o) (b) ~oAB 

~ velocity discontinuity 

...... elactiC ~ l a s t i c  

; \ t s.o.T 582,, fcc 
bcc, 2.12v ~ - ~  2.92r bcc; 3.37r, fcc 
fcc, 2.45"r (c) 

I0~)o 54.7 ~ x  ~2~ J t67.3" to 18(7 I 

\ -B/C 
E l Y  fcc 

(d) ~bcc 

Fig. 6. Field at quasistatically growing crack in fcc or bcc 
crystal. (a) Vectors for two inclined families of slip planes 
traces in fcc crystal. (b) Definitions of angles at sector 
boundaries. (c) Sectors at crack tip, for fcc and bcc orientation 
considered, with slip velocity discontinuities along rays at 
#An= 54.7 ° and O e c =  125.3 °. (d) Corresponding regions on 
yield locus and stress trajectory within elastic sectors B and C. 

analogous to that identified by Drugan and Chen 
(1987). 

Consider for definiteness the fcc geometry of 
Fig. 1 (the solution for bcc will differ only by a 
simple reseating of the stress state due to the 
different fl). The stress state directly ahead of the 
crack, on 0 = 0, cannot be below yield, for then 
0 = 0 would lie in an elastically responding sector. 
As discussed earlier, such a sector would have 
B 1 = B 2 = 0, which converts it to a constant stress 
sector. Since no discontinuous changes in stress 
are now allowed, the stress could never reach yield 
and thus, to satisfy crack surface boundary condi- 
tions, the stress state would have to be of the form 
Oll = constant, 0"21 = 0"22 = 0. T h i s  field is of no 
interest in the present context. 

We therefore consider the stress directly ahead 
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of the crack to be at yield, which means that a 
constant stress sector exists ahead of the crack. 
Assuming that 022 > %1 there, this state must 
correspond to the vertex marked A in Figure 6(d). 
Since such a stress state will be incompatible with 
crack surface boundary conditions when 022 ~ 0, 
the stress must ultimately vary from that constant 
state. Such may happen only by transition to an 
elastic unloading sector. In terms of the labelling 
of vectors N, S and N, S in Fig. 6(a) associated 
with the two inclined fcc slip plane traces, the 
constant stress state in sector A satisfies 

N~%xS  x = f i r ,  N~%xSx = - f ir ,  (34) 

and thus the stress rates at the border 0 = 0 AB of 
the elastic sector B (see Fig. 6(b)), in O > 0, must 
satisfy 

N e~Sx ,< 0, N o ~ g ~  >/0 (35) 

which convert to 

N~e,,St~epBxe x >~ O, N,,e,,St~el~Bxex <~ 0 (36) 

at e AB, corresponding to 0 AB. 
The elastic sector has a velocity singularity as 

r --+ 0. To construct a specific solution, we assume 
that the velocity remains bounded within the plas- 
tic sector, ahead of the tip, as r ~ 0. Thus there 
will be a velocity discontinuity [v~] at O aB with 
[v=] having the direction of B~ (the superscript 
refers to sector B) as r + 0. To avoid a normal 
velocity discontinuity, B~ must be colinear with 
e~aB. Now, to be consistent with the flow rule at 
the vertex state of A the ray 0 AB of velocity 
discontinuity cannot lie outside the range gen- 
erated by moving anti-clockwise from the ray e = 
- N  to the ray e = S. The former with B,~e,~ > 0 
corresponds to (negative) shear relative to the N, 
S family of slip plane traces, and none on the 
other, and the latter with B~,e,~ > 0 to (positive) 
shear relative to the N, S family, and none on the 
other; B,,e,~ > 0 is required for any ray within the 
allowable range. However, if we use B~,e,~ > 0 in 
(36), it is seen that 0 AB cannot lie outside the 
range generated by moving anti-clockwise from 
the ray e = S to the ray e = N, and neither can it 
lie outside th._at generated by going anti-clockwise 
from e =  - N  to e = S .  

