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ABSTRACT 

ASYMPTOTIC singular solutions of the HRR type are presented for anti-plane shear cracks in ductile crystals. 
These are assumed to undergo Taylor hardening with a power-law relation between stress and strain at 
sufficiently large strain. Results are given for several crack orientations in fee and bee crystals. The near- 
tip region divides into angular sectors which are the maps of successive flat segments and vertices on the 
yield locus. Analysis is simplified by use of new general integrals of crack tip singular fields of the HRR 
type. It is conjectured that the single crystal HRR fields are dominant only over part of the plastic region 
immediately adjacent to the crack tip, even at small scale yielding, and that their domain of validity 
vanishes as the perfectly plastic limit is approached. This follows from the fact that while in the perfectly 
plastic limit the HRR stress states approach the correct discontinuous distributions of the complete elastic- 
ideally plastic solutions for crystals (RICE and NIKOLIC, J. Mech. Phys. Solid.7 33, 595 (1985)), the HRR 
displacement fields in that limit remain continuous. Instead, the complete elastic-ideally plastic solutions 
have discontinuous displacements along planar plastic regions emanating from the tip in otherwise elas- 
tically stressed material. The approach of the HRR stress fields to their discontinuous limiting distributions 
is illustrated in graphical plots of results. A case examined here of a fee crystal with a crack along a slip 
plane is shown to lead to a discontinuous near-tip stress state even in the hardening regime. 

Through another limiting process, the asymptotic solution for the near-tip field for an isotropic material 
is also derived from the present single crystal framework. 

INTRODUCTION 

THE PRESENT article analyzes singular near-tip stress and deformation fields for 
stationary anti-plane shear (mode III) loaded cracks in strain hardening ductile 
crystals. It is assumed that the crystals deform by shear on a set of allowable slip 
systems according to the Schmid rule. That is, plastic flow occurs on a given system 
once the resolved shear stress on that system reaches a critical value. In addition, the 
critical shear strengths are assumed to obey Taylor hardening (all systems harden 
equally) with a power-law relation between stress and strain at sufficiently large strain. 
Thus, the yield surfaces in stress space, being the inner envelope of the planar yield 
surfaces for individual slip systems, reduce to self-similar polygons in the two-dimen- 
sional anti-plane shear stress plane. The yield surface is a fixed polygon in the space 
of the ratio of the stresses to the critical shear strength. 

In the near-tip field, it is anticipated that the elastic strains are relatively small and 
ignorable. Hence the entire strain vector can be identified with the plastic strains. 

1x9 



190 J. R. RICE and M. SAEEDVAFA 

Since the above constitutive description is compatible with the maximum plastic work 
inequality, and hence involves an associated flow rule, the strain vector will be normal 
to the yield surface along flat segments and within the fan of limiting normals at a 
vertex. 

Continuity of stress and displacements is anticipated through the whole field. In 
some cases this continuity condition is satislied only in the generalized form of a 

vanishing sector. For mode III, the equations of equilibrium, together with stress- 
strain relations consistent with the above description and strain-displacement gradient 
relations, lead to simple non-linear equations which can be solved analytically. 

The polygonality of the yield surface results in two different types of solution 
referring to stress states corresponding to either a Aat segment or a vertex point of 
the surface. As the yield surface is traversed, the angular range near the tip will be 
divided into sectors corresponding to these possible stress states. 

Previous work on anti-plane shear loaded cracks in ductile crystals was done by 
RICE and NIKOLIC (19854, where complete elastic-plastic analysis was carried out for 
ideally plastic crystals with stationary and moving cracks. Their analysis for the 
stationary case included a full-field solution as well as an asymptotic near-tip analysis. 
The equations of the latter, taken alone, did not yield a unique strain field. In this 
paper, their near-tip field solution has been expanded to include power-law hardening 
material. It is to be expected that the current results will converge to their results in 
the non-hardening limit, but may show a different type of strain field within the family 
of allowable fields in their asymptotic analysis. 

Mode III solutions for isotropic power-law hardening material have been known 
for several years. RICE (1967) discussed a method for deriving the solution by for- 
mulating the equations for the physical coordinates in terms of strains. The isotropic 
yield surface consists of a simple circle in the space of stresses. Since a circle, in the 
limit, is an infinite-sided polygon, a direct solution for the isotropic mode III field 
may be derived as the limit of the solution here for a single crystal polygonal yield 
surface, and such results are given here. 

MATHEMATICAL FORMULATION 

A Cartesian coordinate system fixed with the crack tip is used, as shown in Fig. 1. 
Conventional index notation is utilized where repeated indices imply summation. 
Greek indices U, fi, . . . , range over 1 and 2, while Latin indices i, j, . . . , have the 

values of 1, 2 and 3. It is assumed that the crack and crystal orientations, and the 
method of loading, are such that anti-plane shear is a possible deformation state. That 
is, displacement uj = ui(x,,.‘cz). Then, the yield surface reduces to a polygon, as 
discussed above, in a plane whose axes are the anti-plane shear stresses, g, i and o13. 