There is a unique value of e meeting those 
various requirements and it is e A B =  S.  Thus the 
sector border lies along an active slip plane trace 
emanating from the crack tip (for the fcc material; 
that border will be perpendicular to the active slip 
plane traces for the bcc material). This coinci- 
dence means that the discontinuity involves shear 
relative to the N, S family of slip plane traces 
only. Also, N,~6,,BS ~ = 0 at the beginning of the 
elastic unloading sector at O AB, so the stress 
trajectory in the ½(o n -0t22), O12 plane begins 
with tangency to the segment of yield surface that 
is activated; see Fig. 6(d). The values of B f  are 
thus 

B ~  = mS,,  where m > 0 (37) 

and m remains to be determined. 
It  is not possible to choose m so that the stress 

trajectory in the elastic sector continues to 0 = or, 
meeting the crack surface boundary conditions, 
without violating the yield condition. This could 
be expected since the condition Ba B = 0 is not met. 
Thus the stress trajectory must bump into the 
yield surface at some value of 0 between O AB and 
~r. This bump for the case examined lies along the 
flat segment of yield locus corresponding to active 
shear along the family of slip plane traces associ- 
ated with N, S. The angle 0 Bc at which the yield 
condition/V~%xSx = fir  for that system is attained 
depends on m. It  turns out that the direction of 
the radial vector e s c ,  corresponding to 0 ~c  (Fig. 
6(b)), must be the direction $. We will see why 
matters could not be otherwise soon but will con- 
tinue here assuming that to be the case. Then, for 
that choice of 0 s c  we meet the condition for one 
elastic sector to border on another, as discussed 
previously. To generate an admissible velocity dis- 
continuity at the border 0 s c  it is necessary that 

B c = B ~  + ~S , ,  = mS,,  + ~S,~ where 0 < ~ ,  

(38) 
in region C, which is also an elastic sector. This 
equation assures that the (second) velocity discon- 
tinuity is consistent with shear in a positive sense 
relative to a slip plane trace of direction 
emanating from the crack tip. 

The remaining strategy is to choose the extent 
of sector C, which ends at an angle 0 cD (Fig. 6(b)) 
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to be determined, and the constant ~ such that 
the stress trajectory in Fig. 6(d) passes through the 
vertex identified as D on the yield locus at 0 cD. If  
such an angle exists with 0 Bc < 0 cD < ~r, and with 

> 0, and if the resulting stress trajectory does 
not pass outside the yield locus, then a solution 
has been obtained. The field is extended over the 
final sector, D, as a constant stress state which is 
at yield, corresponding to the vertex at D. 

Thus, to determine m one requires that 
N~o~cgx-  N,%~ng x = 2fl'r, giving 

_ m  fOBc[ Sxexg~,e ffVt~et~ ] 
2B': = Jo ~" [ e2cll dO (39) 

where (28) is used with Ba n = mS x. The integrand 
is negative, because Naet~ is, and thus this provides 
a solution for m with m > 0 .  Once m is de- 
termined, one uses (28) and the known values 
oa~ = 0 ,  ( o ~ -  o g ) = - f l , / S 1 S  2 to compute the 
corresponding stresses at the BC interface: 

eoaC 
og c= -mJo.. [elSxex/cll ] dO 

o1B11C --  02B2 C = --  ~,F / /  S 1 S 2  

mfOBc[(e2z--e2)Sxex] 
+ - - -  dO. (40) 

aa~B L e2¢11 

Next, we require that ~ and O cD be chosen so 
that the stress trajectory hits the vertex at D, at 
which Ol~ -- 0 and o~ - o~2 = f l z /SIS2.  Using (28), 
with Bx c given by (38), this requires 

~ "l [OcD[ elex 1 
O = ° ~ C - ( m S x  + XlJonc ["-c-~-~-n ] dO, 

p,/s,s =(o c-ogc) 
+(ms  + 

f o c ° [ ( e 2 - e ~ ) e x ] d O .  (41) 
x J0 "c t e2-Cl-~ 

Because of the linear dependence on N, one may 
solve the first of these for N in terms of 0 cD, and 
then insert that result for ~ into the second to 
obtain a single equation for 0 cD which can be 
solved numerically by standard root-finding pro- 
cedures. 

Finally, o22 must be zero on the crack faces and 

thus is zero in the constant stress sector D. Its 
value at any angle 0 in the range oAB< 0 < O cD 
corresponding to the two elastic sectors is thus 
given from (28) as 

o22= foaC°[ e2Bxe~x ] dO (42) 
Cll ] 

where B x = mS x + mSx for 0 Bc < 0 < 0 cD and B x 
= mS x for 0 AB < 0 < 0 nc. The uniform value of 
o22 in the constant stress plastic sector ahead of 
the crack is given by setting 0 = 0 AB in this equa- 
tion. 

Results 
For the geometry considered, 0 AB = 

arctanv/2 = 54.74 ° and 0 Bc = ~r - 0 AB = 125.26 °, 
corresponding to the two inclined families of 
{1 1 1) slip plane traces for the fcc case (and to 
the directions of normals to the families of ( 1 2 1 } 
slip plane traces for the bcc case). For  simplicity 
the elasticity is treated as isotropic so that c n = (1 

- 1,)/2#. One then obtains that 

m = 2.560(1 - p)/3~-//~ (43) 

and that oa~ c = -0.426fl~', ~[0111-" BC __ o B C ) =  

0.910fl~. The extreme negative value of o12 in 
sector B occurs at 0 = 90 ° and is -0.910fl 'r ,  
which falls well short of the flat segments cutting 
the o12 axis in the yield loci of Figs. l(c) and 2(c). 
The further results are 

= 0.555(1 - J,)fl~/#, (44) 

which is only about 22% the strength of the first 
velocity discontinuity, and 

0 cD = 167.30 o (45) 

so that the trailing plastic sector D has a 12.70 o 
range. The resulting stress trajectory in the elastic 
sectors is indicated in Fig. 6(d); the cusp corre- 
sponds to the angle 0 at which BCex = 0. The 
maximum value of 022, which occurs in sector A, 
is 

o2~ = 5.042fl~'. (46) 

It  should be recalled that 13 = 2/v/-3 = 1.155 and ~" 
is the resolved shear strength for {1 1 1)(1 1 0) 
slip in the fcc case. Thus o2~ = 5.82~- in that case, 
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versus 7.35, for the stationary crack. In the bcc 
case fl = 1 and ~- is the strength ,7"121 for 
{1 2 1)(1 1 1) slip, at least when '7"121 "( 
(2/~/3)r10 P Then, o2~ = 5.04T, compared to 6.69T 
for the stationary crack. When the inequality is 
violated fl = 2 / f3 -  and ~" is $1Ol for {1 0 1}(1 1 1) 
slip. 

Again, it is emphasized that while the velocity 
discontinuities at 0 = 54.74 ° and 125.26 o lie along 
slip plane traces for the fcc case, they occur at the 
same angles and thus lie perpendicular to the 
active slip plane traces in the bcc case and hence 
correspond then to a kink-like shear mode like in 
Fig. 5(b). 

Remaining issues 
First, why is the location chosen for 0 Bc, along 

the slip plane trace of direction S in Fig. 6(a), the 
only possibility? Suppose 0 Bc is larger than that 
value. The elastic sector B can then only be trailed 
by a constant stress plastic sector, and that sector 
would have nonzero o~2 so that its stresses could 
not meet crack surface boundary conditions. Fur- 
ther, once into such a sector there would be no 
possibility of departing from it, into another elas- 
tic sector at large 0, because of the then inadmissi- 
ble velocity discontinuity forced at the onset of an 
elastic unloading sector. 