The polar coordinates r and 8 have associated unit vectors e and h which are in the 
radial and angular directions respectively. Also, 

Srldx, = ezr dH/dx, = h,lr, (1) 

will govern the transformation to polar coordinates. Coordinate rotations will be used 



Crack tip singular fields 191 

FIG. 1. Coordinate system used. 

to simplify the derivation. For a counter-clockwise rotation by an angle 4, as in Fig. 
1, vector transformation is governed by the rule 

x, +ixZ = e’6(x’, +ix& (2) 

where i = J-1, which also applies to g3, +icr3*, etc. 
For mode III, the single non-trivial equation of equilibrium, in terms of the only 

non-zero components of stress, is 

aom,jax, = aa,,jax,+aa,,jax, = 0, (3) 

whereas strains are given by 

2E30r = y3. = au,jax,. (4) 

An effective shear strain y for the Taylor hardening model may be defined by 

dy = 1 dyk, 
k 

where dyk is the plastic shear strain increment on the kth slip system, always taken 
positive in the direction of slip, and the sum is taken over all active slip systems. Let 
r be the critical resolved shear stress which, due to the Taylor hardening model, is the 
same for all possible slip systems. Then, 

dEir = 1 ,u$ dyk, 
k (6) 

where ,ui is the Schmid factor defined as pi = ($4 +$$)/2 (no sum here on k). Here 
n is the unit outward normal to the slip plane and s is the unit vector in the slip 
direction. Thus, 

(7) 

Then for proportional stressing and straining (as with the HRR singular fields to be 
discussed later) 
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Y = CY”, (8) 
k 

q = cr@,-. (9) 

The material is assumed to be strain-hardening following a power-law of the form 

y = a?, (10) 

where a is the hardening constant and n is the hardening exponent; n -3 ix is the 
perfectly plastic limit. 

The plastic material described responds identically, under proportional stressing, 
as a non-linear elastic material of energy density 

s 

%I, 
w= dii d.s,i = [n/(pz+ l)]oUaji = [n&z-t- l)]ry. (11) 

0 

This means that a J-integral can then be associated with the HRR singular field and 
some general integrals of elastic crack tip singular fields (RICE, 1988) may be utilized. 
Rather than explicitly identifying Was a (symmetric) function of the Q, in terms of 
which cd = ~3 W/i%,,, it is simpler to work with the complementary energy density 
S2 = GhEji- W. Regarding St as a function of the @ii, then aij = X2/&,,. A function R 
compatible with the Taylor hardening model will result when level surfaces of R, for 
the non-linear elastic solid, are coincident with yield surfaces of the plastic solid 
corresponding to appropriately constant values of r. Thus motivated, it is evident that 

R = a+“+ “/(n+ 1) (12) 

where, in this expression, r = maximum on k of &rii, gives the proper function of 
stress. This results in an Ed which is normal to a flat segment of the yield (or com- 
plementary energy) surface, and properly indeterminate within the cone of limiting 
normals at a vertex. For example, if a stressing path along which systems “1” and 
“2” are equally stressed, and all others are less stressed, is considered, then i;t/?a,, is 
consistently interpreted as rn,~i + (1 -rrt)pj for arbitrary m in the interval 0 d m d 1. 
Thus this Q results, by (IO), in Ed = rnyp: + (1 -m)r&, which evidently agrees with 
the plastic relation of (5) and (6). 

For power-law hardening plastic material, in which proportional stress states of a 
type indistinguishable from those for the analogous non-linear elastic solid are 
possible, the stress and displacement gradients near the crack tip must be such that 
the J-integral is path-independent and hence, when evaluated over a circular path 
surrounding the tip, is independent of r. As discussed by H~TCHI~SON (1968) and 
RKE and ROSENGREN (1968), this type of field (referred to as HRR) must therefore 
have singular near-tip stresses, strains and displacements of the form 

0;; = r I..(,,+ “&I,((j), 

&ii = P -n/W+ I$(@, 

U 1 = r-i- lXn+ “j@), 

if singular solutions of the type u - ri exist as r + 0, 

(131 
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GENERAL INTEGRALS OF HRR SINGULAR FIELDS 
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RICE (1988) derived two general integrals of all crack tip singular fields in non- 
linear elastic (or elastic-plastic, under conditions noted above) materials for which 
products of the form ra$uj/dxk have a finite limit as r + 0. This evidently includes 
the HRR singular fields of (13). His results follow from the fact that in homogeneous 
material the integrals JD = $I N,E,, ds = 0 on all closed contours (not surrounding the 

crack tip), where N, is the outer normal and EX8 is the Eshelby tensor 

Eta = W6,, - a,au,laxo. (14) 

Thus, i?E,,/ax, = 0, whereas components of Em8 have singularities of the type F%;,(d)/r 
at the crack tip. From these considerations, he showed that the singular field must 
satisfy 

rh,Eap = r[ Wh, - h,o$uj/dxg] = - C, (constants), fi = 1,2, (15) 

in the limit r + 0 (or for all r, if just the singular field is considered as in (13)). He 
also noted that crack free surface boundary conditions, /~,o,~ = 0, on the walls of the 
crack (where h, = 0), require that C, = 0. Further,.since h, = - 1 and W > 0 along 
the crack walls, C2 3 0. 