Suppose, then, that 0 Bc is smaller than the 
value corresponding to the direction S. Once again 
the sector B must be trailed by a constant stress 
plastic sector, and since the boundary angle 0 Bc is 
then unfit for a velocity discontinuity, the velocity 

within the trailing plastic region must be continu- 
ous with that in elastic sector B. The latter veloc- 
ity distribution is unbounded at r = 0 and con- 
trolled by amplitude factors Bx B = mSx with m > 0. 
Since the plastic region can only deform by single 
slip, relative to the N, S family, it is a straightfor- 
ward matter to determine the velocity field in that 
region. The N and S directions are orthogonal 
characteristics for the velocity field, whose compo- 
nent along a given characteristic direction remains 
uniform along that characteristic line. One thereby 
computes the velocity field in the plastic sector 
but, when its resulting strain rates are computed, 
they are not of a sign consistent with positive 
plastic work by the given stresses. Thus this possi- 

bility must be disregarded too, leaving the choice 
that 8 sc  corresponds to the direction of S as the 
only one possible. 

Second, following concepts analogous to those 
of Drugan and Chen (1987), here is how a family 
of solutions might be generated: Suppose that the 
singular structure of the velocity field as in (22) 
holds not just in elastic sectors but in plastic 
sectors too. Thus in sector A one assumes that 

v 1 = 8 [ B  A l n ( R / r )  + g l ( O ) ] ,  

o 2 = d g2 (0)-  (47) 

Here B 2 = 0 for reasons of symmetry and B 1 = B A 
= constant. In this case the sector boundaries for 
B still occur at the angles 0 AB and 0 nc indicated 
in the solution just presented but now one must 
write 

B b = BA~xl + mSx,  

B~ = BASxl + m S  x + rosa (48) 

in sectors B and C, where m > 0 and ~ > 0. The 
solution just presented corresponds to B A = 0, but 
solutions for B A > 0 will presumably lead to dif- 
ferent values of m, ~ ,  0 co and o~2. 

The plastic strain rate in sector A must admit 
the representation 

( 6 A / r ) (  N~SI~ + N~S,)  

- ( : I A / r ) (  N,S/~ + NBS~) (49) 

where A >~ 0 and A >/0. By equating this to the 
strain rates 3 v J b x / ~ +  3v/~/ax~ computed from 
(47), and multiplying both sides with e~e/~ one 
finds 

BAel = A ( - N ~ e ~ ) ( S I j e # )  + S ( N ~ e ~ ) ( ~ e # )  (50) 

t t t t (other products, with e~e~ and e~e~, involve the gx 
and are not illuminating, except to convince that 
suitable g 's  can be found so that A and A can be 
arbitrarily varying functions of 0 within the con- 
straint of (50)). On the line 0 = 0, e a = 1, A and 
are equal by symmetry and their coefficients are 
both equal and positive. Thus 

B A = ( A + A ) ( - N ~ S a ) = 2 A S ~ S  2 o n O = O .  

(51) 
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Thus BA>~ 0 is required. Now examine the ray 
e = S, corresponding to the sector boundary 0 An. 
In that case the coefficient of A vanishes and one 
has, formally, 

BAS=X(~.S~)(g~S.) o n 0 = O  AB. (52) 

But the coefficient of A is negative in this expres- 
sion whereas the left side of the equation is posi- 
tive, and that is inconsistent with A >/0. A way 
out of this dilemma is to assume that A becomes 
positive infinite as 8-~ 8 AB from below, particu- 
larly with A having the structure 