It may be noted that for HRR fields, 

&4j/axses = r&4,/& = uj/(n + 1). 

Thus, by multiplying the pair of integrals (15) with eg, one has 

rh,o,auj/dx8eg = CBeB, 

which can be rewritten as 

h,a,u, = (n + l)C2e, = (n + l)C, sin 8. 

Also, by multiplying (15) with h,, 

r W- h,a,auj/ae = - CBhB = - C2 cos 9, 

since h,h, = 1 and rh,dpx, = ajdt9. 

(16) 

(17) 

(18) 

(19) 

Equations (18) and (19) are alternate forms for the two general integrals of (15). 
These equations apply to all power-law hardening materials, and all loading modes 
or mixed mode combinations, for which HRR singular fields exist. In analysis of such 
HRR fields, (18) and (19) may be used in lieu of two of what would otherwise be 
the set of independent governing equations (stress equilibrium, strain-displacement 
compatibility, and stress-strain relations) for the field. For example, RICE (1988) 

showed how (18) and (19), together with stress-strain relations for the isotropic power 
hardening material in mode III, provide a complete solution for the HRR singular 
field in that case. For mode TIT, (18) reduces to 

hacorps = cQ3u3 = (n + l)C, sin 8. (20) 

Equation (19) can be derived rather easily from (1 S), by differentiation with respect 
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Yield Surface 

FIG. 2. Notation used for the flat segment of the yield surface. 

to 0, when one makes use of the stress equilibrium equations for stress states of HRR 
type, i.e., when one notes that da,/~x, = 0 imply 

h&&9- r,cr,,/(n + 1) = 0, 

and uses the special form of r W, 

(21) 

r W = [n/(n + I)]ro,du,/ik, = [n/(n + I)] [h,a,,&q/dfI + e,o,p,/(n + I)], (22) 

for HRR fields. However, a simple direct derivation (other than that outlined here) 
for either of (18) or (19) singly has not been found. 

Effective application of (18) is shown in what follows. It is useful because the HRR 
solutions for single crystals are developed sector by sector, and the constants C, (= 0) 
and C2 must be the same for all sectors. Thus (18) is greatly helpful in assembling the 
sectors and it allows the definition of the whole field in terms of a single unknown 
constant C2. This simplifies the calculations of single crystal HRR fields significantly 
in mode III and yet more so in mode I (SAEEDVAFA and RICE, work in progress). 

FLAT SECTORS 

It is assumed that the whole angular range about the crack tip responds plastically. 
Consider an angular sector of points near the tip which correspond to a particular 
flat segment of the yield surface. Note that since the HRR field (13) involves ratios 
of stresses to one another that are independent of Y, each ray 8 = constant of the 
sector corresponds to a particular point of a fixed flat segment in the plane of Fig. 2, 
with axes (T~,/z and G,~/T. The normality rule requires the strain vector to be per- 
pendicular to that segment as shown in Fig. 2. Thus, rotating the axes by an angle o 
such that the a;Jt axis is perpendicular to the segment (which causes the same 
orientation for the xi axis) yields 

(23) 

Thus 
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243 = u = u(&). 

For HRR fields u varies as r”@+ ‘) and since x> = Y sin (e-w), (24) leads to 

u = A,X;IX;IP”/(“+‘), 

195 

(24) 

(25) 

where A, 3 0 is a constant. For the flat segment of the yield surface gi2/r has 
a constant value of /3. The constant b = 1 when, for a slip system stressed to 
yield in correspondence with the flat segment considered, one of n and s is in the x3 
direction and the other in the x,-x2 plane. Otherwise, /3 may exceed 1. Observe that 
by (9) rty = 2~~~~6~~ = CTQ~~ = a’~;, = 6i2yi2 = firyi2. Thus, y = fiy;2 which implies 
r = (py;2/a) Iin by (10) and therefore 

(27) 

Using (3) transformed into this new coordinate system and integrated with respect to 
x’, , yields 

P 
g;l =- ~ 

[ 1 
PA, ““~x;,~l,‘“+l’~2x’xI+f(x~). 

(n+ 1) (n+ l>a 
2 1 (28) 

For HRR fields, stresses vary as r “@+‘). Therefore, since xi = r sin (0-w), the last 
term in (28) must be a constant times Ix; I- ‘K~+ ‘), or 

B PAI o;, =- ______ 
[ 1 (n+ 1) (n+ 1)a 

“nIx~,-I:(n+I) :; +A 

[ 1 6 
2 . (29) 

Now using (20) in the transformed coordinate system, A, and A2 can be calculated 
as 

A, = @+I> @+I> c IX;Isinw 
[ a n ‘x; I 

‘(n+l)al,‘“+,) 
5 (30) 

A2 = -ncoto. (31) 

Note that in this sector x; cannot change sign or the stresses will become infinite along 
the line xi = 0. Also, from (30), the sign of x; within the sector must agree with that 
of sin co. 

Sector Limits. Since the flat sector of the yield locus adjoins two vertices, the 
range of applicability of (23) through (31) is confined to 

a;, 
tan(-l+) Q I < tanil-, 

g32 
(32) 

where 1- and il+ are defined in Fig. 2 as jlP = o-t+- and ,I+ < $+ -_o. Thus, using 
(27), (29) and (31) leads to 
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Yiid Surface 

FIG. 3. Notation used for thevertexpoint ofthe yield surface. Herea = fi+/cos (w-4,‘) = fi-/cos (o-$-). 

(n+l)tan(w-$P)+ncotwdcot(O-O) d (n+l)tan(o-$+)+ncoto. (33) 

Simplifying (33), it is obtained that the flat sector ends (or starts) when 0 = Or+ (or 
P), satisfying 

tang’= (n+l)---- 
l+tan(w-$)tanw 

(n+l)tan(o--$)+ncotw-tanw 
(34) 

with $ = I/J’ (or I,!~). 

VERTEX SECTORS 

For the angular range near the tip which corresponds to a stress state at a vertex 
of the yield surface, the ratio of stresses to the effective stress z will remain constant. 
The strain vector changes its orientation continuously in the range bounded by the 
two normals to the flat segments which meet at the vertex. Using a coordinate system 
where the CJ;*/~ axis passes through the vertex, that is by rotating the axes by an angle 
I/I, as shown in Fig. 3, yields 

o;, = 0. (35) 

Integrating (3) with respect to x; after substituting (35), and recognizing the special 
functional form of stress in HRR fields, results in 

I 0x2 = B,Ix’,J”‘“+“, (36) 

with B, 3 0. Note that as shown in Fig. 3, CJ ;2 = CLZ where CI can be defined in terms 
of the constant fl of either of the neighboring flat sectors as a = /?/cos (w - $). Similar 
to the calculations for the flat sector, using (9) leads to zy = g31~3a = o;,y;, = azy;, 
and thus applying (10) results in yiz = y/cc = ~(a;~/cr)‘/a, or 

au a B,” 
Y32 = ax; =a 

(1 

~ Ix',, -nxn+ I), 
sI (37) 

This is integrated to obtain u and hence y;, as 
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Now application of (20) leads to 

[ 

C2 X’, 
1 

l/b+ 1) 

B1 =a (n+l)~cos~x;l , 

(38) 

(39) 

(40) 

B2 = tan*. (41) 

Here x’~ must have the same sign through the whole domain of validity or else infinite 
stresses will be encountered, and from (40) the sign of x’, must agree with that of 
cos *. 

Sector Limits. The vertex sector is adjoined 

orientation of the strain vector is restricted to 
by two flat sectors. Therefore, the 

tan(-d+) < y;I < tan@, 
Y>Z 

(42) 

where 4’ and & are defined in Fig. 3 as 4’ = W+ -II/ and @ = II/ --op. Thus, using 
(37), (39) and (41) leads to 

[tan$-(n+l)tan($-o+)]/ n > tan(e--$) 3 [tan$-(n+l)tan(+o-)]/n. 

(43) 

Simplifying (43), it is obtained that the vertex sector starts (or ends) at 0 = BvP (or 
B”+), given by 

tan8” = (n+ 1) 
tan(w-@)+tan$ 

n-tan2+((n+1)tan$tan(o-$) (44) 

with w = w- (or 0’). It is interesting to note that (34) and (44) yield exactly the same 
expression if tan (o-$) is expanded and the terms are regrouped. This means that 
there is no overlap or gap between the two types of sector. In other words, the flat 
sector ends at exactly the same angle that the vertex sector starts and vice-versa. 
Therefore, either (34) or (44) will define the range of the applicability of each sector, 
determining all the unknown constants (C, must remain for normalization with the 
outer field). Continuity of the stresses and displacements will thus result, when either 
(34) or (44) is used as the boundary angle, provided that the range of each sector is 
finite. 



198 J. R. RICE and M. SAEEDVAFA 

J-INTEGRAL NORMALIZATION 

As mentioned earlier the constant C, was left free for matching with the outer field 
solution. Such normalization is possible through the path-independent J-integral, 
which is the integral J, of the pair of integrals 

JB = 

1 
r de, B = 1,2. 

Here the path for evaluation is taken as a circle of radius r. The contribution of each 
type of sector can be calculated separately by noting that J, is a vector subject to the 
transformation rule of (2). Therefore, Ji can be evaluated in the rotated coordinate 
system for that sector resulting in elementary integrals. Then, the contribution from 
that sector to J = J, can be calculated directly. The results of these calculations are 

1 
fF+ 

J:‘ = - -zz sin* ocot (0-w) 
*’ ’ 

for the flat sector, and for the vertex sector 

J’; = [nC, COS* $ tan (e- $)I$ + . 