A - (positive constant) / (  - N,,e,,) (53) 

for O near 0 As. 
This is analogous to a corresponding infinity of 

plastic work rate for the isotropic case (which 
occurs then as 0 ~ -~v). The analyses of Drugan et 
al. (1982) and the earlier works mentioned disre- 
garded this possibility on the grounds that such 
fields involve an unbounded total plastic work per 
unit crack growth, and thus dealt with the case 
B A= 0 only. However, Drugan and Chen (1987) 
recently pointed out for the isotropic case that 
such an objection is valid only if the sector 
boundary remains straight at nonzero r near the 
crack tip. In an ingenious analysis they show that 
curvature of the sector boundary at the crack tip, 
of an amount that increases with the size of their 
parameter analogous to B A, removes the un- 
bounded plastic work per unit crack growth, thus 
legitimizing a family of near tip fields where previ- 
ously a single one was thought unique. While 
solutions with B A > 0 have not been pursued in 
further detail here, it seems likely that they could 
be similarly rationalized by assuming curvature of 
the sector boundary which cuts into the crack tip 
at O AB. 

Crack on the (1 0 I) plane 

All the results presented here so far are for the 
case when the crack is on the (0 1 0) plane and is 
growing in the [1 0 1] direction, as in Figs. l(a), 
(b) and 2(a), (b). Another interesting case is for 
the crack on the (1 0 1) plane with growth in the 
[0 1 0] direction. This corresponds to rotating the 

fcc / 

[ o io ]  

[MOl] ---.- [ lO l l  • 

(a) (b) 

Fig. 7. Crack on (1 0 1) plane, with tip along [1 01] and [01 0] 
growth direction in (a) fcc and (b) bcc. 

bcc Xl 

70.5 o \ / 

[OIO] / \ 

crack planes of Figs. l(b) and 2(b) about the crack 
tips by 90 o relative to the crystal, while the direc- 
tion of the crack tip itself remains fixed (as [1 0 1]). 
The results are shown in Fig. 7. 

Since this simply corresponds to a 90 o rotation 
of all families of slip plane traces, relative to the 
orientations shown in Figs. l(b) and 2(b), it corre- 
sponds to interchange of N for S and S for N on 
each family. The yield locus is unaltered by this 
operation, and thus the same yield loci as shown 
in Figs. l(c) and 2(c) apply, respectively, for the 
cracks of Figs. 7(a) and (b). Thus the near tip 
solution for stress and deformation, relative to tlae 
xl, x 2 axes shown, will be fully identical (within 
the small displacement gradient formulation, ne- 
glecting lattice rotation effects) to what has been 
presented here for cracks on (0 1 0) planes in the 
same type of crystal. 

The physical difference is that a discontinuity 
which occurred along a slip plane trace for the 
(0 1 0) crack will instead occur along a normal to 
the corresponding slip plane traces for a (1 0 1) 
crack, and vice-versa. Thus, in terms of con- 
centrated shear deformation on planes emanating 
from the tip, as discussed in connection with Figs. 
3(a) and 6(c), regular shear zones, lying along a 
slip plane trace like in Fig. 5(a) for the (0 1 0) 
crack, become kink-like shear zones like in Fig. 
5(b) for the (1 0 1) crack, and kink-like zones for 
the (0 1 0) crack become regular zones for the 
(1 0 1) crack. 
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Concluding discussion 

Crack tip stress distributions and some con- 
straints on near tip deformations have been de- 
rived within the small displacement gradient for- 
mulation for stationary and quasistatically grow- 
ing plane-strain tensile cracks in ideally plastic 
single crystals. Face centered and body centered 
cubic solids are considered with (0 1 O) cracks 
growing along the [1 0 1] direction and with (1 0 1) 
cracks growing along [0 1 0]. 

For a stationary crack under rising load, the 
near tip stress state is uniform (independent of 0) 
within finite angular sectors at the crack tip, and 
the stress state jumps discontinuously at 
boundaries between sectors. The stress state in 
each sector corresponds to that of a vertex on the 
yield surface, at which two families of slip plane 
traces are simultaneously stressed to yield levels. 
The boundary between neighboring sectors, at 
which the stress state jumps from that of one 
vertex to that of an adjacent vertex, has an orien- 
tation coincident either with the slip plane traces 
or with their normals for that family of slip plane 
traces which is stressed to yield levels at both the 
adjacent vertices. (The stress state directly ahead 
of the tip, and on the crack faces, would not 
correspond to vertices in a crystal whose yield 
locus had no vertices on the ½(o n - o22) axis.) 