APPLICATION TO ISOTROPIC MATERIAL 

It is noted here that the present formulation reproduces the known singular field 
for isotropic materials in mode III. In this case the yield surface is a circle in the space 
of the ratios of stress to the effective stress z. A circle can be taken as the limit of an 
infinitely-sided polygon. Therefore, the general solution presented here does apply to 
this case. There are two possible approaches to the limit process. First, a point on the 
circle could be taken to correspond to the limit of the vertex sector. Then, (35) to (44) 
will apply with the substitution a = 1. However, since the cone of the limiting normals 
vanishes to a single vector at the limit, the direction of the strain vector, which is 
normal to the circle, is fixed. Using the coordinate system used in the vertex sector 
leads to y>, = 0. Thus from (39) and (41), the angle $ which determines the location 
on the yield surface is obtained from 

tan(&$) = ,ltanI’/. 

Using (48) and the transformation rule (2), and normalizing the results with the J- 
integral, the complete solution for mode III cracks in isotropic material is obtained 
as 

u = yr(n + 1) sin */Jn2Cos2*~+sin2$, 
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FIG. 4. Yield surface for isotropic material under mode III loading. 

y =I al/(“+ I) 

[ 

2J 
1 

n/(n+ I) 

7(r(n + 1) 
n2cos2*+sin211/ , 

t = (y/u) ‘in, 

031 = -zsinli/, CT32 = zcos$f, 

Y3a = w3& (49) 

Exactly the same results are obtained if a point on the circle is taken to correspond 
to the limit of an infinitesimally small flat sector. Then, using (23) to (34), and 
observing that at this point the direction of principal shear stress and strain are the 
same, one sets a;i = 0. 

The angle + in (48) is the angle of principal shear stress (or strain) with the vertical 
as shown in Fig. 4. It corresponds exactly to angle 4 in RICE (1968, p. 257 ; 1967, 
p. 295). These results in fact are exactly the same as RICE’S asymptotic solution. 

HULT and MCCL~T~K (1956) derived the complete elastic-ideally plastic crack 
solution for an isotropic material under anti-plane shear loading. Their result indicated 
that for small-scale yielding the plastic zone is confined to a circle at the tip of the 
crack and that yse is proportional to cos O/r, while for large scale yielding the plastic 
zone is elongated in the direction of the crack, and y3@ has still a I/r singularity. RICE 
(1967) expanded their result to include general types of hardening, including the 
power-law hardening material. He found that for small-scale yielding the plastic zone 
is still a circle, although its center moves closer to the crack tip as the power-law 
hardening exponent n is decreased. His solution as just rederived yields the HULT and 
MCCLINTDCK small-scale yielding solution exactly in the limit of n + co everywhere 
within the plastic zone. For large scale yielding RICE found that the HRR type field 
is the first term in an infinite series defining the strain and that it dominated the field 
su~ciently near the tip, within the plastic zone, only for finite n. But as n approached 
the perfectly plastic limit, the actual strain field arbitrarily near the tip deviated from 
the HRR solution. In that limit, although the strain still has a l/r singularity, the 8 
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FIG. 5. (a) FCC or bee crystal with crack on (010) plane and its tip along [lOi] direction; (b) yield surface 
for the fee crystal in this orientation, same result applies to bee crystal except that the labelling of the normals 
and directions for the associated slip systems should be interchanged ; (c) assumed sector arrangement for 

this orientation ; the numbers refer to (b). 

dependence is different, since every term in the series has a singularity of the same 
order and the HRR solution is no longer the dominant term. 

For mode I, as was shown by RICE (1968), even for small-scale yielding the HRR 
field does not describe the entire plastic zone, and is dominant only immediately 
adjacent to the crack tip. As the distance from the tip is increased, the actual strain 
field starts to deviate from the HRR solution. 

It is later argued that the HRR fields derived here for cracks in crystals cannot 
apply throughout the plastic region, even for small scale yielding, but rather dominate 
the field sufficiently close to the crack for finite n. Further, by comparison to the exact 
ideally plastic solutions for cracked crystals by RICE and NIK~LIC (1985), it is explained 
that the region of dominance at least of the HRR strain field must shrink to zero as 
n-+co. 

CRACKS ON (010) CUBE FACE PLANES IN FCC AND BCC CRYSTALS 

As a first pair of examples, cracks on the (010) cube-face planes of fee and bee 
crystals, with their tips along the face-diagonal directions [lOi] are analyzed. The 
crack and crystal orientation are shown in Fig. 5(a). For the fee crystal, there are 
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twelve different possible slip systems, consisting of the four { 11 l} slip planes with 
three (110) slip directions on each system. The resulting yield surface, which is the 

inner envelope of all the lines of critical shear, for all possible systems, in the two 
dimensional anti-plane shear stress space is shown in Fig. 5(b). Active members of 
the { 11 l} (110) type systems are marked along each such line. 

For bee crystals with cracks of this orientation, the primary slip systems are of 
{ 1101 (11 l} type. Systems of (21 l} (111) type can also flow in bee metals, but if it 
is assumed that they have the same critical shear strength, only the { 110) (111) system 
will yield in the present case. Thus each pair of vectors giving n and s for a fee slip 
system gives s and n, respectively, for a bee slip system and conversely. Since the 
present “small strain” formulation neglects the finite rotation of the crystal lattice 
relative to the material, the formulation is invariant to interchange of n and s. Hence 
the yield surface for the bee case is identical to that in Fig. 5(b), except the labelling 
of slip planes and slip directions for each flat segment should be interchanged. It 
follows that the solution for the stress and strain fields are identical for the fee and 
bee cases. This is so even though the former involves activation of slip planes that 
contain the xj direction and the latter slip planes that are perpendicular to that 
direction. Implications for the very different patterns of dislocation generation and 
motion necessary to accomplish the macroscopically identical flow fields in the two 
cases are discussed by RICE and NIKOLIC (1985). 

The angle 8, in Fig. 5(b) is given by e0 = arctan (,,/?!) = 54.74”. However, fIO has 
been left as an unspecified parameter in what follows so that the analysis applies to 
some other cases as well. For example, the yield surface with B0 = 45” (but with /I of 
Fig. 2 equal to 4 rather than 1) describes the case of fee crystal with crack on the 
(0 10) cube face but tip along [00 I] face edge. The normalized yield surface for that 
case is shown by RICE and NIKOLIC (1985, Fig. 8) and, for example, the line segment 
analogous to that along which the numbering (l), (2), (3) appears in Fig. 5(b) then 
involves simultaneous equal shearing on the (111) [ilO] and (iii) [ilO] systems. 

On the crack surfaces the stress cj2 = 0. For a positive anti-plane shear loading, 
g3, is positive on the lower surface of the crack and negative on the upper surface. 
Thus, for example, a point on the upper surface of the crack should correspond to 
the intersection of the flat segment marked (2), in Fig. 5(b), with the a3,/~ axis. Due 
to symmetry of the yield surface about the g3Jr axis, the field should also be symmetric 
about 6 = 0 along which ray 03, = 0. Thus, traversing counter-clockwise around the 
crack from 8 = 0 to 8 = rr corresponds to going counter-clockwise on the yield surface 
from point (1) to point (3) of Fig. 5(b) along line (2). The assumed arrangement of 
angular sectors corresponding to these two vertices and flat segment stress states is 
shown in Fig. 5(c), where the corresponding regions are numbered and their boundary 
angles or, e2 are to be determined. The values of a, w, and $ necessary for determining 
the constants of the previous sections can be readily calculated with simple geometry. 
Then, using either (34) or (44), the limits of each sector are calculated as 

8, = x. 

tan eo, with 0, = B0 for n -+ 00, 
(50) 



202 J. R. RICE and M. SAEEUVAFA 

That is, a finite angular sector [3] does not exist and the stress field with sector [2] 
should end at point (3) of the yield surface. This means that there is no region of 
double slip adjoining the crack surfaces. Using (46) and (47), the contribution of each 
sector to the J-integral can be evaluated and added to obtain 

(n+VtanO 
J = 2C2----- 

n 
0. (51) 

Substituting the value for C2 from (51) into (30) and (40) the equations governing 
each region become 

Sector[l], 04B<arctan[(E~)tanH,]: 

u = yr cos 6. sin Q//I, 

y32 = ycosB,/fi, 

(52) 

Sector [2], arctan[(~)tantIo]<BQ7c: 

u = (n + 1) yr sin (0 -/3,)/g, 

Jcos 0, 1 
nyn+ I) 

y=a lj(n+ I) 

2r(n+ 1) sin (Q-0,) ’ 

TB cos l3 n 
a 

3’ = (n+ 1) [ sin (Q-0,) --I sine, ’ 

y31 = -ysindolB, y32 = YCOS~~/B (53) 

where, again, /3 = 1 and O. = 54.74” for the fee and bee cases of Fig. 5. Also, z is given 
by (10) as z = (y/a) ‘In. The stress distributions are plotted in Fig. 6 and the strain 
distributions in Fig. 7 for various values of n. Also, Fig. 8 shows the resulting 
triangular form of the contour of constant equivalent strain y (and hence also a 
contour of constant slip system strength z), as well as the contour of constant shear 
strain from a single one of the two slip systems active simultaneously in sector [l]. 
Note that if these systems are labelled “1” and “2”, corresponding to the flat segments 
to the left and right of uppermost vertex, labelled (1) in Fig. 5(b), then from (2), 
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FIG. 6. FCC or bee crystal with crack on (010) plane and its tip along [lOTI direction; (a) the stress a,,; 
(b) the stress G), ; both for various n. 

732 = (y*+y’) cos 80 and y31 = (y”-y’) sin 8,, where y’ and y2, summing to y, are the 
respective shear strains. This enables the calculation of y’ and y2 from (52). 