The stationary crack stress state requires a flow 
field in which concentrated plastic shear occurs 
along the sector boundaries, i.e., for which the 
boundaries are surfaces of slip displacement dis- 
continuities. Such discontinuities are known to 
occur in the analogous anti-plane shear solutions 
(Rice and Nikolic, 1985) for stationary cracks in 
ideally plastic crystals. 

For the quasistatically growing crack, neither 
the stresses nor the displacements can be discon- 
tinuous. This necessitates the presence of elastic 
unloading and reloading sectors at the crack tip, 
for which a full analysis is given here. The near tip 
field constructed for the growing crack is found to 
involve two rays of slip velocity discontinuity 
emanating from the crack tip. The first occurs at 
0 = 54.7 o, just at the border with an elastic sector 
which unloads from the plastic stress state in front 
of the crack. That elastic sector reloads again and 

stresses at plastic yield levels are attained at 0 = 
125.3 °, where a second but weaker slip velocity 
discontinuity occurs and elastic unloading begins 
again. That second elastic sector ultimately re- 
loads to attain yield level stresses in a trailing 
plastic sector which occupies a 12.7 ° range from 
the crack face. The two 0 values cited coincide, 
necessarily, with either directions of slip plane 
traces or directions of their normals for families 
which are brought to yield levels by the local 
stress state. 

The moving velocity discontinuities leave in 
their wake finite, suddenly accumulated plastic 
strains. Since the velocity jump becomes infinite in 
proportion to ln (1 / r )  near the tip, so also do the 
suddenly accumulated strains. 

In addition to the inclusion of strain hardening 
in future studies of this type, two other issues 
seem to be of importance. First, a geometrically 
rigorous formulation which accounts for finite 
strain and, notably, for rotation of crystal direc- 
tions relative to the material should reveal im- 
portant new features. In part, these relate to the 
details of opening of the crack at its tip, as studied 
by Neumann (1974b) already in a kinematical 
manner that is focused on the particular type of 
fully plastic field indicated on Fig. 4b. The clarifi- 
cation of such opening (and reclosing) processes 
seems important to fundamental understanding of 
fatigue and other types of crack growth. An ad- 
ditional feature is that the invariance of the pre- 
sent solutions to interchange of directions (S)  and 
normals ( N )  to slip plane traces will no longer 
hold. For example, a crack growing along [1 0 1] 
on a (0 1 0) plane in a fcc crystal is predicted to 
have velocity discontinuities that lie along the 
inclined slip plane traces of Fig. l(b), involving 
deformation like in Fig. 5(a). A similarly loaded 
crack growing along [0 1 0] on a (1 0 1) plane in 
the same crystal is predicted to have an identical 
velocity field but now the discontinuities lie per- 
pendicular to the activated family of slip plane 
traces, Fig. 7(a), and involves kinking-type shear 
as in Fig. 5(b). The latter causes the lattice within 
the shear zone to rotate relative to the material 
and thus affects the resolved shear component of 
the stress field in a manner not accounted for in 
the present formulation. This may involve geomet- 
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rical hardening or softening, depending on the 
direction of rotation, and may have a substantial 
effect on the resulting deformation fields. 

Second, it may prove useful to examine the 
implications of the present, and future, continuum 
plasticity solutions for crystals with regard to the 
dislocation generation and motion necessary to 
produce the predicted deformation. A tacit as- 
sumption of the continuum theory is that sources 
which can emit dislocations are distributed pro- 
fusely throughout the material so that conditions 
for plastic flow can be phrased solely in terms of 
achieving an adequate local stress level (e.g., rep- 
resented by a yield surface like in Figs. l(c) and 
2(c)), without worry as to whether a defect struc- 
ture is actually present at the stressed location to 
enable plastic response to that stress. 