Note that for the ideally plastic limit n -+ co, the above results reduce to 

Sector [l] : 
u = [5/(22,/I)] cos 0,cot BO tan 8, 

y = [.J/(2rzo)] cot BO set 8, 

y3, = - y cos eO tan e/p, 

031 = 0, 

~32 = YCOS&/P, 

032 = z$/cos eo. (54) 
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FIG. 7. FCC or bee crystal with crack on (010) plane and its tip along [lOi] direction; (a) displacement u; 
(b) the equivalent shear strain y, both for various values of n. 

Sector [2] : 
U= 

Y= 

g31 = 

[J/(2~,P)Ico~~o, 

y3l = y32 = 0, 

-zo~/sinBo, CT32 = 0, (55) 

where r0 is the yield stress in shear. Although the stress field shows exactly the same 
discontinuity as RICE and NIKOLIC (1985), that is, it is constant in each sector with 
jumps on the sector boundaries, the displacement field is completely continuous and 
the strain y is non-zero throughout sector [I]. By contrast the complete RICE and 
NIKOLIC elastic-plastic solution involves plastic flow on discrete planes of dis- 
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FIG. 8. FCC or bee crystal with crack on (010) plane and its tip along [lOI] direction; (a) contour of 
constant strain y, which is triangular for all n; (b) contour of constant strain y’ associated with a single 

flat segment meeting at a vertex, both drawn for n = 3. 

continuity emanating from the tip at the sector boundary, across which both stress 
and displacement are discontinuous. Here it should be noted that the field equations 
for strain in the asymptotic analysis of RICE and NIKOLIC determine stress but allow 
a family of solutions for the strain. The limit of the HRR field given here is a member 
(but of the rigid-plastic version) as also, of course, is the complete solution they 
derived. Therefore, it is inferred that for finite n, the HRR field must be the dominant 
term for only part of the plastic zone even for small-scale yielding (in contrast to the 
isotropic case), and evidently as n --f co the domain of validity of the HRR strain field 
must shrink to zero. It should be noted that RICE and NIKOLIC obtained displacement 
u = 0.3465/~~ in sector [2], at least for small scale yielding, whereas the limiting HRR 
result of (55) is u = 0.289J/z,. 

FFC CRYSTAL WITH CRACK ALONG A { 111) SLIP PLANE 

The case studied here is that of the crack on the (111) plane and its tip along the 
[lOi] direction. The crack configuration is shown in Fig. 9(a), with the corresponding 
yield surface shown in Fig. 9(b). The assumed sector arrangement is shown in Fig. 
9(c) where the numbers refer to regions shown in Fig. 9(b). Here /3 = 1 and again, 
the values of CI, o, and $ can be readily calculated with simple geometry. Then, using 
either (34) or (44), the limits of each sector are calculated as 

, with 8, = - 70.529” for n -+ co, 

with e4 = 109.471” for n + co. 
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FIG. 9. (a) FCC crystal with crack on (111) plane and its tip along [lOTI direction; (b) yield surface for this 
orientation ; (c) assumed sector arrangement for this orientation ; the numbers refer to (b). 

Note that sector [3] collapses to a line along the x1 axis, since o3 = 0. Using (46) and 
(47), the contribution of each sector to the J-integral can be evaluated and added to 
obtain 

Substituting the value 
each region become 

d=4$C (n+Q2 
3 2 n ’ 

(57) 

for C, from (57) into (30) and (40) the equations governing 

sector [l], -n<o<arctan[-2,/2(z)], 0l=-70.529”: 

u = (n+l)yrsin(w,-Q), 

r T ln/(n+ 1) 
“)) = al”“+ 1) 1 

J 

2r(n+l)sin(o,-8) ’ J 
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Sector [4], 
r nfl 

0 < B < arctan [ -2J2 n+4 
( )1 

, t+b4 = 54.736” : 

u = p-sin@, 

y = a’““+ 1) 
L 

&Jn nm+ 1) 

1 4&n+l)cos(8-41/4) ’ 

sin 8 
“’ = - (n+‘Iyfi COs(@-$J’ 

(58) 

(59) 

24 = (n-t I)yrsin (B-w,), 

y = a’/(“+ 1) 
[ 

J 

1 

!in+ 1) 

2r(n+ I) sin (d-o,) ’ 
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FIG. 10. FCC crystal with crack on (111) plane and its tip along [lOi] direction; (a) the stress crSz; (b) the 
stress CJ,, ; both for various values of n. 

z 

-[ 

cos 8 3n 

c3’ = (n+ I) sin (Q-o,) 2$- 

sin 8 
g32 = c,; 1> ~~_ 

sin(Q-w,)’ 

y31 = -2JSt3, y32 = -y/3. (61) 

In the above equations again, z is given by (10) as z = (y/a) ‘ln. The graphs of the 
stress and strain distributions are shown in Figs 10 and 11 for various values of n, 
with the contour of constant strain y and the boundary between each region in Fig. 
12. 
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FIG. 11. FCC crystal with crack on (111) plane and its tip along [lOI] direction; (a) displacement u; (b) 
the equivalent shear strain y, both for various values of n. 