Such considerations were emphasized by Rice 
and Nikolic (1985) in analysis of elastic-plastic 
crack tip response of crystals in anti-plane shear. 
They noted that the plastic response predicted on 
the basis of continuum plasticity for some crack 
and crystal orientations could be effected by screw 
dislocations nucleated at the crack tip and swept 
out along slip planes, whereas response predicted 
for other orientations required the presence of 
abundant internal sources (see, for example, Fig. 
10 of Rice and Nikolic, 1985, and associated dis- 
cussion). 

Analogous issues arise here. In the absence of 
profuse sources, the dislocations required to gen- 
erate regular shear deformations along slip plane 
traces, as in Fig. 5(a), could be nucleated at the 
crack tip and swept out along those slip planes as 
indicated schematically in Fig. 5(c). By contrast, 
the dislocation motion necessary to accomplish 
the kinking-shear mode of plastic response, Fig. 
5(b), would seem to require profuse internal 
sources from which dislocation loops could spread 
in a dipole mode along the active slip planes, 
which are then perpendicular to the zone of mac- 
roscopic shear concentration. This spreading is 
illustrated schematically in Fig. 5(d). Effectively, 
macroscopic shear is accomplished by the disloca- 
tions forming tilt walls. It may be remarked that 
Tetelman and Robertson (1963) observed cracks 
to grow on the (0 1 0) plane in a [1 0 1] direction 

in bcc Fe-3% Si crystals which had been hydrogen 
charged. In this case the solutions presented here 
suggest that shear along the inclined discontinui- 
ties in Figs. 3 and 6 will be of the kinking type; 
the {1 2 1 } type slip planes of Figs. 2(a), (b) are 
activated with the macroscopic shear zone lying 
perpendicular to those planes. Thus the disloca- 
tion activity to produce the flow is expected to be 
of dipole type, much as in Fig. 5(d), and this 
seems quite compatible with what Tetelman and 
Robertson (1963, Figs. 1, 2 and 5) observed in 
their etching studies to reveal dislocations. 

One might speculate that the kinking shear 
mode of plastic relaxation, which seems to require 
extensive pre-existing sources, would be less effec- 
tive than the regular shear mode in relaxing a 
crack in circumstances for which source activation 
is relatively inhibited. Such may be due to low 
temperature or rapid loading rate. Thus, while a 
crack on (1 0 1) in a bcc crystal is predicted here 
to have an identical stress field to a crack on 
(0 1 0), assuming both have the same [1 0 1] crack 
tip direction, the latter orientation which relaxes 
primarily by kink-like shear may be more prone to 
cleavage when the temperature is low or the strain 
rate is high. The usual cleavage plane in a bcc 
solids is indeed (0 1 0); e.g., that was the observed 
plane in the Tetelman and Robertson work men- 
tioned above and in studies on Fe-3% Si by Vehoff 
and Neumann (1979, 1980). Following this con- 
cept, it may be expected that if a fcc solid were to 
cleave, it might be more prone to do so on (1 0 1) 
than on (0 1 0) because, in that case, it is the 
former orientation which relaxes primarily by 
kink-like shear. Again, macroscopically, both 
orientations are predicted here to have identical 
stress states. In this connection it is interesting 
that recent reports of cleavage-like fracture facets 
in some fcc solids, including normally ductile 
copper (Sieradzki and Newman, 1985; Pugh, 1985; 
Wang, 1987), do apparently involve cracking on 
the (1 0 1) plane. However fcc Ir, which seems to 
readily cleave, does so on (0 1 0) planes (Hecker et 
al., 1978), as does also A1 in a cleavage-like brittle 
cracking mode induced by exposure to liquid Bi 
(Lynch, 1985). 
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