Note that associated with the collapsing of sector [3] there is a discontinuity in the 
stress 03r (or more appropriately cXr) at 0 = 0, while all other stresses and dis- 
placements remain continuous. For the entirely plastic constitutive response which 
determines the near-tip singularity, such a discontinuity in stress, from vertex (2) to 
(4) in Fig. 9(b), need cause no discontinuity in strain. 

To illustrate the nature of this discontinuity more clearly, another example has 
been solved, for which the crack is rotated off the (111) plane, but still has its tip 
along [lOi], as in Fig. 13(a). The yield surface rotates a corresponding amount C#I 
around the origin as shown in Fig. 13(b), with a sector arrangement shown in Fig. 
13(c). As the angle 4 varies from zero to 8, = 54.736”, the result varies from that of 
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FIG. 12. FCC crystal with crack on (111) plane and its tip along [lOi] direction; (a) boundary of the different 
regions, with the slip planes shown as dashed lines, drawn for n = 3 ; (b) contour of constant strain y. 

which is triangular for all n. 

Figs 5 to 8, the fully symmetric solution, to that of Figs 9 to 12, the discontinuous 
solution. For a general 4 it is obtained from (34) or (44) that 

tan0, = -(n+ 1) 
cot 4 + cot 8, 

n-cot*~~~(?z+1)cot~cot8,’ 

tan8, = -(n+l) 
cot 6, -cot t)” 

n-_~f$+(n+1)cotC#xote”’ 

tan03 = -(n+I) 
tan BO - tan 4 

n-tan2~+(n+1)tan~tan8,’ 

tan8, = +(n+ 1) 
tan 8” + tan 4 

n-tan2+-((n+l)tan&tanO,’ 
(62) 

Figure 14 shows the stress c3 ,/r plotted for various values of 4, while Fig. 15 enlarges 
the zone of rapid variation. Note that the results approach the discontinuous solution 
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ta) 

FIG. 13. (a) FCC crystal with crack tip along [IOf] direction, and crack plane being any plane for which 
[lOi] is the zone-axis; (b) yield surface for this orientation; (c) assumed sector arrangement for this 

orientation ; the numbers refer to (b). 

very rapidly. For example, region [3] encompasses only a range of 1.43” for $J = 45”. 
Denoting e0 - C$ = 1, as ,I -+ 0, it is observed that region [3] vanishes as, 

(63) 

That is, the stresses are continuous as 4 -+ Qo, yet they drop very rapidly over a very 
small range. The range becomes even smaller as the value of n increases. In fact, the 
stress distribution is always discontinuous for the perfectly plastic limit (n + co), in 
which 

02 = 03 = f$-e,. (64) 

Again observe that as in the previous section, the stress field is exactly the same as 
RICE and NIKOLIC (1985, p. 606), yet the limiting HRR displacement distribution is 
continuous and 7 is non-zero in sectors [2] and [4]. This differs from the complete 
elastic-plastic solution of RICE and NIKOLIC where again the displacement and stress 
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FIG. 14. FCC crystal with crack tip along [lOT] direction, and crack plane being any plane for which [lOi] 
is the zone-axis. The stress ratio o~,/P for various values of 4 and n = 3 ; rapid continuous variation when 

4 f 54.74”, discontinuous variation when 4 = 54.74”. 

discontinuity occurred over the discrete planes which confined the plastic flow and 
were parallel to slip planes. 

DISCUSSION 

As has been mentioned, it is conjectured that the domain of dominance of the HRR 
field for single crystals under mode III loading is limited only to a part of the plastic 
zone which is immediately adjacent to the crack tip. As the perfectly plastic limit is 
approached, this domain must shrink to zero since the HRR solution does not yield 
the known perfectly plastic displacement and strain results of RICE and NIKOLIC 

(1985). The HRR singular field presented here shows a continuous displacement field 
and finite plastic angular sectors, while the solution of RICE and NIK~IJC shows 
plastic zones which are discrete planes emanating from the crack tip across which 
displacement and stress discontinuity occur. These planes lie parallel to the flat 
segments along the yield surface (in the region gZ3 > 0) and in some cases, like those 
of the fee case in Fig. 5, and Figs 9 and J3 here, coincide with the crystal slip planes 
emanating from the tip. 

For single crystals the HRR field contours of constant shear stren~h and equivalent 
shear strain are triangular as is shown in Figs 8(a) and 12(b). Another possibly 
observable feature for the single crystal case is that the boundary planes between 
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FIG. 15. FCC crystal with crack tip along [lOi] direction, and crack plane being any plane for which [lOI] 
is the zone-axis. The rapid variation zone of Fig. 14 enlarged. 

regions of single slip (the flat sectors) and double slip (the vertex sectors) differ from 
pIanes parallel to the yield surface Aat segments (i.e., from the slip planes in cases just 
noted) by an angle of order l/n for large n. 

The analysis of the HRR fields in this case has been greatly simplified by the general 
integral of such fields given by (18), which reduces to (20) for mode III. 
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